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Summary

The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over ten-thousand tumor-

normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring 

analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers (MC3) project, 

our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data 

to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects 

introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and 

analysis methods over time. We present best practices for applying an ensemble of seven mutation-

calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 
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3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been 

made available to the research community along with the methods used to generate them. This 

project is the result of collaboration from a number of institutes and demonstrates how team 

science drives extremely large genomics projects.

Graphical abstract

The MC3 project is a variant calling of over 10,000 cancer exome samples from 33 cancer types. 

Over 3 million somatic variants were detected using 7 different methods developed from 

institutions across the United States. These variants formed the basis for the PanCan Atlas papers.

Introduction

The cost of sequencing is dropping rapidly while the costs of computing and data storage are 

dropping more slowly in comparison (Stein, 2010), making it difficult to deploy core 

analysis on raw data in genomics cohorts. It is often too expensive for individual labs to each 

use a one-off method on all their data. A more efficient approach is to design, test and 

develop cohort-wide analysis by multi-lab consortiums with results that can be shared with a 

larger group of analysts. Scaling computational systems and genomic analysis to work for 

these large data sets requires the coordination of many institutions, many experiments, and 

many computational techniques. Aside from logistical problems, there are several technical 

issues that encumber large-scale analyses, revealing unmet needs: 1) deployment of 

reproducible computing methods in new computing environments 2) the ability to deploy 

methods without manual intervention 3) the biases of single methods and the need for 

consensus and 4) the large amount of noise and false positives that come from data including 

both germline sequencing, heterogeneous tumor sequencing, and low variant allele fraction 

of observed reads.
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There are a number of cancer genomics projects working to do analysis on increasingly large 

datasets (Table 1) (Barretina et al., 2012; Brunner and Graubert, 2018; Campbell et al., 

2017; Hartmaier et al., 2017; Turnbull, 2018; 2017). The Cancer Genome Atlas (TCGA), for 

example, was a massive effort in multi-center cooperation, computational tool development, 

and collaborative science. However, the protocols and tools for identifying and 

characterizing tumor sequence variants evolved over time and were not uniformly applied 

across the project. When somatic variant callers were first compared–early in the TCGA 

timeline (2012)–a surprisingly large number of unique calls were identified for each 

method(Kim and Speed, 2013). To address some of these preliminary issues, TCGA 

organized multi-center mutation calling (MC2), which focused on consensus call sets of 

calling efforts from the Broad, UCSC, Washington University, and Baylor. By the 

conclusion of the MC2 effort simply moving these data from one site to another became a 

daunting task–let alone correcting for potential batch effects or caller-specific biases. 

Although the MC2 produced high-quality calls within each tumor-specific analysis working 

group (AWG), there were still differences in the callers, parameters, and filters used from 

project to project. Another effort of large-scale sequencing aggregation was implemented at 

the Broad Institute, in the effective deployment of the Firehose system (https://

gdac.broadinstitute.org/), which automatically ran a suite of tools, designed at the Broad, to 

perform variant calling on all TCGA samples. While these data addressed consistency across 

tumor-types, these data were not amenable to custom design by groups outside of the Broad. 

In 2014 the ICGC-TCGA Somatic Mutation Calling DREAM challenge (Ewing et al., 2015) 

created an open leaderboard to benchmark variant calling methods from groups around the 

world. The DREAM challenge identified methods with a large variety of techniques and 

performance profiles. However, no large-scale genomic calling effort had yet deployed a 

robust set of these methods in a uniform fashion.

To drive analysis outside of these silos, TCGA organized the Multi-Center Mutation Calling 

in Multiple Cancers (MC3) project, which has developed pipelines to uniformly apply many 

mature tools across the TCGA sequencing project. The combination of both cloud 

computing power, policy changes, and improved variant calling software made this effort 

possible. The result is an open science collaboration across multiple institutions, designed to 

translate brittle custom-coded methods deployed at individual sequencing centers into 

portable, robust methods that enable reproducibility, transparency, and shareability with the 

broader research community. The software methods for this endeavor have been made 

publicly available, along with the datasets that it created.

In this paper, we describe the various challenges and considerations of building standardized 

genomic analysis pipelines that can be deployed in mass to tens of thousands of samples, we 

also highlight some lessons learned, and considerations of performance when looking across 

widely varied cohorts. The resulting dataset, compiled in Mutation Annotation Format 

(MAF, https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)

+Specification), represents several million core-hours of computational time on over 400 TB 

of short read data using the current state-of-the-art variant calling and filtering methods. The 

MAF file represents over 20 million variants produced across approximately 10,000 tumor-

normal pairs from 33 cancer types using 7 variant callers. This form of collaborative science, 

driven by a consortium of researchers across multiple institutions, is needed as the amount 
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of genomic data continues to increase. The data generated by this work has formed the basis 

of the somatic exome variant analysis presented in the other papers from the TCGA 

PanCanAtlas project. More detailed analysis of the characteristics of the data and their 

biological implications will be discussed in other papers, such as 'Comprehensive Discovery 

and Characterization of Driver Genes and Mutations in Human Cancers', 'The Immune 

Landscape of Cancer', and the ‘DNA Damage Repair' (TCGA network et al., update 

citations after reviews)

Results

Cloud Deployment and Reproducibility

The MC3 project in support of the TCGA PanCanAtlas is the result of a number of 

institutions collaborating to provide resources and methods. In many cases, the project was 

able to utilize newly developed systems to deploy compute in ways that were not previously 

possible. These systems included custom written management scripts, institutional work 

management platforms and cloud-based systems. Alignment, GATK processing and variant 

calling for MuTect(Cibulskis et al., 2013) and Indelocator(Chapman et al., 2011) were run 

on the Broad's Firehose system. Additional GATK Indel realignment and base quality score 

recalibration (BQSR) was done on over 1000 tumor normal pairs on the University of 

California Santa Cruz cluster. Processed files were stored at the CGHub system. Over a four 

week period, using almost 1.8 million core-hours, 400TB of data was processed for variant 

calling using the Pindel(Ye et al., 2009, 2015), MuSE(Fan et al., 2016), Radia(Radenbaugh 

et al., 2014), Varscan(Koboldt et al., 2012) and SomaticSniper(Larson et al., 2012) pipelines 

on the DNANexus systems. OxoG scores for samples were calculated on the Institute for 

Systems Biology (ISB) Cancer Genomics Cloud (CGC) and validation data were processed 

using the Broad Firecloud platform.

The majority of the pipelines built for this project were designed to be deployed in multiple 

computing environments. To ensure reproducibility, the methods described in this paper have 

been implemented using modern workflow technologies, which are showing rapid adoption. 

In this model, the workflow is described using: i) a software container- a packaging system 

that simplifies deployment of the runtime environment, includes exact software 

dependencies and all features to run the program; ii) the tool wrappers - for each tool 

utilized, the command line argument to be invoked is described as a set of defined inputs, 

outputs, and parameters that can be used by a workflow engine to be scheduled and 

managed; iii) a pipeline description - a document that describes how all the tools fit together, 

the different parameters that should be modified, and required inputs. For distribution, the 

MC3 pipeline is described in the Common Workflow Language (CWL) format with the 

required software packages deployed using Docker software containerization technology. 

Docker provides methods to package a program and all of its dependencies. These container 

images can be shipped to any Linux machine, whether cloud-based or bare metal. Then the 

packaged tools can be easily run in new environments with minimal configuration. This 

workflow implementation is written using open standards which are easy to distribute and 

allow other researchers to replicate, modify and extend this analysis to their own data. 

Results are publically available from the NCI Genomic Data Commons (GDC) and include 
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protected Variant Call Format (VCF) file releases as well as a filtered, open-access TCGA 

MC3 MAF release that contains only highest-confidence somatic mutations. These data will 

enable further PanCanAtlas efforts and, more generally, cancer research on TCGA data.

MC3 Variant Calling Strategy and Comparison to AWG MAFs

The MC3 effort used seven variant calling methods with proven performance (Figure 1) 

including Indelocator, MuSE, MuTect, Pindel, RADIA, SomaticSniper and VarScan 

(VarScan calls both indels and SNPs). Additionally, a collection of filtering methods were 

applied. These methods were applied to 10,510 tumor/normal pairs from 33 cancer types in 

the TCGA collection of whole exome sequencing data. This produced nearly 20 million 

variants. Definitions of controlled and open-access release of genomic variants for the 

TCGA data allows somatic variants that occur in exonic regions in open-access files (https://

tcga-data.nci.nih.gov/docs/publications/tcga/datatype.html). Variants called in non-exonic 

regions, such as introns, 5' or 3' untranslated regions are restricted to controlled-access 

release. Additionally, somatic variants at sites that lacked sufficient normal depth coverage, 

or variants found in the panel of normals, were filtered from open-access since they were 

considered to be possible germline variants. Using these criteria, the full set of variants was 

narrowed down to an open-access file of around 4 million variants. A majority of 

downstream PanCanAtlas analyses was based on this subset of variants.

To gauge complementarity with previous efforts of calling mutations across many of these 

same tumor types, we compared the new set of calls to the MAF published as part of the first 

TCGA PanCan12 project for twelve tumor cancer types in 2013 (http://www.nature.com/

tcga/). The PanCan12 MAF was created by collecting the variants from each separate TCGA 

AWG without any attempt at unification and includes data from a number of TCGA projects 

beyond the original PanCan12 set, including Pancreatic adenocarcinoma (PAAD) and Skin 

Cutaneous Melanoma (SKCM). We found that the new MC3 MAF had 1,079,216 variants in 

the PanCan12 MAF set of samples, while the PanCan12 MAF has 804,571. Among these 

calls, 717,326 variants are shared between the two sets (Figure S1). Thus, the MC3 project 

captured 89.5% of the original calls while increasing the size of the call set by 25%. The 

largest deviation was the PAAD project, which only saw 33% of the original variants and is 

likely due to poor tumor purity (see the PAAD marker paper for more details about somatic 

mutation calling efforts for this cancer type(Raphael et al., 2017)). Conversely, HNSC, 

SKCM, BRCA, BLCA, COAD/READ, and UCEC had greater than 90% of the original 

variants rediscovered by the MC3 effort (Figure S2).

For some cancer types, tumor cells profuse into the normal, causing issues in the 

identification of somatic variants. The best example of this is acute myeloid leukemia 

(LAML), which affects blood and bone marrow. Normal tissue samples (skin biopsies) from 

LAML patients often contain blood enriched with tumor cells. This can cause variant calling 

programs to mislabel somatic mutations as germline. The MC3 pipeline is conservative, 

attempting to remove all false positive germline calls. Much of the original MAF created by 

the TCGA LAML AWG was derived by manual interventions, including Sanger sequencing 

data not included as part of the TCGA data catalog, to recover variants that would have 
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otherwise been uncalled. As a result, the open-access MC3 call set only recovered 44% of 

the variants called in the original MAF (Figure S1).

Effects of Somatic Filtering for Open-Access Release

To conform to release guidelines for open-access data in TCGA, the MC3 efforts took 

significant steps to remove potential germline calls as well as non-exonic variants. To 

accomplish this, filters were used against the flags that marked low normal depth coverage, 

non-exonic sites, sites outside of capture kit, sites marked by the Broad Panel of Normals, 

samples marked as being contaminated by ContEst, and variants that were only called by a 

single caller. The controlled-access MAF file contains 22,485,627 variants from 10,510 

tumor samples and is comprised of 13,044,511 SNV events and 9,441,116 indels. The open-

access MAF file contains 3,600,963 variants from 10,295 tumors with 3,427,680 SNV 

events and 173,283 indels. We observed that skin and lung cancers (SKCM, LUSC, and 

LUAD) had the largest median number of SNV per sample, consistent with previous 

publications(Akbani et al., 2015; Collisson et al., 2014; Hammerman et al., 2012) (Figure 2).

We plotted the proportion at which each of the different filters were found on variants in the 

three different datasets (the full call set, the open-access data set, and the set of variants used 

for validation) to show the reasons for differences in variant counts in the different sets 

(Figure 3). The most notable shift is the number of variants (over 60%) found in the full call 

set that were marked by the 'NonExonic' and 'bitgt' filters, which remove variants by 

genomic regions rather than technical reasons. These sites don't qualify for open-access 

release and may not be equally covered by all of the variant calling methods. Additionally, 

the Broad Panel of normals flagged almost 30% of the calls in the full set, which were also 

removed in accordance with TCGA data release policies.

To further illustrate the importance of filtering on biological findings, we performed 

significantly mutated gene (SMG) analysis using both MutSig2CV(Lawrence et al., 2013) 

and MuSiC2(Dees et al., 2012) for all KIRC variants present in the controlled-access MAF 

compared to those present in the open-access MAF and marked as 'PASS' in the annotation. 

Typically this method of SMG analysis, using raw mutation calls, is performed in order to 

quickly identify sequencing and technical artifacts. Using the stringent p-value cutoff for 

both tools, MutSig2CV (P-Value < 3.5e-5) and MuSiC2 (P-value < 1e-7) each identified 10 

SMGs using ‘PASS’ variants from the open-access MAF. Seven of these gen overlapped 

between MutSig2CV and MuSiC2 TP53, PTEN, VHL, SETD2, PBRM1, BAP1, MTOR. 

MutSig2CV uniquely identified TCEB1, PIK3CA, and ATM, and MuSiC2 uniquely 

identified ERBB4, SLITRK6, and KDM5C after long gene filtering. The complete set of 

variants from the controlled MAF yielded many more SMG hits (MutSig2CV = 1203, and 

MuSiC2 = 321). The noise introduced by the unfiltered variant calls made the identification 

of real SMG signals very difficult.

Performance Evaluation of MC3 Variant Calling by Experimental Validation

In order to evaluate calling performance, the TCGA project performed targeted deep 

sequencing on select variants for the purpose of validation for individual cancer papers. 

Selection of these variants were made by the original tumor-specific AWGs, and was not 
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performed specifically to validate MC3 efforts This targeted sequencing included 3,128 

samples with validation of a wide range of selected genes and was used for MC3 validation. 

This set of sequences included 33 samples with more than 500 targets genes and a median of 

4 genes per sample. Variants from uterine corpus endometrial carcinoma (UCEC) comprised 

almost 28% of the sites and esophageal carcinoma (ESCA) 23% of the sites in this targeted 

validation dataset (Figure S3). Additionally, whole genome sequencing (WGS) was also run 

providing additional orthogonal data to use for validation. WGS data was available for a 

subset of 1059 samples, and provided a median of 126 validation sites per sample. Some 

methods, such as MuTect deployed by the Broad Firehose, only called variants within a 

region defined by the sequence capture kit definitions, even if additional sequencing was 

available. Because of this, sites marked by the ‘bitgt’ filter, which marked non-common-

capture regions, were removed from the validation data set to provide consistent statistics 

when comparing across methods.

Because sites for targeted validation were selected from the most likely SMG candidates in 

the TCGA AWGs, rather than a random sampling of data, the validation data does not 

represent a robust benchmarking dataset. Every site involved in the targeted validation was 

called at least once by one of the variant calling methods. Because there is no background 

sampling, such as random sites not called by any of the methods, the false negative rate 

neglects sites not called by any method. Sites related to false positive germline signal would 

have been filtered before validation selection, and also not been part of validation efforts. 

Additionally, validation sites would be biased toward less complex and smaller events, 

which would impact performance evaluation of sites that are more difficult to characterize 

using targeted sequencing. We were able to partially manage this effect by including 

additional validation sites from samples where orthogonal WGS had also been performed. 

We should also note that the majority of validation data was generated using a similar 

sequence technology, therefore systematic errors such as those that several of the filters 

attempt to address will appear as erroneous filtering events. This particularly affects PoN 

filters. When comparing the subset of sites validated by targeted sequencing against WGS 

based validation the rate of these types of events doesn't seem to be very large. Given the 

profiles of filters among the datasets we see in Figure 4, the validation data does not mirror 

the characteristics of the full call sets. Despite these limitations, the validation data set does 

provide extensive data about the relative performance of callers and filters (Table S2).

As seen in Figure 4, meta calling methods, such as 'two caller intersection', are able to 

quickly eliminate false positives. This has been noted previously in other studies(Goode et 

al., 2013). The 'two-caller' rule for the set of five SNP callers finds more valid sites than any 

specific combination of two callers(Table S3). This draws on the wisdom of crowd 

principle(Costello and Stolovitzky, 2013). The two caller intersection is much less effective 

for indel calling methods, as it causes an increase in false negatives due to its conservative 

nature. We see general trends, such as MuTect and MuSE detecting the largest number of 

true positive sites among the validation variants surveyed. Somatic Sniper had the lowest 

number of detected sites, omitting the largest number of validated sites, but at the same time, 

it had the smallest number of false positive validated sites.
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We observed many tool specific patterns pertaining to mutation identification (Figure 5). 

Most calls that passed all the filters were supported by all 5 callers. For SNP calls, MuSE 

and MuTect have the highest pair-wise agreement. They each also have the largest number 

of unique calls. For indel callers, Pindel makes the most calls, but over 130K of the variants 

were found in two samples, suggesting there may be characteristics of these samples that 

skew the numbers. Only a small fraction of indel calls made by all three callers.

Discussion

The previous paradigm of genomic research was that groups downloaded data, ran methods 

on their own, and then provided results to the community, representing a 'results-oriented' 

approach. Under this model, it became extremely difficult for external groups to reproduce 

calculations or apply new methods to new datasets. However, with the advent of cloud 

technologies such as computational virtualization and containerization systems, there is now 

the ability to capture computational methods in a way that can be run on external compute 

systems. This change allows for a 'methods-oriented' strategy in which the collaborating 

institutions provide shareable algorithms to be run on the data, rather than processing it 

themselves. The MC3 is a showcase for a methods-oriented project, collecting reproducible 

code for methods from collaborators and deploying them uniformly to data on the cloud.

Through collaboration, open science, and improved resources the MC3 effort overcame 

lingering artifacts from previous cancer-type specific analyses and reflects a true PanCancer 

set of somatic mutations. Many lessons were learned, or re-confirmed, while leveraging 

multi-institutional expertise: 1) While many methods have a public facing software on 

GitHub or clouds resources, default parameters were often insufficient. Achieving the best 

performance required additional input from the original authors. 2) Some tumor types, such 

as liquid tumors, require different strategies of variant calling and filtering to obtain an 

optimal set of mutations. 3) Providing annotation generated by various filtering methods, as 

opposed to generating files with fixed removal of possible artifacts allows for flexible usage 

of the mutation call set. 4) Using reproducible code and methods based approaches are 

essential as datasets increase in size and complexity. 5) Meta-calling methods, that utilize 

the results of multiple methods, can provide more robust results than single methods. 6) 

Multiple precautions and filters were needed to protect potential germline leakage of patient 

data into public facing, open-access data. These lessons learned allowed for customizable 

strategies based on algorithmic objectives or biological inquiries.

This organization of coherent variant calling for 10,000 genomes was a multi-year process. 

However, there were a number of technical advances that occurred during this time-frame, 

and these technologies will make utilization of cloud resources much more accessible for 

researchers going forward. While this effort was informed by the DREAM challenge(Ewing 

et al., 2015), many of the methods selected were based on best practices of the original 

TCGA AWGs. Ideally, future variant calling and filtering efforts should use a robust 

benchmarking effort to scan the various combinations of callers, filters, and parameters and 

evaluate which callers and filters are optimal for different tumor types and contexts. The 

lessons learned from this project should inform the design of a new somatic mutation calling 

pipeline having an end-to-end FASTQ-to-filtered-MAF file workflow with complete 
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containerization in a single cloud. Resources such as the TCGA catalog form the backbone 

of reference data sets that can be used as a point of comparison in new research projects. But 

those comparisons are only useful if the analysis is applied consistently. Thus, when 

pipelines are applied to large datasets, the methods should be made available alongside the 

resultant data so that other groups can apply them to their own experimental data.

The PanCanAtlas project encompasses many research goals. For this reason, a one-size-fits-

all approach would not cover the different types of analyses. An example of this would be 

the problems of driver gene discovery vs heterogeneity analysis. A high-confidence caller 

with lower false positive profiles is better geared for driver gene discovery, because the 

removal of false positive noise helps to better identify significant recurring patterns. Once 

the significant driver genes have been identified, a second pass over the mutation set can find 

lower confidence calls that could provide additional examples of the gene of interest. In 

contrast, heterogeneity analysis, which looks for variants that occur in fractions of the 

population, works much better with very sensitive algorithms because these variants, with 

potentially low variant allele fractions, may be filtered out by more stringent methods. 

Therefore, it was appropriate to include called variants and provide mechanisms for doing 

additional filtering that was appropriate to the analysis. These steps, in accordance to the 

TCGA open-access release guidelines, resulted in the collection of 3 mutation annotation 

format (MAF) files: a controlled-access MAF, an open-access MAF, and a validation MAF. 

Each of these MAF files have distinct properties which are compared and contrasted here.

The multi-center mutation calling in multiple cancer (MC3) effort reflects three objectives of 

large-scale data generation in an age of open science: collaboration, consensus, and 

consistency. First, multi-center collaboration combined efforts and expertise from multiple 

academic institutions. Second, mutation calling was performed using an array of 7 mutation-

callers developed by the adopted by different TGCA analysis centers. We show consensus 

calling outperforms single algorithms in both sensitivity and validation status. Finally, the 

use of consistent methods for calling across multiple-cancers enhances the utility of this 

resource in future efforts to contrast the molecular makeup across tumors. The results of this 

effort provide integral components necessary for future efforts in somatic variant calling.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

All data associated with this project will be made available via the NCI's GDC data portal, 

source code will be made available on GitHub and docker containers on the Docker and 

Quay docker repos. Questions can be directed to the contact author at ellrott@ohsu.edu

METHOD DETAILS

Sample List Creation—The MC3 sample list was extensively verified to make sure that 

poor quality samples were removed, and that for every donor the best tumor and normal 

samples were paired. To this end, a number of rules were applied to remove samples and 

identify appropriate sequence data which BAM files fit pipeline specifications as well as 
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identify samples with available sequencing information that required preprocessing prior 

running analysis.

The list of rules applied included:

1. Exclude redacted samples - A number samples in the TCGA had been removed 

or flagged over the course of the TCGA project for various reasons.

2. Exclude non-HG19 aligned files - Earlier samples from the TCGA project were 

aligned with older genome builds, including HG17 and HG18. Rather than 

attempt to back-port variant calling platforms to older genomes and lift-over the 

variants to new genome builds, these samples were eliminated from the resource 

pool when building the sample list. In many cases the data from these files had 

been realigned by the Broad Firehose platform as part of their efforts in various 

tumor specific working groups.

3. Preferentially select Broad genome build - In cases where a samples sequencing 

data had been run through multiple alignment pipelines, the Broad pipeline was 

preferentially selected to eliminate variance. In most cases when there was a 

multiple pipeline runs, the Broad pipeline was run to update the alignments to an 

HG19 genome build.

4. Reassign samples without GATK co-cleaning - Co-cleaning refers to the process 

of applying the GATK IndelRealignment to both the tumor and normal samples 

of an individual. This process is also accompanied by running Base Quality 

Score Recalibration (BQSR). While complete realignment of sequences was not 

required for inclusion in the MC3 analysis, it was required that the GATK co-

cleaning process has been applied. Because this step was part of the Broad 

pipeline, any sample selected fit this requirement, thus the previous rule. In cases 

where a sample was not co-cleaned and had not already been realigned as part of 

the Broad pipeline, a the co-cleaning was done and the new sequences stored in a 

special project at CGHub.

5. Exclude non-Illumina sequenced samples -A small number of samples in the 

TCGA cohort had been sequenced with other technologies including ABI SOLiD 

and 454 for validation sequencing. To reduce artifacts and maintain consistency, 

these sample were eliminated from the list.

6. Exclude FFPE samples - Most of the TCGA samples were derived from fresh 

frozen samples, but a subset of samples were derived from Formalin-Fixed 

Paraffin-Embedded samples. These samples may have experienced more DNA 

damage and had different error profiles in mutation calling. This rule results in 

the removal of 97 samples.

7. Matched genome build string - While HG19 alignment was required for sample 

inclusion, there was in fact a number of different genome versions, including 

'HomoSapien19' 'WustlBuild1' and others. These genome build were all based on 

HG19, but contained various patches. Genome patches add additional sequencing 

information to the assembly, without disrupting the chromosome coordinates. 
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But while these multiple patches were allowed, for a tumor and normal sample to 

be matched the genome build title had to match, to eliminate the possibility of 

sequence patches being misidentified as somatic mutations.

8. Prefer Native DNA pairs over WGA pairs over Native+WGA - There is a 

number of earlier TCGA samples which were sequences with Whole Genome 

Amplification. Because of the technical artifacts associated with this technique, 

in cases where there was sequencing done without WGA, those samples were 

preferentially selected.

9. Prefer samples with matching RNA-Seq - We selected samples that had quality 

measures based on RNA-Seq.

10. Usually prefer latest plate - Operating on the principle that any later sequencing 

effort would have been triggered by issues in the earlier runs, the latest run from 

a sample was chosen.

11. Prefer pairs sequenced at the same center - Sometime tumor normal pairs were 

sequenced at multiple centers. We selected for samples tested at the same center. 

This step was not adjusted based on Contest or Oxog scores.

12. Tumor contamination estimates using Contest - Samples were removed if the 

Contest score estimated more than 4% contamination from another participant.

13. Spurious sequence artifacts: BadSeq - 6 samples were removed if they appeared 

to be affected by systematic sequencing artifacts. Systematic insertions or 

deletions were identified at the same base pair location in each of the reads in the 

both the forward and reverse strands. These artifacts have been previously 

reported(Ye et al., 2015).

Given these rules, the sample selection algorithm is as follows:

1. Pick best bam within aliquot + original sequencing center. This involves apply all 

hard filters and picking samples with a preference toward BAMs processed via 

the Broad pipeline or the MC3 secondary co-cleaning pipeline.

2. Pick best set of BAMs within an individual. First selecting the most “popular” 

build, using Broad-aligned or number-of-native as tiebreakers, and avoid 

selecting WGA samples. Some overrides were applied in these step, ie selecting 

Baylor-aligned native samples vs Broad-aligned WGA samples.

3. Pare back the aliquots within the individual. First drop non-paired samples and 

select one aliquot per sample.

The final white list consisted of 11,069 tumor-normal pairs for 10,486 participants. In cases 

where more than one pair was selected for a participant, all of the pairs were analyzed for 

mutations, but all but one were tagged as 'nonpreferredpair', based on criteria like preferring 

a primary to a metastatic tumor sample, and for solid tumor types preferring a blood to a 

tissue normal sample.
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Variant Calling and Filtering Strategies—For the variant calling step, seven methods 

were applied, five covering Single Nucleotide Variant (SNV) calling and three covering 

short Insertion Deletion (INDEL) events, with Varscan 2 providing both types of analysis. 

Parameters used for these tools are found in Table S1.

1. MuTect (SNV) - This method at the Broad Institute(Cibulskis et al., 2013) uses a 

Bayesian classifier that allows it to identify low-read/low-allele fraction somatic 

mutations, while maintaining a high specificity. It was one of the top performing 

methods in the SMC-DNA DREAM challenge(Ewing et al., 2015).

2. Varscan 2 (SNV/INDEL) - Developed by Daniel Koboldt, Washington 

University, the algorithm uses heuristic and statistical approaches in its algorithm 

to detect germline, somatic and loss of hertezinocity. It can calculate SNV, Indel 

and CNA events(Koboldt et al., 2012).

3. Indelocator (INDEL) - Developed by the Broad team(Chapman et al., 2011) uses 

read count and alignment quality information to detect indel events found in 

tumor alignments.

4. Pindel (INDEL) - Developed by Kai Ye et al. at Washington University is used to 

identify medium size insertion and large deletion events. Pindel also generates 

complex variant calls that accurately reflect the genomic alterations even around 

substitution sites(Ye et al., 2009, 2015).

5. SomaticSniper (SNV) - Developed by David Larson et al. at Washington 

University, this method compares the tumor and normal bams to find differences 

using the samtools MAQ genotype likelihood model to make alteration 

calls(Larson et al., 2012).

6. RADIA (SNV) - Developed by Radenbaugh et al at University of California in 

Santa Cruz, RADIA stands for RNA and DNA Integrated Analysis. It augments 

it mutation calls using RNA-Seq samples from the same tumor making it 

possible to make mutation calls when there is lower DNA allelic frequencies. 

RADIA was applied using matched RNA when available(Radenbaugh et al., 

2014).

7. MuSE (SNV) - Developed by Fan et al at Baylor College of Medicine and MD 

Anderson (Fan et al., 2016), uses a markov substitution model which 

characterizes the evolution of the allelic composition of the tumor and normal 

tissues at each reference base and is tuned for sensitivity. It further adopts a 

sample-specific error model that reflects the underlying tumor heterogeneity to 

improve the overall accuracy. Uses a Markov substitution model to calls 

mutations. MuSE was another method that scored very well in the SMC-DNA 

DREAM Challenge.

Default parameters for programs were used as much as possible, however in a number of 

instances non-default parameters for particular programs were used, based on discussions 

with tool authors or analysis that had utilized the tool in institutional pipelines (Table S1). 
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These selections were based on empirical knowledge gained by observing effects on small 

cohorts.

In the process of sample collection, DNA amplification and short read sequencing, there are 

a number of events that could induce noise and create false mutation patterns. Though 

callers are tuned to remove some classes of systematic sequence error, it is often necessary 

to impose additional post hoc filters. In some cases the techniques are already embedded in 

some of the mutation calling programs themselves, but to maintain consistency these filters 

were applied across all calls uniformly. We applied several common filters employed by 

major sequencing centers during the TCGA. The filtering steps do not increase sensitivity, 

they only remove calls, so sensitivity can only be decreased in this phase. Since false 

positive somatic events can be highly misleading for downstream research, maintaining high 

specificity of the call set using post hoc filters is crucial. The final call set was filtered to 

identify cohort level artifacts and was subject to extensive variant, subject, and cohort level 

QC. In sum, 22,485,627 putative variants were identified and 2,907,335 high confidence 

mutations were retained after filtering.

To provide filtering, 8 methods were utilized. The final two filtering methods are not 

necessarily designed to increase accuracy, Some of the variant calls marked by these 

methods may be correct, but were removed from the public open-access release in 

accordance with TCGA data access tiers.

1. Broad PON V2 - (MAF tag: broad_PoN_v2) One of the most effective filters of 

false-positive, contamination, and germline variants is a Panel-of-Normals (PoN) 

(Hess et al., in preparation) filter. This filter postulates that if a variant is called 

or detected in a set of control (often non-tumor normal samples) then it is very 

unlikely that the variant is actually a somatic variant in any given tumor sample.

2. Common In ExAC - The Exome Aggregation Consortium (ExAC) publishes 

germline variants and recurrent artifacts seen in exome sequencing of over 60K 

unrelated individuals from across seven subpopulations(Lek et al., 2016). As 

implemented in vcf2maf v1.6.11, this filter tags variants with a non-reference 

allele count >16 in at least one subpopulation of the non-TCGA subset of ExAC 

v0.3.1, unless ClinVar flags it as pathogenic. AC=16 (for SF3B1:K700) was the 

highest value observed among known somatic events detected in the normal 

blood of older individuals due to clonal hematopoiesis.

3. OxoG - (MAF tag: oxog) The 8-Oxoguanine (OxoG) DNA lesion is a common 

sequence artifact caused by excessive oxidation during sequence library 

preparation(Costello et al., 2013). The DetOxoG tool was used to identify and 

flag likely OxoG error variants.

4. ContEst - (MAF tag: contest) This program predicts levels of contamination. 

Contamination coefficient produced by this method is used as a coefficient in the 

MuTect pipelines, and samples with a value greater than 4% were removed from 

the analysis.
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5. StrandBias - (MAF tag: StrandBias) Implemented post MAF production and 

more appropriately identified as a mutation bias artifact, the StrandBias filter 

tags low-VAF G>T from samples sequenced at Washington University such that 

the number of untagged G>T variants equals the number of C>A variants within 

a sample. VAF cutoffs are set on a sample by sample basis such that the number 

of tagged G>T variants (with lowest VAF) maintains balanced untagged G>T 

mutations and C>A variant counts. This was implemented because of strong 

disparities between G>T and C>A mutation counts in samples sequenced at 

Washington University.

6. Normal Depth - (MAF tag: ndp) To avoid miscalling germline variants at least 8 

reads in the normal sample in non-dbSNP sites and at least 19 reads in dbSNP 

sites.

7. Capture Kit - (MAF tag: 'bitgt') The filter represented a simple process of 

intersecting all mutations calls with the subset of the genome that intersected 

with all of the capture kits used by the different sequencing centers. During PCR 

small fractions of non-targeted sequences could be amplified and during 

alignment reads could have been placed in incorrect locations in the genome. 

This leads to low read coverage areas in non-targeted section of the genome to be 

included in the BAM file. If the variant calling program sweeps across of the the 

reads, it may produce calls using these off target reads, and create calls.

8. NonExomic - (MAF tag: NonExonic) As part of the NCI/NHGRI mutation 

release process, non-exonic mutations must be verified with orthogonal 

sequencing before they can be released publicly. The exon definitions were 

derived from the GAF 4.0 definition, which was based on Gencode 19 Basic.

Merger of Mutation Calls—Mutations were called by each of the callers and stored in 

VCF format. Following initial calling, variants from each caller were merged by allele with 

the exception of calls from Pindel. For alleles not involving Pindel, we extracted and 

averaged coverage metrics across all callers asserting the presence of a mutation and 

combined the various callers into the calling center column in the resulting MAF file. As 

Pindel generates complex variant calls we allowed Pindel to supersede allele representations 

from other callers. Any allele intersecting a Pindel call by position was discarded and the 

Pindel call was modified to add the other caller to the calling center column. We annotated 

these by placing a “star” next to the caller ID to signify that the caller may not have 

represented the allele in the same way.

Workflow Deployment—The various components of this part of the MC3 computational 

task took place at multiple sites using different technologies and computational resources.

1. UCSC NCI Cluster - A computational cluster, associated with the CGHub, was 

utilized to perform GATK co-cleaning on a subset of sequence files that had not 

been previously processed. This dataset represent approximately 1600 BAM 

files. The results of this run were stored on CGHub until its close in July 2016.
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2. DNA Nexus - The primary set of computations, related to running the core set of 

variant calling pipelines as run on DNANexus's cloud platform. Over a four-

week period approximately 1.8 million core-hours of computational time were 

used to process 400 TB of data on the DNAnexus Platform to yield reproducible 

results. This resulted in the 500GB of VCF files representing all detected 

variants.

3. Broad Firehose - The Broad Firehose is a system to deploy automated pipeline 

analysis on all the TCGA data. The somatic variant calling pipeline includes 

ContEst, MuTect, and Indelocator, and was run using an SGE cluster of 200 

nodes. In addition, the OxoG filter was applied at this stage, and were also later 

applied to the calls from the other callers.

4. Institute of Systems Biology. These validation runs were deployed on the 

Institute of Systems Biology Cloud pilot. One this system, the OxoG variant 

filtering step was run on all variant data. Also, the WheelJack validation data 

genotyping algorithm was run on all samples with available validation data.

SMG Performance Analysis—MutSig2CV and MuSiC2 were performed on subsets of 

the data based on different filtering criteria. The results of this analysis resulted in drastically 

different results when taking filtered for raw variant calls. KIRC was selected because of its 

unique set of driver mutations compared to other tissues (PBRM1 and VHL) and it is often 

associate with few SMGs. Variants for the raw variants were assembled for the unfiltered 

MAF. MutSig2CV consists of 3 statistical tests, including mutation abundance, local 

clustering, and conservation. SMGs from MutSig2CV were defined as genes with a q-value 

<= 0.1. MuSiC2 analysis calculates SMGs using mutation abundance compared to 

background mutations rate calculations. Convolutions of multiple transition and transversion 

rates were used to calculate p-values. Strict p-value cutoffs of 1e-7 were used in defining 

SMGs for MuSiC2. SMGs were further filtered using the MuSiC2 long gene filter. This is a 

MuSiC2 specific long gene filter systematically increases the p-value threshold for larger 

genes until it no longer indicates a correlation between p-value and gene size. If the larger 

gene doesn't reach the new threshold it is subsequently removed from the SMG list. This 

was not applied to MutSig2CV output. Filtered variants were processed using “pass-only” 

variants from the public facing, open-access MAF. The same parameters from the above 

were applied resulting in a reduced number of SMGs in KIRC. No hypermutators were 

removed for this analysis.

Mutation Validation—The Broad 'Mutation Validator' pipeline was used to identify 

validation evidence at variant sites using alternate sequencing runs. Mutation Validator 

provides validation evidence at sites of candidate SNVs or INDELs from read pileups across 

multiple data-types including WXS, WGS, Targeted Validation, and RNA. The algorithm for 

each validation followed the step:

1. Collect pileup for each allele (A<C<G<T, INS,DEL) at candidate sites from each 

validation data type.
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2. Parse normal sample for each data type to estimate maximum noise alternate 

allele fraction. If datatype has no normal sample (eg. RNA-seq) then use exome 

to estimate noise. Use binomial conditional distribution field to calculate the 

99% upper limit alt count in the tumor at this noise allele fraction. This upper 

limit is the threshold validation read count “min_val_count“ in the tumor sample. 

The minimum “min_val_count“ for any data type is 2.

3. The power to validate the mutation is calculated using the hypergeometric 

cumulative probability distribution to project the observed tumor alternate allele 

fraction from the exome onto the coverage of the validation data type with a 

minimum of “min_val_count“ alt supporting reads. If power is less than 0.95, 

disregard this site+data type as unpowered.

4. If the normal sample for a given validation datatype has an allele fraction 

exceeding 0.2 for SNVs or 0.1 for INDELS, label the site+data type as 

“validation_judgement”=2 (germline).

5. If not germline, and if the tumor validation datatype alternate read count is at 

least “min_val_count“ (from step 2) then label the site+datatype as 

“validation_judgement=1 (somatic).

6. Otherwise, set “validation_judgement”=0 (not validated).

Using this method 7,680,483 candidate variants processed by mutation validator (1,476,028 

DEL, 603,637 INS, 5,600,818 SNP). The sites within the target region (bitgt) created a set of 

1,352,467 variants having 95% power in either rna, targeted, wgs, or lowpass validation 

data. Validation rules at sites with power in targeted or wgs data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Effects of Cancer Type on Mutation Callers—When observing the total number of 

mutations per sample, separated by cancer type, we identified that mutation calling 

consistency differs by cancer type. Specifically, within single nucleotide events THYM, and 

PAAD, KICH and UVM tumors varied greatly between sample when compared to the total 

number of unique variants identified per sample. Such inconsistencies are likely attributable 

to various pathological reasons that yield low purity biopsies. For instances, when 

comparing to purity estimates (Figure S2), THYM and PAAD samples had the lowest purity 

estimates (ABSOLUTE (syn7870168) median 39.0% and 39.7% respectively).

OxoG Events—The oxidation of guanine to 8-oxoguanine, known as the OxoG event, 

affects a subset of TCGA samples. It can be caused by heat, contamination and physical 

forces on the DNA. This mutation causes G to T and C to A substitutions in the reads. To 

filter for this event, an OxoQ score is calculated, which describes the probability of an entire 

sample being affected by OxoG events. If this OxoQ value is above a threshold, then the 

sample is run through the OxoG filter which examines the original BAM file reads to 

determine if G to T and C to A mutations are real or created by the OxoG artifact.

Per Gene Filtering Effects—Per gene counts were generated based on the number of 

variants found in the MC3 controlled-access and open access files. The genes with the 
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largest disparity of variant counts between the two populations were assessed (Figure S4A). 

Additionally, significant cancer genes found as part of the original PanCan12 project were 

highlighted(Kandoth et al., 2013) in this analysis (Figure S4B).

Indel Realignment and BQSR—In order to remove biases in the alignment protocols, a 

process called 'co-cleaning' was deployed, as part of the GATK best practices(McKenna et 

al., 2010), on each tumor normal pair. This processing step is composed of two analysis and 

adjustments that are run in the BAM files prior to variant calling. The first step, local 

realignment uses reads from both the tumor and normal, thus the 'co-cleaning', and utilizes 

this information to disambiguate potential areas of misalignment. The tumor and normal are 

co-analyzed so that arbitrary decisions can be made cohesively. Areas with small insertions 

and deletions in the initial alignments were realigned using all reads from an individual, 

including reads from both the tumor and normal samples. This additional joint information 

help to eliminate false positive SNPs caused be misaligned reads, particularly at the 3’ end. 

There has been a noted performance increase in downstream variant calling process for both 

indel and SNV calling. Pindel incorporates a similar process internally and thus doesn't 

require it, but for consistency all variant calling methods were based on the same co-cleaned 

BAMs.

The second step of co-cleaning is Base Quality Score Recalibration (BQSR). BQSR tweaks 

the quality score so that it represents a calibrated probability. This step is especially 

important for BAMs with a wide range of quality scores, as is common with older sequence 

data.

Co-cleaning had already been applied to all sequence alignments produced by the Broad 

since 2012, but for a subset of the TCGA cohort, totaling almost 50% of the pairs, the co-

cleaning process was applied on samples already uploaded to the CGHub resource. 

Approximately 35% of the samples required full realignment. These secondary BAMs 

represented analysis products of the MC3 effort, and totalled almost 150TB. This processing 

was carried out at the Broad Institute and UCSC.

Variant Calling—The next phase in the MC3 process was variant calling followed by 

filtering. In the variant calling step, pairs of BAM files were run through programs 

developed from multiple institutions and the results of the putative variant calls were stored 

as Variant Call Format (VCF) files. The filtering steps, with the notable exception of the 

OxoG filter, use information stored in the VCF files produced by the different callers and 

produce a secondary filtered mutation file (usually VCF or MAF). This is an important 

detail for analysis and job scheduling. A pair of TCGA exome BAM files can average 10–

30GB, while the average VCF file, filtered for somatic variants is a few hundred kilobytes. 

Many analysts employ a strategy of calling-then-filtering, ie create a set of putative variant 

calls and then applying filters as secondary steps downstream to remove false positives. If 

any information is required from the BAM file, it means that scheduling the analysis on the 

variant calls on 10K exomes would require accessing over 300TB of files. But if all of the 

filtering can be done only using the initial VCF file, the data requirements become tractable 

for doing analysis on a single machine. This strategy allows tuning of filtering methods, 
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parameters and strategies but removes the complexity and logistical issues of obtaining the 

BAM files.

Variant Merger—We merged variants based on allelic location except in the case of Pindel 

calls, where we merged variants by proximity to Pindel calls. The additional merge criteria 

for Pindel calls was required because Pindel generates complex variant calls that other 

callers are incapable of generating. Complex variants are simultaneous indel and substitution 

mutations in cis. This merger process created 14,241 complex indel sites that included 

merged calls from SNP callers in the full MAF file, and 3,611 sites in the filtered open-

access file. Finally, in order to generate consensus metrics, such as variant and reference 

allele counts, we averaged them across all callers that yielded a specific call.

Panel-of-Normals filter—In the case of systematic false positive variants, as the cohort 

becomes larger the likelihood that one of the PoN samples will also contain the systematic 

false positive increases. By statistical chance it is possible to miss germline variants in low 

coverage regions because the variant is not detected in the normal, the PoN reduces the rate 

of germline calls because it effectively increases sequence depth at these locations by 

leveraging the control cohort. Although the PoN filter is an effective way to remove 

germline variants, most of the variants that it flags are, in fact, recurrent sequencing artifacts.

Across the entire cohort the number of germline SNP events for every site where totals and 

if a SNP occurs in a number of samples above a threshold, it was determined that it was 

more likely that a mutational event was not recognized as a germline event, rather than a 

genuine somatic event.

One of the the most effective filters encoded the expected distribution of alternate allele read 

counts at every genomic position, based on a large panel of 8000 TCGA normals (PoN). A 

somatic variant call is tagged by this filter if its observed readcount is consistent with the 

PoN, based on a likelihood test. This allows calls with many supporting reads to be retained, 

if they occur at a site with low allele-fraction (AF) sequencing noise in the PoN. To remove 

germline events or high AF artifacts, all somatic call at a site with recurrently high AF 

across the PoN are removed.

For each genomic position, the PoN encodes the distribution of alt read counts across all 

TCGA normals. For each mutation call, we compute a score that its observed read counts are 

consistent with the PoN; if this score is above a certain threshold, the site gets flagged. Thus, 

if a site recurrently harbors low-level sequencing noise in the PoN and it is called at low 

allelic fraction, it is flagged, whereas a call with many supporting reads at the same locus 

would be left alone. Likewise, a common germline site would have recurrently high allelic 

fractions across the PoN; if a call at that site has similarly high AF, it gets flagged.

A full description of the PoN filter follows. Each genomic position’s histogram comprises 

six bins:

1 : alt read count >= 1 and alt fraction >= 0.1%

2 : alt read count >= 2 and alt fraction >= 0.3%
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3 : alt read count >= 3 and alt fraction >= 1%

4 : alt read count >= 3 and alt fraction >= 3%

5 : alt read count >= 3 and alt fraction >= 20%

6 : alt read count >= 10 and alt fraction >= 20%

For a given position, denote the vector of bin counts h⃗. For each variant call, we represent its 

allelic fraction as a beta distribution parameterized by its alternate and reference read counts 

(to account for numerical uncertainty when converting read counts to allelic fraction):

f beta(nalt + 1, nref + 1),

and then slicing the beta distribution's PDF according to the alt. fraction bins encoded by the 

PoN, i.e.

f = 0
0.1 %

df  p( f ), 0.1 %
0.3 %

df  p( f )⋯, 20 %
100 %

df  p( f ) .

Finally, we compute a score for this position by weighting each element of $\vec f$ by its 

corresponding histogram bin counts:

S = f · h

The units of this score are arbitrary. We found empirically that a cutoff of log10(S) ≥ −2.5 

works well, determined by decreasing the score cutoff (thereby increasing the aggressiveness 

of the filter) until it started removing recurrently called sites (≥3 patients) listed in the 

COSMIC database. Because some COSMIC sites are themselves recurrent artifacts, manual 

review was necessary to exclude those from the list of true positives.

Restricting to Target/Coding Exons—While there are whole genome sequences that 

are part of the TCGA catalogue, the MC3 project targeted exome sequences. During PCR 

small fractions of non-targeted sequences could be amplified and during alignment reads 

could have been placed in incorrect locations in the genome. This leads to low read coverage 

areas in non-targeted section of the genome to be included in the BAM file. If the variant 

calling program sweeps across of the reads, it may produce calls using these off target reads, 

and create calls. To filter these non-target calls out, a BED file of the intersection of capture 

kit locations and applied to the variant calls to remove variant calls from non-target/non-

exon regions. This target filter was applied across all samples, even on samples where other 

targeting panels may have been used because 1) not all capture kit targeting data was 

universally available and well annotated to sequences and 2) to simply cohort mutation 

significance analysis. The disadvantages of the capture kit based filtering strategy was that 

170 CDS altering MC3 calls in MSK IMPACT's 410 cancer genes, that fall outside the 

Broad BED. The key misses are TERT promoter hits, truncations in putative tumor-

suppressor CIC, splice alterations in the frequently rearranged CRLF2, and a cluster of 

events in the 5' end of FOXP1.
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The exone definitions were derived from the GAF 4.0 definition, which was based on 

Gencode 19 Basic. The exome capture was based on the Broad Target Bed.

Minimum 3 supporting reads for Pindel indel calls—Some of the filtering 

parameters in Pindel were recently reconfigured to allow it to detect complex indel events. 

Complex indel events involve both the insertion and deletion of nucleotides in a mutation 

site(Ye et al., 2015). This increased ability of Pindel resulted in a number of false positive 

indel being included as part of the initial MC3 call set. To combat this, a minimum of three 

supporting reads were required to support a Pindel call, otherwise it was filtered out.

Minimum Indelocator indel size—For analyses in this manuscript we restricted 

Indelocator calls to indels size greater than or equal to 4 alleles.

Annotation—Additional annotations were added from COSMIC(Forbes et al., 2015), 

dbGaP(Sherry et al., 2001), ExAC(Lek et al., 2016), and Ensembl(Aken et al., 2016) using 

Variant Effect Predictor (VEP)(McLaren et al., 2016) and other custom built annotation tools 

including the normal depth of coverage filter and strand bias filters. The final call set was 

filtered to identify cohort level artifacts and was subject to extensive variant, subject, and 

cohort level QC.

DATA AND SOFTWARE AVAILABILITY

Data has been made available at the NCI's Genomic Data Commons. Result MAF files of 

the MC3 dataset is available in two different versions, the open-access and controlled-access 

data files. Additionally, intermediate files, such as the original called VCF and annotation 

marking files have been made available.

All pipelines and software developed as part of this project have been made available in 

https://github.com/OpenGenomics/mc3

Reference Files and intermediate result files have been made available at https://

gdc.cancer.gov/about-data/publications/mc3-2017

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Exome sequencing based variant calls from 10,000 individuals

• Samples from 33 cancer types

• Variants from: MuTect, MuSE, VarScan2, Radia, Pindel, Somatic Sniper, 

Indelocator
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Figure 1. Workflow for mutation detection and filtering
This workflow diagram reflects the internal design of the mutation calling pipeline. Squares 

in the flowchart represent files, and circles indicate processes. When colored, analysis was 

performed using the BROAD Firehose pipeline. Aligned input files were analyzed by 7 

different variant callers using author recommended parameters to generate VCF files. All 

VCF files were merged and VEP annotated using vcf2maf tool. Processes flanking vcf2maf 

processes illustrate when filters were integrated. Finally, a separate set of annotation files 

were included and considered for variant and sample selection in the controlled and the 

public release of the annotated mutations file.
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Figure 2. Distribution of mutations in controlled and open-access mutation files
Two panels show mutation load for each sample in the dataset for SNVs (above) and indels 

(below). Each dot of the sorted scatter plots shows the total number of mutations pre- and 

post-filtering per sample. Total mutation counts are separated by total number SNVs (blue) 

and indels (red) per samples. Lighter colors indicate pre-filtered mutations from the 

controlled-access MAF, and deeper colors indicate post-filtered (PASS only) mutations from 

the open-access MAF. Cancers are ordered by the median number of post-filtered SNVs per 

tissue. Furthermore, samples are sorted by increasing number of total mutation count for 

SNV and indel plots respectively. Samples removed during post-filtering are also shown i.e. 

LAML and OV in lighter colors without an accompanying pair and are sorted accordingly. 

The total number of samples for each cancer type is displayed under each cancer label. 

Finally, Y-axis limits were placed from 0–50,000 for clarity. This resulted in the removal of 

14 hypermutator samples from SNV plot and 10 hypermutator samples from the indel plot.
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Figure 3. Description of the filters implemented in controlled and open-access mutation files
A) Filter flags (as displayed in MAF) and a brief description of their purpose. B) Variant 

counts in the open-access MAF by filter were processed using an UpSetR plot(Conway et 

al., 2017). The following filters were globally applied to the Open-access MAF: ‘ndp’, 

‘NonExonic’, ‘bitgt’, ‘pcadontuse’, ‘contest’, ‘broad_PoN_v2’, and ‘badseq’. Thus, zero 

variants in the open-acess MAF were annotated with these flags. The inverted bar chart 

allows for the interpretation co-occurring filters at the variant level. For example, 304,602 

variants were labeled with ‘wga’ alone, whereas, 2,455 variants were annotated with both 

‘wga’ and ‘common_in_exac’. The connected dots indicate which of filter flags are 

assessed. C) UpSetR plot indicates the co-occurrence of filters with variants of the 

controlled MAF (same as B). D) The proportion and frequency of filters for both the open 

and controlled datasets are displayed. Additionally, validation flag counts and proportions 

are shown. The set of validation calls has a higher percentage of PASS calls, reflecting its 

bias toward higher quality variant calls. Filter flags are separated into samples level filters 

and variant level filters. See also Figure S4.
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Figure 4. Validation statistics of mutations calls
While these results reflect validation of resequenced samples, technical artifacts may still be 

present because orthogonal technology was not implemented. A) Overview of the Mutations 

validation process. Symbols are used to illustrate how mutations predictions were assessed. 

Values shown in under ‘Predicted mutations’ are not mutually exclusive. Exclamation marks 

under ‘True negative’ and ‘False negative’ denotes the logical negation or not. B) The 

composition of variants with overlapping callers. Starting with any caller and increasing to 

require more callers to agree on a site. This is done for both SNVs (left) and indels (right). 

C) The composition of validation status for calls from each independent caller for both SNPs 
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(left) and indels (right). D) The composition of validation status for pairs of callers. Panels 

B, C, and D all have a truncated y-axis, all values below indicate true positives mutation 

status. Omitted, as illustrated in panel A, reflects the limitations of assessing mutation 

predictions when validations does incorporate all possible events. E) The composition of 

validation status for each of the filter flags. See also Figure S3. See also Figure 3 and Tables 

S2 and S3.
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Figure 5. Intersection of mutation calls across variant prediction software
The top bar-plot indicates intersection size. More specifically, one or more tools called each 

variant. This plot provides the number of variants that are uniquely called by one tool (a 

single point) or the numbers of variants called by many tools (2 or more points). The bottom 

left plot indicates the set size. The linked points below display the intersecting sets of 

interest or which tools called variants. A) PASS only mutations from the controlled MAF are 

shown. B) Tools designed to call indels are displayed in a similar fashion to plot A. Only 

indels with greater than 3 supporting reads are displayed in this plot. Additionally, two 
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samples were removed from these plots that represent extreme hypermutators (TCGA-D8-

A27V, and TCGA-EW-A2FV).
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Table 1

Large Cohort Cancer Genomics projects

Project Method Sample count
(approx.)

TCGA MC3 Exome 10,000

GENIE 44 Gene Panel 19,000

ICGC PCAWG Whole Genome 2,800

100,000 Genomes Project Whole Genome Projected: 100,000

CCLE Exome 950

Target Exome 700

Foundation Medicine 306 Gene Panel 18,000
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