
DOTTORATO DI RICERCA IN
SCIENZE DELL’INGEGNERIA

CICLO XXXIV

COORDINATORE Prof. Trillo Stefano

Extensions and Applications of Probabilistic
Logic Programming

Settore scientifico disciplinare ING-INF/05

Dottorando

Dott. Azzolini Damiano

Tutori

Prof. Riguzzi Fabrizio
Prof.ssa Lamma Evelina

Anni 2018/2021

Acknowledgements

First of all, I would like to thank my supervisors Fabrizio Riguzzi and Evelina
Lamma that guided me through this journey and let me explore different re-
search topics.

I thank my family, Sandra, Andrea, and Francesca, for the unconditional
support in all my activities.

In the last two years of the PhD I worked from home so I need to thank
my grandma Bruna for preparing me food every day, even if she does not like
cooking. I also thank my dog Rocky since he actually became my colleague,
always listening to my complaints.

A special thanks also goes to my girlfriend Federica that always brings
shine in my days full of obscure papers and meaningless algorithms.

Damiano Azzolini

The only man who never makes a mistake
is the man who never does anything.

Contents

I Introduction 1

1 Motivation 3

2 Goal of the Thesis 5

3 Structure of the Thesis 7

3.1 How to Read this Thesis . 10

II Background 11

4 Probability Theory and Set Theory 13

4.1 Set Theory . 13

4.2 Probability Theory . 15

4.2.1 Random Variables . 17

4.3 Ordinal Numbers, Mappings, and Fixpoints 20

4.3.1 Ordinal Numbers . 20

4.3.2 Mappings and Fixpoints 21

5 Logic and Logic Programming 23

5.1 Propositional and First Order Logic 23

5.1.1 Propositional Logic . 23

5.1.2 First Order Logic . 25

5.2 Logic Programming . 30

5.2.1 Semantics for Programs with Negation 34

5.3 Abduction and Abductive Logic Programming 38

i

6 Syntax and Semantics for Probabilistic Logic Programs 41
6.1 ProbLog and LPADs . 41
6.2 Distribution Semantics . 44

6.2.1 Semantics for Programs with Function Symbols 46
6.3 Conclusions . 51

7 Inference 53
7.1 Exact Inference . 53

7.1.1 Decision Diagrams . 56
7.1.2 Systems to Perform Exact Probabilistic Logical Inference 57

7.2 Approximate Inference . 59
7.2.1 Markov Chain Monte Carlo 61

7.3 Conclusions . 76

III Extensions of Probabilistic Logic Programming 79

8 Hybrid Programs 81
8.1 Hybrid Probabilistic Logic Programs 81

8.1.1 Probabilistic Constraint Logic Programming 85
8.2 Semantics for Hybrid Programs with Function Symbols 93

8.2.1 A Concrete Syntax . 108
8.2.2 Syntactic Requirements 113

8.3 Conclusions . 117

9 Extending Probabilistic Logic Programming with Abduction 119
9.1 Probabilistic Abductive Logic Programs 119

9.1.1 Examples . 123
9.1.2 Algorithm . 129
9.1.3 Experiments . 135

9.2 Related Work . 139
9.2.1 Relation with MAP, MPE, and Viterbi 143

9.3 Conclusions . 146

10 Integrating Constraints and Probability 147
10.1 Probabilistic Optimizable Logic Programs 147

ii

10.1.1 Experiments . 155

10.2 Probabilistic Reducible Logic Programs 158

10.2.1 Experiments . 162

10.3 Related Work . 166

10.4 Conclusions . 168

IV Applications of Probabilistic Logic Programming171

11 Blockchain 173

11.1 Structure . 173

11.1.1 Bitcoin . 174

11.1.2 Smart Contracts . 178

11.1.3 Lightning Network . 179

12 Analysis of Blockchain-related Scenarios 181

12.1 Smart Contract Analysis . 181

12.1.1 Experiments . 184

12.1.2 Conclusions . 188

12.2 Hashing Power Centralization and Double Spending 189

12.2.1 Preventing the Formation of Large Pools 189

12.2.2 Double Spending . 191

12.2.3 Conclusions . 195

12.3 Transaction Fees . 196

12.3.1 Analyzing Transaction Fees 197

12.3.2 Probability of a Profitable Fork 201

12.3.3 Related Work . 208

12.3.4 Conclusions . 208

12.4 Lightning Network Model . 209

12.4.1 Deterministic Model . 210

12.4.2 Probabilistic Model . 215

12.5 Conclusions . 220

iii

V Conclusions and Outlooks 223

13 Conclusions 225

14 Future Work 227

Bibliography 229

iv

List of Figures

3.1 Chapter dependency graph. 10

5.1 SLD tree for the query reach(a,c). 32

7.1 Decision Diagrams. 58
7.2 Results for the arithm experiment. 66
7.3 Results for the HMM experiment. 67
7.4 Results for the LDA experiment. 68
7.5 Results for the LDA and university experiments. For both we

fixed the number of samples to 104. 68
7.6 Results for the university experiment. 69
7.7 Results for the arithm experiment. 70
7.8 Results for the diabetes experiment. 71
7.9 Standard deviation for the arithm and diabetes experiments. . . 71
7.10 Results for the graph experiment. 72
7.11 Results for the HMM experiment. 73
7.12 Standard deviation for the graph and HMM experiments. 73
7.13 Results fot the LDA experiment. 74
7.14 Results for the nballs experiment. 74
7.15 Standard deviation for the LDA and nballs experiments. 75
7.16 Results for the prefix parser experiment. 75
7.17 Results for the stochastic logic program experiment. 76
7.18 Standard deviation for the prefix parser and stochastic logic

program experiments. 76

9.1 Example program and its worlds. I and E indicate respectively
whether the IC is included (I) or not (E) in each world. 121

v

9.2 Program, BDD, and worlds for Example 20 variant 1. High-
lighted rows in the table represent the worlds in which the query
a is true with the probabilistic abductive explanation {c,e}, to-
gether with their probability. 124

9.3 BDD and worlds for Example 20 variant 2. Highlighted rows in
the table represent the worlds in which the query a is true with
the probabilistic abductive explanation {e}, together with their
probability. 124

9.4 BDDs for the example showing the conjunction of BDDs. 130

9.5 BDD and truth table for the example showing the conjunction
of BDDs. Highlighted rows represent the combinations of ar-
guments such that the expression ((a and d) or (b and c))

and (not(a and b)) (compactly referred as Expr in the table)
is true. 131

9.6 Inference time as a function of the number of abducibles for the
gh and gnb datasets, with and without integrity constraints. . . 139

9.7 Inference time as a function of the number of abducibles for the
blood dataset, with and without integrity constraints. 139

9.8 Inference time as a function of the number of abducibles for the
graph and complete graph datasets, with and without integrity
constraints. 140

10.1 Program for the motivating example, together with the network
graph. 150

10.2 BDD for the program shown in Figure 10.1, where a dashed line
represents a 0-edge, a solid line the 1-edge, and a dotted line
the 0-complemented edge. 152

10.3 Execution time for directed and undirected complete graphs. . . 165

10.4 Computed gaps of the approximate algorithm on both directed
and undirected complete graphs. 165

12.1 Expected payout of a consecutive number of trials. λ represents
the mean of the Poisson distribution. 188

12.2 Markov chain of the model. 190

vi

12.3 Initial state of the double spending attack. Block B1 with trans-
action T1 is inserted in the chain after B0 while the attacker
starts mining another block (B2) without T1 inside and with
B0 as ancestor. 192

12.4 General case. The “honest” chain has built 3 confirmation blocks
on top of B1 (B3, B4, B5) while only one block (B6) has been
built on top of B2 by the attacker. In this figure, d represents
the distance between the honest and the secret chain and is used
to evaluate the advantage of the honest chain over the attacker. 192

12.5 Successful attack. The attacker has built a longer chain (marked
in red). The attacker will now publish all blocks from B2 to B9

and so all blocks from B1 to B5 in the black chain will not be
considered valid because they are part of a chain which is not
the longest one. 192

12.6 Success probability of a double spending attack by considering
Poisson and Pascal probability distributions for the number of
blocks mined by the attacker. 195

12.7 Graphs relating the size of the block and the observed fee rate
with the profit of a miner. Dashed lines represent the values
computed with mc_expectation/3 (without observations). . . . 198

12.8 The graph shows how transaction fees influence the probability
of confirmation within 1 block. 201

12.9 Results for the threshold experiment. 205

12.10Results for the value experiment. 206

12.11Results for the optimal experiment. Each graph shows the dif-
ference between the expected value obtained from being honest
and from forking the chain starting from a block with n times
the average reward (σ) with different values of the fraction of
the controlled mining power β. 207

12.12Channel representation in the Lightning Network. Case (a) cor-
responds to (b) in practice since the distribution is unknown. . . 210

12.13Nodes degree distribution and average maximum rebalancing
amount. 212

vii

12.14Variation of the total network capacity by removing edges and
nodes for the three LN states. 213

12.15Number of paths and non redundant paths of length 2 and 3
between equal degree nodes. 214

12.17Probability of a successful payment of varying size between ran-
dom nodes. 218

12.18Probability of a successful payment split in multiple parts be-
tween nodes of various degrees where intermediate nodes are
always active. 219

12.19Probability of a successful payment split in multiple parts be-
tween nodes of various degrees. 219

12.20Probability of a successful payment between nodes of various
degrees when intermediate nodes could be inactive. 220

viii

List of Tables

6.1 Worlds for a restricted version of the ProbLog program of Ex-
ample 1, where the probabilistic fact loss_fact/1 and the two
clauses loss/0 and draw/0 have been removed. Highlighted
rows represent the worlds where the query win is true, together
with their probability. 46

9.1 Worlds for Example 20 variant 3. Highlighted rows represent
the worlds in which the query a is true with the probabilistic
abductive explanation {e}, together with their probability. I
and E stand respectively for included and excluded. 125

9.2 Possible worlds for the LPAD of Example 24 (Variant 3) with
the corresponding probability, computed as the product of the
probabilities associated with the head atoms taking value true,
reported in each row. Highlighted rows represent the worlds in
which the query eruption is true. 128

9.3 Possible worlds for the LPAD of Example 24 with the corre-
sponding probability computed as the product of the probabili-
ties associated with the head atoms taking value true, reported
in each row. Highlighted rows represent the worlds in which the
query eruption is true. 129

9.4 Details of the datasets. 138

10.1 Results for the network experiments. C, M and S stand respec-
tively for CCSAQ, MMA, and SLSQP algorithms. |V| is the
number of vertices and |E| the number of edges respectively. . . 157

10.2 Results for the complete graphs experiments. 157

10.3 Execution time for the probabilistic graph dataset of [32]. 166

ix

10.4 Results for the exact algorithm on graphs from [143]. 166

12.1 Details for the transfer experiment without bug. 186
12.2 Details for the transfer experiment with bug. 186
12.3 Details for the pyramid experiment. 187
12.4 Resource usage for the gambling experiment with λ = 150. . . . 188
12.5 Datasets structure for the three LN states (February, March,

and April). Capacities are expressed in satoshi. 211
12.6 Capacity of the edges (expressed in satoshi) and frequency for

February (F), March (M), and April (A). 212
12.7 Information about channel capacities (in satoshi) and node de-

grees. 216

x

List of Algorithms

1 Function Prob: computation of the probability of a BDD. . . . 58
2 Function RejectionSampling: rejection sampling algorithm. . 61
3 Function MH: Metropolis-Hastings MCMC algorithm. 63
4 Function Gibbs: Gibbs MCMC algorithm. 65
5 Function AbductiveExpl: computation of the minimal sets

that maximize the joint probability of the query and the ICs,
and of the corresponding probability. 131

6 Function AbdInt: computation of the sets that maximize the
joint probability of the query and the ICs, and of the corre-
sponding probability, through BDD exploration. 132

7 Function OptimizeProb: optimization of probability of ran-
dom variables. 152

8 Function PathsProb: computation of all the paths of a BDD
and of their probability. 153

9 Function MinimizeReducibles: minimizing the number of re-
ducible facts. 163

xi

xii

Part I

Introduction

1

Chapter 1

Motivation

We are all over-connected through computers and mobile devices. Every action
we do using these technologies is stored, and the amount of collected data is
enormous and not easily interpretable. Moreover, collected data are often
somehow related, and information can be inferred from them. For example, if
I travel from Monday to Friday every morning at the same hour from one city
to another city, it is likely that I will work in this second city, or that, at least,
I have some recurrent activities to do there.

First Order Logic is a powerful and consolidated formalism to represent
relational data, since it allows to explicitly state what relations hold. By
means of Logic Programming, it is possible to extract some information from
this massive amount of data using an easily interpretable language. Moreover,
the field of Inductive Logic Programming aims at learning programs that model
a desired scenario given a training set of examples. One limitation of Logic
Programming is that it does not handle uncertainty, an intrinsic characteristic
of data, since they often come from different sources with different levels of
reliability.

The field of Statistical Relational Artificial Intelligence (often abbreviated
with StarAI), aims to combine the expressivity of logic with uncertainty. One
of the possible formalisms is Probabilistic Logic Programming (PLP), where
Logic Programs are extended to cope with probabilistic information. Most
PLP languages follow a precise semantics, the Distribution Semantics (DS),
proposed in 1995, that defines how to perform logical reasoning in the presence
of uncertainty. The DS has been proposed only for discrete data but often

3

measurements require continuous variables, such as temperature. Moreover,
we often want to express constraints among the possible relations and also
to deal with missing data. For these reasons, several extensions have been
proposed during the years, to cover a broad spectrum of possible application
scenarios.

4

Chapter 2

Goal of the Thesis

The goal of this dissertation is to provide new inference algorithms for prob-
abilistic logic programs, to extend the possible tasks that can be solved with
PLP, and to apply PLP in the context of the blockchain.

Due to the amount of available data, usually exact inference is infeasi-
ble. To alleviate this, we propose and implement two Markov Chain Monte
Carlo algorithms, namely Gibbs sampling and Metropolis Hastings sampling,
to perform approximate inference on PLP, and test them on several datasets.

Real-world data require managing both continuous and discrete measure-
ments, but the proposed semantics for hybrid (i.e., with both discrete and
continuous random variables) probabilistic logic programs have some restric-
tions. To allow inference on a large class of hybrid probabilistic logic programs,
we propose a new semantics, prove it well defined, and provide several syn-
tactic requirements that must be respected to keep the semantics well-defined.
Moreover, data are often incomplete, and reasoning in this case can be per-
formed by abduction (hence, Abductive Logic Programming). We extend PLP
with abduction, proposing probabilistic abductive logic programs to manage
uncertain and incomplete data, and providing a practical inference algorithm
whose effectiveness has been proved through a series of examples.

In many applications the goal is to learn the values of the parameters of
a program describing a process, and sometimes even learn the program itself
starting from data. These two tasks have been extensively studied in StarAI
and they go under the name of parameter learning and structure learning
respectively. However, the integration of these tasks, and probabilistic systems

5

in general, with constraints involving random variable values has not been yet
extensively explored. Here, we propose two new classes of probabilistic logic
programs: probabilistic optimizable logic program and probabilistic reducible
logic programs. For the former, the goal is to set the probabilities of some
facts such that an objective function is optimized and the imposed constraints
are not violated (thus, parameter learning) while, for the latter, the goal is
to remove facts from the program such that the imposed constraints are not
violated (thus, a version of structure learning). For both, we provide two
algorithms and test their performance on real-world datasets.

Among recent technology, the blockchain is certainly one that attracted a
lot of interest due to several theoretical properties such as immutability and de-
centralization. The blockchain has numerous application scenarios, extensions,
and critical issues. Here, we propose PLP models to study smart contracts,
transaction fees, Lightning Network, and hashing power centralization.

6

Chapter 3

Structure of the Thesis

This thesis is divided into five parts: after the introduction (first part), the sec-
ond part introduces the background concepts, the third part discusses the ex-
tensions of Probabilistic Logic Programming (PLP), the fourth part illustrates
some possible applications of PLP, in particular in the context of blockchain,
and the fifth part concludes this thesis with several possible directions for
future work.

In details, the second part (background) is not novel, except for Sec-
tion 7.2.1 that introduces an approximate inference technique based on Monte
Carlo Markov Chain methods and described in the following publications:

• Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, and Franco Ma-
sotti. A comparison of MCMC sampling for probabilistic logic program-
ming. In Mario Alviano, Gianluigi Greco, and Francesco Scarcello, ed-
itors, Proceedings of the 18th Conference of the Italian Association for
Artificial Intelligence (AI*IA2019), Rende, Italy, pages 19–22, Lecture
Notes in Computer Science, Heidelberg, Germany, 2019.

• Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. An analysis
of Gibbs sampling for probabilistic logic programs. In Carmine Dodaro,
George Aristidis Elder, Wolfgang Faber, Jorge Fandinno, Martin Gebser,
Markus Hecher, Emily LeBlanc, Michael Morak, and Jessica Zangari, edi-
tors, Workshop on Probabilistic Logic Programming (PLP 2020), volume
2678 of CEUR Workshop Proceedings, pages 1–13, Aachen, Germany,
2020.

7

The third part, called “Extensions of Probabilistic Logic Programming”,
discusses, as the title says, some extensions of PLP. Chapter 8 introduces
the semantics of hybrid programs (Section 8.2), i.e., programs that combine
both discrete and continuous random variables, together with some syntactic
requirements needed to keep it well-defined (Section 8.2.2), and is based on
the following publications:

• Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. A semantics
for hybrid probabilistic logic programs with function symbols. Artificial
Intelligence, 294:103452, 2021.

• Damiano Azzolini and Fabrizio Riguzzi. Syntactic requirements for well-
defined hybrid probabilistic logic programs. In Andrea Formisano, Yan-
hong Annie Liu, Bart Bogaerts, Alex Brik, Veronica Dahl, Carmine Do-
daro, Paul Fodor, Gian Luca Pozzato, Joost Vennekens, and Neng-Fa
Zhou, editors, Proceedings 37th International Conference on Logic Pro-
gramming (Technical Communications), pages 14–26, Waterloo, Aus-
tralia, 2021.

An extension of PLP that integrates it with abduction is described in Chap-
ter 9, where the class of probabilistic abducible logic programs is introduced,
based on this publication:

• Damiano Azzolini, Elena Bellodi, Stefano Ferilli, Fabrizio Riguzzi, and
Riccardo Zese. Abduction with Probabilistic Logic Programming un-
der the Distribution Semantics. International Journal of Approximate
Reasoning, 142:41–63, 2022.

Two more extensions that integrate constraints and probability are dis-
cussed in Chapter 10: probabilistic optimizable logic programs (Section 10.1)
and probabilistic reducible logic programs (Section 10.2). They are based on
the following publications respectively:

• Damiano Azzolini and Fabrizio Riguzzi. Optimizing probabilities in
probabilistic logic programs. Theory and Practice of Logic Program-
ming, pages 543–556, 2021.

8

• Damiano Azzolini and Fabrizio Riguzzi. Reducing probabilistic logic pro-
grams. In Ahmet Soylu, Alireza Tamaddoni Nezhad, Nikolay Nikolov,
Ioan Toma, Anna Fensel, and Joost Vennekens, editors, Proceedings of
the 15th International Rule Challenge, 7th Industry Track, and 5th Doc-
toral Consortium at RuleML+RR 2021 co-located with 17th Reasoning
Web Summer School (RW 2021) and 13th DecisionCAMP 2021 as part of
Declarative AI 2021, CEUR Workshop Proceedings, pages 1–13, Aachen,
Germany, 2021.

The fourth part is dedicated to the discussion of some applications of PLP
in blockchain environments, and are based on these publications, listed in
chronological order, starting from the oldest one:

• Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi, and
Riccardo Zese. Modeling bitcoin protocols with probabilistic logic pro-
gramming. In Elena Bellodi and Tom Schrijvers, editors, Probabilistic
Logic Programming (PLP 2018), volume 2219 of CEUR Workshop Pro-
ceedings, pages 49–61, Aachen, Germany, 2018.

• Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. Studying
transaction fees in the bitcoin blockchain with probabilistic logic pro-
gramming. Information, 10(11):335.

• Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. Analyzing
transaction fees with probabilistic logic programming. InWitold Abramow-
icz and Rafael Corchuelo, editors, Business Information Systems Work-
shops BIS 2019, volume 373 of Lecture Notes in Business Information
Processing, pages 243–254, Cham, 2019.

• Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. Modeling
smart contracts with probabilistic logic programming. InWitold Abramow-
icz and Gary Klein, editors, Business Information Systems Workshops,
volume 394 of Lecture Notes in Business Information Processing, pages
86–98, Cham, 2020.

• Damiano Azzolini, Elena Bellodi, Alessandro Brancaleoni, Fabrizio Riguzzi,
and Evelina Lamma. Modeling bitcoin lightning network by logic pro-
gramming. In Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola

9

Leone, Alexander Artikis, Gerhard Friedrich, Paul Fodor, Angelika Kim-
mig, Francesca Lisi, Marco Maratea, Alessandra Mileo, and Fabrizio
Riguzzi, editors, Proceedings of the 36th International Conference on
Logic Programming (Technical Communications), pages 258–260, Wa-
terloo, Australia, 2020.

• Damiano Azzolini, Fabrizio Riguzzi, Elena Bellodi, and Evelina Lamma.
A Probabilistic Logic Model of Lightning Network. Business Information
Systems Workshops. In press.

3.1 How to Read this Thesis

We tried to keep this dissertation as compact as possible, while, at the same
time, making it self-contained. The two streams of work, one involving exten-
sions of PLP, and one involving applications of PLP, are bridged together by
the chapters regarding the possible languages and inference methods for PLP.
Figure 3.1 shows the dependencies across the several chapters. It should be
read from left to right, where an arrow from a chapter A directed to a chapter
B means that A is necessary to understand B.

4 5 6 7

9

10

8 12

11

Figure 3.1: Chapter dependency graph.

10

Part II

Background

11

Chapter 4

Probability Theory and Set
Theory

The following sections provide some background knowledge regarding basic
concepts needed to understand this thesis. In particular, in Section 4.1 we re-
view some basic definitions regarding set theory, such as the ones of lattice and
order, in Section 4.2 we introduce the key concepts of Kolmogorov probability
theory, such as sample space and probability space, and in Section 4.3 we recall
the definitions of ordinal numbers, mappings, and fixpoints.

4.1 Set Theory

Defined as one of the cornerstones of mathematics, set theory provides formal
tools to reason about sets. Informally, a set is a collection of objects. If an
object o belongs to a set S, we call it an element (or member) of the set and
denote it with o ∈ S. The classical notation uses curly brackets {} to enclose
the elements that constitute a set, separated by commas. For example, a set
S that contains the elements 1, 2, and 3 is represented as {1, 2, 3}. Recall
that a function is injective (or one-to-one) if it maps distinct values to distinct
elements. That is, every element of the codomain of the function is the image
of at most one element of the domain: given a function f , if f(a) = f(b), then
a = b.

A set A is equipotent to a set B if there exists a one-to-one function from the
former to the latter. If a set is equipotent to the set of natural numbers N it is

13

called denumerable. A set A is countable if there is a one-to-one correspondence
between A and a subset B of N. If B = {1, 2, . . . , n} and A is countable, then A
is finite with n elements. If the definition of countable does not hold, the set is
uncountable. We assume that the empty set, represented with ∅, is finite with 0
elements. The powerset of a set A, P(A), is the set of all subsets of A, including
the empty set. For example, if A = {1, 2}, P(A) = {∅, {1}, {2}, {1, 2}}. The
cardinality (number of elements) of the powerset of a set A is 2|A|, where |A|
is the cardinality of A.

Given two sets A and B, we can define some relations between these. If
all the elements of A are also elements of B, then A is a subset of B and it is
indicated with A ⊆ B. If A is a subset of B and A does not contain the same
elements of B, we use the notation A ⊂ B, and A is called proper subset of B.
Consequently, B is a superset of A, denoted with B ⊇ A (or B ⊃ A for proper
superset). For example, the following relations hold:

{1, 2, 3} ⊆ {1, 2, 3}

{1, 2, 3} ⊇ {1, 2, 3}

{1, 2} ⊂ {1, 2, 3}

{1, 2, 3} ⊃ {1, 2}

{1, 2} ⊆ {1, 2, 3}

{1, 2, 3} ⊇ {1, 2}

Clearly, given two sets A and B, if both A ⊆ B and A ⊇ B are true, then
A = B.

Several basic operations can be defined between sets.

• Union (∪): x ∈ A ∪ B ⇐⇒ x ∈ A or x ∈ B. For example, {1, 2} ∪
{3, 4} = {1, 2, 3, 4}, {1, 2} ∪ {2, 4} = {1, 2, 4}. Union is commutative:
A ∪B = B ∪ A.

• Intersection (∩): x ∈ A ∩ B ⇐⇒ x ∈ A and x ∈ B. For example:
{1, 2} ∩ {3, 4} = ∅, {1, 2} ∩ {2, 4} = {2}. Intersection is commutative
A ∩B = B ∩ A.

• Difference (\): A\B = {x ∈ A, x 6∈ B}. For example: {1, 2}\{3, 4} =

14

{1, 2}, {1, 2, 3, 4}\{2, 4} = {1, 3}. If A 6= B then A\B 6= B\A (set
difference is not commutative).

If we consider a reference space set S and a set A subset of S then the comple-
ment of A with respect to S is S\A and it is indicated with AC . For example,
if S = {1, 2, 3} and A = {1, 2}, Ac = {3}.

An order on a set A is a binary relation ≤ that is, ∀a, b, c ∈ A:

• antisymmetric: a ≤ b, b ≤ a =⇒ a = b;

• reflexive: a ≤ a;

• transitive: a ≤ b, b ≤ c =⇒ a ≤ c.

If the three previous properties hold, the set is partially ordered (or simply
ordered). If, in addition, the relation has also the following property

• strongly connected : a ≤ b or b ≤ a

then, it is a total order and the set is totally ordered. Given an ordered set B,
the upper (lower) bound of a set A ⊆ B is an element b ∈ B such that ∀a ∈ A,
a ≤ b (a ≥ b). If b ≤ b′ (b ≥ b′) forall upper (lower) bounds b′, then b is the
least upper bound (greatest lower bound), usually abbreviated with lub (glb).
If lub or glb (or both) exist, they are unique, and they are also commonly
called supremum and infinum respectively.

A complete lattice is a partially ordered set A where, ∀S ⊆ A, S has both
a lub and a glb. A partially ordered set P has a top element > = lub(A).
Similarly, the bottom element ⊥ is glb(A). For a more in-depth treatment of
the topic see [57].

4.2 Probability Theory

In this section, we review some of the basic concepts regarding probability
theory, and, in particular, Kolmogorov probability theory. For a complete
overview of the field please consult [47].

A random experiment is an experiment whose outcome cannot be predicted.
Each random experiment has an associated sample space, usually indicated
with W , that denotes the set of possible outcomes (also called events).

15

For example, if we toss a single coin which can land heads or tails, the
sample space is W c

1 = {h, t}. If we toss two coins we need to consider all
the possible combinations of outcomes, so W c

2 = {(h, h), (h, t), (t, h), (t, t)}.
More generally, if we toss an infinite number of coins, W c

∞ = {(o1, o2, . . .) |
∀i ∈ 1, 2, . . . , oi ∈ {h, t}}. For an experiment with n trials with two possible
outcomes each, |W | = 2n. As another example, consider the toss of a single
die with six faces. The sample space for a single toss is W = {1, 2, 3, 4, 5, 6}.

We now provide some definitions needed to introduce the Kolmogorov prob-
ability theory.

Let W be a set.

Definition 1 (Algebra and σ-algebra). A non empty set Ω of subsets of W is
an algebra if:

• Ω is closed under complementation: ∀ω ∈ Ω, ωc ∈ Ω and

• ∀ω1, ω2 ∈ Ω, ω1 ∪ ω2 ∈ Ω.

Moreover, if the following also holds

• Ω is closed under countable union: ∀ωi ∈ Ω,
⋃∞
n=1 ωi ∈ Ω

Ω is a σ-algebra on W .

The elements of the σ-algebra Ω are called measurable sets or events, and
(W,Ω) is a measurable space. When W is finite, we can always find a σ-
algebra by considering the powerset of W , namely Ω = P(W). However, there
exists also σ-algebras that does not coincide with the powerset. For example,
if W = {1, 2, 3, 4}, a possible σ-algebra is Ω = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}},
which is different than the powerset ofW but still satisfies the three previously
listed requirements. Consider again the coin toss experiment introduced at the
beginning of this section: we can consider the set of events Ωc = P(W c

1) and
{t} as an event associated to the outcome tails.

Definition 2 (Minimal σ-algebra). Let A be an arbitrary collection of non-
empty subsets of W . The intersection of all σ-algebras containing the elements
of A, denoted with σ(A), is called the σ-algebra generated by A or the minimal
σ-algebra containing A. σ(A) always exists and it is unique [47].

16

Definition 3 (Probability measure). Given a measurable space (W,Ω), a prob-
ability measure is a function µ : Ω→ R that satisfies the three following axioms
(called Kolmogorov axioms):

1. Non negative: ∀ω ∈ Ω, µ(ω) ≥ 0.

2. µ(W) = 1 (the measure of the sample space is 1).

3. Countably additive: if S = {ω1, ω2, . . . } ⊆ Ω is a countable collection of
pairwise disjoint sets, then µ(

⋃
ωi∈S ωi) =

∑
ωi∈S µ(ωi).

In particular, 1) and 2) state that the probability of an event must be in the
range [0, 1], and 3) imposes that the probability of the union of disjoint events
must be equal to the sum of the probability of every single event. The tuple
(W,Σ, µ) is called probability space. If we consider again the toss of a coin,
(W c

1 ,Ω
c, µc) with µc(∅) = 0, µc({h}) = 0.5, µc({t}) = 0.5, and µc({h, t}) =

µ(W) = 1 is a probability space. Given two events A and B, we can define
the conditional probability (the probability of A given that B happened) as:

µ(A | B) =
µ(A ∩B)

µ(B)

with the constraint that µ(B) > 0.
We conclude this part with the definition of product σ-algebra, that will

be needed later.

Definition 4 (Product σ-algebra). Given two measurable spaces (W1,Ω1) and
(W2,Ω2), the product σ-algebra Ω1 ⊗ Ω2 is defined as Ω1 ⊗ Ω2 = σ({ω1 × ω2 |
ω1 ∈ Ω1, ω2 ∈ Ω2}). Ω1 ⊗ Ω2 is different from the Cartesian product Ω1 × Ω2

because it is the minimal σ-algebra generated by all the possible couples of
elements from Ω1 and Ω2. Ω1 ⊗ Ω2 is also called a tensor product.

4.2.1 Random Variables

Another important concept is the one of random variable. To define it, we
need to introduce the definition of measurable function:

Definition 5 (Measurable function). Given a probability space (W,Ω, µ) and
a measurable space (S,Σ), a function X : W → S is measurable if ∀σ ∈ Σ,
X−1(σ) = {w ∈ W | X(w) ∈ σ} ∈ Ω.

17

Definition 6 (Random variable, r.v.). Let (W,Ω, µ) be a probability space and
(S,Σ) be a measurable space, a measurable function X : W → S is a random
variable (usually abbreviated with r.v.) and the elements of S are called values
of X. ∀σ ∈ Σ, we indicate with P (X ∈ σ) the probability that a random
variable X has value in σ, i.e., µ(X−1(σ)). The structure of S defines the
type of the random variable: if S is finite or countable, X is a discrete random
variable; if S is uncountable, X is a continuous random variable.

For a discrete random variableXd, we define the probability mass as P (Xd ∈
x) ∀x ∈ S, often abbreviated with P (Xd = x), P (x), or pXd(x). For a
continuous random variable Xc : (W,Ω) → (R, B), we define the probabil-
ity density as the function fXc(x) such that for any measurable set A ⊆ B,
P (X ∈ A) =

∫
A
fXc(x) dx.

In other words, a discrete random variable is identified by its probabil-
ity mass function pXd(x) that associates a probability value to every out-
come. If we have a discrete random variable with n possible outcomes, then∑n

i=1 pXd(xi) = 1 and p(xi) ≥ 0 ∀i = 1, . . . , n. Similarly, a continuous ran-
dom variable is identified by a probability density function fXc(x) with the
properties that fXc(x) ≥ 0 and

∫∞
−∞ fXc(x) dx = 1. The cumulative distribu-

tion of a continuous random variable X is defined as FX(x) = P (X ≤ x) =∫ x
−∞ fXc(t) dt. The expected value of a discrete random variable Xd with n

possible outcomes {x1, . . . , xn}, denoted with E(Xd) or E[Xd], is:

E(Xd) =
n∑
i=1

xi · pi

where pi = pXd(xi). In a similar fashion, for a continuous random variable Xc,
the expected value is defined as:

E(Xc) =

∫ ∞
−∞

x · fXc(x) dx.

If multiple random variables interact, we need to utilize the joint probabil-
ity distribution, which is the probability distribution that describes their joint
behavior. We consider here, for simplicity, only two continuous random vari-
ables, X and Y (this concept can be extended to an arbitrary number of
r.v.s, to discrete r.v.s, and also to a mixture of both discrete and continuous

18

r.v.s). If the joint probability density is defined as fX,Y (x, y), the marginal
probability density function that describes individually one of the two random
variables (for example X) can be obtained from the joint probability density
by marginalization:

fX(x) =

∫
fX,Y (x, y) dy

where the integral is on the domain of y. However, the previous integral
is tractable only for small cases and simple distributions. If we have two
discrete random variables, we need to replace the integral with a summation.
Finally, in the case of a mixture of discrete and continuous random variables,
we have a mixed joint density, and we need to consider both summations and
integrations.

If both X and Y are continuous, we define the joint cumulative distribution
as FX,Y (x, y) = P (X ≤ x, Y ≤ y); in the case both are discrete, the joint mass
function is defined as pX,Y (x, y) = P (X = x, Y = y).

Two variables are independent if the knowledge of the outcome of one of
the two does not influence the outcome of the other. This is an important
property since, for independent variables, FX,Y (x, y) = FX(x) · FY (y), and
P (X = x, Y = y) = P (X = x) ·P (Y = y). This factorization greatly simplifies
computations, and it is usually considered in Probabilistic Logic Programming.

There are several well-known distributions for random variables. Here, we
introduce only three of them, two discrete (Bernoulli and categorical) and one
continuous (normal).

The Bernoulli distribution is a discrete probability distribution with a pa-
rameter p ∈ [0, 1] representing a random variable X that takes value 1 (or true,
or, in other words, the trial succeeds) with probability p and 0 (or false, or the
trial fails) with probability 1 − p: P (X = 1) = p, P (X = 0) = 1 − p. If we
consider the toss of a fair coin, its outcome can be modelled with a Bernoulli
distribution with p = 0.5 (the probability to land either heads or tails is the
same). If the coin is not fair, p 6= 0.5. To indicate a variable X that follows a
particular distribution we use the symbol ∼. For example, to indicate that X
follows a Bernoulli distribution with parameter p we write X ∼ Bernoulli(p).
If the number of possible outcomes is greater than two, we need to consider a
categorical distribution: each outcome i has a probability pi, and

∑
i pi = 1.

For example, the toss of a die can be modelled with a categorical distribution:

19

if it is fair, each one of the possible six outcomes has probability 1/6.
As an example of continuous distribution that is used in many scenarios,

we introduce the normal distribution, parameterized by two values, µ for the
mean and σ2 for the variance, that is usually indicated with N (µ, σ2). The
probability density for this distribution is:

f(x) =
1

σ
√

2π
e−

1
2(x−µσ)

2

.

If µ = 0 and σ2 = 1, the distribution is a standard normal.

4.3 Ordinal Numbers, Mappings, and Fixpoints

In this section, we recall some of the concept of ordinal numbers, mappings,
and fixpoints needed to understand the proof of the theorems discussed later.

4.3.1 Ordinal Numbers

In set theory, the notion of ordinal numbers extends the one of natural num-
bers. We indicate with Ω the set of ordinal numbers1. The elements of Ω are
called ordinals. Ω is well-ordered, meaning that it is totally ordered and every
subset of it has a smallest element. In this case, the smallest element is 0. If
we consider two ordinals, α and β, we say that α is predecessor of β (or β is
the successor of α) if α < β. If α is the largest ordinal smaller than β, α is the
immediate predecessor of β. Similarly, the immediate successor of an ordinal
α is the smallest ordinal larger than it, and is indicated with α + 1. Ordinals
that have predecessors but no immediate predecessor are limit ordinals, and
every ordinal has an immediate successor named successor ordinal. That is,
ordinal numbers can be of two types: limit ordinals or successor ordinals. The
first elements of Ω are 0 (empty set), 1 (set with one element, {0}), 2 (set with
two elements, {0,1}), After all the natural numbers there is ω, the set of
all finite ordinals ({0,1,2,. . . }). The successors of ω are ω + 1 ({0,1,2,. . . ,ω}),
ω + 2, and so on. For ordinal numbers, the concept of transfinite sequence
generalizes the concept of sequence. Similarly, the concept of induction for

1There is a slight abuse of notation: in Section 4.2 we used Ω to indicate the event space.
Here, we use the same greek letter to indicate the set of ordinal numbers.

20

ordinal numbers goes under the name of transfinite induction: if a property P
is defined for an ordinal α (P (α)) and it holds whenever P holds for another
ordinal β (P (β)) with β < α, then P (α) is also true. Proofs by transfinite
induction usually consist of three steps:

• The property P is proved for the base case P (0).

• P is proved for successor ordinal α+ 1 by proving that P (α+ 1) follows
from P (α).

• P is proved for limit ordinals γ by proving that P (γ) follows ∀β from
P (β) with γ > β.

For a more in-depth treatment of the topic of ordinal numbers see [51].

4.3.2 Mappings and Fixpoints

We now focus on the concepts of mapping and fixpoint.
Given a lattice A, a mapping is a function f : A → A, that is, a function

that maps the elements of its domain (a lattice) to itself. Sometimes, it is also
called operator. A mapping is monotone if f(x) ≤ f(y) ∀x, y ∈ A such that
x ≤ y. If a ∈ A and f(a) = a, then a is a fixpoint. a ∈ A is the least fixpoint if
a is a fixpoint and, for all the other fixpoints bi, a ≤ bi holds. Similarly, a ∈ f
is the greatest fixpoint if a is a fixpoint and, for all the other fixpoints bi ∈ A,
a ≥ bi holds.

Consider again a lattice A and a monotonic mapping f . We inductively
define increasing ordinal powers of f as:

• f ↑ 0 = ⊥.

• If α is a successor ordinal, f ↑ (α + 1) = f(f ↑ α).

• If α is a limit ordinal, f ↑ α = lub({f ↑ β | β < α}).

Similarly, we inductively define decreasing ordinal powers of f as:

• f ↓ 0 = >.

• If α is a successor ordinal, f ↓ α = f(f ↓ (α− 1)).

21

• If α is a limit ordinal, f ↓ α = glb({f ↓ β | β < α}).

Thanks to the Knaster-Tarski theorem (see [77]), if A is a complete lattice
and f is a monotonic mapping, the set of fixpoints of f in A is also a lattice.
Moreover, f has a least fixpoint lfp(f) and a greatest fixpoint gfp(f). For
further details consult [65, 77].

22

Chapter 5

Logic and Logic Programming

In this chapter, we introduce some concepts of Logic and Logic Programming,
by considering both syntax and semantics. In particular, Section 5.1 reviews
basic definitions regarding Logic. Logic Programming is extensively analysed
in Section 5.2. Finally, Section 5.3 reviews Abductive Logic Programming, an
extension of Logic Programming that manages incompleteness in the data.

5.1 Propositional and First Order Logic

Logic is the science that studies reasoning methods and conditions that makes
the process of reasoning correct. One of the goals of this discipline is to develop
rules to distinguish correct statements from fallacious ones. There are different
types of Logic: we start with Propositional Logic (PL).

5.1.1 Propositional Logic

The main elements of Propositional Logic (and of all the other types of logics
in general) are formulas (or formulae). In PL, formulas are constituted by
atomic propositions, i.e., propositions that cannot be further simplified, linked
together by logical connectives. Atomic propositions are indicated with sym-
bols such as a, b, The truth value of an atomic proposition (or a logic
formula) is the value that it assumes when evaluated, and can be either true
or false, indicated respectively with T (or 1, or >) and F (or 0, or ⊥). Note
that we only define the truth value of a sentence, not its meaning. There are

23

several types of logics that admit more than two truth values, but we will not
consider them here.

We can chain multiple propositions together through logical connectives.
These are:

• Not (negation) indicated with ¬, that flips the truth value of a formula.
If we have a formula a which is true, ¬a is false, and vice versa. This is
the only unary operator, that is, it is applied to a single formula. ¬¬a
has the same truth value of a.

• And (conjunction) indicated with ∧. If we have two formulas a and b,
a ∧ b is true only if both a and b are true; otherwise, the conjunction is
false.

• Or (disjunction) indicated with ∨. If we have two formulas a and b, a∨b
is false only if both a and b are false; otherwise, the disjunction is true.

• Material implication denoted with →. If we have two formulas a and b,
a→ b is false only if a is true and b is false; otherwise, it is true. It can
be read as: “if . . . then”.

• Material biconditional denoted with ↔. If we have two formulas a and
b, a ↔ b is true only if a and b are both true or false simultaneously;
otherwise, it is false. It can be read as “. . . if and only if . . . ”.

To specify priorities, formulas can be enclosed in parentheses. Clearly, to be
well-formed, the number of parentheses in a formula must be balanced (the
number of open parentheses must equal the number of closed parentheses). By
default, we assume the following operator precedence (from higher to lower):
¬,∧,∨,→,↔. Some examples of well-formed formulas are:

• a ∨ b.

• c ∨ b ∧ d.

• ¬a→ c ∧ (d ∨ b).

Considering the precedence rule specified above, the following two formulas
are equivalent: ¬a → b ∨ c → a ∨ b ∧ c, (¬a) → ((b ∨ c) → (a ∨ (b ∧ c))).
However, the second is usually preferred due to higher interpretability, since
priorities are clearly highlighted by the parentheses.

24

5.1.2 First Order Logic

One of the main limitations of PL is that it is not expressive enough, since
it does not allow reasoning over non-logical objects. We now consider one of
its extensions, First Order Logic (FOL), also named Predicate Logic or First
Order Predicate Calculus, that allows the usage of quantifiers and variables.
We now introduce the syntactic constructs (or, more formally, the alphabet)
allowed by FOL. These are:

• Constants, that represent the known entities of the domains, starting
with a lowercase letter, such as “a”, “home”, “learning”. Numbers are
considered constants.

• Variables, starting with an uppercase letter and referring to the objects
of the domain. For example, “X”, “Y”, “Thesis”.

• Function symbols, starting with lowercase letters, mapping n (> 0) ob-
jects to another object. n is called arity. Function symbols are usually
represented with the syntax functor/arity, where functor is the name
of the mapping they define. For example f(a,B) represents a function
called f mapping a constant a and a variable B to another variable. We
use f/2 to represent this function. Similarly, mother(bob) represents a
function called mother from a constant bob to another object, and can
be compactly referred as mother/1 .

• Predicate symbols, starting, as for function symbols, with a lowercase
letter and mapping n (> 0) objects to truth values (true or false). The
notation is the same used for function symbols (functor/arity). For ex-
ample: father(marc, bob), faster(hare, tortoise). The difference between
function and predicate symbols is that the former denotes functions while
the latter relations.

• Logical connectives, the same of PL.

• Auxiliary punctuation: as for PL, it is possible to use, for instance, paren-
theses, to specify priorities.

25

• Quantifiers : universal quantifier, represented with ∀ (for all), and exis-
tential quantifier, represented with ∃ (there exists). Both have the same
priority as negation (the highest).

Starting from the previous alphabet, we can introduce some new constructs:

• Term: a variable, a constant, or a function symbol applied to n terms.

• Atom (or atomic formula): predicate symbol applied to n terms.

• Literal : an atom a or its negation (denoted ∼ a or ¬a).

Well-Formed Formulas are syntactically correct formulas. They are built start-
ing from atomic formulas combined with logical connectives and quantifiers.
More formally, we can provide an inductive definition of well-formed formula:

• Atomic formulas, true, and false are formulas.

• If A and B are formulas, the following are still formulas: ¬A, A ∨ B,
A ∧B, A→ B (and so A← B), A↔ B.

• If A is a formula and X is a variable, ∀XA, and ∃XA are formulas.

A quantifier is applied to the formula that immediately follows it, and this
defines its scope. As usual, we can utilize parentheses to modify the scope of
a quantifier, by joining and combining two or more formulas. A quantifier is
applied to a formula with variables. According to the variable appearing in the
quantifier, a variable can either be bound or free. A variable is free if it does
not appear in the scope of any quantifier, otherwise, it is bound. For example,
in ∀X p(X, Y), Y is free while X is bound.

A clause in FOL is a formula of the form

A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bm

where Ais and Bis are atoms and all the variables are universally quantified
from the outside (the explicit introduction of the quantifier is often omitted).
The previous formula can be rearranged to remove the negation symbol, as
follows:

A1 ∨ · · · ∨ An ← B1 ∧ · · · ∧Bm.

26

In this new notation, that we will adopt through the thesis, A1 ∨ · · · ∨ An is
called head while B1 ∧ · · · ∧ Bm is called body with the meaning “if the body
is true then the head is also true”. Furthermore, usually ∨ is replaced by
semicolon (;) and ∧ by commas (,). For example, the following two clauses

siblings(Xa,Xb)← father(Xa,Xc), father(Xb,Xc)

siblings(Xa,Xb)← mother(Xa,Xd),mother(Xb,Xd)

state that Xa and Xb are siblings (siblings(Xa,Xb)) if (←) they have the
same father Xc (first clause) or the same mother Xd (second clause). The two
previous clauses are called definite since they have only one positive literal. If
the number of positive literals is greater than one, the clause is disjunctive. A
clause without negative literals (the body is empty) is called fact and represents
an information that is always true. For example

fly(hoopoe)← true

is a fact and can be represented more compactly as

fly(hoopoe)

removing true in the body. Conversely, if the head is empty, the clause is a
denial :

false ← fly(hoopoe),¬fly(hoopoe)

or, equivalently
← fly(hoopoe),¬fly(hoopoe).

Horn clauses are of particular interest for Logic Programming and are either
definite clauses (and also facts) or denials. A set of clauses defines a theory.

In general, we call expression a literal, a term, or a clause. An expression
is ground if it does not contain variables. The process of replacing variables
with constants is called substitution. A substitution applied to an expression
E consists in replacing simultaneously variables in E with terms, and it is
usually indicated with θ = {V1/t1, . . . , Vn/tn}, where the Vis are variables in
E. The result of the application of a substitution is a new expression Eθ

27

called instance of E. For example, given the expression E = father(A,B), the
substitution θ = {A/alfred , B/bruna} applied to E creates a new expression
Eθ = father(alfred , bruna). If a substitution grounds an expression (as θ of
the previous example), it is called grounding. Grounding is also the name of
the process that consists in replacing variables with constants to make a clause
or a program ground. Not all variables of an expression must be present in a
substitution. If the substitution is a permutation of the set of variables it is
called renaming. The substitution is at the heart of the process of unification,
used to check whether two formulas can be made syntactically equal through
a series of substitutions. We call a substitution θ most general unifier of two
expressions iff (if and only if) for every substitution λ that unifies the two
expressions there exists a substitution σ such that λ = θσ, that is, θ is the
minimal substitution that unifies the two expressions.

The Herbrand universe of a theory T is the set of all ground terms that
can be obtained by combining the symbols and the constants in T in all pos-
sible ways. If there are no function symbols, the Herbrand universe is finite.
Similarly, the Herbrand base is the set of all ground atoms (atomic formu-
las) constructed using the symbols in the program. For example, consider the
following theory constituted by one fact and one definite clause:

even(0)

even(s(s(X)))← even(X)

0, s(0), . . . can be used to denote the element of Peano arithmetic: s(0) rep-
resents the successor of the number 0, 1, s(s(0)) the successor of s(0), 2, and
so on. The theory states that 0 is even and that s(s(X)) is even if X is even.
There is one constant 0 and a function symbol s/1, so the Herbrand universe
of the program is infinite and is

{0, s(0), s(s(0)), . . . }.

Its Herbrand base is as well infinite, since there is one predicate symbol even/2,
and is

{even(0), even(s(0)), even(s(s(0))), . . . }.

28

The semantics of a set of FOL formulas, i.e., their meaning, can be provided
through Herbrand interpretations and Herbrand models [105]. A Herbrand
interpretation, also called two-valued interpretation or simply interpretation,
is a subset of the Herbrand base and allows to assign a truth value to formulas.
Consider and interpretation I:

• A ground atom p(t1, . . . , tn) is true in I iff p(t1, . . . , tn) ∈ I.

• A conjunction of atomic formulas C = a1, . . . , an is true in I iff C ⊆ I.

• A ground clause h1; . . . ;hn ← b1, . . . , bn is true in I iff at least one hi is
true when the body (conjunction of bi) is true.

• A clause is true in I iff all its ground instances are true in I.

• A set of clauses is true in I iff all its clauses are true in I.

An interpretation I satisfies a set of clauses Σ if Σ is true in I, and it is denoted
with I |= Σ. In this case, I is called Herbrand model or simply model of the
set of clauses. In the special case that all the models for a set of clauses Σ

are also models of a single clause C, Σ logically entails C and C is a logical
consequence of Σ, written Σ |= C. We say that a set of clauses Σ is satisfiable
if it has at least one Herbrand model; otherwise, it is unsatisfiable. We consider
this definition as the semantics for Σ.

An important property of Herbrand models is that, given a set of definite
clauses (i.e., a definite program), the intersection of all the Herbrand models of
the set is still a Herbrand model for the set, and it is called the least Herbrand
model. Furthermore, the least Herbrand model for a definite program always
exists, is minimal, and it is unique. With the least Herbrand model we can
provide a model-theoretic semantics of a program as the set of grounds atoms
that are logical consequences of P . For example, if we consider the program

bird(X)← penguin(X)

penguin(coco)

it has the least Herbrand model {penguin(coco), bird(coco)}. See [105] for more
details.

29

5.2 Logic Programming

Logic Programming, initially proposed in 1974 [99], has its root in FOL but
adopts a different semantics. A disjunctive logic program is a set of clauses
(also called rules) of the following form:

h1; . . . ;hn ← b1, . . . , bm.

where the symbols are interpreted as for FOL. Each hi is an atom and each bi
is a literal (so negation is allowed). Note that, differently from FOL, clauses
end with a full stop. As before, if the head has only one atom (n = 1), the
clause is a normal clause. If the program is composed of only normal clauses,
it is termed normal logic program. A definite logic program is such that, for
every clause, n = 1 and every bi is a positive literal (i.e., an atom).

Prolog [53] is the most famous programming language based on logic. It
adopts a proof procedure called resolution to check whether a formula can
be proved starting from a theory. A key feature of resolution is that it can
be easily automated. Prolog adopts a particular form of resolution, called
SLD resolution (that stands for “linear resolution with selection function for
definite logic programs”) that we now describe. In the following, we will use
typewriter font to indicate Prolog clauses that are well-formed and can be
executed as they are in a Prolog engine. In this case, the symbol← is replaced
by :-. SLD resolution starts from a goal o query

a1, a2, . . . , an.

(a conjunction of atoms) and iteratively selects a subgoal and replaces it with
the body of a clause in the program which has the head unifiable with the
subgoal itself. For example, if we select the goal a1 from the previous example
and there exists a rule

b0 ← b1, . . . , bm.

where a1 can be unified with b0 through a substitution θ, the new goal to prove
becomes

(b1, . . . , bm, a2, . . . , an)θ.

30

There can be two reasons for stopping the resolution process: the goal is empty
(in this case we have a refutation) and the query succeeds, or there are no more
applicable resolutions (i.e., clauses that match the current subgoal to prove),
and the goal fails. Resolution has been proved sound (answers to queries are
logical consequences of the program) and complete (every possible answer can
be derived) for definite logic programs.

In the version of SLD resolution adopted by Prolog, the next subgoal to
prove is always the leftmost one (a1 in the previous example). When there are
multiple clauses with the head that can be unified with the current goal, the
first in order of appearance starting from the top of the program is selected.
However, this choice can lead to infinite derivations, so the SLD resolution
procedure adopted by Prolog is not complete. To see an example of Prolog
SLD resolution, consider the following program, where variables start with
uppercase letters1

1 reach(X,X).

2 reach(X,Y):- connected(X,Z), reach(Z,Y).

3

4 connected(a,b).

5 connected(b,c).

6 connected(a,c).

The first two clauses define the predicate reach/2 and can be read as follows:
from X we can reach X (this is always true, since we are already in X); otherwise,
we can reach Y starting from X if X is connected to an intermediate location (Z)
from which we can reach Y. The last three facts define the available connec-
tions. The SLD tree for the query reach(a,c) is shown in Figure 5.1, where
substitutions are displayed on edges between two different levels of the tree,
� denotes successful proofs, and fail denotes proof that failed. When the
goal does not contain variables, a Prolog engine can answer with true, if the
resolution succeeds, or false, if it fails. If the goal contains variable, a Prolog
engine will either succeed returning a substitution or fail with answer false.

To better see why the Prolog SLD resolution is not complete, consider the

1Not all variables in Prolog start with an uppercase letter. For example, the anonymous
variable is represented by an underscore (_) and each occurrence of this denotes a different
variable.

31

reach(a,c)

connected(a,Z0), reach(Z0,c)

reach(b,c)

connected(b,Z1), reach(Z1,c)

reach(c,c)

� connected(c,Z2),reach(Z2,c)

fail

Z1/c

Z0/b

reach(c,c)

� connected(c,Z3), reach(Z3,c)

fail

Z0/c

Figure 5.1: SLD tree for the query reach(a,c).

following simple program:

1 connected(A,B):- connected(B,A).

2 connected(a,b).

Here, the query connected(a,Y) does not terminate: both the clause and the
fact can be unified with the goal, but Prolog chooses the first one in order
of appearance, so the clause, and the substitution {A/a,B/Y} is applied. The
new goal to prove is then connected(Y,a). The clause is selected once again
with the subsection {A/Y,B/a}, and the new goal is connected(a,Y), falling
in an infinite loop (the subgoal to prove is equal to the main goal). However, if
we swap the clause with the fact, we get an infinite number of solutions where
Y is always replaced with b. Thus, in Prolog, the order of the clauses matters.
Moreover, Logic Programming semantics adopt the closed world assumption:
everything that cannot be proved is considered false.

There are several Prolog interpreters, among them SWI-Prolog [171], YAP-
Prolog [145], and XSB-Prolog [159]. In this thesis, we always consider SWI-
Prolog, unless differently specified.

In Section 5.1.2 we stated that the least Herbrand model always exists
for programs composed of only definite clauses (with exactly one head atom).
The least Herbrand model can be characterized by a fixpoint operator called
immediate consequence operator, that maps subset of atoms to subset of atoms

32

for a definite program P . Consider a set of definite clauses P and a Herbrand
interpretation I. The immediate consequence operator Tp(I) is defined as
follows:

Tp(I) = {A ∈ BP | A← A1, . . . , An is a ground instance

of a rule in P and A1, . . . , An ∈ I}.

Since we are considering definite programs, the TP operator is monotonic,
meaning that:

I1 ⊆ I2 =⇒ Tp(I1) ⊆ Tp(I2).

Furthermore, it has a least (unique and minimal) fixpoint which is Tp ↑ω. For
example, if we consider the program:

1 f(b).

2 f(X) :- g(X,Y),f(Y).

3 g(a,b).

we get:

Tp ↑ 0 = ∅

Tp ↑ 1 = {g(a, b), f(b)}

Tp ↑ 2 = {g(a, b), f(b), f(a)}

Tp ↑ 3 = {g(a, b), f(b), f(a)}
...

Tp ↑ ω = {g(a, b), f(b), f(a)}

Thus, the least fixpoint is {g(a, b), f(b), f(a)}. Similarly, for the Peano arith-
metic program shown before, reported here with Prolog syntax for clarity,

1 even (0).

2 even(s(s(X))) :- even(X).

33

we get:

Tp ↑ 0 = ∅

Tp ↑ 1 = {even(0)}

Tp ↑ 2 = {even(s(s(0))), even(0)}

Tp ↑ 3 = {even(s(s(s(s(0))))), even(s(s(0))), even(0)}
...

Tp ↑ ω = {even(si(0)) | 2i ∈ N}

In these examples, negation is not considered, since it requires a more complex
semantics that we describe in the next subsection.

5.2.1 Semantics for Programs with Negation

Normal logic programs allow negative literals in the body of clauses. In this
case, Negation as Failure (or default negation) is considered, where not p

states that p is not provable. To manage negation, SLD resolution is extended
to SLDNF resolution (SLD with Negation as Failure). In short, when, during
the resolution, a negated literal is encountered, the positive version of it is
proved: if it is successful, the proof of its negated version fails and the reso-
lution fails as well on this branch; if the proof of the positive literal fails, the
negated version succeeds, and the resolution continues. Negation in Prolog is
expressed using the operator \+. For example, consider the following simple
Prolog program:

1 q(1).

2 p(X) :- \+ q(X).

If the query is p(1), we get false as answer from a Prolog engine, since the
subgoal q(1) is true. Similarly, p(2) succeeds since q(2) is false (closed world
assumption: what is not explicitly stated is false). However, there are some
important points to consider: the negated goal to prove must be ground, that
is, it must not contain variables, otherwise, the resolution flounders.

Prolog SLDNF follows Clark’s completion semantics [52]. However, there

34

are alternative semantics to handle negations, such as Stable model seman-
tics [68] and Well-Founded semantics (WFS) [131, 165]. Here, we consider
only the last one.

We now introduce some additional concepts needed to formally define the
Well-Founded semantics. A two-valued interpretation for a program P with
Herbrand base Bp, I ⊆ BP , represents the set of true and false atoms: if, for an
atom a, a ∈ I, a is true; if a 6∈ I, a is false. The set of two-valued interpretations
for a program P , IntP2 , forms a complete lattice where the partial order ≤ is
defined by the subset relation ⊆. The bottom element of IntP2 is ∅ and the
top element is BP . A three-valued interpretation I is a pair 〈IT , IF 〉 where
IT ⊆ BP and IF ⊆ BP are sets of respectively true and false atoms. An
atom a is true in I (I |= a) if a ∈ IT , is false in I (I |=∼ a) if a ∈ IF , and is
undefined in I if a 6∈ IT and a 6∈ IF . A three-valued interpretation I = 〈IT , IF 〉
is consistent if IT ∩IF = ∅. The union and the intersection of two three-valued
interpretations 〈I ′T , I

′
F 〉 and 〈I

′′
T , I

′′
F 〉 are defined respectively as 〈I ′T∪I

′′
T , I

′
F∪I

′′
F 〉

and 〈I ′T ∩ I
′′
T , I

′
F ∩ I

′′
F 〉. We represent a three-valued interpretation as a single

set of literals composed of IT ∪ {∼ a | a ∈ IF}.
The set of three-valued interpretations for a program P , IntP3 , forms a

complete lattice where the partial order ≤ is defined as 〈I ′T , I
′
F 〉 ≤ 〈I

′′
T , I

′′
F 〉

if I ′T ⊆ I
′′
T and I

′
F ⊆ I

′′
F . The top and the bottom elements are respectively

the pairs 〈∅, ∅〉 and 〈BP , BP 〉. While considering a three-valued interpretation
I = 〈IT , IF 〉, we define some auxiliary functions: true(I) = IT , false(I) = IF ,
undef (I) = BP \ ITF , where ITF = IT ∪ IF .

The Well-Founded semantics (WFS) [131, 165] assigns a three-valued model
to a program. Consequently, the semantics of a program is given by a consistent
three valued interpretation. The definition of the WFS provided in [165] is
based on the computation of the least fixpoint of an operator composed of two
sub-operators. In [131], the same definition is given in terms of an iterated
fixpoint. Here we consider this second definition.

Definition 7 (OpTruePI and OpFalsePI operators). For a normal logic program
P , two sets Tr and Fa of ground atoms, and a fixed three-valued interpretation
I, the operators OpTruePI : IntP2 → IntP2 and OpFalsePI : IntP2 → IntP2 are
defined as follows:

OpTruePI (Tr) = {a | a is not true in I and there is a clause b ← l1, . . . , ln

35

in P and a grounding substitution θ such that a = bθ and, for every
1 ≤ i ≤ n, either liθ is true in I or liθ ∈ Tr}.

OpFalsePI (Fa) = {a | a is not false in I and for every clause b← l1, . . . , ln in P
and grounding substitution θ such that a = bθ there is some i (1 ≤ i ≤ n)

such that liθ is false in I or liθ ∈ Fa}.

That is, I contains the atoms whose truth values are already known, the
operator OpTruePI (Tr) add to I the new true atoms that can be derived from P

knowing I and true atoms Tr , while OpFalsePI (Fa) computes new false atoms
in P starting from I and false atoms Fa. The authors of [131] proved that
OpTruePI and OpFalsePI are both monotonic, so they both have least fixpoint
and a greatest fixpoint. The least fixpoint of OpTruePI contains the new atoms
that can be derived from P knowing I. Similarly, the greatest fixpoint of
OpFalsePI contains the new atoms considered false in P knowing I. Consider
now this new operator that iteratively builds three-valued interpretations:

Definition 8 (Iterated fixed point). For a normal logic program P , let IFPP :

IntP3 → IntP3 be defined as

IFPP (I) = I ∪ 〈lfp(OpTruePI), gfp(OpFalsePI)〉.

It adds to I the new atoms lfp(OpTruePI) that can be derived from P knowing
I, and negated atoms gfp(OpFalsePI) considered false in P knowing I. IFPP

is monotonic [131] and so it has a least fixpoint denoted with lfp(IFPP). The
Well-Founded Model (WFM) of P , WFM (P), is defined as lfp(IFPP). Let δ
be the smallest ordinal such that WFM (P) = IFPP ↑ δ. We call δ the depth
of P . The stratum of atom a is the least ordinal β such that a ∈ IFPP ↑ β.
In this case, a may be either in the true or false component of IFPP ↑ β.
Undefined atoms of the WFM are not added to IFPP ↑ δ for any ordinal δ, so
they do not belong to any stratum. If undef (WFM (P)) = ∅, then the WFM
is called total or two-valued and the program is dynamically stratified.

To see an example of computation of the WFM, consider the following

36

program P taken from [136]:

1) b←∼ a

2) c←∼ b

3) c← a

where 1), 2), and 3) are used to denote clause numbers and are not part of the
program. By iteratively applying IFPP operator we get:

IFPP ↑ 0 = 〈∅, ∅〉

IFPP ↑ 1 = 〈∅, {a}〉

IFPP ↑ 2 = 〈{b}, {a}〉 clause 1

IFPP ↑ 3 = 〈{b}, {a, c}〉 clauses 2 and 3

IFPP ↑ 4 = IFPP ↑ 3 = WFM (P)

The depth of P is 3 and its WFM is: true(WFM (P)) = {b}, false(WFM (P)) =

{a, c}, undef (WFM (P)) = ∅. The undefined set is empty, so the program is
two-valued. Moreover, it is also dynamic stratified.

Finally, we introduce the definition of level mapping and additional types of
logic programs, namely acyclic, stratified, locally stratified, and range restricted.

Definition 9 (Level mapping [6]). A level mapping for a program P is a func-
tion ||: BP → N from ground atoms of the Herbrand base to natural numbers.
We indicate with |a| the level of a ∈ Bp. If l = ¬a and a ∈ Bp, then |l| = |a|.

Definition 10 (Acyclic program [6]). A program P is called acyclic with re-
spect to a level mapping || if, for every ground instance of a clause A ←
L1, . . . , Ln of the program P , |A| > |Li| ∀i ∈ [1, n].

Definition 11 (Locally stratified program [130]). A program P is locally strat-
ified with respect to a level mapping || if, for every ground instance of a clause
A ← L1, . . . , Ln of the program P , |A| > |L−i |, ∀L−i negative literal, and
|A| ≥ |L+

i |, ∀L+
i positive literal.

Definition 12 (Stratified program [7]). A normal logic program is stratified if
it is locally stratified according to some level mapping and all the ground atoms
for the same predicate can be assigned to the same level.

37

A locally stratified program P has a total WFM. The program shown before
is locally stratified.

Definition 13 (Range restricted program). A program is range restricted if
all the variables appearing in the head of rules also appear in a positive literal
of the body.

If a normal logic program is acyclic, the Well-Founded semantics, the Stable
model semantics, and the Clark’s completion semantics coincide [133]. If the
program is also range restricted, SLDNF resolution is correct, sound, and
complete [6]. There are other proof procedures, not reported here, that are
also sound and complete for the WFS under some conditions, such as SLG
resolution [46].

There exist several extensions to Logic Programming:

• Probabilistic Logic Programming [136], that can manage uncertain data.
It will be deeply analysed in Chapter 6.

• Constraint Logic Programming [82], that integrates logic with constraints.

• Inductive Logic Programming [115], focused on learning programs start-
ing from a set of examples.

• Abductive Logic Programming [86], that tackles incompleteness in the
data, discussed in the next section.

5.3 Abduction and Abductive Logic Program-

ming

The goal of abduction is guessing missing information from data. Abduc-
tive Logic Programming [86, 87] extends Logic Programming and marks some
atoms as abducible. The goal is to find a subset of abducibles that can explain
a query. Furthermore, an abductive logic program has also a set of integrity
constraints, that limits some possible combinations of abducibles. More for-
mally:

38

Definition 14 (Integrity constraint). A (deterministic) integrity constraint
IC is a formula of the form:

: −Body

where Body is a conjunction of logical literals (logical atoms or their negations).

Definition 15 (Abductive logic program). An abductive logic program is a
triple (P, IC, A) where P is a normal logic program, IC is a set of integrity
constraints, and A is a set of ground atoms called abducibles that do not appear
in the head of any grounding of P .

The goal of abduction is to find abductive explanations :

Definition 16 (Abductive explanation). Given an abductive logic program
(P, IC, A) and a conjunction of ground atoms q (the query), the goal of ab-
duction is to find a set of atoms ∆ ⊆ A called abductive explanation such
that P ∪ ∆ |= q and, for every integrity constraint of the form : −Bodyi,
P ∪∆ 6|= ∃Bodyi, where |= is interpreted as truth in the WFM of the program.

To manage negation, we require that P ∪ ∆ has a two-valued WFM for
every ∆. Negation is then defined under the WFM, and |= is well-defined
(true or false for any P ∪∆ and query q). Furthermore, we consider false the
abducible facts not present in the abductive explanation.

To clarify the concepts, consider the following simple example:

1 flood:- water.

2 water:- broken_pipe.

3 water:- rain.

4

5 :- broken_pipe , rain.

where both broken_pipe and rain are abducibles. The last line represents
an integrity constraint imposing that the atoms broken_pipe and rain can-
not be true at the same time. The query flood has two abductive expla-
nations, ∆1 = {broken_pipe} and ∆2 = {rain}. The explanation ∆3 =
{broken_pipe,rain} is forbidden by the constraint.

39

40

Chapter 6

Syntax and Semantics for
Probabilistic Logic Programs

Probabilistic Logic Programming (PLP) [59, 119, 136] extends Logic Pro-
gramming by allowing uncertainty on the data. Several Probabilistic Logic
Programming Languages have been proposed during the years, with different
expressive power. Some of them are PRISM [146], CP-Logic [168], Stochas-
tic Logic Programs [116], Independent Choice Logic [128], Probabilistic Horn
Abduction [126], ProbLog [60], and LPAD [169]. Here, and in the rest of the
thesis, we consider ProbLog and LPAD: Section 6.1 introduces their syntax
while Section 6.2 reviews their semantics for both programs with and without
function symbols.

6.1 ProbLog and LPADs

Here, we review the Logic Programs with Annotated Disjunctions (LPAD)
and ProbLog syntax, starting from the former, since it was proposed first.
An LPAD [169] extends a logic program by allowing a finite set of annotated
disjunctive clauses of the form:

h1 : Π1;h2 : Π2; . . . ;hn : Πn ← b1, . . . , bm.

where hi are logical atoms, bi are logical literals, and Πi ∈ [0, 1]. The Πis
represent the probability of the i-th head. The values of the Πis should sum

41

to 1 (and clearly must not exceed this value). If it is not the case, an extra
atom that does not appear in the body of any clause is inserted in the head
with associated probability 1 −

∑
i Πi. If n = 1 (there is only one head) the

clause is non-disjunctive. We can read the previous clause as follows: if, for a
grounding of the clause, b1, . . . , bm is true, h1 is selected with probability Π1,
h2 with probability Π2, and so on. For example, the following program models
a toss of a fair coin that can land heads of tails with equal probability:

1 toss_fair_coin.

2 head :0.5; tails :0.5:- toss_fair_coin.

We can then ask for the probability that the coin lands head or tails. The
previous program can be rewritten using a non-disjunctive clause as follows:

1 toss_fair_coin.

2 head :0.5: - toss_fair_coin.

In this case, if we want to compute the probability of tails, we can ask for the
probability that the coin does not land heads.

Similarly, ProbLog allows the definition of probabilistic facts with the syn-
tax

Π :: f.

where Π is the probability associated to ground instantiations of the atom f .
The example introduced above can be expressed with the ProbLog syntax as:

1 0.5:: lands_head.

2 toss_fair_coin.

3 head:- toss_fair_coin , lands_head.

We can translate a ProbLog program into an LPAD and vice versa. For ex-
ample, an LPAD can be translated into a ProbLog program [60] by converting
each clause with n heads and m variables (denoted with X)

h1 : Π1;h2 : Π2; . . . ;hn : Πn ← B.

into a set of n− 1 ProbLog probabilistic facts for auxiliary predicates fi with

42

arity m, and n clauses, in this way:

π1 :: f1(X).

. . .

πn−1 :: fn−1(X).

h1 ← B, f1(X).

h2 ← B,∼ f1(X), f2(X).

. . .

hn ← B,∼ f1(X), . . . ∼ fn−1(X).

where
πi =

Πi∏i−1
j=1(1− πj)

.

Consider now a more complicated example:

Example 1 (Chess). The following LPAD models the possible results of a
chess match:

1 player(alice).

2 player(bob).

3

4 stronger_opponent :0.7.

5

6 win :0.3; loss :0.5; draw :0.2:-

7 player(X),

8 stronger_opponent.

It states that a player X has 0.3 probability to win, 0.5 to loss, and 0.2 to
draw a match when he/she plays against a stronger opponent, a situation that
happens with probability 0.7. Both alice and bob are players. This LPAD
can be translated into a ProbLog program as follows:

1 player(alice).

2 player(bob).

3

4 0.7:: stronger_opponent.

5

43

6 0.3:: win_fact(X).

7 0.7142:: loss_fact(X).

8

9 win:- player(X), stronger_opponent ,

10 win_fact(X).

11 loss:- player(X), stronger_opponent ,

12 \+ win_fact(X), loss_fact(X).

13 draw:- player(X), stronger_opponent ,

14 \+ win_fact(X), \+ loss_fact(X).

In both examples, there is a singleton variable X, i.e., a variable that appears
only once in a clause. We decided to keep it to better clarity, since we can refer
to a substitution θ involving this variable as θ = {X/term}.

6.2 Distribution Semantics

The distribution semantics [148] provides a meaning to probabilistic logic pro-
grams. Here, we consider ProbLog programs without function symbols. We
now introduce a series of definitions that can be easily extended to LPADs.

Definition 17 (Atomic choice). An atomic choice indicates whether a ground-
ing fθ of a probabilistic fact Π :: f is selected or not. It is represented with the
triple (f, θ, k) where k ∈ {0, 1}. If k = 1, the grounding is selected, otherwise,
it is not.

A set of atomic choices is consistent if it does not contain two atomic choices
(f, θ, 0) and (f, θ, 1) for the same probabilistic fact f and substitution θ. That
is, only one alternative is selected for a probabilistic fact.

Definition 18 (Composite choice). A composite choice κ is a consistent set
of atomic choices whose probability can be computed as

P (κ) =
∏

(fi,θ,1)∈κ

Πi ·
∏

(fi,θ,0)∈k

(1− Πi).

All the probabilistic facts are considered independent. This may seem a
restriction but, in practice, it does not limits the expressivity [136].

44

Definition 19 (Selection). A selection contains one atomic choice for every
grounding of every probabilistic fact. It is also called total composite choice,
and it is usually indicated with σ.

A selection identifies a logic program called world obtained by including
the rules and the probabilistic facts corresponding to every atomic choice with
k = 1. The probability of a world corresponds to the probability of the selection
that identifies it. We consider programs without function symbols, so the set
of worlds W is finite and the probabilities of all the worlds sum to 1, i.e.:∑

w∈W

P (w) = 1.

Furthermore, we consider only programs (worlds) with a two-valued well-
founded model. We call these programs sound. In this way, a query (a con-
junction of ground atoms) can be only true or false in a world. Finally, the
probability of a query q can be computed as follows:

P (q) =
∑
w

P (q, w)︸ ︷︷ ︸
Marginalization

=
∑
w

P (q | w) · P (w)︸ ︷︷ ︸
Product rule

=
∑
w|=q

P (w)

because P (q | w) = 1 if w |= q according to the WFS, 0 otherwise.
All the three clauses of the ProbLog version of the program shown in

Example 1 have two groundings: for the first clause, call it C1, C1θ1 with
θ1 = {X/alice} and C1θ2 with θ2 = {X/bob}. Similarly, for the second
and the third clause. The whole program has 5 ground probabilistic facts
(stronger_opponent, win_fact(alice), win_fact(bob), loss_fact(alice),
loss_fact(bob)) and so 25 = 32 possible worlds. For ease of computa-
tion, consider a restricted version of the ProbLog program of Example 1,
where the probabilistic fact loss_fact/1 and the two clauses loss/0 and
draw/0 have been removed. Consider the query win. There are now three
probabilistic facts involved, namely win_fact(alice), win_fact(bob), and
stronger_opponent. They are reported in Table 6.1, where w_f(a), w_f(b),
and s_o stand respectively for win_fact(alice), win_fact(bob), and stron-

ger_opponent. The query is true in three of them (#4, #6, and #8, high-
lighted in grey), and the probability of the query win can be computed as

45

w_f(a) w_f(b) s_o Probability
1 F F F (1− 0.3) · (1− 0.3) · (1− 0.7) = 0.147
2 F F T (1− 0.3) · (1− 0.3) · 0.7 = 0.343
3 F T F (1− 0.3) · 0.3 · (1− 0.7) = 0.063
4 F T T (1− 0.3) · 0.3 · 0.7 = 0.147
5 T F F 0.3 · (1− 0.3) · (1− 0.7) = 0.063
6 T F T 0.3 · (1− 0.3) · 0.7 = 0.147
7 T T F 0.3 · 0.3 · (1− 0.7) = 0.027
8 T T T 0.3 · 0.3 · 0.7 = 0.063

Table 6.1: Worlds for a restricted version of the ProbLog program of Exam-
ple 1, where the probabilistic fact loss_fact/1 and the two clauses loss/0
and draw/0 have been removed. Highlighted rows represent the worlds where
the query win is true, together with their probability.

0.147 + 0.147 + 0.063 = 0.357.

6.2.1 Semantics for Programs with Function Symbols

If a (probabilistic) logic program has at least one constant and a function
symbol, both the Herbrand universe and the set of possible groundings of
probabilistic facts are denumerable, and the grounding of the program is infi-
nite. The set of worlds is uncountable [21], and the probability of each world
is 0, since it is computed as an infinite product of values less than 1. So, the
previously discussed semantics is not appropriate. To see this, consider the
following example, inspired by [169]:

Example 2 (Game of dice). A player repeatedly throws a three-sided die. Each
round is identified by an index (0, s(0), s(s(0)), ...). The game stops when
the outcome is three. We can encode this scenario with a ProbLog program as
follows:

1 1/3:: one(X).

2 1/2:: two(X).

3

4 on(0,1) :- one(0).

5 on(0,2) :- \+ one (0), two(0).

6 on(0,3) :- \+ one (0), \+ two(0).

7 on(s(X) ,1) :- on(X,_), \+ on(X,3), one(s(X)).

46

8 on(s(X) ,2) :- on(X,_), \+ on(X,3), \+ one(s(X))

, two(s(X)).

9 on(s(X) ,3) :- on(X,_), \+ on(X,3), \+ one(s(X))

, \+ two(s(X)).

10

11 at_least_once_1 :- on(_,1).

12 never_1 :- \+ at_least_once_1.

We may be interested in computing the probability that the die lands at least
one time on face 1, and so we need to consider the query at_least_once_1.
Similarly, to get the probability that the die never lands on face 1, the query to
consider is never_1. In both cases, we need to manage an infinite number of
rounds. Note that the probability of two(X) has been set to 1/2, since, in this
way, the probability of landing on face two and three is given by 2/3−1/2 = 1/3,
and 2/3− 1/2 = 1/3 (the die is fair, all the faces have the same probability).

To give a semantics to Example 2, we need to introduce some more def-
initions. We denote with WP the set of all worlds for a probabilistic logic
program P . The set of worlds ωκ compatible with a composite choice κ is
ωκ = {wσ ∈ WP | κ ⊆ σ}. For programs with function symbols, ωκ may
be uncountable and

∑
w∈ωk P (w) could be undefined since P (w) = 0. Let us

rename P (κ) in µ(κ). The set of worlds ωK compatible with a set of compos-
ite choices K is defined as ωK =

⋃
κ∈K ωκ. Two sets K1 and K2 of composite

choices are equivalent if ωK1 = ωK2 (they correspond to the same set of worlds).
Two composite choices are incompatible if their union is inconsistent. The fol-
lowing definition is crucial in giving a semantics to programs with function
symbols.

Definition 20 (Pairwise incompatible set of composite choices). A set K of
composite choices is pairwise incompatible if ∀κ1, κ2 ∈ K, κ1 6= κ2 =⇒ κ1 and
κ2 are incompatible. That is, every pair of composite choices is incompatible.

For probabilistic logic programs (with and without function symbols) ob-
taining pairwise incompatible sets of composite choices is of key importance.
The probability of a pairwise incompatible set of composite choices K for pro-
grams without function symbols is defined as P (K) =

∑
κ∈K P (κ) and can be

47

easily computed. In case the program has function symbols, if K is countable
then P (K) is well-defined. As before, let us rename P (K) in µ(K).

If fθ is an instantiated fact and κ is a composite choice that does not
contain the atomic choices (f, θ, 0) and (f, θ, 1), the split of κ on fθ is defined
as the set of composite choices Sκ,fθ = {κ ∪ {(f, θ, 0)}, κ ∪ {(f, θ, 1)}}. With
this operation, ωκ = ωSκ,fθ . That is, the set of worlds identified by κ and Sκ,fθ
are the same. Furthermore, Sκ,fθ is pairwise incompatible.

Through the technique of splitting it is possible to assign a probability
to a general set K of composite choices. It works as follows: if fθ is an
instantiated fact and κ is a composite choice that does not contain an atomic
choice (f, θ, 0) and (f, θ, 1), the split of κ on fθ is the set of composite choices
{κ ∪ {(f, θ, 0)}, κ ∪ {(f, θ, 1)}}. By iteratively applying it, we can obtain an
equivalent mutually incompatible set of composite choices [127], as stated by
these two following theorems.

Theorem 1 (Existence of a pairwise incompatible set of composite choices [127]).
Given a finite set K of composite choices, there exists a finite set K ′ of pairwise
incompatible composite choices equivalent to K.

Theorem 2 (Equivalence of the probability of two equivalent pairwise in-
compatible finite set of finite composite choices [126]). If K1 and K2 are both
pairwise incompatible finite sets of finite composite choices and they are equiv-
alent, then P (K1) = P (K2).

Given a finite pairwise incompatible set of composite choices K ′ equivalent
to K it is possible to define a measure µP for a probabilistic logic program P

as µP (ωK) = µ(K ′). To see how, we need to introduce more definitions.

Definition 21 (Explanation). A composite choice κ is an explanation for a
query q if, ∀w ∈ ωκ, w |= q.

Definition 22 (Covering set of composite choices). A set of composite choices
K is covering with respect to a query q if every world in which q is true belongs
to ωK.

To clarify these two concepts, consider this example.

48

Example 3 (Pairwise incompatible covering set of explanations for Exam-
ple 2). If we denote one(X) with f1 and two(X) with f2, the query
at_least_once_1 in Example 2 has the pairwise incompatible covering set of
explanations

K+ = {κ+
0 , κ

+
1 , . . .}

with

κ+
0 = {(f1, {X/0}, 1)}

κ+
1 = {(f1, {X/0}, 0), (f2, {X/0}, 1), (f1, {X/s(0)}, 1)}

. . .

κ+
i = {(f1, {X/0}, 0), (f2, {X/0}, 1), . . . , (f1, {X/si−1(0)}, 0),

(f2, {X/si−1(0)}, 1), (f1, {X/si(0)}, 1)}

. . .

So K+ is countable and infinite. Similarly, the query never_1 has the pairwise
incompatible covering set of explanations

K− = {κ−0 , κ−1 , . . .}

with

κ−0 = {(f1, {X/0}, 0), (f2, {X/0}, 0)}

κ−1 = {(f1, {X/0}, 0), (f2, {X/0}, 1), (f1, {X/s(0)}, 0),

(f2, {X/s(0)}, 0)}

. . .

κ−i = {(f1, {X/0}, 0), (f2, {X/0}, 1), . . . , (f1, {X/si−1(0)}, 0),

(f2, {X/si−1(0)}, 1), (f1, {X/si(0)}, 0), (f2, {X/si(0)}, 0)}

. . .

We call ΩP the set of worlds identified by countable sets of countable
composite choices for a probabilistic logic program P , i.e., ΩP = {ωK |
K is a countable set of countable composite choices}. Lemma 2 of [136] proves
that ΩP is a σ-algebra over WP . We can define a probability measure as

49

µP : ΩP → [0, 1].
Given a (possibly infinite) set of composite choices K = {κ1, κ2, . . . }, con-

sider the sequence {Kn | n ≥ 1} where Kn = {κ1, . . . , κn}. Kn is an increasing
sequence, and so limn→∞Kn exists and is

⋃∞
n=1Kn = K [47]. We can con-

struct a sequence {K ′n | n ≥ 1} in this way: K ′1 = {κ1}, and K ′n is given by
the union of K ′n−1 with the splitting of each element of K ′n−1 with κn. The ob-
tained set K ′n is pairwise incompatible and equivalent to Kn [136]. For infinite
composite choices, µ(κ) = 0. However, we can compute µ(K ′n) for each K ′n,
and the limit limn→∞ µ(K ′n) exists (limit of the measure of countable union of
countable composite choices, Lemma 3 from [136]).

Finally, we provide a definition of a probability space of a program with
the following theorem:

Theorem 3 (Probability space of a program, Theorem 8 from [136]). Given
a set of composite choices K = {κ1, κ2, . . .} and a pairwise incompatible set of
composite choices K ′n equivalent to {κ1, . . . , κn}, the triple 〈WP ,ΩP , µP 〉 with

µP (ωK) = lim
n→∞

µ(K ′n)

is a probability space.

For a probabilistic logic program P and a ground atom q, we define the
function Q : WP → {0, 1} as

Q(w) =

{
1 if w � q

0 otherwise
(6.1)

If K is a covering and countable set of explanations with respect to q, Equa-
tion 6.1 represents a random variable, since {w | w ∈ WP ∧w � q} = ωK ∈ ΩP .
We indicate P (Q = 1) with P (q), and we say that q is well-defined according
to the distribution semantics. If the probabilities of all ground atoms in all
instances of a probabilistic logic program P are well-defined, then P is also well-
defined. In [135, 136] the author proved that any query to a sound ProbLog
program can be assigned a probability so that the program is well-defined.

To see how to compute the probability of a query in the case of an infinite
number of explanations, consider the following example:

50

Example 4 (Probability of queries for Example 2). From Example 3, the
explanations in K+ are pairwise incompatible so the probability of the query
at_least_once_1 can be computed as:

P (at_least_once_1) = µ({(f1, {X/0}, 1)})+

+ µ({(f1, {X/0}, 0), (f2, {X/0}, 1),

(f1, {X/s(0)}, 1)}) + . . .

By substituting the values, we get:

P (at_least_once_1) =
1

3
+

1

3
·
(

2

3
· 1

2

)
+

1

3
·
(

2

3
· 1

2

)2

+ . . .

=
1

3
+

1

3
·
(

1

3

)
+

1

3
·
(

1

3

)2

+ . . .

=
1

3
· 1

1− 1
3

=
1

3
· 3

2
=

1

2

since the sum represents a geometric series and
∑∞

n=0 k · qn = k · 1
1−q . For

the query never_1, the explanations in K− are pairwise incompatible, so its
probability can be computed as

P (never_1) =
2

3
· 1

2
+

2

3
· 1

2
·
(

2

3
· 1

2

)
+

2

3
· 1

2
·
(

2

3
· 1

2

)2

+ . . .

=
1

3
+

1

3
·
(

1

3

)
+

1

3
·
(

1

3

)2

+ . . .

=
1

3
· 1

1− 1
3

=
1

3
· 3

2
=

1

2
.

As expected, P (never_1) = 1− P (at_least_once_1).

6.3 Conclusions

In this section, we introduced the syntax of LPADs and ProbLog programs,
together with their semantics. If a program does not have function symbols,

51

its grounding is finite and so, according to the Distribution Semantics, the
probability of a query can be computed by considering the possible worlds.
In case of function symbols, the semantics is not straightforward, and the
probability of a query can be computed by considering pairwise incompatible
covering sets of explanations.

In the next section, we review the main techniques used to compute the
probability of a query, as well as some algorithms for approximating its value.

52

Chapter 7

Inference

Inference is the task of computing the probability distribution of the truth
values of a query. There are two types of inference: exact inference (Sec-
tion 7.1) that computes exact values, and approximate inference (Section 7.2),
that provides an estimation of the values. In the context of Probabilistic Logic
Programming, the first type usually rewrites the program into a compact rep-
resentation where performing inference is tractable (Section 7.1.1), while the
second type is often based on sampling (Section 7.2.1). In this chapter, we com-
pare these two inference techniques and describe how they are used to query
probabilistic logic programs. The concepts described here are not a novel con-
tribution of this thesis, except for the approaches reported in Section 7.2.1
that were introduced in [19, 23].

7.1 Exact Inference

The goal of exact inference is to compute the probability of a query (conjunc-
tion of ground atoms) in an exact way, as we have already done in Section 6.2.
However, an exact computation is not always feasible. To compute the proba-
bility of a restriction of Example 1, we have considered all the possible combi-
nations of n probabilistic facts (3), which are 2n (8, see Table 6.1). Clearly, an
exponentially increasing number of combinations is not tractable, or it is only
for smaller domains. Moreover, queries can also consider evidence (represented
as a conjunction of ground atoms). In this case, the value of some variables is
observed and thus fixed.

53

Exact inference is #P-complete [97] since it inherits the cost of inference
in the underlying graphical model. To manage this, some techniques that go
under the name of knowledge compilation [56] have been introduced. Knowl-
edge compilation (KC) [56] consists in converting a propositional theory into
a target language that allows answering queries in polynomial time. Note that
the computational complexity is simply shifted from one task to another and
remains the same in the worst case. Propositional theories are usually one of
these two representations:

• Conjunctive Normal Form (CNF): a conjunction of one or more clauses
where each clause is a disjunction of literals. For example, (a∨ b∨¬c)∧
(¬d ∨ e) is a formula in CNF.

• Disjunctive Normal Form (DNF): a disjunction of one or more clauses
where each clause is a conjunction of literals. For example, (a∧ b∧¬c)∨
(¬d ∧ e) is a formula in DNF.

There is another popular representation called Negation Normal Form (NFF)
where sentences are represented as rooted acyclic graphs [56], but we do not
review it here.

Consider this simple example, taken from [35], that models the morpholog-
ical characteristics of an island.

Example 5. The island of Stromboli contains one of the three volcanoes that
are active in Italy. It is located at the intersection of two geological faults,
one in the southwest-northeast direction, the other in the east-west direction.
This LPAD models the possibility that an eruption or an earthquake occurs at
Stromboli.

1 eruption :0.6; earthquake :0.3 :- sudden_er ,

fault_rupture(X).

2 sudden_er :0.7.

3 fault_rupture(southwest_northeast).

4 fault_rupture(east_west).

If there is a sudden energy release (sudden_er) under the island and there is a
fault rupture (fault_rupture(X)), there can be an eruption of the volcano on
the island with probability 0.6 or an earthquake in the area with probability 0.3.

54

The energy release occurs with probability 0.7, and we are sure that ruptures
occur along both faults.

An example of composite choice that is also an explanation for the query
eruption of Example 5 is κ1 = {(C1, {X/southwest_northeast}, 1), (C2, ∅, 1)},
where C1 and C2 are the clauses at line respectively 1 and 2. A covering set
of explanations for the query eruption is:

κ1 = {(C1, {X/southwest_northeast}, 1), (C2, ∅, 1)};

κ2 = {(C1, {X/east_west}, 1), (C2, ∅, 1)}.

Given a covering set of explanations for a query, we can convert it into a
DNF form following these three steps:

• Replace every atomic choice (Ci, θj, k) with the equation Xij = k.

• Replace an explanation with the conjunction of the equations represented
by its atomic choices.

• Represent the set of explanations as the disjunction of all the formulas
for a single explanations.

If worlds are considered as specification of truth values for each equation
Xij = k, the formula evaluates to true exactly on the worlds where the query
is true [127]. The probability of a query can be computed as the probabil-
ity that this formula takes value 1, since random variables are independent
and have a known distribution (discrete). Consider again Example 5: if we
associate variable X11 with C1{X/southwest_northeast}, variable X12 with
C1{X/east_west}, and variableX21 with C2∅, the query is true if the following
Boolean formula is true:

f(X) = (X21 = 1 ∧X11 = 1) ∨ (X21 = 1 ∧X12 = 1). (7.1)

The DNF representation of a program does not guarantee that the obtained
formulas are mutually exclusive, so we cannot compute the probability as a
summation of products of probabilities. This problem is called disjoint sum
and its complexity is in the #P-complete class [163]. One way to tackle this

55

complexity is by representing a DNF formula with Decision Diagrams, that we
introduce next.

7.1.1 Decision Diagrams

Decision Diagrams (DDs) are structures used to compactly represent propo-
sitional logic formulas. There are several types of DDs: here, we focus on
Multi-valued Decision Diagrams and Binary Decision Diagrams.

A Multi-valued Decision Diagram (MDD) represents a function f(X) that
can take Boolean values on a set of multi-valued variables X through a rooted
graph, where each level is associated to a different variable. Each node n has
as many children as the number of possible values of the variable associated to
the level of the node n can take. Leaves, however, can only store 0 or 1. For
example, Figure 7.1a shows an example of MDD corresponding to Formula 7.1.
The branches of the MDD are mutually exclusive, so we can use a dynamic
programming algorithm to compute the probability of a query given the MDD
representation of the program [144].

Most software packages that operate on Decision Diagrams are restricted
to Binary Decision Diagrams (BDDs), where all the variables are Boolean.
Differently from MDDs, a node n in a BDD has only two children: the 0-
child, and the 1-child. To represent an MDD through a BDD, we adopt the
encoding proposed in [144]: for a multi-valued variable Xij corresponding to a
ground clause Ciθj having ni possible values we use ni − 1 Boolean variables
Xij1, . . . , Xijni−1, and we represent the equation Xij = k for k = 1, . . . ni − 1

with the conjunction Xij1∧ . . .∧Xijk−1∧Xijk, and the equation Xij = ni with
the conjunctionXij1∧. . .∧Xijni−1. See also the approach to translate an LPAD
into a ProbLog program described in Section 6.1. For example, Figure 7.1b
depicts a BDD equivalent to the MDD of Figure 7.1a, where the edge going
to the 0-child is drawn with a dashed line while the edge going to the 1-child
with a straight line. The obtained BBD can still be used for computing the
probability of queries by associating a parameter πik with each Boolean variable
Xijk representing P (Xijk = 1). The parameters can be computed starting from
those of multi-valued variables in this way: πi1 = Πi1, . . . , πik = Πik∏k−1

j=1 (1−πij)
,

up to k = ni − 1.
Some BDD software libraries introduce a third type of edge, the comple-

56

mented edge to a 0-child, with the meaning that the function represented by
the child must be complemented, following this rule: if the leaf value is 1, and in
the path starting from the root and reaching this leaf we passed through an odd
number of complemented edges, the value 0 must be considered (instead of 1).
With this third edge, only the 1-leaf is needed. Figure 7.1c shows an example
of BDD with complemented edges encoding the formula (X0∧X1)∨ (X0∧X2).
One of the libraries that adopt this approach is CUDD1, that we extensively use
in this thesis to implement several algorithms discussed in the next sections.

With the term BDD we refer to Reduced Ordered Binary Decision Di-
agrams (as often happens in literature), i.e., BDDs where the order of the
variables is fixed. A BDD is ordered if the variables encountered along the
paths always respect a given total order X1 ≺ · · · ≺ Xn. A BDD is ordered if
the following conditions are satisfied:

• Two distinct nodes on a path cannot be associated to the same variable.

• Two distinct nodes cannot have the same 0 and 1 children.

• The 0 and 1 children are different for all the variables.

The order of the variables in a BDD is crucial for its succinctness: two differ-
ent variable orderings may generate BDDs with a different number of nodes
(since the same variable can be represented with several nodes of the same
level). Finding the order of variables leading to the smallest diagram is NP-
complete [37]. However, reordering a BDD by swapping adjacent variables can
be performed polynomially in its size [84].

7.1.2 Systems to Perform Exact Probabilistic Logical In-

ference

One of the first systems that used BDDs to perform inference in probabilistic
logic programs was ProbLog1 [60]. The authors introduced the function Prob,
reported in Algorithm 1, for computing the probability that a Boolean func-
tion, represented by a BDD, takes value 1. The function recursively traverses
the BDD staring from the root and until a terminal is found. Then, going

1https://github.com/ivmai/cudd

57

https://github.com/ivmai/cudd

23

2 1

11

3 2

3 2

1X12

10

X12

X11

X21

(a) Multi-valued Decision
Diagram corresponding
to Formula (7.1).

X211

1 0

X111

X121

(b) Binary Decision Dia-
gram (after simplification
operations) equivalent to
the MDD shown in Fig-
ure 7.1a.

X0

1

X2X1

(c) BDD with comple-
mented edges.

Figure 7.1: Decision Diagrams.

back to the root, the probability of every node is computed as the sum of the
contributions of the 0 and 1 children multiplied respectively by the probability
and one minus the probability associated to the current node. To avoid com-
puting the same values multiple times (there can be multiple paths that share
the same sub-path), intermediate results are stored in a table.

Algorithm 1 Function Prob: computation of the probability of a BDD.
1: function Prob(node,TableProb)
2: if node is a terminal then
3: return 1
4: else
5: if TableProb(node.pointer) 6= null then
6: return TableProb(node)
7: else
8: p0 ←Prob(child0(node),TableProb)
9: p1 ←Prob(child1(node),TableProb)
10: if child0(node).comp then
11: p0 ← (1− p0)
12: end if
13: Let π be the probability of being true of var(node)
14: Res← p1 · π + p0 · (1− π)
15: Add node.pointer → Res to TableProb
16: return Res
17: end if
18: end if
19: end function

Similarly to ProbLog1, the PITA reasoner [139] performs inference in LPADs
by converting them into BDDs. Moreover, it uses tabling [159], a logic pro-
gramming technique that saves already computed answers for a goal, to avoid
recomputing them when they are needed. These answers can also be com-
bined using answer subsumption [159]. ProbLog2 [64] is a newer version of

58

ProbLog1, where BDDs have been replaced by Deterministic Decomposable
Negation Normal Forms (d-DNNF). In this system, the program is converted
into a weighted Boolean formula (where literals have an associated weight) and
inference is performed through Weighted Model Counting (WMC) [45].

7.2 Approximate Inference

While exact inference is always desirable, it is feasible only for small domains,
since the explanations for a query may be in a large number. In other cases, the
probability distribution defined by the program is too complex to evaluate ex-
actly (for example, when there is a mixture of continuous and discrete random
variables), so approximate methods are of interest. Furthermore, a program
may have an infinite number of groundings: in this case, approximate inference
is necessary. For example, consider a one-dimensional random walk where a
particle starts at position X 6= 0 and, at each step, it can move one unit left
or right with the same probability. The walk stops when the particle reaches
0. Here, 0 is reached with probability 1 [78], but there is an infinite number of
paths with non-zero probability that reach the terminal state [90]. In a pro-
gram modelling this scenario, exact inference tries to find all the explanations,
but it will loop forever since there is an infinite number of them.

Several solutions have been proposed during the years, based on different
techniques: iterative deepening [60], which limits the depth of the SLD tree for
the proof of a query, k-best [95], that considers only a fixed number of proofs
to provide a lower bound of the probability, and Monte Carlo methods [60,
134, 166], based on sampling. Here we focus on the last type.

A general algorithm that adopts sampling repeatedly executes these three
steps for a fixed number of times or until convergence (often reached when the
difference of two consecutive computed values is below a certain threshold):

• Samples a world by sampling ground probabilistic facts.

• Checks if the query is true in the world.

• Computes the probability of the query as the number of successes divided
by the number of samples taken so far.

59

Approximate algorithms for probabilistic logic programs (LPADs) are imple-
mented in the MCINTYRE module [134] of cplint [2]. The program to sample
is converted into a modified one and queries are asked in this modified version.
A disjunctive clause

h1 : Π1;h2 : Π2; . . . ;hn : Πn ← b1, . . . , bm

is transformed into a set of clauses {MC(C, 1), . . . ,MC(C,m)} where

MC(C, 1) =h1 :− b1, . . . , bm,

sample_head(PL, i, V C,NH), NH = 1.

. . .

MC(C,m) =hm :− b1, . . . , bn,

sample_head(PL, i, V C,NH), NH = m.

where i is the index of the clause, V C is a list containing each variable ap-
pearing in the clause, and PL is the list containing the probabilities of every
head ({Π1, . . . ,Πn}). That is, for each head, a new clause with the previously
described structure is generated. If the Πis do not sum to 1, the clause for
the auxiliary extra atom (see Section 6.1) is omitted. The MCINTYRE predi-
cate sample_head/4 samples a head index according to the probabilities. This
operation is performed at the end of the body: in this way, all the variables
in V C have been already grounded (supposing that the program is range re-
stricted). If the sampled value is the same as the head index, the derivation
succeeds; otherwise it fails. The collected samples are stored in the dynamic
Prolog database using the predicate assertz/1 provided by SWI-Prolog [171].
Finally, the truth of a query can be tested against the resulting program, which
is equivalent to taking a sample of the query. For example, if we consider this
following simple program:

1 f(a).

2 f(b).

3 p::0.7.

4 a:0.6;b:0.3 :- f(X), p.

the clause at line 4 is transformed into two clauses:

60

1 a:- f(X), p,

2 sample_head ([0.6 ,0.3 ,0.1] ,[X],NH), NH = 1.

3 b:- f(X), p,

4 sample_head ([0.6 ,0.3 ,0.1] ,[X],NH), NH = 2.

We now focus on several possible algorithms used to compute the probabil-
ity of a query given evidence (P (q | e)) by sampling. Rejection sampling [97] is
one of the simplest algorithms based on Monte Carlo methods. It works in two
steps: 1) it queries (samples) the evidence. If it is successful, 2) it queries the
goal in the same sample; otherwise the sample is discarded. The pseudocode
for this procedure is shown in Algorithm 2. Despite its simplicity, rejection
sampling has a huge drawback: if the probability of the evidence P (e) is very
low, a lot of samples are discarded, making the algorithm very inefficient. For
example, if P (e) = 10−4 and the number of samples we take is 105, the ex-
pected number of not rejected samples is 10. In general, to obtain at least N
not rejected samples, we need to generate N/P (e) samples from the probabil-
ity distribution. There are some alternative algorithms that better handle this
scenario, such as likelihood weighting and Markov Chain Monte Carlo. In the
next section, we focus on the latter.

Algorithm 2 Function RejectionSampling: rejection sampling algorithm.
1: function RejectionSampling(P, query, evidence, samples)
2: Input: Probabilistic logic program P , query query, evidence evidence, number of samples samples
3: Output: P (query | evidence)
4: succ← 0
5: n← 1
6: while n ≤ samples do
7: Call evidence
8: if evidence succeeds then
9: Call query
10: if query succeeds then
11: succ← succ+ 1
12: end if
13: n← n+ 1
14: end if
15: end while
16: return succ/samples
17: end function

7.2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods generate samples from the pos-
terior distribution when directly sampling from it is infeasible, due to its com-

61

plexity. The main idea is to iteratively construct a Markov Chain in which
direct sampling is easy: the higher the number of samples is, the better the
approximation of the true posterior will be. Initial samples are often discarded
since they do not properly represent the real distribution. This operation is
called burnin. In the limit of infinite samples, MCMC can get arbitrarily close
to the true posterior. Two of the most used MCMC algorithms are Metropolis
Hastings sampling and Gibbs sampling, that we now introduce.

Metropolis Hastings

In Metropolis Hastings sampling, a Markov chain is built by generating suc-
cessor samples starting from an initial sample. We consider the algorithm for
inference in PLP presented in [118] and implemented in cplint [2, 23]. Af-
ter applying the same program transformation presented for MCINTYRE, it
iteratively repeats these steps:

• To build an initial sample, it samples random choices so that the evidence
is true.

• To build a successor sample it removes a fixed number (called lag) of
sampled probabilistic choices.

• It queries again the evidence by sampling starting from not deleted
choices.

• If the evidence succeeds, the query is asked by sampling. It is accepted
with probability min{1, N0/N1}, where N0 is the number of choices sam-
pled in the previous sample and N1 is the number of choices sampled in
the current sample.

• If the query succeeds in the last accepted sample, the number of successes
is increased by one.

The final probability is computed as the ratio between the number of successful
samples and the number of total samples. Algorithm 3 implements the pro-
cedure. In detail, the function MH returns the probability of the query given
the evidence. The function Resample deletes lag number of choices from the
sample random choices. In [118], the value of lag is always 1. The function

62

Algorithm 3 Function MH: Metropolis-Hastings MCMC algorithm.
1: function MH(query, evidence, lag, samples)
2: MHCycle(query, evidence, lag)
3: return MHCycle(query, evidence, samples)
4: end function
5: function MHCycle(query, evidence, samples)
6: trueSamples← 0
7: sample← InitialSample(evidence)
8: Call query
9: if query succeeds then . Sample atomic choices
10: trueSamples← trueSamples+ 1
11: end if
12: let previousSampled be the current number of choices sampled
13: Save a copy of the current samples C . Save the samples for probabilistic clauses
14: n← 0
15: while n < samples do
16: n← n+ 1
17: Resample(lag)
18: Call evidence
19: if evidence succeeds then
20: Call query
21: if query succeeds then
22: trueSamples← trueSamples+ 1
23: end if
24: let currentSampled be the current number of choices sampled
25: if min(1, currentSampled

previousSampled
) > RandomV alue(0, 1) then

26: previousSampled← currentSampled
27: Delete the copy of the previous samples C
28: Save a copy of the current samples C
29: else
30: Erase all samples
31: Restore samples copy C
32: end if
33: else
34: Erase all samples
35: Restore samples copy C
36: end if
37: end while
38: Erase all samples
39: Delete the copy of the previous samples C
40: return trueSamples

samples

41: end function
42: procedure Resample(lag)
43: for n← 1 to lag do
44: Delete a sample sample
45: newSample← Sample(sample)
46: Assert newSample
47: end for
48: end procedure

InitialSample builds the initial sample using a meta-interpreter that starts
with the goal and randomizes the order in which clauses are used during the
resolution: this is achieved by first collecting all the clauses that match a sub-
goal and then trying them in random order. This operation is needed to make
the initial sample unbiased. Finally, the goal is queried using regular sampling.

63

Gibbs Sampling

The main idea behind Gibbs sampling is the following: when direct sampling
from a joint distribution is not feasible, we can sample each variable indepen-
dently while considering all the other as observed [69]. If we have n variables
X1, . . . , Xn, we can set their initial value to x(0)

1 , . . . , x
(0)
n by sampling from a

prior distribution (for example). At each iteration, or until convergence, we
take a sample x(t)

m ∼ P (xm | xt−1
1 , xt−1

2 , . . . , xt−1
m−1, x

t−1
m+1, . . . , x

t−1
n). That is, all

the variables except for the current one are considered observed. It is also
possible to group two or more variables together and sample from their joint
distribution conditionally on all the others: in this case, the algorithm goes
under the name of blocked Gibbs sampling. Algorithm 4 shows the implemen-
tation of Gibbs sampling in cplint. It goes as follows: the list of sampled
random choices is stored in the Prolog dynamic database using assertz/1, as
for Metropolis Hastings. The function GibbsCycle performs the main loop:
the function SampleCycle executes a type of rejection sampling to query the
evidence by iteratively querying it until the value true is obtained. When a
successful sample for probabilistic clauses is obtained, we remove block random
choices from the list of saved random choices using the function CheckSam-

ples: it checks if there are some rules not sampled in the list of removed
random choices and, if so, a value is sampled and stored in memory. This
step is needed since we need to assign a value to Xm even if it is not directly
involved in the derivation of the query. By sampling the clauses in this way we
follow the Gibbs technique. Finally, as for rejection sampling and Metropo-
lis Hastings, the probability is computed as the number of successes over the
number of total samples.

Comparison of rejection sampling, Metropolis Hastings sampling,
and Gibbs sampling

We compared the performance of the three previously described algorithms us-
ing the predicates mc_rejection_sample/5, mc_mh_sample/5, and mc_gibbs-

_sample/5 provided by the MCINTYRE module [134]. They perform the
type of sampling appearing in their names. The following results are pre-
sented in [23]. All the algorithms are implemented in Prolog and tested in

64

Algorithm 4 Function Gibbs: Gibbs MCMC algorithm.
1: function Gibbs(query, evidence,mixing, samples, block)
2: GibbsCycle(query, evidence,mixing, block)
3: return GibbsCycle(query, evidence, samples, block)
4: end function
5: function GibbsCycle(query, evidence, samples, block)
6: succ← 0
7: for n← 1 to samples do
8: Save a copy of samples C
9: SampleCycle(evidence)
10: Delete the copy of samples C
11: listOfRemovedSamples ← RemoveSamples(block)
12: Call query . New samples are asserted at the bottom of the list
13: if query succeeds then
14: succ← succ+ 1
15: end if
16: CheckSamples(listOfRemovedSamples)
17: end for
18: return Succ

samples

19: end function
20: procedure SampleCycle(evidence)
21: while true do
22: Call evidence
23: if evidence succeeds then
24: return
25: end if
26: Erase all samples
27: Restore samples copy C
28: end while
29: end procedure
30: function RemoveSamples(block)
31: sampleList← []
32: for b← 1 to block do
33: retract sample S = (rule, substitution, value) . Samples are retracted from the top of the list
34: Add (rule, substitution) to sampleList
35: end for
36: return sampleList
37: end function
38: procedure CheckSamples(listOfRemovedSamples)
39: for all (rule, substitution) ∈ listOfRemovedSamples do
40: if (rule, substitution) was not sampled then
41: Sample a value for (rule, substitution) and record it with assert
42: end if
43: end for
44: end procedure

SWI-Prolog [171] version 8.1.7. The experiments were conducted on a clus-
ter2 with Intel R© Xeon R© E5-2630v3 running at 2.40 GHz. Execution times
are computed using the built-in SWI-Prolog predicate statistics/23 with
the keyword walltime. For both Metropolis Hastings sampling and Gibbs
sampling, we set the burnin to 100 (number of deleted samples). For Gibbs
sampling, we set the block value to 1. The probability of the evidence is com-
puted with the cplint predicate mc_sample/3 that samples the query a fixed

2http://www.fe.infn.it/coka/doku.php?id=start
3https://www.swi-prolog.org/pldoc/man?predicate=statistics/2

65

http://www.fe.infn.it/coka/doku.php?id=start
https://www.swi-prolog.org/pldoc/man?predicate=statistics/2

number of times and returns the ratio between number of successes and total
samples. We set the number of samples to 106. Reported results are averages
of ten runs.

Tests were conducted on four different types of programs. The first pro-
gram encodes a random arithmetic function4 (arithm): the goal is to predict
the returned value given one or two couples input-output. This program has
an infinite number of explanations, so exact inference cannot be applied. In
these tests, the probability of the evidence was set to 0.05. Figure 7.2 shows
the results: both Metropolis Hastings sampling and Gibbs sampling have com-
parable execution times, but the latter has a slower convergence rate.

0.0 0.2 0.4 0.6 0.8 1.0

·104

0.0

2,000.0

4,000.0

Number of Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Gibbs
MH
Rejection

(a) Relation between execution time and
number of samples.

0.0 0.2 0.4 0.6 0.8 1.0

·104

0.00

0.10

0.20

0.30

Number of Samples

P
ro
ba

bi
lit
y

Gibbs
MH
Rejection

(b) Relation between computed proba-
bility and number of samples.

Figure 7.2: Results for the arithm experiment.

The second program5 encodes a Hidden Markov model (HMM) used to
model DNA sequences. It has three states, q1, q2, and end, and four output
symbols, a, c, g, and t, corresponding to the four nucleotides [49]. The goal
is to compute the probability that the model emits a and then c given that
the model emitted a in state q1. The evidence has probability 0.25. As shown
in Figure 7.3, all the three algorithms converge to the same value, but the
execution time of MH is orders of magnitude bigger than the other two.

In the third experiment, we considered a Latent Dirichlet Allocation (LDA)
model6 [36]. LDA is a generative probabilistic model used in text analysis: it

4https://cplint.eu/e/arithm.pl
5https://cplint.eu/e/hmm.pl
6https://cplint.eu/e/lda.swinb

66

https://cplint.eu/e/arithm.pl
https://cplint.eu/e/hmm.pl
https://cplint.eu/e/lda.swinb

0.0 0.2 0.4 0.6 0.8 1.0

·104

0.0

2,000.0

4,000.0

6,000.0

8,000.0

Number of Samples

E
xe
cu
ti
on

T
im

e
(m

s)
Gibbs
MH
Rejection

(a) Relation between number of samples
and execution time.

0.0 0.2 0.4 0.6 0.8 1.0

·104

1.0

1.5

2.0

2.5

·10−2

Number of Samples

P
ro
ba

bi
lit
y

Gibbs
MH
Rejection

(b) Relation between number of samples
and computed probability.

Figure 7.3: Results for the HMM experiment.

models the distribution of terms and topics in documents with the goal to pre-
dict the topic of the considered text. This program contains both continuous
and discrete random variables, so it is a hybrid program7. In this test, we
both fixed the number of topics (2), and the number of words considered in a
document (10), and we computed the relation among the number of samples,
probability, and execution time, given that the first two words of a document
are equal (probability 0.01). Figure 7.4 shows that Gibbs sampling is slower
than MH, and it requires more samples to compute an accurate probability.
In a second test on the same program, we increased the number of words that
are equal (evidence), from 2 to 8, while keeping unchanged the number of con-
sidered words and topics. Also in this case, MH outperforms the other two
algorithms, as reported in Figure 7.5a. The number of words in the plot for
Gibbs sampling and rejection sampling is at most 6 since, for higher values,
the computation requires more than one hour.

The last program represents a university domain8 [110] characterized by
professors, students, and courses. Each professor is assigned to a course, and
each student attends a course. Given that a professor is advisor of some
students following a course, we want to know the probability that the professor
teaches that course. We fixed the number of students to 10 and considered a

7Hybrid programs will be extensively analysed in Chapter 8.
8https://cplint.eu/e/uwcse.pl

67

https://cplint.eu/e/uwcse.pl

0 1,000 2,000 3,000 4,000

0.0

1.0

2.0

·104

Number of Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Gibbs
MH
Rejection

(a) Relation between number of samples
and execution time.

0.0 1,000.0 2,000.0 3,000.0 4,000.0

0.2

0.4

0.6

0.8

Number of Samples

P
ro
ba

bi
lit
y

Gibbs
MH
Rejection

(b) Relation between number of samples
and computed probability.

Figure 7.4: Results for the LDA experiment.

2 4 6 8

0.0

1.0

2.0

3.0

·106

Number of Words

E
xe
cu
ti
on

T
im

e
(m

s)

LDA

Gibbs
MH
Rejection

(a) Relation between number of words
and execution time for the LDA experi-
ment.

0 5 10 15 20
0.00

2,000.00

4,000.00

6,000.00

Number of Students

E
xe
cu
ti
on

T
im

e
(m

s)

University

Gibbs
MH
Rejection

(b) Relation between number of stu-
dents and execution time for the univer-
sity experiment.

Figure 7.5: Results for the LDA and university experiments. For both we fixed
the number of samples to 104.

single course and a single professor. The probability of the evidence is 0.09.
As figures 7.5b and 7.6a show, Gibbs sampling is the slowest among the three,
but the performance gap is not too critical, also in the case of an increasing
number of students.

Overall, in three of the four experiments, MH outperformed the other two
algorithms both in terms of accuracy and execution time, except for the HMM
experiment, where Gibbs sampling seems the fastest (together with rejection

68

0 0.2 0.4 0.6 0.8 1

·104

0.00

1,000.00

2,000.00

3,000.00

4,000.00

Number of Samples

E
xe
cu
ti
on

T
im

e
(m

s)
Gibbs
MH
Rejection

(a) Relation between number of samples
and execution time.

0 2,000 4,000 6,000 8,000
0.1

0.1

0.2

0.2

Number of Samples

P
ro
ba

bi
lit
y

Gibbs
MH
Rejection

(b) Relation between number of samples
and computed probability.

Figure 7.6: Results for the university experiment.

sampling) and the most accurate, while MH overestimates the probability. Ac-
cording to our results, if the evidence has a relatively low probability, Metropo-
lis Hastings sampling is the fastest among the three. If the probability of the
evidence increases, Gibbs sampling seems to perform better.

We now focus our attention on the performance of blocked Gibbs sampling,
where two or more variables are sampled together. The following results are
presented in [19]. We run the Gibbs sampling algorithm on eight different
datasets. For each one of them, we plotted three graphs: one to represent the
performance in terms of number of samples required to converge, one to track
the execution time, and one to control the standard deviation of the samples.
The experiments were conducted with the same setting as before. The number
of discarded initial samples was set to 100, and the block size ranges from 1
to 5. We tested eight different datasets. The first one is arithm, the same
as before, with the probability of evidence still set to 0.05. As Figure 7.7a
shows, the probability value computed with block set to 1 oscillates between
0.1 and 0.25, as also confirmed by the instability of the standard deviation
shown in Figure 7.9a. This oscillation is still present, but less pronounced,
with increasing values of block.

Diabetes9: this program models the probability of insurgence of diabetes
given that some genetic factors are observed. For example, the diabetes pre-

9https://cplint.eu/e/diabetes.swinb

69

https://cplint.eu/e/diabetes.swinb

0.2 0.4 0.6 0.8 1

·104

0.1

0.2

0.3

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0

1

2

·105

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.7: Results for the arithm experiment.

disposition of a person influences the probability of diabetes mellitus of type
2. This is an example of a probabilistic constraint logic program [112], i.e., a
program that contains continuous random variables and constraints. In fact,
the level of glucose is modelled with two Gaussian distributions, with different
means and variances, depending on the fact that the considered person has
diabetes or not. A constraint is present to model the level of hemoglobin since
it linearly depends on the level of glucose (plus some noise). We observe that
the level of hemoglobin is greater than a certain value (probability 0.1417),
and we want to compute how the probability that a person has diabetes type
2 varies with and without evidence. For this experiment, smaller sizes of block
usually drive to lower accuracy and significant variation of the standard devi-
ation, as reported in Figure 7.8a and Figure 7.9b. With block set to 5, this
variation is no longer present, but at the cost of increasing execution time.
When the block value is set to 3 or 5, the algorithm seems to underestimate
the probability.

Graph10: this program encodes a graph following a Barabási Albert pref-
erential attachment model. Given a graph with some initially connected
nodes, new nodes are added to the graph and the probability that these
new nodes are connected to others is proportional to the degree (number
of incident edges) of a node. The graph was generated with the function

10https://cplint.eu/e/barabasiGraph.pl

70

https://cplint.eu/e/barabasiGraph.pl

0.2 0.4 0.6 0.8 1

·104

0.35

0.40

0.45

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0.00

0.50

1.00

1.50
·105

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.8: Results for the diabetes experiment.

0.2 0.4 0.6 0.8 1

·104

0.10

0.20

0.30

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Results for the arithm experiment.

0.2 0.4 0.6 0.8 1

·104

0.00

0.05

0.10

Samples

St
an

da
rd

D
ev
ia
ti
on
Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Results for the diabetes experiment.

Figure 7.9: Standard deviation for the arithm and diabetes experiments.

barabasi_albert_graph(40,10) provided by the library networkx [75] avail-
able for Python. We associated a probability of 0.1 to all the edges. The query
consists in computing the probability that two nodes are connected given that
a portion of the path has been observed. In our tests, the probability of the
evidence was 0.42. For this example, the probability of the query, as well as
the one of the evidence, can be computed using exact inference. However,
when the number of nodes and edges increases, an exact computation becomes
infeasible. As for the previous program, with smaller values of block we obtain
unstable probability values: for example, with block set to 1, there is a gap
of 0.2 between two measurements, see Figure 7.10a. The execution times for

71

all the block values are comparable, while the standard deviation decreases as
the block size increases (Figure 7.12a). The computed probability values with
block set to 3, 4, and 5, are, in practice, the same.

0.2 0.4 0.6 0.8 1

·104

0.40

0.45

0.50

0.55

0.60

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0.00

0.20

0.40

0.60

0.80

1.00

·106

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.10: Results for the graph experiment.

Hidden Markov Model, with the same setting as before: as Figure 7.11
shows, all the block values perform well, and the computed probabilities do
not vary too much, even with a small number of samples. Only in the case of
block set to 1 the algorithm requires some time to stabilize, as also described
by the standard deviation plot (Figure 7.12b). The execution times for block
set to 4 and 5 are almost identical.

Latent Dirichlet Allocation, with the same setting as before (10 words and
2 topics): we want to compute the probability that the considered document
associates the first topic to the first word given that we observed the type of
the word (probability of evidence 0.10). Results in figures 7.4 and 7.15a show
that even with 104 samples the probability does not stabilize, regardless the
block size, as for the standard deviation.

NBalls11: this program models an urn containing n balls, where n is a
random variable, characterized by colour, material, and size, with known dis-
tributions. As a query, we want to compute the probability that we pick a
wooden ball at the first draw given that we observe its colour (black, probabil-
ity 0.38). In this case, the probability stabilizes only after 104 samples and only

11https://cplint.eu/e/nballs.pl

72

https://cplint.eu/e/nballs.pl

0.2 0.4 0.6 0.8 1

·104

1.2

1.3

1.4

1.5

1.6

·10−2

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0.00

0.50

1.00

1.50

2.00

2.50
·104

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.11: Results for the HMM experiment.

0.2 0.4 0.6 0.8 1

·104

0.05

0.10

0.15

0.20

0.25

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Results for the graph experiment.

0.2 0.4 0.6 0.8 1

·104

2

4

6

8

·10−3

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Results for the HMM experiment.

Figure 7.12: Standard deviation for the graph and HMM experiments.

for bigger values of block, as shown in Figure 7.14a. Block sizes set to 1 and
3 seem to be the most unstable. However, for all block values, the standard
deviation decreases as the number of samples increases (Figure 7.15b).

Prefix parser12: this program models a prefix parser for context free gram-
mars [151], i.e., it computes the probability that a string is a prefix of another
string generated by the grammar. In the program, we considered a simple
grammar composed of only two letters, a, and b, and observed that the first
emitted is a (probability 0.5). The goal is to compute the probability of the

12https://cplint.eu/e/prefix.pl

73

https://cplint.eu/e/prefix.pl

0.2 0.4 0.6 0.8 1

·104

0.3

0.4

0.5

0.6

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0

2

4

6

·105

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.13: Results fot the LDA experiment.

0.2 0.4 0.6 0.8 1

·104

0.09

0.10

0.11

0.12

0.13

0.14

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0

1

2

3

4

·104

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.14: Results for the nballs experiment.

string [a,b,a]. As reported in figures 7.16 and 7.18a, the conditional prob-
ability is small, but all the five values of block seem to perform equally well.
The execution times of these experiments are the greatest among the eight.

Stochastic Logic Program13: this program defines a probability distribu-
tion over possible sentences. A characteristic of Stochastic Logic Programs
(SLP) is that no stochastic memoization is performed, meaning that repeated
choices are independent. Furthermore, the probabilities of rules with the same

13https://cplint.eu/e/slp_pdcg.pl

74

https://cplint.eu/e/slp_pdcg.pl

0.2 0.4 0.6 0.8 1

·104

0.1

0.2

0.3

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Results for the LDA experiment.

0.2 0.4 0.6 0.8 1

·104

0

2

4

6

·10−2

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Results for the nballs experiment.

Figure 7.15: Standard deviation for the LDA and nballs experiments.

1,000 2,000 3,000 4,000

5

6

7

8

9
·10−2

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

1,000 2,000 3,000 4,000

0.00

0.50

1.00

1.50

2.00

·106

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.16: Results for the prefix parser experiment.

head sum to 1 and these rules are mutually exclusive. For the query, we are
interested in computing the probability that three particular words are sam-
pled given that we observe the first one (probability 0.006). As reported in
Figure 7.17a, the probability stabilizes for all the block values after a few thou-
sands of samples. As expected, the standard deviation decreases as the number
of samples increases (Figure 7.18b). For this experiment, the block size set to
3 requires the greatest execution time.

Overall, when the block value increases, both the probability and the stan-

75

0.2 0.4 0.6 0.8 1

·104

0.29

0.30

0.31

Samples

P
ro
ba

bi
lit
y

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Relation between number of samples
and computed probability.

0.2 0.4 0.6 0.8 1

·104

0.00

0.50

1.00

1.50

·106

Samples

E
xe
cu
ti
on

T
im

e
(m

s)

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Relation between number of samples
and execution time.

Figure 7.17: Results for the stochastic logic program experiment.

1,000 2,000 3,000 4,000

1

2

3

4
·10−2

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(a) Results for the prefix parser experi-
ment.

0.2 0.4 0.6 0.8 1

·104

0

1

2

3

·10−2

Samples

St
an

da
rd

D
ev
ia
ti
on

Block = 1
Block = 2
Block = 3
Block = 4
Block = 5

(b) Results for the stochastic logic pro-
gram experiment.

Figure 7.18: Standard deviation for the prefix parser and stochastic logic pro-
gram experiments.

dard deviation seem to require fewer samples to stabilize. However, an incre-
ment of the block size is often linked to an increment of the execution time.

7.3 Conclusions

In this chapter, we analysed the problem of inference in probabilistic logic
programs. Exact inference is feasible only when the size of the program is

76

small, due to the necessity to compute all explanations for the query. When
the size increases, approximate techniques must be adopted. In this perspec-
tive, we tested the implementation of three algorithms: rejection sampling,
Metropolis Hastings sampling, and Gibbs sampling (the latter two belonging
to the Markov Chain Monte Carlo family). Our results show that, in gen-
eral, Metropolis Hastings is the fastest among the three when the evidence has
a low probability. However, when the probability of the evidence increases,
Gibbs sampling seems to have good performance. For Gibbs sampling, we also
studied its behavior in cases where two or more variables are sampled together
(blocked sampling). In this case, according to our results, the probability re-
quires more samples to stabilize.

77

78

Part III

Extensions of Probabilistic Logic
Programming

79

Chapter 8

Hybrid Programs

Traditional probabilistic logic programs, as discussed in Chapter 6, manage
only discrete random variables. However, several real-world scenarios require
introducing continuous random variables to represent measurements such as
speed or temperature. In this chapter, we review several languages for hybrid
probabilistic logic programs and provide a new formal semantics (Section 8.2)
together with the necessary syntactic requirements (Section 8.2.2) to preserve
its well-definedness. The content of this chapter, except for the analysis of the
already existing languages, is novel, and was introduced in [15, 21].

8.1 Hybrid Probabilistic Logic Programs

With the term hybrid programs we denote a class of (probabilistic logic) pro-
grams where both discrete and continuous random variables coexist. Several
languages have been proposed, together with different semantics. One of the
first languages to allow continuous random variables was Hybrid ProbLog [70].
Continuous probabilistic facts adopt the syntax:

(X,φ) :: f

where X is a logical variable called continuous random variable that appears in
the atom f , and φ is an atom that specifies the type of the distribution (in [70],
only Gaussian distributions were considered). For example, the continuous

81

probabilistic fact:
(X, gaussian(0, 1)) :: f(X)

states that X follows a Gaussian distribution with mean 0 and variance 1. A
Hybrid ProbLog program is composed of a set of definite rules R and a set
of probabilistic facts F = F d ∪ F c, where F d is the set of discrete facts (as
in ProbLog), and F c is the set of continuous facts. The language provides
some predicates to represent constraints on continuous random variables. For
example, given a continuous variable X and two numeric constants v1 and v2,
the predicates above(X, v1) and below(X, v1) succeed if the value of X is re-
spectively greater than or smaller than v1. Similarly, ininterval(V, n1, n2)

succeeds if v1 ≤ X ≤ v2. The semantics of these programs allows only
a finite set of continuous probabilistic facts and therefore no function sym-
bols. The set of continuous random variables X = {X1, . . . , Xn} is defined
by the set of atoms for probabilistic facts F c = {f1, . . . , fn}, were each fi

is ground except for variable Xi, and each Xi has an associated probability
density pi(Xi). An assignment x = {x1, . . . , xn} to X defines a substitution
θx = {X1/x1, . . . , Xn/xn} and a set of ground facts Fθx. A world wσ,x is de-
fined as wσ,x = R∪{fθ | (f, θ, 1) ∈ σ}∪Fθx, where σ is a selection for discrete
facts, and x is an assignment to continuous variables. All continuous variables
are independent, so the probability of an assignment p(x) can be computed as
p(x) =

∏
i pi(xi). p(x) is a joint probability density over X, so P (σ) and p(x)

define a joint probability density over the worlds:

p(wσ,x) = p(x)
∏

(fi,θ,1)∈σ

Πi

∏
(fi,θ,0)∈σ

1− Πi

where Πi is the probability associated with the discrete fact fi. The probability
of a ground atom q, that must not be an atom of a continuous probabilistic
fact, can be defined as in the Distribution Semantics for discrete programs:

P (q) =
∑
σ∈SP

∫
x∈Rn:wσ,x|=q

p(wσ,x) dx

where SP is the set of all selections over discrete probabilistic facts. If the
set {(σ, x) | σ ∈ SP , x ∈ Rn : wσ,x |= q} is measurable, P (q) is well-defined.

82

For each instance σ, the set {x | x ∈ Rn : wσ,x |= q} can be considered as an
n-dimensional interval of the form I =×n

i=1
[ai, bi] on Rn. −∞ and +∞ are

allowed for ai and bi respectively. With these conventions, the probability that
X ∈ I can be computed as

P (X ∈ I) =

∫ b1

a1

. . .

∫ bn

an

p(x) dx.

Two of the limitations of this language are: 1) function symbols are not allowed,
and 2) constraints between random variables are not permitted.

Distributional Clauses (DC) [73] is another language that can be used to
express continuous random variables1. A Distributional Clause is composed
of a set of definite clauses of the form h ∼ D ← b1, . . . , bn, where D is a
possibly non ground term used to specify the probability distribution of the
term h. Each ground instance Cθ of a DC C defines a random variable hθ with
distribution Dθ if the body (b1, . . . , bn)θ is true. Similarly to Hybrid ProbLog,
DC provides some predicates, called rel_preds, to compare the outcome of
a random variable with constants or outcomes of other random variables. A
DC program is composed of a set of definite clauses and a set of Distributional
Clauses. The set of definite clauses, together with the set of true ground atoms
for the predicates in rel_preds for each random variable in the program, defines
a world. The semantics of DC programs is based on a stochastic extension of
the Tp operator (see Section 5.2), called STP . The authors define a function
called ReadTable to evaluate probabilistic facts and store sampled values for
random variables. When applied to a probabilistic fact, it returns the truth
value of the fact according to the values of the random variables passed as
arguments: if the value is present in the table, it is returned, otherwise, a new
value is computed. More formally, the STP operator applied to a program P

and a set of ground facts I is defined as [73]:

STP (I) = {h | h← b1 . . . , bn ∈ ground(P) ∧ ∀bi : (bi ∈ I∨

(bi = rel(t1, t2)∧

(tj =' h⇒ (h ∼ D) ∈ I) ∧ReadTable(bi) = true))}

1We use Distributional Clauses to indicate both the name of the language and the type
of clauses composing a program in this language.

83

where rel ∈ {=, <,>,≤,≥}. DC programs do not allow negations in the body
of rules, and several constraints involving rounding of variables must be met
to preserve the validity of the semantics.

The authors of [121] extended the previously defined STP operator applied
to a program P (still limited to clauses without negations in the body) to a
set I of ground facts and equalities of the form t = v:

STP (I) = {h = v | h ∼ D ← b1, . . . , bn ∈ ground(P) ∧ ∀bi :

(bi ∈ I ∨ bi = rel(t1, t2) ∧ t1 = v1 ∈ I ∧ t2 = v2 ∈ I∧

rel(v1, v2) ∧ v is sampled from D)}∪

{h | h← b1, . . . , bn ∈ ground(P) ∧ h 6= (r ∼ D) ∧ ∀bi :

(bi ∈ I ∨ bi = rel(t1, t2) ∧ t1 = v1 ∈ I∧

t2 = v2 ∈ I ∧ rel(v1, v2))}.

For each DC clause, when the body is true in I, the STP operator samples
a value v from the specified distribution for the random variable in the head
h and adds the relation h = v to the interpretation. In case of deterministic
clauses, new ground atoms are added to the interpretation if the body is true.
We can obtain a model of an instance of a DC program by computing the least
fixpoint of the STP operator. Moreover, the STP operator is stochastic, so it
represents a sampling process that defines a probability distribution over truth
values of a query.

The DC semantics without limitations on the type of literals in the body
of clauses is at the heart of HAL-ProbLog [174]. A clause in this language is
represented as D :: t ← l1, . . . , ln. Given a grounding substitution θ, tθ rep-
resents a continuous random variable following the distribution D if the body
(l1, . . . , ln)θ is true. To avoid the definition of random variables that follows
two or more distributions, clauses with the same head must have mutually
exclusive bodies. Also for this language, there exist two built-in predicates
to handle continuous random variables: valS(RV,LV), that unifies the ran-
dom variable RV with the logical variable LV representing its value, and
conS(Exp), where Exp denotes a constraint imposed on logical variables. For
example, valS(v, V), conS(V > 3) imposes that the value of the random vari-
able v must be greater than 3. This semantics also does not allow function

84

symbols.
Extended PRISM [81] extends the PRISM language [148] to allow Gamma

and Gaussian distributions. These can be introduced with the directive set_sw .
For example, set_sw(v, norm(0, 1)) states that the value of the variable v fol-
lows a Gaussian distribution with mean 0 and variance 1. It is also possible to
define linear equality constraints over reals. The inference algorithm proposed
in [81] symbolically reasons over the imposed constraints exploiting the speci-
fied restrictions. The semantics of these programs is based on an extension of
the Distribution Semantics with the least model semantics of constraint logic
programs [83]. Starting from msw atoms, the probability space is extended
to a probability space for the entire program. The sample space of a single
continuous random variable is R, and it is extended to the product of sample
spaces in case of a set of random variables. The probability space of n contin-
uous random variables is defined as the Borel σ-algebra [47] over Rn, and the
Lebesgue measure is used as probability measure. As for DC, negation is not
allowed in the body of clauses.

8.1.1 Probabilistic Constraint Logic Programming

We now focus on another proposal to manage continuous random variables and
constraints, namely Probabilistic Constraint Logic Programming (PCLP) [112].
A probabilistic constraint logic program is composed of a countable set of ran-
dom variables X, where each element Xi ∈ X has an associated range Rangei
(discrete, R, or Rn), and a set of rules R that defines the truth value of the
atoms in the Herbrand base of the program given the values of the random
variables. The sample space of a set X of random variables is defined as
WX =×|X|i=1

Rangei. Each random variable Xi has an associated probabil-
ity space (Rangei,Ω, µi). The measure space (WX ,Ω) is the product of the
measure spaces (Rangei,Ωi) for every random variable i, so it is an infinite-
dimensional product measure space [47]. For any finite subset of the set of
random variables it is possible to generate a probability space as the prod-
uct of the involved probability spaces. Starting from these new probability
spaces, we can build an infinite dimensional probability space (WX ,ΩX , µX)

by extending them (Theorem 6.4.1 from [47]). A constraint φ is a function
φ : WX → {true, false}. The constraint solution space CSS(φ) is the subset

85

of the sample space WX where the constraint φ holds:

CSS(φ) = {x ∈ WX | φ(x)}.

Given a valuation wX of the random variables in X, we indicate with

satisfiable(wX)

the set of constraints that are satisfiable. Each atom in the Herbrand base BP

of R is a Boolean random variable, and there is a countable number of them.
The sample space WR is defined as:

WR =
∏
a∈BP

{true, false}.

According to [112], the sample space WR is countable, and so the event space
of the logic part of the program is defined as ΩR = P(WR) (powerset of the
sample space). However, using Cantor’s diagonal argument it is possible to
prove that WR is uncountable, since there is no one-to-one correspondence
between the elements of WR and the set N of natural numbers, as shown by
the following theorem from [135, 136].

Theorem 4. WR is uncountable.

Proof. If the program contains at least one function symbol and one constant,
the Herbrand base BP is denumerable. In this case, each element of WR can
be represented as a denumerable sequence of Boolean values. Equivalently, we
can represent it with a denumerable sequence of bits b1, b2, b3, . . .

If we suppose that WR is denumerable, it is possible to write its element in
a list such as

b1,1, b1,2, b1,3, . . .

b2,1, b2,2, b2,3, . . .

b3,1, b3,2, b3,3, . . .

. . .

Since WR is denumerable, the list should contain all its elements.
If we pick element ¬b1,1,¬b2,2,¬b3,3, . . ., this belongs to WR because it is a

denumerable sequence of Booleans. However, it is not in the list, because it

86

differs from the first element in the first bit, from the second element in the
second bit, and so on. In other words, it differs from each element of the list.
This is against the hypothesis that the list contains all elements of WR. Thus,
WR is not denumerable and so WR is uncountable.

The sample space WP of the entire theory is the Cartesian product of the
sample spacesWX andWR,WP = WX×WR, and the event space ΩP is the ten-
sor product (see Definition 4) of the event spaces ΩX and ΩR, ΩP = ΩX ⊗ΩR.
An element wX of the sample spaceWX uniquely determines which constraints
are true. We assume that the logic part of the theory R∪ satisfiable(wX) has a
unique well-founded model, denoted with WFM (wX). Finally, we can extend
the probability measure µX to a probability measure of the entire theory µP
since knowing which constraints are true uniquely identifies the truth values
of all atoms in the theory. The probability measure on the event space of the
whole theory is defined as

µP (ω) = µX({wX | (wX , wR) ∈ ω,WFM (wX) |= wR})

and the probability of a query q as

P (q) = µP ({(wX , wR) ∈ WP | wR |= q}).

The authors of [112] (pp. 11-12) say:

We further know that the event defined by the equation above is an
element of the event space ΩP , since we do not put any restrictions
on values of random variables and the event space concerning the
logic atoms is defined as the powerset of the sample space [. . .]
thus each subset of the sample space is in the event space.

However, as we have showed, the event space of the logic atoms cannot be de-
fined as the powerset of the sample space, so the fact that the set {(wX , wR) ∈
WP | wR |= q} is measurable is not trivial and must be proved.

Let us introduce the syntax and some examples of PCLP. Variables start
with an uppercase letter and are written in bold. Discrete and continuous

87

random variables can be introduced with the syntax

Variable ∼ distribution

For example,
Time_comp ∼ exp(2)

identifies a continuous random variable Time_comp that follows an expo-
nential distribution with parameter 2. Constraints among random variables
can be represented in the body of rules by enclosing them in square brackets
〈 〉. To see this, consider the following two examples from [112], regarding
different scenarios.

Example 6 (Fire on a ship [112]). A fire breaks out in a compartment of a
ship and after 0.75 minutes it propagates to the next compartment. If it is not
extinguished after 1.25 minutes, it will breach the hull. With this information,
we know for sure that the ship will be saved if the fire is under control within
0.75 minutes. This situation can be represented with the following clause:

saved← 〈Time_comp1 < 0.75〉

In detail, the previous line states that the value of the continuous random
variable Time_comp1 should be less than 0.75 for saved to be true. The
second compartment is more fragile than the first one, and the fire must be
extinguished within 0.625 minutes. However, to reach the second compartment,
the fire in the first one must be under control. This means that both fires must
be extinguished in 0.75 + 0.625 = 1.375 minutes. In the second compartment,
four people can work simultaneously, since it is not as isolated as the first one,
meaning that the fire will be extinguished four times faster. We can encode this
scenario with:

saved←〈Time_comp1 < 1.25〉,

〈Time_comp1 + 0.25 ·Time_comp2 < 1.375〉

We suppose that the time required to extinguish the fire for both compartments

88

is exponentially distributed with parameter 1:

Time_comp1 ∼ exp(1)

Time_comp2 ∼ exp(1)

The goal is to compute the probability that the ship is saved, i.e., P(saved).

Example 7 (Fruit selling [112]). We want to compute the probability that a
consumer buys a certain fruit. We consider two fruits, apples and bananas,
whose prices depend on their yields and are modelled with Gaussian distribu-
tions.

Yield(apple) ∼ gaussian(12000.0, 1000.0)

Yield(banana) ∼ gaussian(10000.0, 1500.0)

Discrete random variables indicate whether the government supports or not the
market:

Support(apple) ∼ {0.3 : yes, 0.7 : no}

Support(banana) ∼ {0.5 : yes, 0.5 : no}

Two linear functions model the basic price of the fruits, which depends on the
yields:

basic_price(apple)←

〈Basic_price(apple) = 250− 0.007×Yield(apple)〉

basic_price(banana)←

〈Basic_price(banana) = 200− 0.006×Yield(banana)〉

Constraints of the form 〈Variable = Expression〉 give a name to an expres-
sion involving random variables that can be reused afterwards in other con-
straints. In fact, the density for Variable is completely determined by that of
the variables in Expression, so there is no need to specify it. The actual price
is computed from the basic price plus a fixed amount in case of government

89

support:

price(Fruit)← basic_price(Fruit),

〈Price(Fruit) = Basic_price(Fruit) + 50〉, 〈Support(Fruit) = yes〉

price(Fruit)← basic_price(Fruit),

〈Price(Fruit) = Basic_price(Fruit)〉, 〈Support(Fruit) = no〉

The variable Fruit is not bold, since it is a logical variable, and not a random
variable.
A customer buys a certain fruit if its price is below a threshold:

buy(Fruit)← price(Fruit), 〈Price(Fruit) ≤Max_price(Fruit)〉

The maximum price follows a gamma distribution:

Max_price(apple) ∼ Γ(10.0, 18.0)

Max_price(banana) ∼ Γ(12.0, 10.0)

We can now ask for the probability that a customer buys apples or bananas,
represented with P (buy(apple)) or P (buy(banana)).

These two examples illustrate the expressivity of PCLP, but they do not
contain function symbols. The set of random variables is finite, and a semantics
for these types of programs was given in [73]. Function symbols can be used
to represent integers: for example, with the functor s/1 we can identify the
successor of a given number. s(0) identifies the successor of 0 (1), s(s(0)) the
successor of 1 (2), and so on. In the next two examples, we introduce two
probabilistic constraint logic programs that adopt this notation.

Example 8 (Gambling). Consider a gambling game that repeatedly consists in
spinning a roulette wheel and drawing a card from a deck. The card is reinserted
in the deck after each play. The player keeps track of the final position of the
axis of the wheel (the angle it creates with the geographic east). The game
continues until the player does not draw a red card. There are four available
prizes that can be won, depending on the position of the wheel and the color
of the card: prize a if the card is black and the angle is less than π, prize b if

90

the card is black and the angle is greater than π, prize c if the card is red and
the angle is less than π and prize d otherwise. We describe the angle of the
wheel with a uniform distribution in [0, 2π), and the color of the card with a
Bernoulli distribution with P (red) = P (black) = 0.5. In this program, there is
a random variable for every ground instantiation of the (anonymous) variable
in the probabilistic facts Card/1 and Angle/1.

Card(_) ∼ {red : 0.5, black : 0.5}

Angle(_) ∼ uniform(0, 2π)

prize(0, a)← 〈Card(0) = black〉, 〈Angle(0) < π〉

prize(0, b)← 〈Card(0) = black〉, 〈Angle(0) ≥ π〉

prize(0, c)← 〈Card(0) = red〉, 〈Angle(0) < π〉

prize(0, d)← 〈Card(0) = red〉, 〈Angle(0) ≥ π〉

prize(s(X), a)← prize(X,_), 〈Card(X) = black〉,

〈Card(s(X)) = black〉, 〈Angle(s(X)) < π〉

prize(s(X), b)← prize(X,_), 〈Card(X) = black〉,

〈Card(s(X)) = black〉, 〈Angle(s(X)) ≥ π〉

prize(s(X), c)← prize(X,_), 〈Card(X) = black〉,

〈Card(s(X)) = red〉, 〈Angle(s(X)) < π〉

prize(s(X), d)← prize(X,_), 〈Card(X) = black〉,

〈Card(s(X)) = red〉, 〈Angle(s(X)) ≥ π〉

at_least_once_prize_a← prize(X, a)

never_prize_a←∼ at_least_once_prize_a

Given this program, with P (at_least_once_prize_a) we represent the proba-
bility that the player wins at least one prize a. Similarly, we can describe the
probability that the player never wins the prize a with P (never_prize_a).

Example 9 (Hybrid Hidden Markov Model). A Hybrid Hidden Markov Model
(Hybrid HMM) is the combination of a Hidden Markov Model (HMM, with dis-
crete states) and a Kalman Filter (with continuous states). For every integer
time point t the system is in a state [S(t),Type(t)] described by a discrete
random variable Type(t) taking values in {a, b}, and a continuous variable

91

S(t) taking values in R. At time t, the model emits one value V(t) = S(t) +

Obs_err(t), where Obs_err(t) is an error that follows a probability distribu-
tion depending on Type(t), a or b, and not on time. At time t′ = t+1, the sys-
tem moves to a new state [S(t′),Type(t′)], where S(t′) = S(t)+Trans_err(t).
Again, Trans_err(t) is an error that follows a probability distribution that
depends on Type(t). Likewise, Type(t′) depends on Type(t). We use the
random variables Init and TypeInit to describe the state at time 0. All the
random variables, except Init and TypeInit, are indexed by an integer value
(time step). We want to compute the probability that the value emitted at time
step 1 is larger than 2 (predicate ok/0). As before, there is a random variable
for every ground instantiation of the variables in the probabilistic facts.

ok ← kf(2), 〈V(1) > 2〉

kf(N)← 〈S(0) = Init〉, 〈Type(0) = TypeInit〉, kf_part(0, N)

kf_part(I,N)← I < N,NextI is I + 1,

trans(I,NextI), emit(I),

kf_part(NextI,N)

kf_part(N,N)← N 6= 0

trans(I,NextI)←

〈Type(I) = a〉, 〈S(NextI) = S(I) + Trans_err_a(I)〉,

〈Type(NextI) = Type_a(NextI)〉

trans(I,NextI)←

〈Type(I) = b〉, 〈S(NextI) = S(I) + Trans_err_b(I)〉

〈Type(NextI) = Type_b(NextI)〉

emit(I)←

〈Type(I) = a〉, 〈V(I) = S(I) + Obs_err_a(I)〉

emit(I)←

〈Type(I) = b〉, 〈V(I) = S(I) + Obs_err_b(I)〉

Init ∼ gaussian(0, 1)

Trans_err_a(_) ∼ gaussian(0, 2)

Trans_err_b(_) ∼ gaussian(0, 4)

92

Obs_err_a(_) ∼ gaussian(0, 1)

Obs_err_b(_) ∼ gaussian(0, 3)

TypeInit ∼ {a : 0.4, b : 0.6}

Type_a(I) ∼ {a : 0.3, b : 0.7}

Type_b(I) ∼ {a : 0.7, b : 0.3}

In the next section, we define a precise semantics for hybrid probabilistic
logic programs with function symbols.

8.2 Semantics for Hybrid Programs with Func-

tion Symbols

We now introduce a new semantics for PCLP2 and we prove its well-definedness.
These results were presented in [21].

We keep discrete and continuous random variables separated. The former
are encoded using probabilistic facts as in ProbLog. Recall that with Boolean
probabilistic facts it is possible to encode any discrete random variable (see
Section 6.1). We consider that a probabilistic constraint logic program is
composed of a set of rules R, a set of Boolean probabilistic facts F , and a
countable set of continuous random variables X = X1, X2, . . . Each Xi has an
associated Rangei that can be R or Rn. The rules in R define the truth value of
the atoms in the Herbrand base of the program given the values of the random
variables. We define the sample space of the continuous random variables
as WX = Range1 × Range2 × . . . As previously discussed, the probability
spaces of individual variables generate an infinite dimensional probability space
(WX ,ΩX , µX). The definition of probabilistic constraint logic theory follows.

Definition 23 (Probabilistic constraint logic theory). A probabilistic con-
straint logic theory P is a tuple (X,WX ,ΩX , µX , Constr, R, F) where:

• X is a countable set of continuous random variables {X1, X2, . . .}, where
each random variable Xi has a non-empty range Rangei.

2In this thesis, we will often use the terms Hybrid Probabilistic Logic Programming and
Probabilistic Constraint Logic Programming interchangeably.

93

• WX = Range1 ×Range2 × . . . is the sample space.

• ΩX is the event space.

• µX is a probability measure, i.e., (WX ,ΩX , µX) is a probability space.

• Constr is a set of constraints closed under conjunction, disjunction, and
negation such that ∀ϕ ∈ Constr, CSS(ϕ) ∈ ΩX , i.e., such that CSS(ϕ)

is measurable for all ϕ.

• R is a set of rules with logical constraints of the form:

h← l1, . . . , ln, 〈ϕ1(X)〉, . . . , 〈ϕm(X)〉 where li is a literal for i = 1, . . . , n,
ϕj ∈ Constr and 〈ϕj(X)〉 is called constraint atom for j = 1, . . . ,m.

• F is a set of probabilistic facts.

This definition differs from the one provided in [112] since we separate discrete
and continuous probabilistic facts: X is the set containing continuous variables
only, while F is a set of discrete probabilistic facts. The probabilistic facts form
a countable set of Boolean random variables Y = {Y1, Y2, . . . } with sample
space WY = {(y1, y2, . . .) | yi ∈ {0, 1}, i ∈ 1, 2, . . .}. The event space is the
σ-algebra of set of worlds identified by countable set of countable composite
choices: a composite choice κ = {(f1, θ1, y1), (f2, θ2, y2), . . . } can be interpreted
as the assignments Y1 = y1, Y2 = y2, . . . if Y1 is associated to f1θ1, Y2 to f2θ2

and so on. Finally, the probability space for the entire program (WP ,ΩP , µP)

is the product of the probability spaces for the continuous (WX ,ΩX , µX) and
discrete (WY ,ΩY , µY) random variables, which exists in light of the following
theorem.

Theorem 5 (Theorem 6.3.1 from [47]). Given two probability spaces (WX ,ΩX , µX)

and (WY ,ΩY , µY), there exists a unique probability space (W,Ω, µ), called the
product space, such that W = WX ×WY , Ω = ΩX ⊗ ΩY , and

µ(ωX × ωY) = µX(ωX) · µY (ωY)

for ωX ∈ ΩX and ωY ∈ ΩY . Measure µ is called the product measure of µX
and µY , and it is also denoted by µX×µY . Moreover, for any ω ∈ Ω, we define

94

its sections as

ω(X)(wX) = {wY | (wX , wY) ∈ ω} ω(Y)(wY) = {wX | (wX , wY) ∈ ω}.

Both ω(X)(wX) and ω(Y)(wY) are measurable according to (WY ,ΩY , µY) and
(WX ,ΩX , µX) respectively, i.e., ω(X)(wX) ∈ ΩY and ω(Y)(wY) ∈ ΩX . Conse-
quently, µY (ω(X)(wX)) and µX(ω(Y)(wY)) are real values.

Measure µ = µX × µY for every ω ∈ Ω also satisfies

µ(ω) =

∫
WY

µX(ω(Y)(wY))dµY =

∫
WX

µY (ω(X)(wX))dµX .

Thus,WP = WX×WY , and ΩP = ΩX⊗ΩY . We indicate with satisfiable(wX)

the set of constraints that are satisfiable given a valuation wX of the random
variables in X, and we say that a world satisfies a constraint if the values of
the continuous random variables in the worlds satisfy the constraint. Starting
from a sample w = (wX , wY) from WP , a ground normal logic program Pw is
defined by:

• The groundings of the rules whose constraint are in the set satisfiable(wX),
with the constraints removed from the body.

• The probabilistic facts associated to random variables Yi with value 1.

The well-founded model of w ∈ WP , WFM (w), is defined as the well-founded
model of Pw, WFM (Pw), and we require that it is two-valued: if this constraint
is satisfied for every sample w ∈ WP , we call the program sound.

An explanation for a query q of a PCLP is a set of worlds ωi where the
query is true in every element of the set, i.e., ∀w ∈ ωi, w |= q. If every world
in which the query is true belongs to the set, the set is termed covering. A
pairwise incompatible set ω =

⋃
i ωi is such that ∀j 6= k, ωj∩ωk = ∅. We define

the probability of a query q as the measure of a covering set of explanations:
P (q) = µP ({w | w |= q}). We are now ready to compute the probability of
two of the previously discussed examples.

Example 10 (Pairwise incompatible covering set of explanations for Exam-
ple 8). Consider Example 8. We represent the extraction of a black card with
f1 = black(_) : 0.5. (f1, θ, 1) means that the card is black while (f1, θ, 0)

95

means that the card is not black (red). We associate a random variable Yi to
black(si(0)): yi = 1 means that in round i a black card was picked. The query
at_least_once_prize_a has the mutually disjoint covering set of explanations

ω+ = ω+
0 ∪ ω+

1 ∪ . . .

ω+
0 = {(wX , wY) | wX = (x0, x1, . . .), wY = (y0, y1, . . .),

x0 ∈ [0, π], y0 = 1}

ω+
1 = {(wX , wY) | wX = (x0, x1, . . .), wY = (y0, y1, . . .),

x0 ∈ [π, 2π], y0 = 1, x1 ∈ [0, π], y1 = 1}

. . .

Similarly, the query never_prize_a has the pairwise incompatible covering set
of explanations

ω− = ω−0 ∪ ω−1 ∪ ω−2 ∪ ω−3 ∪ . . .

with

ω−0 = {(wX , wY) | wX = (x0, x1, . . .), wY = (y0, y1, . . .),

x0 ∈ [0, π], y0 = 0}

ω−1 = {(wX , wY) | wX = (x0, x1, . . .), wY = (y0, y1, . . .),

x0 ∈ [π, 2π], y0 = 0}

ω−2 = {(wX , wY) | wX = (x0, x1, . . .), wY = (y0, y1, . . .),

x0 ∈ [π, 2π], y0 = 1, x1 ∈ [0, π], y1 = 0}

ω−3 = {{(wX , wY) | wX = (x0, x1, . . .), wY = (y0, y1, . . .),

x0 ∈ [π, 2π], y0 = 1, x1 ∈ [π, 2π], y1 = 0}

. . .

Once we compute the pairwise incompatible covering set of explanations,
we can calculate the probability of the query.

96

Example 11 (Probability of queries for Example 8). Consider sets ω+
0 and

ω−0 from Example 10. From Theorem 5,

µ(ω+
0) =

∫
WX

µY (ω(X)(wX))dµX =

∫
WX

µY ({wY | (wX , wY) ∈ ω})dµX

and so

µ(ω+
0) =

∫ π

0

µY ({(y0, y1, . . .) | y0 = 1})dµX

=

∫ π

0

1

2
· 1

2π
dx1 =

1

2
· 1

2
=

1

4

since, for the discrete variables, µY ({(y0, y1, . . .) | y0 = 0}) = µY ({(y0, y1, . . .) |
y0 = 1}) = 1/2, and µX is the Lebesgue measure of the set [0, π]. Similarly,

µ(ω−0) =

∫ π

0

µY ({(y0, y1, . . .) | y0 = 0})dµX

=

∫ π

0

1

2
· 1

2π
dx0 =

1

2
· 1

2
=

1

4
.

The sets ω+
i from Example 10 are pairwise incompatible, so the measure of

ω+ can be computed by summing the measures of the ω+
i s. By iteratively ap-

plying the previous computations, we can calculate the probability of the query
at_least_once_prize_a as

P (at_least_once_prize_a) =
1

4
+

1

4
· 1

4
+

1

4
·
(

1

4
· 1

4

)
+ . . .

=
1

4
+

1

4
·
(

1

4

)
+

1

4
·
(

1

4

)2

+ . . .

=
1

4
· 1

1− 1
4

=
1

4
· 4

3
=

1

3

since the sum represents a geometric series. Similarly, for query never_prize_a,

97

the sets in ω− are pairwise incompatible, so its probability can be computed as

P (never_prize_a) =

(
1

4
+

1

4

)
+

(
1

4
+

1

4

)
· 1

4
+(

1

4
+

1

4

)
·
(

1

4
· 1

4

)
+ . . .

=
1

2
+

1

2
·
(

1

4

)
+

1

2
·
(

1

4

)2

+ . . .

=
1

2
· 1

1− 1
4

=
1

2
· 4

3
=

2

3

P (never_prize_a) = 1− P (at_least_once_prize_a), as expected.

Example 12 (Pairwise incompatible covering set of explanations for Exam-
ple 9). Consider Example 9. We represent the discrete state variable with
f1 = type(_) : P , where (f1, θ, 0) means that the filter is of type a and (f1, θ, 1)

means that the filter is of type b. A covering set of explanations for the query
ok is:

ω = ω0 ∪ ω1 ∪ ω2 ∪ ω3

with

ω0 = {(wX , wY) |

wX = (Init, T rans_err_a(0), T rans_err_a(1), Obs_err_a(1), . . .),

wY = (TypeInit, Type(1), . . .),

Init+ Trans_err_a(0) + Trans_err_a(1) +Obs_err_a(1) > 2,

T ypeInit = 0, T ype(1) = 0}

ω1 = {(wX , wY) |

wX = (Init, T rans_err_a(0), T rans_err_b(1), Obs_err_b(1), . . .),

wY = (TypeInit, Type(1), . . .),

Init+ Trans_err_a(0) + Trans_err_b(1) +Obs_err_b(1) > 2,

T ypeInit = 0, T ype(1) = 1}

ω2 = {(wX , wY) |

wX = (Init, T rans_err_b(0), T rans_err_a(1), Obs_err_a(1), . . .),

wY = (TypeInit, Type(1), . . .),

98

Init+ Trans_err_b(0) + Trans_err_a(1) +Obs_err_a(1) > 2,

T ypeInit = 1, T ype(1) = 0}

ω3 = {(wX , wX) |

wX = (Init, T rans_err_b(0), T rans_err_b(1), Obs_err_b(1), . . .),

wY = (TypeInit, Type(1), . . .),

Init+ Trans_err_b(0) + Trans_err_b(1) +Obs_err_b(1) > 2,

T ypeInit = 1, T ype(1) = 1}

Example 13 (Probability of queries for Example 9). Consider the set ω0

from Example 12. We denote discrete random variables Type(i) with yi. So,
TypeInit = y0 and Type(1) = y1. From Theorem 5,

µ(ω0) =

∫
WX

µY (ω(X)(wX))dµX =

∫
WX

µY ({wY | (wX , wY) ∈ ω})dµX .

Continuous random variables are independent and normally distributed. If
X ∼ gaussian(µX , σ

2
X), Y ∼ gaussian(µY , σ

2
Y), and Z = X + Y , then

Z ∼ gaussian(µX + µY , σ
2
X + σ2

Y). We indicate with N (x, µ, σ2) the Gaus-
sian probability density function with mean µ and variance σ2. The measure
for ω0 can be computed as:

µ(ω0) =

∫ 2

−∞
µY ({(y0, y1, . . .) | y0 = 0, y1 = 0}) dµX

=

∫ 2

−∞
0.4 · 0.3 · N (x, 0, 1 + 2 + 2 + 1) dx = 0.12 · 0.207 = 0.0248.

The values for ω1, ω2, and ω3 can be similarly computed. The probability of ω
results:

P (ω) = µ(ω0) + µ(ω1) + µ(ω2) + µ(ω3) = 0.25.

To prove that a probability value can be assigned to every query, we need to
show that every ground query to every sound program is assigned a probability.
Here, we focus only on ground programs, but we allow them to be denumerable.
This may seem a restriction, but it is not since the number of groundings of a
clause can at most be denumerable if the program has function symbols. We
start by introducing some definitions.

99

Definition 24 (Parameterized two-valued interpretations). Given a ground
probabilistic constraint logic program P with Herbrand base BP , a parameter-
ized positive two-valued interpretation Tr is a set of pairs (a, ωa) where a ∈ BP

and ωa ∈ ΩP such that for each a ∈ BP there is only one such pair (Tr is really
a function). Similarly, a parameterized negative two-valued interpretation Fa

is a set of pairs (a, ω∼a) where a ∈ BP and ω∼a ∈ ΩP .

Parameterized two-valued interpretations form a complete lattice where the
partial order is defined as I ≤ J if ∀a ∈ BP , (a, ωa) ∈ I, (a, θa) ∈ J : ωa ⊆ θa.
For a set T of parameterized two-valued interpretations, the least upper bound
and greatest lower bound always exist and are respectively

lub(T) = {(a,
⋃

I∈T,(a,ωa)∈I

ωa) | a ∈ BP}

and
glb(T) = {(a,

⋂
I∈T,(a,ωa)∈I

ωa) | a ∈ BP}.

The top element > is
{(a,WX ×WY) | a ∈ BP}

and the bottom element ⊥ is

{(a, ∅) | a ∈ BP}.

Definition 25 (Parameterized three-valued interpretations). Given a ground
probabilistic constraint logic program P with Herbrand base BP , a parameter-
ized three-valued interpretation I is a set of triples (a, ωa, ω∼a) where a ∈ BP ,
ωa ∈ ΩP , and ω∼a ∈ ΩP , and such that, for each a ∈ BP , there is one
such triple. ωa and ω∼a are the worlds where a is respectively true and false.
A parameterized three-valued interpretation I is consistent if ∀(a, ωa, ω∼a) ∈
I, ωa ∩ ω∼a = ∅.

Parameterized three-valued interpretations form a complete lattice where
the partial order is defined as I ≤ J if ∀a ∈ BP , (a, ωa, ω∼a) ∈ I, (a, θa, θ∼a) ∈
J, ωa ⊆ θa, and ω∼a ⊆ θ∼a. The least upper bound and greatest lower bound
for a set T of parameterized three-valued interpretations always exist and are

100

respectively

lub(T) = {(a,
⋃

I∈T,(a,ωa,ω∼a)∈I

ωa,
⋃

I∈T,(a,ωa,ω∼a)∈I,

ω∼a) | a ∈ BP}

and
glb(T) = {(a,

⋂
I∈T,(a,ωa,ω∼a)∈I

ωa,
⋂

I∈T,(a,ωa,ω∼a)∈I

ω∼a) | a ∈ BP}.

The top element > is

{(a,WX ×WY ,WX ×WY) | a ∈ BP}

and the bottom element ⊥ is

{(a, ∅, ∅) | a ∈ BP}.

Definition 26 (OpTruePP
I (Tr) and OpFalsePP

I (Fa)). For a ground probabilis-
tic constraint logic program P with rules R and facts F , a parameterized two-
valued positive interpretation Tr with pairs (a, θa), a parameterized two-valued
negative interpretation Fa with pairs (a, θ∼a), and a parameterized three-valued
interpretation I with triplets (a, ωa, ω∼a), we define OpTruePP

I (Tr) = {(a, γa) |
a ∈ BP} where

γa =


WX × ω{{(a,∅,1)}} if a ∈ F⋃
a←b1,...,bn,∼c1,...,∼cm,ϕ1,...,ϕl∈R((θb1 ∪ ωb1) ∩ . . .
∩(θbn ∪ ωbn) ∩ ω∼c1 ∩ . . . ∩ ω∼cm
∩CSS(ϕ1)×WY ∩ . . . ∩ CSS(ϕl)×WY)

if a ∈ BP \ F

and OpFalsePP
I (Fa) = {(a, γ∼a) | a ∈ BP} where

γ∼a =



WX × ω{{(a,∅,0)}} if a ∈ F⋂
a←b1,...,bn,∼c1,...,∼cm,ϕ1,...,ϕl∈R((θ∼b1 ∩ ω∼b1) ∪ . . .
∪(θ∼bn ∩ ω∼bn) ∪ ωc1 ∪ . . . ∪ ωcm
∪(WX \ CSS(ϕ1))×WY ∪ . . .
∪(WX \ CSS(ϕl))×WY)

if a ∈ BP \ F

Proposition 1 (Monotonicity of OpTruePP
I and OpFalsePP

I). OpTruePP
I and

101

OpFalsePP
I are monotonic.

Proof. Here we only consider OpTruePP
I , since the proof for OpFalsePP

I can
be similarly constructed. Essentially, we have to prove that if Tr 1 ≤ Tr 2 then
OpTruePP

I (Tr 1) ≤ OpTruePP
I (Tr 2). By definition, Tr 1 ≤ Tr 2 means that

∀a ∈ BP , (a, ωa) ∈ Tr 1, (a, θa) ∈ Tr 2 : ωa ⊆ θa.

Let (a, ω′a) be the elements of OpTruePP
I (Tr 1) and (a, θ′a) the elements of

OpTruePP
I (Tr 2). To prove the monotonicity, we have to prove that ω′a ⊆ θ′a.

If a ∈ F , then ω′a = θ′a = WX × ω{{(a,∅,1)}}. If a ∈ BP \ F , then ω′a and θ′a
have the same structure. Since ∀b ∈ BP , ωb ⊆ θb, then ω′a ⊆ θ′a.

The monotonicity property ensures that both OpTruePP
I and OpFalsePP

I

have a least fixpoint and a greatest fixpoint. We now define an iterated fixpoint
operator and prove its monotonicity.

Definition 27 (Iterated fixed point for probabilistic constraint logic pro-
grams). For a ground probabilistic constraint logic program P and a param-
eterized three-valued interpretation I, we define IFPCPP (I) as

IFPCPP (I) = {(a, ωa, ω∼a) | (a, ωa) ∈ lfp(OpTruePP
I),

(a, ω∼a) ∈ gfp(OpFalsePP
I)}.

Proposition 2 (Monotonicity of IFPCPP). IFPCPP is monotonic.

Proof. As before, we have to prove that, if I1 ≤ I2, then IFPCPP (I1) ≤
IFPCPP (I2). By definition, I1 ≤ I2 means that

∀a ∈ BP , (a, ωa, ω∼a) ∈ I1, (a, θa, θ∼a) ∈ I2 : ωa ⊆ θa, ω∼a ⊆ θ∼a.

Let (a, ω′a, ω
′
∼a) be the elements of IFPCPP (I1) and (a, θ′a, θ

′
∼a) the elements of

IFPCPP (I2). We have to prove that ω′a ⊆ θ′a and ω′∼a ⊆ θ′∼a. This is a direct
consequence of the monotonicity of OpTruePP

I and OpFalsePP
I in I proved in

Proposition 1.

IFPCPP is monotonic and so it has a least fixpoint. We identify lfp(IFPCPP)

with WFMP(P). We call depth of P the smallest ordinal δ such that IFPCPP ↑
δ = WFMP(P). Now we prove that OpTruePP

I and OpFalsePP
I are sound.

102

Lemma 1 (Soundness of OpTruePP
I). For a ground probabilistic constraint

logic program P with probabilistic facts F , rules R, and a parameterized three-
valued interpretation I, denote with θαa the set associated to atom a in OpTruePP

I ↑
α. For every atom a, world w, and iteration α:

w ∈ θαa →WFM (w | I) |= a

where w | I is obtained by adding to w the atoms a for which (a, ωa, ω∼a) ∈
I and w ∈ ωa, and by removing all the rules with a in the head for which
(a, ωa, ω∼a) ∈ I and w ∈ ω∼a.

Proof. We prove the lemma by transfinite induction: we assume that the thesis
is true for all ordinals β < α and we prove it for α. There are two cases to
cover: α successor ordinal and α limit ordinal. Consider α a successor ordinal.
If a ∈ F the statement is easily verified. If a /∈ F , consider w ∈ θαa where

θαa =
⋃

a←b1,...,bn,∼c1,...,∼cm,ϕ1,...,ϕl∈R

((θα−1
b1
∪ ωb1) ∩ . . .

∩ (θα−1
bn
∪ ωbn) ∩ ω∼c1 ∩ . . . ∩ ω∼cm

∩ CSS(ϕ1)×WX ∩ . . . ∩ CSS(ϕl)×WX).

This means that there is a rule a ← b1, . . . , bn,∼ c1, . . . ,∼ cm, ϕ1, . . . , ϕl ∈ R
such that w ∈ θα−1

bi
∪ωbi for i = 1, . . . , n, w ∈ ω∼cj for j = 1 . . . ,m and w |= ϕk

for k = 1, . . . , l. By the inductive assumption and because of how w | I is built,
WFM (w | I) |= bi, WFM (w | I) |=∼ cj and w |= ϕk so WFM (w | I) |= a.

Consider now α a limit ordinal. Then,

θαa = lub({θβa | β < α}) =
⋃
β<α

θβa .

If w ∈ θαa , there must exist a β < α such that w ∈ θβa . By the inductive
assumption the hypothesis holds.

Lemma 2 (Soundness of OpFalsePP
I). For a ground probabilistic constraint

logic program P with probabilistic facts F and rules R, and a parameterized
three-valued interpretation I, denote with θα∼a the set associated with atom a

in the operator OpFalsePP
I ↓ α. For every atom a, world w and iteration α,

103

the following holds:

w ∈ θα∼a →WFM (w | I) |=∼ a

where w | I is built as in Lemma 1.

Proof. As before, we prove the lemma by transfinite induction: we assume
that the thesis is true for all ordinals β < α and we prove it for α. Again, we
need to cover two cases: α successor ordinal and α limit ordinal. Consider α a
successor ordinal. If a ∈ F the statement is easily verified since probabilistic
facts do not appear in the head of any rule. If a /∈ F consider w ∈ θα∼a where

θα∼a =
⋂

a←b1,...,bn,∼c1,...,∼cm,ϕ1,...,ϕl∈R

((θα−1
∼b1 ∩ ω∼b1) ∪ . . .

∪ (θα−1
∼bn ∩ ω∼bn) ∪ ωc1 ∪ . . . ∪ ωcm

∪ (WX \ CSS(ϕ1))×WY ∪ . . . ∪ (WX \ CSS(ϕl))×WY).

This means that, for each a ← b1, . . . , bn,∼ c1, . . . ,∼ cm, ϕ1, . . . , ϕl ∈ R

there exists an index i such that w ∈ θα−1
∼bi ∩ω∼bi , or there exists an index j such

that w ∈ ωcj , or there exists an index k such that w 6|= ϕk. By the inductive
assumption and because of how w | I is built, either WFM (w | I) |=∼ bi,
WFM (w | I) |= cj, or w 6|= ϕk should hold, so WFM (w | I) |=∼ a.

Consider now α a limit ordinal. Then,

θα∼a = glb({θβ∼a | β < α}) =
⋂
β<α

θβ∼a.

If w ∈ θα∼a, for all β < α we have that w ∈ θβ∼a. By the inductive assumption,
for all β < α, if w ∈ θβ∼a this implies that WFM (w | I) |=∼ a. Since, w ∈ θβ∼a
for all β < α, then WFM (w | I) |=∼ a.

The proof of the soundness of IFPCPP is based on the following two lem-
mas.

Lemma 3 (Partial evaluation, Lemma 6 from [136]). For a ground normal
logic program P and a three-valued interpretation I = 〈IT , IF 〉 such that I ≤

104

WFM (P), define P ||I as the program obtained from P by adding all atoms
a ∈ IT and by removing all rules with atoms a ∈ IF in the head. Then,
WFM (P) = WFM (P ||I).

Lemma 4 (Model equivalence). Given a ground probabilistic constraint logic
program P , for every world w and iteration α the following holds:

WFM (w) = WFM (w | IFPCPP ↑ α).

Proof. Let (a, ωαa , ω
α
∼a) be the elements of IFPCPP ↑ α. Consider a three-

valued interpretation Iα = 〈IT , IF 〉 with IT = {a | w ∈ ωαa } and IF = {a |
w ∈ ωα∼a}. Then, ∀a ∈ IT , WFM (w) |= a, and ∀a ∈ IF , WFM (w) |=∼ a.
Therefore, Iα ≤WFM (w).

Since w | IFPCPP ↑ α = w||Iα, by Lemma 3 we get

WFM (w) = WFM (w||Iα) = WFM (w | IFPCPP ↑ α).

We now prove the soundness and completeness of the operator IFPCPP .

Lemma 5 (Soundness of IFPCPP). For a ground probabilistic constraint logic
program P with probabilistic facts F and rules R, denote with ωαa and ωα∼a the
formulas associated with atom a in IFPCPP ↑ α. For every atom a, world w
and iteration α, the following holds:

w ∈ ωαa →WFM (w) |= a. (8.1)

w ∈ ωα∼a →WFM (w) |=∼ a. (8.2)

Proof. The proof is a consequence of Lemma 4: w ∈ ωαa means that a is a fact
in w | IFPCPP ↑ α. Thus, WFM (w | IFPCPP ↑ α) |= a and WFM (w) |= a.

Similarly, w ∈ ωα∼a means that there are no rules for a in w | IFPCPP ↑ α,
so WFM (w | IFPCPP ↑ α) |=∼ a and WFM (w) |=∼ a.

Lemma 6 (Completeness of IFPCPP). For a ground probabilistic constraint
logic program P with probabilistic facts F and rules R, let ωαa and ωα∼a be the
sets associated with atom a in IFPCPP ↑ α. For every atom a, world w and

105

iteration α, we have:

a ∈ IFPw ↑ α→ w ∈ ωαa .

∼ a ∈ IFPw ↑ α→ w ∈ ωα∼a.

Proof. We prove it by double transfinite induction. If α is a successor ordinal,
assume that

a ∈ IFPw ↑ (α− 1)→ w ∈ ωα−1
a

∼ a ∈ IFPw ↑ (α− 1)→ w ∈ ωα−1
∼a

Let us perform transfinite induction on the iterations of OpTruewIFPw↑(α−1) and
OpFalsewIFPw↑(α−1). Consider a successor ordinal δ and assume that

a ∈ OpTruewIFPw↑(α−1) ↑ (δ − 1)→ w ∈ γδ−1
a .

a ∈ OpFalsewIFPw↑(α−1) ↓ (δ − 1)→ w ∈ θδ−1
∼a .

where (a, γδ−1
a) are the elements of OpTruePIFPCPP ↑α−1 ↑ (δ − 1) and (a, θδ−1

∼a)

are the elements of OpFalsePIFPCPP ↑α−1 ↓ (δ − 1). We now prove that

a ∈ OpTruewIFPw↑(α−1) ↑ δ → w ∈ γδa.

a ∈ OpFalsewIFPw↑(α−1) ↓ δ → w ∈ θδ∼a.

Consider an atom a. If a ∈ F , the previous statement can be easily proved.
Otherwise, a ∈ OpTruewIFPw↑(α−1) ↑ δ means that there is a rule a ← b1, . . . ,

bn,∼ c1, . . . , cm, ϕ1, . . . , ϕl such that for all i = 1, . . . , n,

bi ∈ OpTruewIFPw↑(α−1) ↑ (δ − 1) ∨ bi ∈ IFPw ↑ (α− 1)

for all j = 1, . . . ,m, ∼ cj ∈ IFPw ↑ (α − 1), and for all k = 1, . . . , l, ϕk(w) =

true. For the inductive hypothesis, ∀i : w ∈ γδ−1
bi
∨w ∈ ωα−1

bi
and ∀j : w ∈ ωα−1

∼cj ,
so w ∈ γδa. The proof is similar for a ∈ OpFalsewIFPw↑(α−1) ↓ δ.

Consider now δ a limit ordinal, so γδa =
⋃
µ<δ γ

µ
a , and θδ∼a =

⋂
µ<δ θ

µ
∼a.

106

If a ∈ OpTruewIFPw↑(α−1) ↑ δ, then there exists a µ < δ such that

a ∈ OpTruewIFPw↑(α−1) ↑ µ.

For the inductive hypothesis, w ∈ γδa.
If a ∈ OpFalsewIFPw↑(α−1) ↓ δ, then, for all µ < δ,

a ∈ OpFalsewIFPw↑(α−1) ↓ µ.

For the inductive hypothesis, w ∈ θδa.
Consider now α a limit ordinal. Then, ωαa =

⋃
β<α ω

β
a and ωα∼a =

⋃
β<α ω

β
∼a.

If a ∈ IFPw ↑ α, there exists a β < α such that a ∈ IFPw ↑ β. For the
inductive hypothesis w ∈ ωβa , so w ∈ ωαa . The proof is similar for ∼ a.

Now we can prove that IFPCPP is sound and complete.

Theorem 6 (Soundness and completeness of IFPCPP). For a sound ground
probabilistic constraint logic program P , let ωαa and ωα∼a be the sets associated
with atom a in IFPCPP ↑ α. For every atom a and world w there is an
iteration α0 such that for all α > α0 we have:

w ∈ ωαa ↔WFM (w) |= a. (8.3)

w ∈ ωα∼a ↔WFM (w) |=∼ a. (8.4)

Proof. The → direction of equations 8.3 and 8.4 is proven in Lemma 5. In
the other direction, WFM (w) |= a implies that there exists an α0 such that
∀α : α ≥ α0, IFPw ↑ α |= a. For Lemma 6, w ∈ ωαa . Similarly, WFM (w) |=∼ a
implies that there exists an α0 such that ∀α : α ≥ α0 → IFPw ↑ α |=∼ a. As
before, for Lemma 6, w ∈ ωα∼a.

Finally, we prove that every query for every sound program is well-defined.

Theorem 7 (Well-definedness of the distribution semantics). For a sound
ground probabilistic constraint logic program P , for all ground atoms a, µP ({w |
w ∈ WP , w |= a}) is well-defined.

Proof. Let ωδa and ωδ∼a be the sets associated with atom a in IFPCPP ↑ δ,
where δ denotes the depth of the program. Since IFPCPP is sound and com-
plete, {w | w ∈ WP , w |= a} = ωδa.

107

Each iteration of OpTruePP
IFPCPP↑β and OpFalsePP

IFPCPP↑β for all β gener-
ates sets belonging to ΩP , since the set of rules is countable. So µP ({w | w ∈
WP , w |= a}) is well-defined.

Moreover, if the program is sound, for all atoms a, ωδa = (ωδ∼a)
c holds, where

δ is the depth of the program and the superscript c denotes the complement.
Otherwise, there would exist a world w such that w 6∈ ωδa and w 6∈ ωδ∼a. But w
has a two-valued well-founded model, so either WFM (w) |= a or WFM (w) |=∼
a. In the first case w ∈ ωδa and in the latter w ∈ ωδ∼a, against the hypothesis.

8.2.1 A Concrete Syntax

cplint hybrid programs [15, 136], are yet another possible approach to manage
continuous random variables. They allow the definition of probability densities
using the syntax:

a : Density ← Body.

Here, a is an atom with an argument V ar (not explicitly reported in the
formula) that follows a probability density Density, and Body is the body of
a normal clause. In practice, if we want to define a Gaussian distribution with
mean 0 and variance 1 on a variable called Var in atom a(Var), we can write:

a(Var):gaussian(Var,0,1).

where gaussian/3 is a predefined density predicate. Other distributions are
available, such as uniform, Dirichlet, gamma, etc. We can also impose con-
straints by using Prolog comparison predicates. Each predicate a/n and func-
tion symbol f/n has a signature that specifies which arguments can hold con-
tinuous values (and variables), and only these arguments can contain them.
Discrete random variables are identified by ground atoms (there is a count-
able set of them), while continuous random variables are identified both by
predicates and ground terms present in atoms with arguments that can hold
continuous random variables. Both terms and continuous variables can appear
in atoms and clauses. However, the following constraint must hold: in every
world of the program, the values of the term variables in a ground atom for
a predicate p/n that is true in the world uniquely identify the values of the
continuous variables (see Example 14).

108

We can also introduce new variables based on a formula involving existing
continuous random variables using the special predicate =:=/2.

The semantics assigns a probability to any ground atom that does not
have continuous values as input arguments. Atoms with continuous input
arguments have probability 0, since the probability that a continuous random
variable takes a specific value is 0. There are some cases where this constraint
can be lifted, and they will be analysed later.

cplint hybrid programs can be translated into probabilistic constraint
logic programs [112] by removing the continuous arguments of a predicate and
by expressing constraints with the supported syntax. Inference in cplint hy-
brid programs can be performed using the module MCINTYRE [134] discussed
in Section 7.2.

We now introduce some examples.

Example 14 (Game of card). Consider a game of card where a player repeat-
edly needs to pick one out of three possible cards (ace of spades, ace of clubs
or ace of hearts) and spin a wheel. The game stops when the player picks the
ace of hearts or when the axis of the wheel is between 0 and π degrees (approx-
imated to 3.14 for convenience). We use a continuous random variable with
uniform density (X, line 3) to indicate the angle of the wheel. The outcome
of this variable is constrained to be above 3.14 in the clauses for the pick/2

predicate:

1 1/3 :: spades(_).

2 1/2 :: clubs(_).

3 angle(_,X) : uniform_dens(X,0 ,6.28).

4

5 pick(0,spades) :- spades (0),

6 angle(0,V), V > 3.14.

7 pick(0,clubs) :- \+ spades (0), clubs (0),

8 angle(0,V), V > 3.14.

9 pick(0,hearts) :- \+ spades (0), \+ clubs (0),

10 angle(0,V), V > 3.14.

11

12 pick(s(X),spades):- \+ pick(X,hearts),

13 spades(s(X)), angle(s(X),V), V > 3.14.

109

14 pick(s(X),clubs):- \+ pick(X,hearts),

15 \+ spades(s(X)), clubs(s(X)), angle(s(X),V),

16 V > 3.14.

17 pick(s(X),hearts):- \+ pick(X,hearts),

18 \+ spades(s(X)), \+ clubs(s(X)),

19 angle(s(X),V), V > 3.14.

20

21 at_least_once_spades :- pick(_,spades).

22 never_spades :- \+ at_least_once_spades.

We can compute the probability that the player picks at least one time spades
with the query at_least_once_spades. The continuous random variables
form a countable set and are represented by the second argument of predicate
angle(T,X). There is a continuous random variable for each value of T (0,
s(0), s(s(0)), . . .). The set Y of discrete Boolean random variables is {Y c

i , Y
s
i |

i = 0, 1, 2, . . . }, where Y c
i (Y s

i) represents clubs(si(0)) (spades(si(0))), and yci
(ysi) are values for Y c

i (Y s
i). Similarly, the set X of continuous random vari-

ables is {Xi | i = 0, 1, . . . }. Each continuous variable Xi has a range [0, 2π],
and we denote its value with xi. We can consider the mutually disjoint cov-
ering set of worlds ω = ω0 ∪ ω1 ∪ . . . for the query at_least_once_spades

where:

ω0 = {(wX , wY) | wX = (x0, x1, . . .), wY = (yc0, y
s
0, y

c
1, y

s
1, . . .),

x0 ∈ [π, 2π], ys0 = 1}

ω1 = {(wX , wY) | wX = (x0, x1, . . .), wY = (yc0, y
s
0, y

c
1, y

s
1, . . .),

x0 ∈ [π, 2π], ys0 = 0, yc0 = 1, x1 ∈ [π, 2π], ys1 = 1}

. . .

That is, for ω0 spades was selected at round 0 (ys0 = 1) and the wheel (x0)
in the same round was in the range [π, 2π]; for ω1, spades was not selected at
round 0 (ys0 = 0), clubs was selected at round 0 (yc0 = 0), the wheel (x1) was in
the range [π, 2π] at round 0, spades was selected at round s(0) (ys1 = 1), and
the wheel (x1) was in the range [π, 2π] at round s(0). Similarly happens for
the other ωi. The probability for ω0 can be computed as [21, 47]:

110

µ(ω0) =

∫ 2π

π

µY ({(yc0, ys0, yc1, ys1, . . .) | yc0 = 1}) dµX

=

∫ 2π

π

1

3
· 1

2π
dx1 =

1

3
· 1

2
=

1

6

where 1
3
is the contribution of the discrete random variable (spades) and 1

2π

is the contribution of the continuous one (angle). The probability for the
other ωis can be similarly computed. Overall, considering the limit, we get
1
3
· 1

2
·
∑∞

i=0(2
3
· 1

2
· 1

2
)i = 1

6
·
∑∞

i=0(1
6
)i = 1

6
· 6

5
= 1

5
as probability for the query

at_least_once_spades.

The next example encodes a Gaussian mixture:

Example 15 (Gaussian mixture 1). A Gaussian mixture model is composed
of a discrete random variable (usually with a categorical distribution) and a set
of Gaussian random variables. The mixture encodes the following generative
process: first, the value of the discrete variable is sampled. Then, depending
on this value, one of the possible Gaussian random variables is selected and a
value is sampled for it.

We can express a Gaussian mixture model with two components as follows3:

1 h : 0.6.

2 heads :- h.

3 tails :- \+ h.

4 g(X) : gaussian(X, 0, 1).

5 h(X) : gaussian(X, 5, 2).

6 mix(X) :- heads , g(X).

7 mix(X) :- tails , h(X).

8 mix :- mix(X), X > 2.

X in clauses for mix/1 follows a distribution that is a mixture of two Gaussians,
one with mean 0 and variance 1 with probability 0.6, and one with mean 5 and
variance 2 with probability 1 - 0.6 = 0.4. If we want to know what is the
probability that the value obtained from this mixture is greater than 2, we can
ask the query mix.

3https://cplint.eu/e/gaussian_mixture.pl

111

https://cplint.eu/e/gaussian_mixture.pl

Here, predicates g/1, h/1, and mix/1 have a single output argument which
can hold continuous variables. Since there are no term variables, each atom for
these predicates in a world univocally determines its argument. The predicate
mix/1 requires more attention since it is composed of two clauses with different
bodies. However, these are mutually exclusive, so in each world only one of
them is true. When h is true, heads is true and X follows the distribution
specified at line 4; otherwise, when h is false, tails is true and the distribution
describing X is the one introduced at line 5. This property is further discussed
in Section 8.2.2.

Example 16 (Gaussian mixture 2, from [81]). There are two machines, a

and b, that produce two different widgets with a continuous feature. The first
machine produces the widget with probability 0.3, the second with probability
0.7. If machine a produces the widget, the feature is distributed as a Gaussian
with mean 2 and variance 1; otherwise, the feature is distributed as a Gaussian
with mean 3 and variance 1. The widget is then processed by a third machine
that adds a random quantity to the feature distributed as a Gaussian with mean
0.5 and variance 1.5. This scenario can be encoded as4:

1 machine(a) : 0.3.

2 machine(b) :- \+ machine(a).

3 st(a,Z) : gaussian(Z, 2, 1).

4 st(b,Z) : gaussian(Z, 3, 1).

5 pt(Y) : gaussian(Y, 0.5, 1.5).

6 widget(X) :- machine(M), st(M,Z), pt(Y), X =:=

Y + Z.

7 ok_widget :- widget(X), X > 1.0.

A constraint checks the correctness of the produced widget. With the query
ok_widget we can compute the probability that the produced widget is not
flawed.

X, Y, and Z are continuous variables, while M is a term variable. Since X is
a continuous variable, in every world there should be a single value for X that
makes widget(X) true. Predicate widget/1 is represented by a single clause
with two possible groundings for the term variables, one for M = a, and one

4https://cplint.eu/e/widget.pl

112

https://cplint.eu/e/widget.pl

for M = b. In principle, there could be two values for X in true groundings of
widget(X) but, as in Example 15, the two groundings have mutually exclusive
bodies, since in each world either machine(a) or machine(b) is true, but not
both.

Consider now this example5 that can be used to estimate the mean of a
Gaussian:

Example 17 (Estimation of the mean of a Gaussian).

1 mean(M) : gaussian(M,1,5).

2 value(_,M,X) : gaussian(X,M,2).

3 value(I,X) :- mean(M), value(I,M,X).

For every index I, the continuous variable X is sampled from a Gaussian with
variance 2 and mean M sampled from another Gaussian with mean 1 and vari-
ance 5. Given observations for atom value(I,X) for different values of I, we
can estimate the mean of a Gaussian by querying mean(M).

The first argument of value/3 can hold a term variable while its second
and third arguments can hold a continuous variable. The second argument
is used as a parameter in the probability density of the third argument. The
semantics does not allow specifying the parameters of continuous distributions
with values computed by the program, as in this case, so the program may not
have a well-defined semantics. However, we can consider continuous variables
M and X as specified by a joint density6. This example will be further discussed
in Section 8.2.2.

8.2.2 Syntactic Requirements

As already seen in some examples, the semantics introduced in Section 8.2 re-
quires some syntactic constraints to be satisfied to preserve its well-definedness.

If every variable in the head also appears in a positive literal in the body,
a (probabilistic) logic program is called range restricted. In this case, answers
to queries are always ground instantiation of it [114, 140], and so probabilities

5https://cplint.eu/e/gauss_mean_est.pl
6A Gaussian distribution with a Gaussian distributed mean is still a Gaussian distribution

(if the two distributions are independent). However, we discussed this example for illustrative
purposes.

113

https://cplint.eu/e/gauss_mean_est.pl

are assigned to ground atoms. In some cases, probabilistic facts are not range
restricted. For instance, in Example 14, the first line contains the probabilistic
fact 1/3 :: spades(_). Here, the answers to queries are still ground in-
stantiations provided that, when the fact is called, all the variables are bound
to a constant or they appear in a previous positive literal in the body. In
Example 14, the variable for the probabilistic fact is bound to si(0). This is
formalized in the following theorem:

Theorem 8 (Ground queries with well-defined probability). Given a Proba-
bilistic Logic Program P and a query q, if P is range restricted and all the
variables in probabilistic facts appearing in the body of clauses of P are present
in a previous positive literal, the answers to q will be ground instantiation of
it, with an associated well-defined probability.

Proof. We prove Theorem 8 by induction. In the base case, the SLDNF reso-
lution consists of only one step: the query q unifies with a deterministic fact,
since there is not a previous positive literal in the body that will allow the
presence of a probabilistic fact. The program is range restricted, the substitu-
tion θ1 is computed, and the variables in the query are all grounded. Suppose
now that the theorem is true at step n. The current set of substitutions is
{θ1, θ2, . . . , θn}. There are two possible cases: if the selected literal of the
query matches a deterministic fact, substitution θn+1 grounds the literal, as
deterministic facts are already ground. If the selected literal of q matches with
a probabilistic fact, this fact cannot be the first of the body of the correspon-
dent clause, by assumption: all the variables appearing in the probabilistic
fact are already grounded by preceding substitutions, so the literal is ground
when called, and a new substitution θn+1 is computed and added to the list.
Eventually, all the variables will be grounded and the answer to the query will
be a ground instantiation.

Note that, if variables appear for the first time in a probabilistic fact, the
query can eventually be ground, but the probabilistic fact is not ground when
it is called, so the semantics is ill-defined. Thus, the order of the terms in
clause bodies is fundamental. Consider this example:

1 a(1).

2 f(_,X) : uniform_dens(X,0,6).

114

3 g0:- a(X), f(X,V), V > 1.

4 g1:- f(X,V), V > 1, a(X).

Here, if the query is g0, X in f/2 is ground when the probabilistic fact is called,
so the semantics is well-defined. However, this does not hold for the query g1

(even if they have the same terms in the bodies, but in different order), since
X is not ground when f/2 is called.

Another key requirement is that the set of random variables must be count-
able. In other words, every random variable must be associated with a ground
logical atom whose discrete input arguments can contain terms and cannot be
real values. Consider the following clause from Example 14:

1 pick(0,spades) :- spades (0), angle(0,V),

2 V > 3.14.

The first argument of angle/2 (0) is ground. This also holds for angle(s(X),V)
when it is called during the recursion. In this way, the continuous random vari-
able V is associated with either 0 or si(0): in both cases, it is a ground logical
atom, so the semantics is well-defined.

In the Gaussian mixture example (Example 15), the predicate mix/1 is
defined by two clauses with different bodies: as discussed above, the mutual
exclusivity of them preserves the well-definedness of the syntax, since the vari-
able X is defined in every world by a single distribution. Similarly for Exam-
ple 16. This property can be automatically verified using clause unfolding: we
obtain two clauses with the same head but mutually exclusive bodies, since
they have at least one atom in common but in one clause it is positive, in the
other it is negated. This consideration can be directly extended to the case
of n clauses with the same head defining n possible distributions for the same
variable. If the mix/1 predicate was defined as

1 mix(X) :- g(X).

2 mix(X) :- h(X).

the program would be ill-defined since the clauses are not mutually exclusive,
and there is not a unique distribution for X.

Example 17 is still well-defined since the continuous random variable as
input is used as a parameter for another distribution, defining a joint proba-
bility density. This also holds for multiple continuous variables as input: for

115

example, we can model the variance of the Gaussian distribution with another
random variable, instead of keeping it fixed to 2 (line 2). However, if the value
of a continuous random variable is used as variable for another term and not as
parameter for another distribution, the semantics is ill-defined. If we modify
Example 17 as follows

1 value(X) : gaussian(X,1,5).

2 value(_,M) : gaussian(M,2,2).

3 res(M) :- value(X), value(X,M).

the value of X in the third line came from a Gaussian distribution and it is
used as an input variable for value/2, but without being a parameter for
another distribution. In this case, the semantics is ill-defined, since the con-
tinuous variable M cannot be uniquely associated with a ground logical term.
This means that there can be an uncountable number of continuous random
variables. In Example 17, the term variable used as index (I) is associated to
a ground logical term, while here it is associated with a real value (X). If we
change the distribution of the variable X to a discrete one, this example would
be well-defined, since X can be associated with a ground logical term.

To see how to compute the probability for queries to program as Exam-
ple 17, consider this simplification, where we changed the distribution of the
variables for ease of calculation:

1 angle_a(_,X,Y) : uniform_dens(Y,X,2).

2 angle_b(X) : uniform_dens(X,0,1).

3 success(I) :- angle_b(X), angle_a(I,X,Y),

4 Y < 1.5.

Both variables X and Y follow a uniform distribution: the bounds for the former
are fixed, while the lower bound for the latter is sampled from X. Together, they
define a joint probability distribution, so we consider them as a multivariate
random variable indexed by I in the sequence of random variables. Their joint
density function is given by

fXY (x, y) =
1

1− 0
· 1

2− x
=

1

2− x

116

and the probability of the query success(0) can be computed as

P (success(0)) = P [Y < 1.5] =

∫ 1

0

1

2− x

(∫ 1.5

x

1 dy

)
dx =

=

∫ 1

0

1.5− x
2− x

dx = 1− ln(2)

2
≈ 0.653.

To clarify all the introduced requirements, consider this program:

1 ud(_,V) : uniform_dens(V,0,6).

2 1/2 :: a(_).

3 b(X,1):- a(X).

4 b(X,2):- \+a(X).

5 n(1).

6 f0(X):- a(X).

7 f1:- a(1).

8 f2(X):- n(X), a(X).

9 f3:- a(_).

10 f4(X):- b(X,V), a(V),

11 f5:- ud(1,V), V > 2.

The answers of the queries f0(1), f1, f2(X), and f5 are ground instantia-
tions since the input term variable for a/1 and ud/2 is bounded to 1 for all
four. Similarly for f4(1), where V can unify with 1 or 2, depending on the
truth value of a. Differently, the answers for f0(_), f3, and f4(_) are not
ground instantiations since, for the first two queries, the term variable of the
probabilistic fact a is not ground and, for the third query the input variable X
of b/2 is not ground.

8.3 Conclusions

In this section, we introduced a new semantics for hybrid probabilistic logic
programs, together with a concrete syntax and several syntactic requirements
needed to preserve the well-definedness. In the next chapter, we go back to
programs with only discrete random variables, and we study the problem of
abduction in the context of Probabilistic Logic Programming.

117

118

Chapter 9

Extending Probabilistic Logic
Programming with Abduction

As already discussed in Section 5.3, Abductive Logic Programming (ALP) [87,
88] extends Logic Programming by considering incomplete data. Often data
are also noisy and uncertain, and there can be different levels of belief among
rules. To manage these scenarios, in the following section we extend Proba-
bilistic Logic Programming with abduction. In this new framework, abducible
facts and probabilistic facts coexist, and integrity constraints can be associated
with a probability. After introducing some motivating examples, we formally
define this new class of programs and the task we want to solve (Section 9.1),
together with a practical algorithm (Section 9.1.2). We conclude this chapter
with an overview of related work (Section 9.2). The content of this chapter is
a novel contribution introduced in [12].

9.1 Probabilistic Abductive Logic Programs

Real world data are often noisy and incomplete. The integration between
abduction and probability seems a natural direction to manage these circum-
stances. Moreover, we can associate probability values to integrity constraints
representing how strong the belief is that the constraint is true. Consider these
two motivating examples.

119

Example 18. Motivating Example 1. Suppose you work in the city center.
There are several possible routes to reach your office starting from your apart-
ment. Clearly, you want to avoid traffic and car accidents. You can associate
different probabilities of encountering (or not encountering) a car accident in
all the possible streets and impose an integrity constraint to state that only one
path can be selected (two different routes cannot be travelled simultaneously).
The goal is to select the possible set of streets to maximize the probability of
not encountering a car accident.

Example 19. Motivating Example 2. Suppose you want to study more in
depth a natural phenomenon that may happen in a region. Some variables of
the model may describe the morphology of the land, while others are related
to the possible events that can occur. Some of these events are unlikely to be
observed together, due to some geological features. The goal is to find the set of
events that better describes (maximizes the probability of) a possible scenario.

In other words, given a query (conjunction of ground atoms), the goal is to
maximize the joint probability distribution of the query and the constraints by
selecting the minimal subset of abducible facts to be included in the abductive
logic program while preserving the validity of the constraints.

Let us now introduce some formal definitions.

Definition 28 (Probabilistic Integrity Constraint). A probabilistic integrity
constraint is an integrity constraint (see Definition 14) with an associated prob-
ability, i.e., is a formula of the form

π :− Body

where Body = b1, . . . , bn and each bi is a logical literal (i.e., a logical atom or
the negation of a logical atom), and π ∈]0, 1].

Definition 29 (Probabilistic Abductive Logic Program). A probabilistic ab-
ductive logic program is a triple (T, IC, A) where T is an LPAD, IC is a
(possibly empty) set of (possibly probabilistic) integrity constraints, and A is a
set of ground atoms, the abducibles, that do not appear in the head of a rule
of any grounding of T .

120

In other words, a general probabilistic abductive logic program is com-
posed of an LPAD, a set of integrity constraints (deterministic, probabilistic,
or both), and a set of abducibles. The particular case where the set of integrity
constraints is empty will be discussed later. As usual, we consider only sound
LPADs. Abducibles are denoted by the functor abducible. For example,

1 abducible a.

states that atom a is an abducible atom.
Starting from the triple (T, IC, A), we can define a distribution over ab-

ductive logic programs P as follows: to obtain a world, we first select one head
atom for each grounding of each probabilistic clause from T , and then we add
or not each grounding of each probabilistic integrity constraint from IC. The
probability of the obtained world is computed as the product of the proba-
bilities of the atomic choices for the clauses multiplied by the probability of
each grounding of the probabilistic integrity constraints included in the world,
and by one minus the probability for each probabilistic integrity constraint not
included.

1 a:- b,c.
2 a:- d,e.
3
4 b:0.3.
5 abducible c.
6 d:0.6.
7 abducible e.
8 0.1 :- c,e.

(a) Program.

w b d :- c,e. P (w)
1 T T I 0.3 · 0.6 · 0.1 = 0.018
2 T F I 0.3 · 0.4 · 0.1 = 0.012
3 F T I 0.7 · 0.6 · 0.1 = 0.042
4 F F I 0.7 · 0.4 · 0.1 = 0.028
5 T T E 0.3 · 0.6 · 0.9 = 0.162
6 T F E 0.3 · 0.4 · 0.9 = 0.108
7 F T E 0.7 · 0.6 · 0.9 = 0.378
8 F F E 0.7 · 0.4 · 0.9 = 0.252

(b) Worlds.

Figure 9.1: Example program and its worlds. I and E indicate respectively
whether the IC is included (I) or not (E) in each world.

If we consider the program shown in Figure 9.1a, there are two possible
alternatives for each of the two probabilistic facts b and d and for the IC, so
there are 8 possible worlds (2× 2× 2) reported in Figure 9.1b.

Given a probabilistic abductive logic program (T, IC, A) and a set of ground
atoms ∆ ⊆ A, the joint probability P (q, IC | ∆) of a query q and the integrity
constraints in IC to be true in (T, IC, A) given ∆ is the sum of the probabilities

121

of the worlds where ∆ is an abductive explanation of q and all constraints are
satisfied.

P (q, IC | ∆) can be computed by marginalization starting from the joint
probability of the worlds, the query, and the ICs:

P (q, IC | ∆) =
∑
w

P (q, IC, w | ∆) =
∑
w

P (q, IC | w,∆) · P (w | ∆).

If call Pw the abductive logic program and ICw the subset of integrity con-
straints considered in a world w, then

P (q, IC | w,∆) =

1 if Pw ∪∆ |= q and Pw ∪∆ 6|= ICw

0 otherwise

so
P (q, IC | ∆) =

∑
w:Pw∪∆|=q∧Pw∪∆ 6|=ICw

P (w | ∆).

We define the probabilistic abductive logic problem as follows.

Definition 30 (Probabilistic Abductive Problem). Given a probabilistic ab-
ductive logic program (T, IC, A) and a conjunction of ground atoms q, the
query, the probabilistic abductive problem consists in finding a set ∆ ⊆ A, the
probabilistic abductive explanation, such that P (q, IC | ∆) is maximized and
the explanations in ∆ are minimal, i.e., solve

least(arg max
∆

P (q, IC | ∆))

where arg max returns the set of all sets of abducibles that maximizes the joint
probability of the query and the ICs (there can be more than one set of ab-
ducibles if they all induce the same probability), and

least(I) = {∆ | ∆ ∈ I,@∆′ ∈ I : ∆′ ⊂ ∆}.

That is, the goal is to find the minimal sets of abducibles that maximizes the
joint probability of the query and the integrity constraints. We intend mini-
mality in terms of set inclusion. We also say that least computes the set of not
dominated ∆, where ∆ dominates ∆′ if ∆ ⊂ ∆′. If IC = ∅, the task reduces

122

to least(arg max∆ P (q | ∆)).

9.1.1 Examples

We now introduce several examples to better illustrate the probabilistic ab-
ductive problem.

Example 20. Consider the program shown in Figure 9.1a. The query q =
a has the probabilistic abductive explanation ∆ = {c,e}. P (q, IC | ∆) =

0.162 + 0.108 + 0.378 = 0.648, corresponding to worlds #5,6,7 of Figure 9.1b,
where q is true given ∆ and the IC is excluded (E) from the worlds. This
happens because the IC does not completely exclude {c,e}, it just excludes it
for the worlds where the constraint is present. This set gives higher probability
than {e} and {c}:

• Given the probabilistic abductive explanation {c}, a is true in 4 worlds
(#1,2,5,6) with probability 0.018 + 0.012 + 0.162 + 0.108 = 0.3.

• Given the probabilistic abductive explanation {e}, a is true in 4 worlds
(#1,3,5,7) with probability 0.018 + 0.042 + 0.162 + 0.378 = 0.6.

Variant 1 If we remove the integrity constraint from the program shown in
Figure 9.1a, as reported in Figure 9.2a, the query q = a with the probabilistic
abductive explanation ∆ = {c,e} is true in the first three worlds (highlighted in
the table of Figure 9.2c) and it has probability P (q | ∆) = 0.18 + 0.12 + 0.42 =

0.72.

Variant 2 Consider again the program shown in Figure 9.1a, but with a
deterministic integrity constraint, i.e., :- c,e. There are four possible worlds
(see Figure 9.3b). The probabilistic abductive explanation that maximizes the
probability of the query q = a and satisfies the constraint is given by ∆ = {e}.

P (q, IC | ∆) = 0.18 + 0.42 = 0.6, corresponding to the sum of the proba-
bilities of the worlds where q is true given ∆, highlighted in Figure 9.3b. The
probabilistic abductive explanation {c,e} gives higher probability than {e} (see
above), but is forbidden by the IC.

123

1 a:- b,c.
2 a:- d,e.
3
4 b:0.3.
5 abducible c.
6 d:0.6.
7 abducible e.

(a) Program.

1

d

b

a

b

e

c

e

(b) BDD.

w b d P (w)
1 T T 0.3 · 0.6 = 0.18
2 T F 0.3 · 0.4 = 0.12
3 F T 0.7 · 0.6 = 0.42
4 F F 0.7 · 0.4 = 0.28

(c) Worlds.

Figure 9.2: Program, BDD, and worlds for Example 20 variant 1. Highlighted
rows in the table represent the worlds in which the query a is true with the
probabilistic abductive explanation {c,e}, together with their probability.

d

a

c

b

e

1

e

(a) BDD.

w b d P (w)
1 T T 0.3 · 0.6 = 0.18
2 T F 0.3 · 0.4 = 0.12
3 F T 0.7 · 0.6 = 0.42
4 F F 0.7 · 0.4 = 0.28

(b) Worlds.

Figure 9.3: BDD and worlds for Example 20 variant 2. Highlighted rows in the
table represent the worlds in which the query a is true with the probabilistic
abductive explanation {e}, together with their probability.

Variant 3 If the probability of the IC is set to 0.5 (0.5 :- c,e), query
q = a has the probabilistic abductive explanation ∆ = {e} with probability
P (q, IC | ∆) = 0.09 · 2 + 0.21 · 2 = 0.6, corresponding the worlds #1,3,5,7
(highlighted in Table 9.1). Such explanation gives higher probability than {c,e}

and {c}:

• Given the probabilistic abductive explanation {c,e}, a is true in 3 worlds
(#5,6,7) with probability 0.09 + 0.06 + 0.21 = 0.36.

• Given the probabilistic abductive explanation {c}, a is true in 4 worlds
(#1,2,5,6) with probability 0.09 + 0.06 + 0.09 + 0.06 = 0.3.

The smallest probability π of the IC π:-c,e. such that set {e} is chosen can

124

w b d :- c,e. P (w)
1 T T I 0.3 · 0.6 · 0.5 = 0.09
2 T F I 0.3 · 0.4 · 0.5 = 0.06
3 F T I 0.7 · 0.6 · 0.5 = 0.21
4 F F I 0.7 · 0.4 · 0.5 = 0.14
5 T T E 0.3 · 0.6 · 0.5 = 0.09
6 T F E 0.3 · 0.4 · 0.5 = 0.06
7 F T E 0.7 · 0.6 · 0.5 = 0.21
8 F F E 0.7 · 0.4 · 0.5 = 0.14

Table 9.1: Worlds for Example 20 variant 3. Highlighted rows represent the
worlds in which the query a is true with the probabilistic abductive explanation
{e}, together with their probability. I and E stand respectively for included
and excluded.

be computed by solving a system of two inequalities, imposing that the sum of
the probabilities of worlds #5,6,7 (see Figure 9.1b) is greater than the sum of
the probabilities associated both with worlds #1,2,5,6 and #1,3,5,7, with π as
a variable. The result is π < 0.167. So, when the IC has probability greater
than 0.167, the probabilistic abductive explanation {e} is preferred to {c,e}

(and {c}), as if the constraint were deterministic.

Example 21. Abducible facts can also be negated in the body of clauses. Con-
sider a variation of the program shown in Figure 9.2, where the abducible c

appears negated in the first clause for a/0:

a:- b,\+c.

Here, the query q = a has the probabilistic abductive explanation ∆ = {e} with
probability 0.72, because, when c is not selected, the second clause still has the
body satisfied.

Example 22. A program may have multiple minimal explanations yielding
maximum probability of the query and the constraints. Consider the following
example:

1 a:0.4.

2 b:0.4.

3 abducible aa.

125

4 abducible bb.

5 q:- a,aa.

6 q:- b,bb.

7 :- aa ,bb.

Both ∆1 = {aa} and ∆2 = {bb} are minimal, each one giving a probability of
0.4.

Example 23. Consider the case of an abductive logic program (no probabilistic
facts). For example, if we query a in the following program, where both b and
c are abducibles

1 a:- b,c.

2 a:- c.

3 abducible b.

4 abducible c.

we would obtain, without the least function, two explanations: ∆1 = {b,c}

and ∆2 = {c}. However, this is in contrast with our definition, where the goal
is to find sets that are also minimal. In this example ∆2 ⊂ ∆1, so the latter
must not be considered as it is not minimal.

Variant 1 If we add another clause a:- d,e. with d and e abducibles, the
set of explanations for a will be ∆ = {{c},{d,e}}, since both are minimal.

We now consider a possible encoding of Example 19 (proposed in Example 5
reported here for clarity).

Example 24. The island of Stromboli is located at the intersection of two
geological faults, one in the southwest-northeast direction, the other in the east-
west direction, and contains one of the three volcanoes that are active in Italy.
This program, taken from [35, 138], models the possibility that an eruption or
an earthquake occurs at Stromboli:

1 eruption :0.6; earthquake :0.3 :- sudden_er ,

fault_rupture(X).

2 sudden_er :0.7.

3 fault_rupture(southwest_northeast).

4 fault_rupture(east_west).

126

If there is a sudden energy release (sudden_er) under the island and there is a
fault rupture (fault_rupture(X)), there can be an eruption of the volcano on
the island with probability 0.6 or an earthquake with probability 0.3. A sudden
energy release occurs with probability 0.7, and we are sure that ruptures occur
along both faults.

Variant 1 If we make the two fault_rupture/1 facts abducible1, the query
q = eruption has the probabilistic abductive explanation
∆ = {fault_rupture(southwest_northeast),fault_rupture(east_west)}

with probability P (q | ∆) = 0.252 + 0.126 + 0.042 + 0.126 + 0.042 = 0.588, cor-
responding to worlds #1,2,3,7,13 in Table 9.3 where q is true given ∆. ∆ gives
the highest probability since:

• given the probabilistic abductive explanations
∆1 = {fault_rupture(southwest_northeast)} or
∆2 = {fault_rupture(east_west)}, P (q | ∆1) = P (q | ∆2) = 0.42;

• given the probabilistic abductive explanation ∆3 = ∅, P (q | ∆3) = 0.

Variant 2 Given the program:

1 eruption :0.6; earthquake :0.3 :- sudden_er ,

fault_rupture(_).

2 sudden_er: 0.7.

3 abducible fault_rupture(southwest_northeast).

4 fault_rupture(east_west).

the query q = eruption has the probabilistic abductive explanation
∆ = {fault_rupture(southwest_northeast)} with the same probability as
above, corresponding to the same worlds. The same result would be achieved
by making abducible fault_rupture(east_west) instead of
fault_rupture(southwest_northeast).

Variant 3 If we remove line 3 or line 4 from the program, for instance line
4:

1This variant can be tested at https://cplint.eu/e/eruption_abduction.pl

127

https://cplint.eu/e/eruption_abduction.pl

w
eruption:0.6; earthquake:0.3 :-

sudden_er,
fault_rupture(sw_ne).

sudden_er:0.7. P (w)

1 eruption sudden_er 0.42
2 eruption null 0.18
3 earthquake sudden_er 0.21
4 earthquake null 0.09
5 null sudden_er 0.07
6 null null 0.03

Table 9.2: Possible worlds for the LPAD of Example 24 (Variant 3) with the
corresponding probability, computed as the product of the probabilities associ-
ated with the head atoms taking value true, reported in each row. Highlighted
rows represent the worlds in which the query eruption is true.

1 eruption :0.6; earthquake :0.3 :- sudden_er ,

fault_rupture(_).

2 sudden_er: 0.7.

3 abducible fault_rupture(southwest_northeast).

we would lose the second grounding X/east_west. Now, the query q = eruption

has the probabilistic abductive explanation
∆ = {fault_rupture(southwest_northeast)} with probability P (q | ∆) =

0.42 + 0.18 = 0.6, corresponding to worlds #1,2 in Table 9.2, where q is true
given ∆.

Variant 4 If we add an IC to the program stating that a fault rupture cannot
happen along both directions at the same time:

1 eruption :0.6; earthquake :0.3 :- sudden_er ,

fault_rupture(_).

2 sudden_er: 0.7.

3 abducible fault_rupture(southwest_northeast).

4 abducible fault_rupture(east_west).

5

6 :- fault_rupture(southwest_northeast),

fault_rupture(east_west).

the probabilistic abductive explanations that maximize the probability of the

128

w
eruption:0.6; earthquake:0.3 :-

sudden_er,
fault_rupture(sw_ne).

eruption:0.6; earthquake:0.3 :-
sudden_er,

fault_rupture(east_west).
sudden_er:0.7. P (w)

1 eruption eruption sudden_er 0.252
2 eruption earthquake sudden_er 0.126
3 eruption null sudden_er 0.042
4 eruption eruption null 0.108
5 eruption earthquake null 0.054
6 eruption null null 0.018
7 earthquake eruption sudden_er 0.126
8 earthquake earthquake sudden_er 0.063
9 earthquake null sudden_er 0.021
10 earthquake eruption null 0.054
11 earthquake earthquake null 0.027
12 earthquake null null 0.009
13 null eruption sudden_er 0.042
14 null earthquake sudden_er 0.021
15 null null sudden_er 0.007
16 null eruption null 0.018
17 null earthquake null 0.009
18 null null null 0.003

Table 9.3: Possible worlds for the LPAD of Example 24 with the corresponding
probability computed as the product of the probabilities associated with the
head atoms taking value true, reported in each row. Highlighted rows represent
the worlds in which the query eruption is true.

query q = eruption and satisfy the constraint are both
∆1 = {fault_rupture(southwest_northeast)}

and
∆2 = {fault_rupture(east_west)}, as P (q, IC | ∆1) = P (q, IC | ∆2) =

0.252 + 0.126 + 0.042 = 0.42. The probabilistic abductive explanation found at
the beginning of this example, yielding a higher probability P (q | ∆) = 0.588,
is now forbidden by the IC.

9.1.2 Algorithm

We exploit BDDs to solve the probabilistic abductive problem. Integrity con-
straints are implemented by conjoining BDDs. We can obtain a BDD for an
IC of the form : −b1, . . . , bn by asking with PITA the query b1, . . . , bn (after
applying the PITA transformation, see [136]). If the IC has an associated prob-

129

ability, an extra variable is added to the BDD representing it. Some nodes of
the BDD are marked to represent abducible facts. Then, two BDDs are built,
one for the query (BDDQ) and one for the constraint (BDDC). The Boolean
expression representing the query is given by the conjunction of BDDQ with
the negation of BDDC (BDDQ and not BDDC). In case of multiple ICs, this
operation can be straightforwardly extended. If we consider the following pro-
gram:

1 q:- a,d.

2 q:- b,c.

3 abducible a.

4 abducible b.

5 c:0.4.

6 d:0.5.

7 :- a,b.

with the query q, BDDQ (Figure 9.4a) represents the Boolean expression (a

and d) or (b and c) while BDDC (Figure 9.4b) represents a and b. The
two BDDs are combined to obtain: ((a and d) or (b and c)) and (not(a

and b)) (Figure 9.5a) whose truth table is reported in Table 9.5b.

a

d

b

c

d

q

b

1

(a) BDD for (a and d) or (b and c)
(BDDQ).

1

a

b

q

(b) BDD for a and b (BDDC).

Figure 9.4: BDDs for the example showing the conjunction of BDDs.

We develop algorithms 5 and 6 to solve the probabilistic abductive problem.
Here, we focus on programs without function symbols. In detail, the function

130

a

b

q

b

c

d

1

(a) BDD resulting from the conjunction
of BDDQ and BDDC.

a b c d Expr
F F F F F
F F F T F
F F T F F
F F T T F
F T F F F
F T F T F
F T T F T
F T T T T
T F F F F
T F F T T
T F T F F
T F T T T
T T F F F
T T F T F
T T T F F
T T T T F

(b) Truth table.

Figure 9.5: BDD and truth table for the example showing the conjunction
of BDDs. Highlighted rows represent the combinations of arguments such
that the expression ((a and d) or (b and c)) and (not(a and b)) (com-
pactly referred as Expr in the table) is true.

Algorithm 5 Function AbductiveExpl: computation of the minimal sets
that maximize the joint probability of the query and the ICs, and of the cor-
responding probability.
1: function AbductiveExpl(root)
2: root ′ ← Reorder(root) . BDD reordering
3: TableProb ← ∅
4: TableAbd ← ∅
5: (Prob,Abd)← AbdInt(root ′,TableProb,TableProb, false)
6: Abd ′ ← RemoveDominated(Abd)
7: return (Prob,Abd ′)
8: end function

AbductiveExpl (Algorithm 5) receives as input the root of the BDD repre-
senting the explanations for the query. This BDD is reordered so that variables
associated with abducibles come first in the order: this operation may vary
the size of the BDD, but it is crucial to have nodes representing abducible first
so that Algorithm 1 can be directly applied. Table TableAbd stores the set of
explanations together with the associated probabilities computed at each node
representing an abducible. TableProb stores the probability values computed
at nodes representing probabilistic facts and is used by the function Prob of
Algorithm 1. Both are initially empty.

131

Algorithm 6 Function AbdInt: computation of the sets that maximize the
joint probability of the query and the ICs, and of the corresponding probability,
through BDD exploration.
1: function AbdInt(node,TableProb,TableProb, comp)
2: comp ← node.comp ⊕ comp
3: if var(node) is not associated to an abducible then
4: p←Prob(node) . Call to prob
5: if comp then
6: return (1− p, [[]])
7: else
8: return (p, [[]])
9: end if
10: else
11: if TableAbd(node.pointer) 6= null then
12: return TableAbd(node.pointer)
13: else
14: (p0,Abd0)←AbdInt(child0(node),TableProb,TableAbd , comp)
15: (p1,Abd1)← AbdInt(child1(node).TableProb,TableAbd , comp)
16: if p1 > p0 then . Max
17: Abd ← AddNodeToExplanations(var(node),Abd1)
18: Res ← (p1,Abd)
19: else if p1 == p0 then . Same probability
20: Abd ←RemoveDominatedAndMerge(Abd0,Abd1)
21: if Abd is empty then
22: Res ← (p0,Abd0)
23: else
24: Res ← (p1,Abd)
25: end if
26: else
27: Res ← (p0,Abd0)
28: end if
29: Add node.pointer → Res to TableAbd
30: return Res
31: end if
32: end if
33: end function

After the reordering of the BDD, the function AbdInt from Algorithm 6
is called: starting from the root of the BDD, if the current node does not rep-
resent an abducible (i.e., it is the terminal node or a probabilistic node), there
are no more nodes associated with abducibles in the lower levels, thanks to the

132

reordering operation, so the function Prob is called and a set containing only
the empty explanation is returned. In case of a node representing an abducible,
if a value for the current node has already been computed, it is retrieved from
TableAbd . If it is not, the function AbdInt is recursively called on the true
and false child. After the recursion, a max operation (line 16) selects the child
with the highest associated probability: if the probability of the true child is
greater than the probability of the false child, the abducible represented by the
current node is selected and added to the current explanations. Otherwise, it
is not. If it is selected (line 18), the probability at the current node is given by
the probability of the true child (p1). Moreover, the function AddNodeTo-

Explanations builds the set of explanations as the union between the set of
the true child choices (Abd1) together with the current abducible (var(node)).
If the probabilities of the true and false child are the same, we remove (line 20)
the explanations of the true child that are dominated (strict superset) by an
explanation of the false child. This operation is needed to preserve the mini-
mality of the result, otherwise we would obtain sets of explanations that are
not minimal. Removing explanations of the false child that are dominated by
an explanation of the true child is not needed since, after the introduction
of the current node in the explanations for the true child, the explanations
that dominate the ones removed in the false child are no more subsets (the
current node is not present in the false explanations). If, after the removal
of the dominated explanations, the obtained set is empty, the explanations of
the false child (Abd0) and the associated probability p0 are returned, because
the inclusion of the abducible in the explanations of the true child would still
lead to a dominated explanation. Function RemoveDominatedAndMerge

adds the current node to all the explanations of Abd1 and merges them with
Abd0. To speed up the comparisons, the sets of explanations are kept ordered.

The variable Res will be associated with the pair (Prob,Abd) where Prob =

P (q, IC | ∆) and Abd is the set of explanations maximizing that value. Inter-
mediate Res results are stored in TableAbd to avoid recomputing them when
encountering an already visited node.

Once the function AbdInt returns, we remove once again the possible
dominated sets from the set of explanations (Algorithm 5 line 6). Finally,
Algorithm 5 returns the pair (Prob,Abd ′) with Prob = P (q, IC | ∆) and

133

Abd ′ = least(arg max∆ P (q, IC | ∆)) (the set of minimal sets ∆ maximizing
that probability).

In the case where the set of probabilistic facts is empty, Algorithm 5 re-
turns the abductive explanations: a BDD encodes a Boolean function that is a
solution for the abductive problem and, in case of multiple solutions, the dom-
inated ones are removed by the functions RemoveDominatedAndMerge

and RemoveDominated. Thus, the returned solutions are minimal.
To study the complexity of the task, we need to consider that exact infer-

ence in probabilistic logic programs is #P-complete, as already discussed in
Section 7.1. The procedure we described here follows the same steps of ex-
act inference in PLP, consisting of knowledge compilation and traversal of the
obtained structure using a dynamic programming algorithm. Here, we have
an additional step that consists in reordering the variables of the BDD. This
can be performed polynomially (Section 7.1). In the experiments (see Sec-
tion 9.1.3) we empirically noticed that the execution time spent to reorder the
BDD is negligible with respect to its traversal. Checking the subset relation
between two sets can be performed in linear time with respect to the size of the
smallest one, if these are ordered (as in our case). If the sets of explanations
are of sizes respectively m and n, m · n comparisons are required.

To clarify the process, consider Example 20 variant 1 and its BDD rep-
resentation (Figure 9.2c). The algorithm starts at node a and it is recur-
sively called until a node not representing an abducible is found. Nodes b

left and right are reached, and the function Prob returns 0.3 for b left and
0.3 + (1 − 0.3) · 0.6 = 0.72 for b right. At the left e node, max(0.3,0.72) =
0.72 and e is added to the current (empty) explanation. Similarly, at node c

max(0.72,0.6) = 0.72, so c is added to the true child explanation {e}. The
computed probability is 0.72 corresponding to the set of explanations {c,e}.

With the following theorem, we prove that algorithms 5 and 6 together
solve the probabilistic abductive problem.

Theorem 9. Algorithm 5 solves the probabilistic abductive problem.

Proof. (Sketch) The BDDs for the query and the ICs represent the Boolean
formulas according to which the query is true and the ICs are satisfied for the
correctness of the PITA algorithm. By reordering the resulting BDD, we have

134

abducible nodes first in the diagram: this means that, when we reach a prob-
abilistic node, there are no more abducible nodes below, and we can compute
the probability of that node as in PITA. The upper diagram is used to select
the sets of abducibles that provide the largest probability by simply compar-
ing the probabilities of the partial sets coming from the children. Special care
must be taken for the case of equal probability of the two children because in
this case domination must be checked.

9.1.3 Experiments

To test our algorithm, we conducted several experiments on the same ma-
chine described in Section 7.2.1. We selected five synthetic datasets2 taken
from [32]: growing head (gh), growing negated body (gn), blood, probabilistic
graph (graph) and probabilistic complete graph (complete graph). For each
of the five, we conducted three experiments: one with deterministic integrity
constraints, one with probabilistic integrity constraints, and one without in-
tegrity constraints. The results for the first two are almost identical, so in
the plots only one curve is shown. We set the probability for the probabilistic
integrity constraint to 0.5. This value usually indicates weak constraints, but
here we are interested in analysing the execution time, not in the computed
probability. With a different probability value for the constraints we would
get almost the same results in terms of execution time, since the BDD must
be traversed in the same manner.

We selected the five previously listed datasets with the goal of covering a
broad spectrum of applications: with gh and gnb we investigate how a growing
number of atoms in the head and negated literals in the body influences the
execution time. In the gh dataset with integrity constraints, there are mul-
tiple explanations with the same probability. The dataset blood represents a
possible application in the biological domain, while the experiments on graphs
represent the scenario described in Example 18. For all five, we computed
the total execution time which is composed of the time required for construct-
ing, reordering, and traversing the BDD. As we discuss in Section 9.2, there
does not exist comparable systems to the best of our knowledge, so a direct

2All datasets can be found at: https://bitbucket.org/machinelearningunife/palp_
experiments.

135

https://bitbucket.org/machinelearningunife/palp_experiments
https://bitbucket.org/machinelearningunife/palp_experiments

comparison with other solutions is not possible.

Details of the Datasets

The dataset gh is composed of a set of programs where clauses have an increas-
ing number of atoms in the head (from 1 to 14). The most complex program
has 28 clauses and 14 abducibles. For example, this is a program with two
abducibles:

1 abducible aba1.

2 abducible aba2.

3 a0 :- a1.

4 a1:0.5:- aba1.

5 a0 :0.5; a1:0.5:- a2.

6 a2:0.5:- aba2.

The query is a0. For experiments with ICs, we considered an XOR constraint:
only one abducible should be selected. If we consider the previous program,
this can be implemented as:

1 r:- aba1 ,aba2.

2 r:- \+aba1 ,\+ aba2.

3 :- r.

In general, if there are n abducibles, an XOR constraint can be implemented
with

(
n
2

)
+ 2 clauses. In the previous example,

(
2
2

)
+ 1 = 3. The second clause

(line 2) represents the case where no abducibles are considered.
The gnb dataset is composed of a set of programs with an increasing number

(from 1 to 14) of negated atoms in the body of clauses. Every clause has an
abducible in the body. The most complex program has 121 clauses and 16
abducibles. The following is a program with three abducibles:

1 abducible aba0.

2 abducible aba1.

3 abducible aba2.

4 a0:0.5:- a1 ,aba0.

5 a0:0.5:- \+a1,a2,aba0.

6 a1:0.5:- a2 ,aba1.

7 a2:0.5:- aba2.

136

The goal is to compute the probability of a0. In the experiment with ICs, we
tested the edge case where all the abducibles should be selected, a situation
that can be represented with:

1 r:- \+aba0.

2 r:- \+aba1.

3 r:- \+aba2.

4 :- r.

The blood dataset is a set of programs that models the inheritance of blood
type. Each program has an increasing number of ancestors (up to five levels
in the genealogical tree). The most complex program has 67 clauses and 2
abducibles with a variable argument with 20 possible groundings each. For
the experiments with the ICs, we implemented a constraint as a single denial
with variables imposing that father and mother should not have the same blood
type. The goal is a person p having a certain blood type.

The graph dataset is composed of a set of probabilistic graphs following
a Barabási-Albert model. We generated them using the Python networkx

package3, with the number of nodes ranging in [50, 100] with a step of 10 and
parameter m0 (representing the number of edges to attach from a new node
to existing nodes) set to 2. The generation of the Barabási-Albert model is
not deterministic, so we created 100 different graph configurations and av-
eraged the resulting inference times. The complete graph dataset represents
one probabilistic complete graph where each pair of nodes is connected by an
edge. In both datasets, every node has a probability of 0.5 of being connected
to another node if the abducible representing the edge is selected. Thus, the
number of abducibles is the same as the number of edges. The goal is the
existence of a path between nodes 1 and N , where N is the size of the graph
(number of nodes). In the case of a complete graph, the number of edges, and
thus abducibles, is (N · (N −1))/2. For the experiments with ICs, we removed
paths of length two up to five: if path(A,B,L) is the predicate that represents
the path between nodes A and B with length L, this can be imposed with :-

path(0,49,L), L < 6.
All the main features of these five datasets are reported in Table 9.4, where

#p is the number of probabilistic rules, #h the number of atoms in the head
3https://networkx.github.io/

137

https://networkx.github.io/

per clause, #b the number of atoms in the body, #a the number of abducibles,
#IC the number of ICs, #bIC and the number of atoms in the body of ICs per
IC, all parametric in the size n of the program. We reported values only for
the datasets with ICs, since the values for the datasets without ICs are equal
except for the number of ICs that is obviously 0.

Dataset #p #h #b #a #IC #bIC
blood 27 + n {3,4} {2,3} 2 2 2
gh 2n [1,n] 1 n 1

(
n
2

)
+ 2

gnb n · (n− 1)/2 + 1 1 [1,n] n 1 n
graph 2(n− 50) + 96 1 1 2(n− 50) + 96 6 1

complete graph n · (n− 1)/2 1 1 n ∗ (n− 1)/2 3 1

Table 9.4: Details of the datasets.

Discussion of the Results

For the dataset gh, inference times are shown in Figure 9.6a. Inference takes
less than one second for programs with up to 12 abducibles for instances with-
out ICs and up to 11 abducibles for instances with ICs. After that, in both
cases, the execution time exponentially increases.

Execution times for gnb are shown in Figure 9.6b. Until 14 abducibles,
execution time takes less than one second. From that number onwards, it
increases exponentially. For both gh and gnb, experiments with ICs are slower
than the ones without, even if for gnb the results are comparable. Similarly
for the blood dataset (Figure 9.7). In the case of the dataset of size 36, the
execution time exceeds 1 hour, both with and without ICs.

In the graph dataset (Figure 9.8a), the execution time increases as the
number of abducibles increases, reaching exponential growth. In the case of
complete graph (Figure 9.8b), the execution times for graphs of sizes up to 6
is negligible. For size 7, the required time is approximately 18 seconds (with
IC) and 46 seconds (without ICs). Starting from size 8, it exceeds 8 hours.
Here, experiments with ICs are faster than the ones without.

Overall, the experiments with and without ICs have comparable execu-
tion times. In case of complete graph, experiments with ICs are faster: this
probably happens because constraints remove some paths in the BDD.

138

0 2 4 6 8 10 12 14

0

2

4

6

8

Number of abducibles

E
xe
cu
ti
on

T
im

e
(s
)

no ICs
ICs

(a) Results for the gh dataset.

0 5 10 15

0

50

100

150

Number of abducibles

E
xe
cu
ti
on

T
im

e
(s
)

no ICs
ICs

(b) Results for the gnb dataset.

Figure 9.6: Inference time as a function of the number of abducibles for the
gh and gnb datasets, with and without integrity constraints.

10 20 30 40 50

0

500

1,000

1,500

Number of abducibles

E
xe
cu
ti
on

T
im

e
(s
)

no ICs
ICs

Figure 9.7: Inference time as a function of the number of abducibles for the
blood dataset, with and without integrity constraints.

Clearly, scalability is an issue, and the execution time exponentially in-
creases for larger instances. This is unavoidable given the complexity of the
task and the expressivity of the language.

9.2 Related Work

Abduction embeds the implicit assumption that many possible explanations
exist and raises the issue about which one should be selected. Adopting a
purely logical setting, one may prefer the minimal ones. However, different
minimal but incomparable explanations are possible (there is no total ordering

139

50 60 70 80 90 100

0

200

400

600

Number of nodes

E
xe
cu
ti
on

T
im

e
(s
)

no ICs
ICs

(a) Results for the graph dataset.

1 2 3 4 5 6 7

0

10

20

30

40

50

Number of nodes

E
xe
cu
ti
on

T
im

e
(s
)

no ICs
ICs

(b) Results for the complete graph
dataset.

Figure 9.8: Inference time as a function of the number of abducibles for the
graph and complete graph datasets, with and without integrity constraints.

on them). Alternatively, explanations may be selected on the basis of their
reliability, so that non-minimal explanations are not discarded by default. Re-
liability is directly connected with (un)certainty, so there can be a connection
with the domain of probabilistic reasoning.

Some works explicitly address probabilistic abductive reasoning: in [41], the
authors propose a probabilistic approach to rank explanations and investigate
the role of integrity constraints when performing inference. They consider a
probability distribution over the truth values of each (ground) abducible, while
here we set probabilities on integrity constraints.

Some proposals embed the Expectation Maximization (EM) algorithm.
The PRISM [147] system does not provide support for integrity constraints,
but it includes a variety of top-level predicates which can generate abductive
explanations. By introducing a probability distribution over abducibles, it
selects the best explanation using a generalized Viterbi algorithm and it can
also learn probabilities from training data. In essence, it computes the Viterbi
proof (see Section 9.2.1). For a detailed comparison of our approach with MAP
and Viterbi proofs, see Section 9.2.1.

The authors of [80] introduced an abductive inference software that exploits
an EM algorithm working on BDDs to evaluate hypotheses obtained from the
process of hypothesis generation. It works as follows: initially, all the minimal
explanations are generated. Then, they apply the EM algorithm to a formula

140

involving the disjunction of the hypotheses and the conjunction of the ground
instances of the background knowledge, compactly represented as a BDD, to
compute its probability. As the final step, the probability of each hypothesis
is computed as the product of the probabilities of the literals appearing in it.

Other solutions approached abduction from a deductive reasoning perspec-
tive. For example, the one proposed in [93] exploits Markov Logic Networks
(MLN) [132]. MLNs only provide deductive inference, so abduction is car-
ried out by adding reverse implications for each rule in the knowledge base.
However, this increases the size and complexity of the model, and its com-
putational requirements. As MLNs, most statistical relational formalisms use
deduction for logical inference, and so, they cannot be used effectively for ab-
ductive reasoning. The authors of [8] adopt Stochastic Logic Programs [116],
considering a number of possible worlds. Abduction is performed by reversing
the deductive flow of proofs and collecting the probabilities associated with the
involved clauses. Compared to our proposal, programs are restricted to SLP,
and integrity constraints are not considered. Furthermore, an implementation
is currently not available.

The solution presented in [48] describes an original approach to Probabilis-
tic Abductive Logic Programming based on Constraint Handling Rules, that
allows interaction with external constraint solvers. As for our approach, it can
return minimal explanations with their probabilities. They provide an imple-
mentation returning all the solutions and one returning only the most probable
one. Differently from our approach, their system attaches probabilities only
to abducibles, and has limitations in the use of negation, since it must be sim-
ulated by normal predicate symbols (e.g., not_p(X) for ¬p(X)). Overall, the
expressivity of the constraints is more limited than in our proposal.

In the context of Action-probabilistic logic programs (ap-programs) used for
modelling behaviours of entities, in [155] the authors focused on the problem of
maximizing the probability that an entity takes a (combination of) action(s),
subject to some constraints. This problem is called Probabilistic Logic Abduc-
tion Problem, or PLAP. Specifically, they consider the Basic PLAP setting,
where the goal is fixed (a predicate checking reachability of a desired situation
from the current situation) and the answer is binary. Differently from our
approach, in PLAP the program is ground, and variables and constraints only

141

concern probabilities. Another approach that uses ap-programs for abductive
query answering can be found in [156].

Some proposals approached probabilistic reasoning in abduction but did
not make the ALP components probabilistic. In [126], programs contain non-
probabilistic definite clauses and probabilities are attached to abducible atoms.
So, there are no structured constraints, and no integrated logic-based abductive
proof procedure. cProbLog [63] extends regular ProbLog logic programs, where
facts in the program can be associated with probabilities, to consider integrity
constraints. It comes with a formal semantics and computational procedures,
resulting in a powerful framework that encompasses the advantages of both
PLP (ProbLog) and Markov Logic Networks. Differently from our proposal,
constraints are sharp, and thus all worlds that do not satisfy the constraints
are ignored.

The discussion in [86] only considers ICs in the form of (universally quanti-
fied) denials, i.e., negations of conjunctions of literals. Other abductive frame-
works proposed different kinds of integrity constraints: IFF [66] and its exten-
sions, CIFF [162] and SCIFF [3] are based on integrity constraints that are
clauses (i.e., implications with conjunctive premises and disjunctive conclu-
sions). Building on these representations, the solution presented in [1] deals
with probabilistic integrity constraints and proposes an associated distribution
semantics. However, it considers only theories made up of constraints.

In [137] the authors propose an algorithm to learn probabilistic constraint
logic theories (PCLT, a probabilistic extensions of integrity constraints [1])
from interpretations. They focus on the tasks of parameter learning and struc-
ture learning, while we focus on inference. Moreover, the target languages are
different: we consider probabilistic logic programs while they consider PCLT.
Similarly, in [33] the authors provide a sound and complete proof procedure
to perform inference in ALP programs with probabilistic constraints and an
implementation based on CHR. Here, we focus on probabilistic logic programs
extended with abducibles and constraints, and we propose an algorithm work-
ing on BDDs.

A recent proposal [62] extends traditional ALP by allowing several types
of integrity constraints inspired by logic operators and attaching probabilities
to all components in the program (logic clauses, abducibles, and integrity con-

142

straints). Differently from this work, it allows ranking candidate explanations
by likelihood but does not compute their exact probability.

While not explicitly computing with abduction, other systems may have a
relationship to our work in that they merge logic programs, constraints, and
probabilities. Specifically, Answer Set Programming (ASP) [39] may express
denials and choice rules. There is a stream of work on probabilistic extensions
of ASP that can deal with abduction through choice rules. Usually these works
propose specific systems, implementations, or optimizations.

P-log [26] extends ASP by adding random attributes (random variables)
of the form a(X) where probabilistic information (understood as a measure
of the degree of an agent’s belief) about possible values of a is given through
so-called pr-atoms. The logical part of a program represents knowledge which
determines the possible worlds of the program, while pr-atoms determine the
probabilities of these worlds. LPMLN [103] extends ASPs by allowing weighted
rules based on the Markov Logic weighting scheme. LPMLN programs can be
turned into P-log programs to use its reasoning engine. As to the former, the
translation of non-ground LPMLN programs yields unsafe ASPs. As to the
latter, the straightforward implementation of a translation of an LPMLN pro-
gram into an equivalent MLN results in effective computation. PrASP [120]
is a probabilistic inductive logic programming (PILP) language and an uncer-
tainty reasoning and statistical relational machine learning software, based on
ASP. It includes limited support for inference with probabilistic normal logic
programs under non-ASP-based semantics.

9.2.1 Relation with MAP, MPE, and Viterbi

The tasks of Maximum a Posteriori (MAP) and Most Probable Explanation
(MPE) [32], and Viterbi proof [125, 149, 154] require the selection of a subset
of facts to maximizes the probability. However, there are some differences
with the probabilistic abductive problem. Starting from a joint probability
distribution over a set of random variables X, a set of values for a set of
variablesXe ⊂ X (evidence), and another set of variablesXq ⊂ X, Xq∩Xe = ∅
(query variables), the MAP problem consists in finding the most probable
values of the set Xq of the query variables given the evidence about Xe. In
the case the set of the query variables is the complement of the set of evidence

143

variables with respect to the set X, the problem is called MPE.
If we consider an LPAD T , a conjunction of ground atoms e representing

the evidence, and a set of query random variables Xq associated with some
ground rules of T , the MAP problem requires finding an assignment xq to
variables in Xq such that P (xq | e) is maximized. In a formula:

arg max
xq

P (xq | e).

If Xq includes all the random variables associated with all ground clauses of
T, the problem is MPE. Both MAP and MPE differ from the probabilistic
abductive problem, since in the latter the goal is to find a set that maximizes
the probability of the query variables, rather than finding the values of the
query variables. In other words, in the probabilistic abductive problem, the
optimal subset of variables is unknown, while in MAP/MPE this set is known,
and we need to find the associated values. Moreover, integrity constraints are
not allowed neither in MAP/MPE nor in Viterbi proof tasks (discussed below).
Let us clarify these differences with some examples.

Example 25. Given the program T of Example 24 where the two last facts
are made probabilistic (reported here for clarity):

1 eruption :0.6; earthquake :0.3 :- sudden_er ,

fault_rupture(X).

2 sudden_er :0.7.

3 fault_rupture(southwest_northeast):0.5.

4 fault_rupture(east_west):0.4.

and evidence ev is eruption, if all the random variables associated with all
ground clauses are query variables, the MPE task finds4 the most probable
explanation for ev (the one with the highest probability) corresponding to the
assignment xq:

[rule(1,eruption,(sudden_er,fault_rupture(southwest_northeast))),

rule(1,eruption,(sudden_er,fault_rupture(east_west))),

rule(2,sudden_er,true),

rule(3,fault_rupture(southwest_northeast),true),
4This example can be tested at https://cplint.eu/e/eruption_mpe.pl.

144

https://cplint.eu/e/eruption_mpe.pl

rule(4,null,true)]

Facts for predicate rule/3 specify respectively the clause number, the se-
lected head, and the clause body with the selected grounding. P (xq | ev) =

0.6 · 0.6 · 0.7 · 0.5 · (1− 0.4) = 0.0756.

Example 26. Given the program of Example 25 and the evidence ev eruption,
if the query variables are only those associated with lines 3 and 4, the MAP
assignment5 xq is:

[rule(3,fault_rupture(southwest_northeast),true),

rule(4,null,true)]

with probability P (xq | ev) = 0.126, computed as P (xq ,ev)

P (ev)
, where xq is the

composite choice κ = {(C3, X/southwest_northeast, 1), (C4, {}, 2)}, and C3

and C4 are the third and fourth lines of the program.

The Viterbi proof is the most probable proof for a query, i.e., it is a partial
assignment (a partial possible world) such that for all assignments extending
the proof the query is still true. Consider this example:

Example 27. Given the program of Example 25, the covering set of explana-
tions for query eruption is K = {κ1, κ2} with

κ1 = {(C1, {X/southwest_northeast}, 1), (C2, ∅, 1)}

κ2 = {(C1, {X/east_west}, 1), (C2, ∅, 1)}

κ1 corresponds to the partial assignment

[rule(1,eruption,(sudden_er,fault_rupture(southwest_northeast))),

rule(2,sudden_er,true),

rule(3,fault_rupture(southwest_northeast),true)]

having probability 0.6 · 0.7 · 0.5 = 0.21 while κ2 corresponds to the partial
assignment

[rule(1,eruption,(sudden_er,fault_rupture(east_west))),

rule(2,sudden_er,true),

rule(4,fault_rupture(east_west),true)]
5This example can be tested at https://cplint.eu/e/eruption_map.pl.

145

https://cplint.eu/e/eruption_map.pl

having probability 0.6 · 0.7 · 0.4 = 0.168. Since the Viterbi proof is the most
likely explanation in the set K, it corresponds to κ1

6.

9.3 Conclusions

In this section, we extended the PITA system to perform reasoning on prob-
abilistic abductive logic programs. Given an LPAD, a set of abducible facts,
and a set of (possibly probabilistic) integrity constraints, the goal is to find the
probabilistic abductive explanation that maximize the joint probability of the
query and the constraints. We developed an algorithm to solve this task and
tested it on several instances. The code was integrated in a web application
available at https://cplint.eu [2].

6This example can be tested at https://cplint.eu/e/eruption_vit.pl.

146

https://cplint.eu
https://cplint.eu/e/eruption_vit.pl

Chapter 10

Integrating Constraints and
Probability

The integration between logic, probability, and constraints has not received
yet much attention. In this chapter, we propose two new classes of probabilis-
tic logic programs: probabilistic optimizable logic programs (Section 10.1),
where the probabilities of some facts can be tuned to optimize constraints
involving probabilities of atoms, and probabilistic reducible logic programs
(Section 10.2), where some facts can be removed from the theory to satisfy an
objective function subject to constraints. Both these new classes of programs
are a novel contribution, introduced respectively in [13] and [14]. Sections 10.3
and 10.4 conclude this chapter presenting related work and some final consid-
erations on this topic.

10.1 Probabilistic Optimizable Logic Programs

Real-world domains are intrinsically uncertain. Just to name a few: in so-
cial networks, we are uncertain whether two people (or groups, or commu-
nities) know each other, in power networks (and integrated circuits), we are
unsure about the reliability of the involved electrical components, and in road
networks we are uncertain on the distribution of traffic. This partial unpre-
dictability can be modelled with random variables. Some situations may re-
quire considering constraints: in social or collaboration networks we may want
to conduct a successful advertising campaign, to obtain a target probability

147

to reach one specific person; in power networks we would like to minimize the
effect of a system fault by optimally placing some components. Again, in road
networks, we may want to maximize the probability to reach a certain desti-
nation without encountering road construction sites or traffic jams. Clearly,
to solve these problems, there is the need to integrate constraints and prob-
ability. There can be other, more theoretical, domains that can benefit from
this integration, such as Markov networks, where we may want to optimize the
chances to reach a particular state by setting the probabilities of intermediate
transitions, or probabilistic context free grammars, where we may be inter-
ested in finding the probabilities of the involved terms such that the parsing
of a sentence does not change.

We choose to extend PLP since it offers a powerful and rich language where
these situations can be easily represented. Given a probabilistic logic program,
we address the problem of tuning the probabilities of some probabilistic facts
to optimize an objective function subject to constraints on probabilities of
facts and queries. To solve this, we extend the PITA reasoner [139] to allow
the definition of optimizable facts with tunable probabilities and integrate it
with an optimization solver to manage the optimization task. In such a way,
we can retain the full LPAD expressive power, and we do not need to write
from scratch a specialized system.

Following the ProbLog syntax, optimizable facts are denoted with

optimizable [Πlb,Πub] :: a.

where a is a logical atom, and Πlb and Πub are lower and upper probabilities
(Πlb < Πub) for a. Intuitively, the probability of optimizable facts can be set
in the specified range to optimize an objective function subject to constraints.
If the range is not specified, we set it in our implementation to [0.001, 0.999].
Both the objective function and the constraints can be linear or nonlinear
combinations of the probability of (optimizable) facts. As usual in PLP, prob-
abilistic facts, and so optimizable facts, are considered independent. We now
formally introduce a new class of programs to manage optimizable facts and
the task they aim to solve.

Definition 31 (Probabilistic Optimizable Logic Program (POLP)). Given an

148

LPAD L, a set of optimizable facts O, an objective function F , and a set of
constraints C, the tuple (L,O,F , C) identifies a probabilistic optimizable logic
program (POLP).

Definition 32 (Probabilistic Optimizable Problem). Given a probabilistic op-
timizable logic program (L,O,F , C), and a conjunction of ground atoms, the
query (q), the probabilistic optimizable problem consists of two steps:

• Find a probability assignment A∗ to optimizable facts oi ∈ O such that
the objective function is minimized (or maximized) and constraints are
not violated, i.e.:

A∗ = arg min
A, subject to C

(F | A).

• Compute the probability of the query given these assignments

P (q | A∗).

This task can also be considered as parameter learning under constraints.

Consider the following motivating example.

Example 28. Suppose you need to route a signal through a path composed of
intermittent edges (connections), from a source to a given destination. Some
edges have a fixed probability to be active, while some other edges can be con-
trolled, and their probabilities can be set. However, the probability to reach the
destination must be above a certain threshold. Furthermore, the probability of
the edges that can be controlled should be set at the minimal value to reach the
target probability, since setting higher probabilities also requires higher manu-
facturing costs. Moreover, the probabilities of the edges should be similar (i.e.,
their difference should be below a threshold).

This scenario can be represented with a POLP as follows. Consider a
graph with five vertices named a, b, c, d, and e, connected through edge/2

facts (depicted in Figure 10.1b). Suppose that edges between a and b, c and
e, and d and e cannot be controlled and have a fixed probability of 0.9, 0.3

and 0.8 respectively. Edges between b and c and b and d can be controlled
and must have probability in the range [0.3, 0.8]. A path between two nodes is

149

1 0.9:: edge(a,b).
2 optimizable [0.3 ,0.8]::

edge(b,c).
3 optimizable [0.3 ,0.8]::

edge(b,d).
4 0.3:: edge(c,e).
5 0.8:: edge(d,e).
6
7 path(X,X).
8 path(X,Y):- path(X,Z),

edge(Z,Y).

(a) A possible encoding for the motivating exam-
ple.

a b

c

d

e

(b) Graph of the motivating
example.

Figure 10.1: Program for the motivating example, together with the network
graph.

represented by predicate path/2. The POLP shown in Figure 10.1a represents
the described situation.

In Example 28, the goal is to minimize the sum of the probabilities of
optimizable facts (edge(b,c) and edge(b,d)) given that the probability to
reach e from a (path(a,e)) must be above a certain threshold. We set this
threshold to 0.6. Moreover, the difference between the probabilities of the
two optimizable facts should be less than a constant that we set to 0.1. To
simplify the notation, in the remaining part of this section we remove the
explicit probability signature from facts involved in the optimization task. In
other words, if we write, for example, edge(a,b) > 0 in a constraint, we
mean that the probability of edge(a,b) should be greater than 0. Following
Definition 31, we get:

• O = {edge(b, c), edge(b, d)}

• F = edge(b, d) + edge(b, c)

• C = {path(a, d) > 0.6, edge(b, d) ∈ [0.3, 0.8], edge(b, c) ∈ [0.3, 0.8],

edge(b, c)− edge(b, d) < 0.1, edge(b, d)− edge(b, c) < 0.1}

Implicitly, path(a, d) ∈ [0, 1]. Note that the two last expressions of C are an
expanded version of |edge(b, c)− edge(b, d)| < 0.1 (absolute value).

150

To solve the probabilistic optimizable problem, we introduce the new pred-
icate

prob_optimize/4

that receives as input the query (in our example path(a,e)), the objective
function to be minimized (edge(b,c) + edge(b,d)), and a list of constraints.
As output, it returns the probability of the query and the optimal probability
assignment to optimizable facts. So, for Example 28 with the thresholds chosen
before, the query would be

prob_optimize(

path(a,e),

[edge(b,c) + edge(b,d)],

[path(a,e) > 0.6, edge(b,c) - edge(b,d) < 0.1,

edge(b,d) - edge(b,c) < 0.1],

Assignments).

Lower and upper bounds are directly introduced by the facts, without the
need to be specified also in the constraints list. The main idea is that a POLP
induces a function f : Rn → R, where n is equal to the number of optimizable
facts. In Figure 10.1a, n = 2.

As discussed in Section 7.1, probabilistic logic programs are converted into
an alternative form through knowledge compilation. Here, we also convert a
POLP into an alternative form. We choose BDDs, since they are already used
by the PITA reasoner [139]. The result of the compilation of a POLP into
a BDD for Example 28 and query path(a,e) (denoted with pae) is shown in
Figure 10.2, where exy stands for edge(x,y). We can extract an equation from
a BDD by following all the paths, multiplying the nodes encountered during
the traversal and adding all the partial equations of every path. For example,
in Figure 10.2 there are three paths that go to 1 with an even number of
complemented edges. The resulting function is the sum of the product of the
probabilities of the edges of these three paths. If we consider the leftmost path
that goes to one with a regular arc we get the following function:

f(ebc, ebd, eab, ede) = (1− ebc) · ebd · eab · ede.

151

pae

1

ebc

eab

ebd

ece

ede

ebd

ece

eab eab

Figure 10.2: BDD for the program shown in Figure 10.1, where a dashed
line represents a 0-edge, a solid line the 1-edge, and a dotted line the 0-
complemented edge.

Algorithm 7 Function OptimizeProb: optimization of probability of ran-
dom variables.
1: function OptimizeProb(query,objective,constraintsList,algorithm)
2: root ← Compute the BDD for the query
3: paths ← PathsProb(root)
4: query equation ← convert paths into a symbolic equation
5: Simplify query equation
6: Replace constraints from constraintsList involving the query with query equation
7: assignments ← Call the nonlinear optimization solver with [objective, constraintsList, algorithm]
8: prob ← evaluate(query equation | assignments)
9: return [assignments, prob]
10: end function

In the case of PLP, nodes of the BDD are associated with a probability value.
Here, we keep symbolically the nodes representing optimizable facts (i.e., with
their name) while substituting nodes representing probabilistic facts with the
associated probability. So, the previous function becomes

f(ebc, ebd) = (1− ebc) · ebd · 0.72

where 0.72 = eab · ede. In this way, we reduce both the number of variables and
arithmetic operations.

To solve the probabilistic optimizable problem, we start by constructing
the BDD for the query. Then, we extract the equation from the BDD with
Algorithm 8. It goes as follows: first, the BDD is reordered to have nodes

152

Algorithm 8 Function PathsProb: computation of all the paths of a BDD
and of their probability.
1: function PathsProb(root)
2: root′ ← Reorder(root) . BDD reordering
3: TablePaths ← ∅
4: TableProb ← ∅
5: if root′.comp then
6: comp← true
7: else
8: comp← false
9: end if
10: return PathsProbRec(root′, comp,TablePaths,TableProb)
11: end function
12: function PathsProbRec(node, comp,TablePaths,TableProb)
13: comp← node.comp⊕ comp
14: if var(node) is not associated to an optimizable fact then
15: p←Prob(node,TableProb) . Call to prob
16: if comp then
17: Res ← [1− p, []]
18: else
19: Res ← [p, []]
20: end if
21: else
22: if TablePaths(node.index) 6= ∅ then
23: return TablePaths(node.index)
24: else
25: Lp0 ← PathsProbRec(child0(node), comp,TablePaths,TableProb)
26: Lp1 ← PathsProbRec(child1(node), comp,TablePaths,TableProb)
27: Res ← []
28: for all path ∈ Lp0 do
29: if path.prob > 0 then
30: Res ← Res ∪ {path ∪ [node.index, 0]}
31: end if
32: end for
33: for all path ∈ Lp1 do
34: if path.prob > 0 then
35: Res ← Res ∪ {path ∪ [node.index, 1]}
36: end if
37: end for
38: end if
39: Add node.index→ Res to TablePaths
40: end if
41: return Res
42: end function

corresponding to optimizable facts first in the order (on top, next to the root).
Then, the function PathsProbRec is recursively called until a node asso-
ciated with a probabilistic fact (or the terminal node) is encountered. From
there, the function Prob from [60] (Algorithm 1) is called. This returns an
empty paths list and the computed probability. After that, in the nodes asso-
ciated with optimizable facts, the paths at the 0 and 1 children are extended
with the current node index (provided that the obtained path has a probability
greater than 0). Two tables are used to store already computed probability
values and paths, to speed up the process and avoid performing multiple times

153

the same operation. Once the list of all the paths where optimizable variables
are kept with their name is computed, we can extract the equation representing
the query, that we called query equation, as described before: we multiply to-
gether the nodes and the probability for each path, and then add up the results.
Consider a node n: if it appears selected along a path, we multiply the current
result by n. If it is not, by one minus n. Clearly, nodes not appearing in a path
from source to the 1 terminal node does not appear as well in its equation.
For example, for Figure 10.2, the resulting list of paths obtained using Algo-
rithm 8 is [[0.774, [[ebd, 1], [ebc, 1]]], [0.27, [[ebd, 0], [ebc, 1]]], [0.72, [[ebd, 1], [ebc, 0]]]],
where 0.774 = eab ·(ece+(1−ece) ·ede), 0.72 = eab ·ede, and 0.27 = eab ·ece (com-
puted by following the correspondent paths on the BDD), which represents the
equation ebd · ebc · 0.774 + (1− ebd) · ebc · 0.27 + ebd · (1− ebc) · 0.72.

The equation obtained from Algorithm 8 is simplified and substituted in the
constraint(s) involving the query. Then, it is passed, together with all the user-
specified constraints, to the (nonlinear) optimization solver. Finally, once the
optimal values are computed (provided that the problem has a solution), the
probability of the query is computed by evaluating the query equation, where
symbolical variables are substituted with their optimal values. For the program
shown in Figure 10.1a, with the previously discussed constraints, one possible
solution is given by f(0.6352, 0.7352) = 1.3704, with a probability for the query
path(a,e) equal to 0.6. The whole process is reported in Algorithm 7.

We now motivate two crucial steps of Algorithm 7: the reordering of the
BDD and the simplification of the query equation. The reordering of the BDD
is fundamental, since it allows to directly apply the function Prob (Algo-
rithm 1) once we reach a node not associated with an optimizable fact (as
already discussed in Section 9.1.2). In this way, we obtain a compact expres-
sion, where combinations of the probability of random variables are multiplied
by a single numerical value. The simplification of the query equation is also im-
portant for increasing its compactness and reducing the number of performed
operations. To see this, consider again the equation extracted from the BDD
of Figure 10.2, reported here for clarity: ebd · ebc · 0.774 + (1− ebd) · ebc · 0.27 +

ebd ·(1−ebc) ·0.72. We have 10 operations (multiplications and summations) to
perform. If we simplify it, we obtain −0.216 ·ebc ·ebd+0.27 ·ebc+0.72 ·ebd: now
the number of operations is 6. This equation is called multiple times during the

154

solution of the optimization problem, so the time spent to simplify it (which is
often negligible, as we will show later in the experiments) is amortized. Fur-
thermore, this process may also reduce the impact of the BDD structure: the
order of the variables in a BDD determines its size, and there are several BDD
that represent the same equation, more or less compactly. If we directly use
the extracted equation, this may be long and may involve more computations
than necessary.

To study the complexity of the task, we need to consider that answering
probabilistic queries is #P-complete in general (see Section 7.1). The con-
struction of the BDD is as well #P-complete, so the probabilistic optimizable
problem is at least in that class. The reordering of the BDD can be performed
polynomially in its size (Section 7.1.1). We decided to perform only one re-
ordering of the BDD (to move the optimizable variables) and then simplifying
the extracted equation. An alternative approach consists of reordering the
BDD until a compact equation is found. This is clearly infeasible since the
possible orderings of variables are exponential in number.

10.1.1 Experiments

We implemented1 Algorithm 7 using C, leveraging some existing libraries:
NLopt [85] to solve the optimization problem, CUDD [157] for the operations
on BDDs, and the function simplify from the Python SymPy package [111] to
simplify the query equation. The simplification is guided by some heuristics,
and iteratively tries to apply some possible simplifications, even if, in general,
there is no guarantee that the equation with the minimal size is found. Finally,
we used SWI-Prolog [171] version 8.3.15 for the logic part.

To test our algorithm on real-world scenarios, we selected several datasets
from [143] with graph structure representing social networks, collaboration
networks, road connections, and power networks. We pre-processed the data
to convert them into a set of edge(a,b) facts (eventually adding a probability
value or prepending the functor optimizable and an associated probability
range) representing a connection between node a and b. For all the experi-
ments, the goal is to constrain the probability of the paths between a random

1Source code available at: https://bitbucket.org/machinelearningunife/polp_
experiments

155

https://bitbucket.org/machinelearningunife/polp_experiments
https://bitbucket.org/machinelearningunife/polp_experiments

source (Source) and a random destination (Destination) to be greater than
0.8 (provided that the path exists), while minimizing the sum of the proba-
bilities of optimizable edge/2 facts. Notice that some of these may not be
involved in the path from a source to a destination, but it is difficult to spot
them without running the query. We set 50% of the total nodes to be opti-
mizable with a range [0.001, 0.999]. The remaining are probabilistic facts with
probability 0.5. Since we randomly choose source and destination, results are
averages of 10 runs. The query was path(Source,Dest), and we constrain
its probability to be greater than 0.8 with path(Source,Dest) > 0.8, where
path/2 is the predicate shown in Figure 10.1a.

For a second set of experiments, we generate complete graphs of increasing
size. As before, the goal is to constrain the probability of a path between
node index 1 and n, where n is the size of the graph, to be greater than 0.8.
The distribution of optimizable and probabilistic facts is the same as before
(50-50). Differently from the previous programs, here the number of nodes
is substantially smaller. However, the solution of the optimizable problem
is harder, since the graph is fully connected, and this reflects an increasing
number of paths from the root of the BDD to the terminal node, and thus the
extracted equation is long and complex.

For all datasets, we tested three local gradient-based optimization algo-
rithms available in NLopt [85]. Two are based on conservative convex separable
approximations [158], denoted with MMA and CCSAQ, and one is based on
sequential quadratic programming [100], denoted with SLSQP. We conducted
the experiments on the same machine described in Section 7.2.1. For NLopt,
we set the tolerance to 10−5, i.e., the optimization process stops when the
variation of the objective function between two consecutive evaluations is less
than this value. Execution times are limited to 8 hours and are computed with
the SWI-Prolog predicate statistics/2 with keyword walltime.

Results are shown in Table 10.1 and Table 10.2, which report the average
execution time (BDD generation plus simplification and optimization) and
the average value of the objective function (sum of the probabilities of the
optimizable facts) for all three algorithms. For the real-world graphs, we also
tabled the standard deviations of the values of the objective function and
the number of vertices and edges for each dataset. For this experiment, the

156

best results are marked in bold. In Table 10.1, the dataset bio stands for
bio-DM-LC, ca for ca-netscience, E60 for ENZYMES_g60, IIP for internet-
industry-partnerships, p494 for power-494-bus, p662 for power-662-bus, rtf for
reptilia-tortoise-fi-2008, rc for road-chesapeake, rt for rt-retweet, soc for soc-
tribes, and web for webkb-wisc (all from [143]).

Features Time (s) Objective Value StdDev (Obj)
Dataset |V| |E| C M S C M S C M S

bio 658 1129 2595 4934 1072 171 115 2 146 115 1
ca 379 914 2859 2137 387 47 70 2 103 103 1

DD244 291 882 2070 2355 521 76 76 2 103 103 1
E60 10 36 25 30 37 0.057 0.057 0.057 0.114 0.114 0.114
IIP 219 613 1079 690 209 65 127 3 81 66 1
p494 494 586 3026 3898 1052 151 122 2 142 142 1
p662 662 906 16167 7990 2292 109 286 2 183 182 1
rtf 283 418 271 211 48 36 59 1 52 54 1
rc 39 170 47 35 7 5 18 1 13 22 1
rt 97 117 21 13 3 7 17 1 13 15 1
soc 16 58 133 133 11 0.114 0.114 0.114 0.164 0.164 0.164
web 265 530 829 712 146 38 50 2 62 66 1

Table 10.1: Results for the network experiments. C, M and S stand respectively
for CCSAQ, MMA, and SLSQP algorithms. |V| is the number of vertices and
|E| the number of edges respectively.

N C (s) M (s) S (s) C (Obj) M (Obj) S (Obj)
3 1.6 1.7 0.4 1.548 1.548 1.548
4 8.2 2.7 0.4 1.725 0.735 0.735
5 4.5 4.7 0.9 1.391 1.391 1.459
6 10.7 12.4 1.3 0.715 0.715 0.715
7 202.4 193.8 30.1 0.83 0.83 0.83
8 1,360.3 1,600.6 177.6 0.83 0.83 0.83

Table 10.2: Results for the complete graphs experiments.

We decided to keep together the execution times for BDD construction,
query equation extraction and simplification, and optimization since the first
three are negligible with respect to the optimization time. However, the sim-
plification of the equation can be a little more expensive than its extraction
from the BDD, even if it is still in the order of seconds.

Overall, the best algorithm is often SLSQP, with a significant difference
in both terms of execution time and value of the objective function. This is
evident also from the experiments on complete graphs, where it is almost 10

157

times faster than CCSAQ and MMA for larger instances, but with comparable
values for the objective function. For the complete graph of size 9 the execu-
tion time exceeds 8 hours since the nodes have a high degree. Consequently,
the number of paths exponentially increases, and the length of the query equa-
tion explodes. The possible connections are clearly crucial for the execution
time. For example, the dataset bio-DM-LC has approximately 200 vertices
and edges more than the dataset power-494-bus, but the two execution times
are comparable, especially for SLSQP. This also occurs for other networks we
tested, still from [143], such as soc-firm-hi-tech, ia-crime-moreno, lp_adlittle,
and soc-wiki-vote, where some queries do not terminate within 8 hours.

As expected, the bottleneck of this approach is the solution of the optimiz-
able problem. The other operations have, in practice, less or no influence on
the execution time. To solve this, we can, for example, reduce the tolerance of
the algorithm (but at the cost of more imprecise results), leverage techniques
from lifted inference, or adopt representations alternative to BDDs.

10.2 Probabilistic Reducible Logic Programs

While in POLP the goal is to set the probabilities of some facts, there can be
situations where we may want to completely remove facts from the theory. To
solve this, we introduce a new class of programs that we called probabilistic
reducible logic programs, where some facts can be marked as reducible with
the meaning that these can be removed from the program itself. The goal is
to remove as many reducible facts as possible, while maintaining the validity
of some constraints involving random variable values. In this case, differently
from POLP, the goal can be considered as structure learning since we want to
select a subset of the possible facts and not set their probabilities.

We now formally introduce these types of programs and the associated
task. Without loss of generality, we suppose that constraints are of the form
eq > 0, where eq is a (possibly) nonlinear equation involving probabilities of
atoms.

Reducible facts are denoted with the special functor reducible and have
the following syntax:

reducible Π :: a.

158

where a is a logical term with associated probability Π ∈]0, 1]. For uniformity
with LPADs, the syntax reducible a : Π is also allowed.

Definition 33 (Probabilistic Reducible Logic Program). Given an LPAD L,
a non-empty set of reducible facts R, and a non-empty set of constraints C,
the tuple (L,R, C) identifies a probabilistic reducible logic program (PRLP).

Definition 34 (Probabilistic Reducible Problem). Given a probabilistic re-
ducible logic program (L,R, C), the probabilistic reducible problem consists in
finding the minimal subset of reducible facts to keep such that the constraints
in C are satisfied. In formulas:

R∗ = arg min
R⊆R, subject to C

|R|.

This task involves both discrete variables (reducible facts) and nonlinear
constraints, so it can be classified as a mixed-integer nonlinear programming
(MINLP) problem.

The next example motivates the definition of this new class of programs.

Example 29 (Motivating Example - Viral Marketing, adapted from [164]).
We target a set of people (forming a social network) to advertise a new product,
but there is uncertainty on the possible connections. On a higher level, nodes
can represent communities (or groups of people linked by the same interests).
Some time after the beginning of the campaign, due to an economic crisis, the
number of targeted people must be reduced as much as possible, and we need to
choose to stop the campaign towards some of them. The higher is the number
of target people, the higher are the costs. However, we want to maintain a
lower bound on the probability that one or more of them still buy the product.
In general, a person can buy a product if she/he is directly targeted or if some
trusted friend buys the product. This scenario can be encoded by the following
program.

1 reducible 0.9:: target(a).

2 reducible 0.2:: target(b).

3 reducible 0.6:: target(c).

4 reducible 0.7:: target(d).

5

159

6 knows(X,Y) :- friend(X,Y).

7 knows(X,Y) :- friend(Y,X).

8

9 0.8:: friend(a,b).

10 0.7:: friend(b,d).

11 0.6:: friend(a,c).

12 0.5:: friend(c,d).

13

14 buys(X):- target(X).

15 buys(X):- knows(X,Y), buys(Y).

The probabilistic facts friend(A,B) represent that A is friend with B with
a certain probability, and the predicate knows/2 states that A knows B if A is
friend with B or B is friend with A. The reducible facts target/1 represent
the targeting of a person, and they may be removed. These have an associated
probability since the targeting action may fail for some reason. Note that this
value indicates the probability that the fact is true if it is not removed (as hap-
pens for normal probabilistic facts), not the probability that it will be removed.
Finally, the predicate buys(X) states that X buys the product if target(X) is
true or both knows(X,Y) and buys(Y) are true.

For example, with all the four reducible facts included, the probability of the
query buys(d) is 0.920. Suppose that we want to reduce the number of targeted
people while keeping the probability of the query above a certain threshold (set
to 0.9). There are four possible facts to remove and 24 possible combinations.
The optimal combination of people to target is given by

{target(a),target(c),target(d)}

(target(b) is removed from the program) and the probability of buys(d) be-
comes 0.9131.

As already noticed, there are several similarities between POLP and PRLP.
Also here, to solve the probabilistic reducible problem, we extend the PITA
reasoner [139] and introduce a new predicate called prob_reduce/4 with the
signature

prob_reduce(AtomList,ConstraintsList,Algorithm,Result)

160

where AtomList is a list of atoms involved in the constraints, ConstraintsList
is a list containing one or more (possibly nonlinear) constraints, and Algorithm

is the selected algorithm (exact or approximate). All these three are input vari-
ables. The computed result (the set of selected reducible facts) is unified with
the variable Result. As before, we remove the explicit probability signature:
the name of an atom involved in constraints stands for its probability. If
we consider the program shown in Example 29 and we want to maintain the
probability of buys(d) above 0.9, we will call prob_reduce/4 as:

prob_reduce(

[buys(d)],

[buys(d) - 0.9 > 0],

exact,

Result

).

The exact keyword selects the GEKKO solver [31] for the optimization prob-
lem. Alternatively, we implemented an approximate greedy algorithm that
can be selected with the keyword approximate: it iteratively removes the re-
ducible fact that provides the least difference in probability for all constraints
when removed.

The whole pipeline is like the one for POLP, and is shown in Algorithm 9.
First, we extract all the equations for the terms in AtomList by computing
the BDDs and traversing them. The results are stored in a list. Since there
can also be normal probabilistic facts in the program, the BDD is reordered to
move them at the bottom. In this way, we can apply the function Prob (Al-
gorithm 1) and obtain a more compact equation, as discussed in Section 10.1.
After that, the terms in constraintList are replaced with the corresponding
equations (line 10) and the selected solver is called. The exact solver leverages
GEKKO [31], while the approximate works as follows: at each iteration, we
compute the difference between the left part of the constraint (i.e., the one
before > 0) with and without every reducible fact that has not been already
removed (line 22 function ComputeDifference). Then, we try to remove
the constraint that gives the least reduction (line 29). If this violates one of
the constraints, the iteration stops. Otherwise, its probability is set to 0 and
these steps repeat until no more removals are possible. For the approximate

161

algorithm, in case the removals of two facts give the same probability value, the
first according to the order of appearance is selected. For the exact algorithm,
the choice is managed by the solver itself.

If we consider the query buys(d) of Example 29, with all four reducible
facts included it has a probability of 0.92. At the first iteration of the ap-
proximate algorithm, we obtain from the function ComputeDifference the
following values for the four reducible facts: [0.0747, 0.0069, 0.0232, 0.1866].
Then, the function RemoveOne is called: the second variable gives the least
reduction while keeping the constraint true (0.920 − 0.0069 − 0.9 > 0), so it
is removed by setting its probability to 0. At the next iteration, the com-
puted values are [0.0928,−, 0.0262, 0.2027] (− is a placeholder to denote a
variable that has already been removed), and the probability of the query is
0.9131. None of these variables can be removed, since we would get respec-
tively -0.07978, -0.0131, and -0.1896, all being less than 0. So, the solution
{target(a),target(c),target(d)} is returned. For this example, the ap-
proximate algorithm also computes the optimal solution. However, in general,
there are no guarantees on the optimality. The discussion about the complexity
of Algorithm 9 is like the one provided for Algorithm 7.

10.2.1 Experiments

We implemented2 Algorithm 9 using C for the construction of the BDDs,
Python for the integration and implementation of the solvers, and Prolog
(SWI-Prolog version 8.3.15) for the logic programming part. To test the ef-
fectiveness of our proposal, we conducted several experiments on the same
machine used in sections 7.2 and 10.1.1. We set the maximum execution time
to 8 hours and the maximum memory usage to 8GB. We used the GEKKO
APOPT3 solver with the following options: minlp_maximum_iterations =

100000, minlp_branch_method = 2, minlp_as_nlp = 0, minlp_integer_tol
= 0.00005, minlp_gap_tol = 0.00001, nlp_maximum_iterations = 5000,
and minlp_max_iter_with_int_sol = 5000. Execution times are real time

values obtained using the bash command time.

2The implementation and the datasets are available at: https://bitbucket.org/
machinelearningunife/prlp_experiments

3https://gekko.readthedocs.io/en/latest/global.html

162

https://bitbucket.org/machinelearningunife/prlp_experiments
https://bitbucket.org/machinelearningunife/prlp_experiments
https://gekko.readthedocs.io/en/latest/global.html

Algorithm 9 Function MinimizeReducibles: minimizing the number of
reducible facts.
1: function MinimizeReducibles(atomList,constraintsList,algorithm)
2: equationsList ← []
3: for all atom ∈ atomList do
4: bdd ← ComputeBdd(atom)
5: reorderedBdd ← Reorder(bdd)
6: pathsList ← ComputeAllPaths(reorderedBdd)
7: symbolicEquation ← ConvertIntoSymbolicEquation(pathsList)
8: equationsList ← equationsList ∪ [symbolicEquation]
9: end for
10: list ← ReplaceWithSymbolicEquation(constraintsList,equationsList)
11: if algorithm is exact then
12: assignments ← SolveExact(constraintList) . Compute exact solution
13: else . Approximate algorithm is used
14: factsList ← [atom,true] for all atoms in atomList
15: endOpt ← false
16: while endOpt is false do
17: gl ← []
18: for all constraint in constraintsList do
19: g ← []
20: for all [fact,selected] in factsList do
21: if selected is true then
22: g ← g ∪ ComputeDifference(fact,factsList,constraint)
23: else
24: g ← g ∪ {-1}
25: end if
26: end for
27: gl ← gl ∪ g . Add the current list of facts to the total list
28: end for
29: index ← RemoveOne(gl,constraintsList)
30: if index == -1 then
31: endOpt ← true . No more variables can be removed
32: else
33: factsList[index].selected = false
34: end if
35: end while
36: assignments ← factsList
37: end if
38: return assignments
39: end function

We tested our algorithm on datasets having a graph structure. The edges
are represented with friend/2 facts represent knowledge relationships. From
these, we created programs with the following structure:

1 buys(X):- target(X).

2 buys(X):- knows(X,Y), buys(Y).

The structure of the predicate knows/2 distinguishes two versions of the data-
sets: an easy one (directed graph) and a hard one (undirected graph). For the
former, the predicate knows/2 has the following structure (directed graph)

1 knows(X,Y):- friend(X,Y).

while for the latter, it has an additional clause (undirected graph)

163

1 knows(X,Y):- friend(Y,X).

In both cases, every target/1 fact is reducible and has an associated proba-
bility of 0.5. Overall, all the programs have this structure, but with a different
number of reducible and probabilistic facts.

To test the performance of our approach when programs have an increas-
ing number of groundings, we generated complete graphs (abbreviated with
KN) up to size 15. By default, we used the exact solver and fallback to the
approximate one if a solution cannot be computed (this is often the case, since
the obtained equations are long and complex, except for smaller instances).
Results are shown in figures 10.3 and 10.4. The first one shows the execu-
tion times for query buys(1) - 0.5 > 0 for both directed and undirected
instances. The exact solver is feasible only for graph sizes up to 8 since, for
larger graphs, the solver returns an error caused by the excessive length of the
equation. The accuracies are shown in Figure 10.4, computed as the differ-
ence between the lowest acceptable value of the probability and the computed
value. For example, if the constraint is buys(1) - 0.5 > 0 and the computed
value for buys(1) is 0.6, the gap is 0.6−0.5 = 0.1. We selected values starting
from 0.5 (as in this example) up to 0.9 with a step of 0.1 for the threshold
probability. For the directed KN graph with value 0.9 and size 5 the gap is neg-
ative, meaning that, even without removing any fact, the probability cannot
be greater than this threshold.

As expected, after a certain size (9 for undirected and 15 for directed), the
execution time explodes, due to an increasing number of groundings. The gap
is about 0.05 for all the values except for 0.6, where it is approximately 0.15
for both directed and undirected. This may be due to the structure of the
graph that does not allow a combination of facts such that the probability can
be so low.

As a second experiment, we used the probabilistic graph dataset taken
from [32], consisting of a set of 10 graphs with a number of edges ranging
between 50 and 500 with step 50. Overall, there are 10 different graphs for
every size, since their generation is not deterministic (they are generated using
a Barabási-Albert model where the number of edges to attach from a new
node to existing nodes was set to 2). All the edges are reducible facts with
an associated probability of 0.9, even if some of them may not be involved in

164

4 6 8 10 12 14 16

0

1,000

2,000

3,000

4,000

Size of the graph

E
xe
cu
ti
on

T
im

e
(s
)

KN

Directed
Undirected

Figure 10.3: Execution time for directed and undirected complete graphs.

4 6 8 10 12 14 16

0

5 · 10−2

0.1

0.15

Size of the graph

G
ap

KN Directed

0.6
0.7
0.8
0.9

(a) Results for directed graphs.

5 6 7 8 9
0

5 · 10−2

0.1

0.15

Size of the graph

G
ap

KN Undirected

0.6
0.7
0.8
0.9

(b) Results for undirected graphs.

Figure 10.4: Computed gaps of the approximate algorithm on both directed
and undirected complete graphs.

the query. The goal is to constrain the probability of the path between node
of index 0 and index size of the graph - 1 to be greater than 0.5. Results of
the approximate algorithm are shown in Table 10.3, where a dash indicates
that a solution cannot be computed given the specified time and memory
constraints. Overall, the execution time increases as the size of the graph
increases. However, the variance increases as well, since nodes can be more or
less connected, possibly generating very complex structures.

Finally, to test in detail the exact solver, we selected the datasets ca-
netscience, power-494-bus, rt-retweet, and webkb-wisc from [143]. As before,
these programs consist of directed graphs, and the goal is to constrain the
probability to reach a random destination from a random source to be greater

165

Dataset 50 100 150 200 250 300 350 400 450 500
1 1.88 1.979 802.418 3523.055 3.121 1111.115 171.09 - 11.668 115.06
2 1.77 30.293 2.459 1249.843 7.834 4.052 6.264 7.179 301.37 -
3 4.78 115.845 3.58 14533.699 540.74 9.714 98.1 3.939 5.995 8265.052
4 1.8 2 3.823 190.697 - 103.688 30.582 192.336 145.644 16.393
5 26.33 1.756 1422.327 - 92.451 1692.265 - 9241.692 - -
6 1.669 2.027 1.981 4308.51 174.596 423.971 28.414 250.672 - -
7 2.7 16.654 1456.541 4.068 3.959 4.897 4.098 100.503 61.22 11.634
8 1.768 492.654 251.157 149.31 73.821 43.264 4689.642 21.82 18 17.5
9 1.705 1.772 2.131 2.431 459.622 57.278 11.003 78.667 10.95 136.639
10 2.852 2.624 88.738 3.39 6.841 330.987 419.668 92.207 - 627.594

Mean 4.72 66.76 403.51 2662.78 151.44 378.12 606.54 1109.89 79.26 1312.83
Variance 58.55 23642.07 359016.56 22501362.06 42731.49 330434.32 2362332.53 9305915.23 12070.10 9445459.51

Table 10.3: Execution time for the probabilistic graph dataset of [32].

Dataset Nodes Edges (total) Execution Time (s)
ca-netscience 379 914 3.80
power-494-bus 494 586 1.94
rt-retweet 97 117 1.83
webkb-wisc 265 530 7.17

Table 10.4: Results for the exact algorithm on graphs from [143].

than 0.1. Both probabilistic and reducible facts (that are equally split) have
an associated probability of 0.9. The results shown in Table 10.4 are averages
of 10 runs, all with the same settings but different sources and destinations.
Since, for these datasets, the ratio between the number of edges and the num-
ber of nodes is small, the resulting BDD for the query is small, as evident from
the execution time (seconds).

Overall, the exact algorithm can be applied only for small domains (or
with a compact BDD representation), since the complexity of the equation
rapidly increases. In general, the approximate algorithm seems to provide a
good trade-off between accuracy and execution time.

10.3 Related Work

Work on parameter learning is related to POLP. In parameter learning, the
task is to learn the probabilities of probabilistic facts given a set of positive and
negative examples. However, explicit constraints on probability of probabilistic
facts are usually not considered. Here, we learn the parameters of the program
(probabilities) starting from a set of constraints, and so there is no need for
a training set, since our algorithm solves a constrained optimization problem.

166

For parameter learning, one of the first approaches was proposed in [146],
where the goal is to find the maximum likelihood parameters of special atoms,
called msw atoms, not present in the dataset. The authors propose a naive
implementation of the EM algorithm, later improved in [150]. EM is also used
in [34] to learn the parameters of LPADs represented as BDDs. Another tech-
nique is LFI-ProbLog [72] where parameters of ProbLog programs are learning
from partial interpretations. LFI-ProbLog is included in ProbLog2 [64].

Gradient-based methods for parameter learning are used in [71], where
derivatives are computed directly on the BDD representation of the program.
Here, we also use gradient-based methods, but we do not compute gradients on
the BDD. Rather, we use the equation obtained from the BDD (query equa-
tion), after simplification, in all the computations. In this way, we traverse the
BDD only once. A related idea can be found in [96], where the authors present
aProbLog, an extension of the programming language ProbLog [60], that can
be used to solve different tasks. One of these is sensitivity analysis, i.e., seeing
how a change in the probability of the facts affects the probability of a query.
However, they cite the task in passing, and they do not consider further con-
straints on the probability of the variables. The same problem is discussed
in [122]. A similar line of research is represented by DTProblog [164], where
probabilistic logic programs are extended with Boolean decision variables as-
sociated with a cost. The goal is to maximize an expected utility by selecting
an optimal subset of these variables. Also in this case, no constraints are
considered.

Another related solution is the one presented in [102], where the authors in-
troduced an algorithm to combine PLP and Constraint Programming to solve
decision-theoretic tasks. As in that paper, we use a compact representation
of the probabilistic logic program (they use SDD, we use BDD), and extend
an already existing tool (they extend ProbLog, we extend PITA). However,
they restrict the type of constraints involved (linear constraints over sum of
Boolean decision variables), and they do not consider the computation of op-
timal probability values.

Stochastic constraint programming (SCP) [170] is a technique that com-
bines probability and constraints. SCP programs are composed of decision
variables that can be set and stochastic variables that follow a probability dis-

167

tribution. The goal is to find a subset of decision variables such that constraints
are satisfied with a certain probability. Here, we do not consider probabilistic
constraints (we have hard constraints that must be always true) and we search
for optimal probability values for optimizable facts that are present in the
program (they cannot be removed, as decision variables) but with a tunable
probability. Furthermore, these approaches are often tailored to solve specific
problems such as games [5], scheduling [106], or sequential planning [24].

An idea related to PRLP can be found in [58], where the authors propose
an algorithm to find the smallest (with less than k clauses) ProbLog program
that maximizes the likelihood of a training set. The algorithm removes one
clause at the time, starting from the one that yields the highest likelihood
when removed. Differently from this work, we use a set of constraints to guide
the search, instead of a training set, and we do not restrict a priori the number
of clauses (in our case, facts). Our target is to find the minimal set of facts,
while their goal is to maximize the likelihood.

PRLP are also different from (probabilistic) abductive logic programs [12]:
in abduction, the goal is to find a subset of facts (often minimal) that explains
a query, but usually constraints between probability values are not considered.
Similar differences can be found with the MAP and MPE task [32], where the
goal is to find the most probable value of a set of variables given evidence on
other variables, and with k-best [95] and Viterbi task, where the goal is to find
the best k explanations for a query (in Viterbi, k is set to 1).

10.4 Conclusions

In this chapter, we introduced two new classes of probabilistic logic programs:
probabilistic optimizable logic programs [13] and probabilistic reducible logic
programs [14]. The tasks solvable with these new proposals are similar to
parameter and structure learning respectively. For both, we considered con-
straints on random variable probabilities and then we defined a constrained
optimization problem. We introduced several motivating examples and con-
ducted numerous experiments to test the performance of the proposed algo-
rithms on real-world scenarios. Overall, these two classes widen the tasks
solvable with PLP and represent a step towards the integration between prob-

168

ability and constraints.

169

170

Part IV

Applications of Probabilistic Logic
Programming

171

Chapter 11

Blockchain

Initially proposed in 1990 [74] as a method to securely timestamping digi-
tal documents, blockchain technology has been mass adopted after Satoshi
Nakamoto published the paper Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem [117] (even if the term blockchain was never used, as a unique word, in
it). In this chapter, we introduce the basic concepts of blockchain systems,
focusing in particular on Bitcoin and Ethereum.

11.1 Structure

A blockchain is a distributed ledger shared among the users. This ledger is
composed of several blocks which are collections of transactions. All the blocks,
except for the first one called genesis block, have a single ancestor. Transactions
in a block are ordered and linked together by cryptography functions, an idea
that goes back to 1990 [74]. Blocks are composed of a header and a body: the
header contains some information to check the consistency of the transactions
stored in the body. One of the first, and currently most famous, blockchain is
the Bitcoin blockchain [117], proposed in 2008, that manages more than three
hundred thousand transactions per day1.

Usually, a blockchain has an associated currency, called cryptocurrency,
used to perform transactions and interact with the system. For all blockchain
types, users (and non users) can download a full copy and validate transac-

1https://www.blockchain.com/it/charts/n-transactions

173

https://www.blockchain.com/it/charts/n-transactions

tions themselves, since the blockchain is public2. The validation of blocks and
transactions follows different steps, according to the technology adopted in the
considered blockchain. One of the main drawbacks of blockchains is that, due
to the huge number of transactions issued every day, tracking them requires
significant computational power and huge storage.

The three properties that every blockchain should have are: scalability,
decentralization, and security. However, as the blockchain trilemma states,
only two of these three can hold at the same time.

We now focus on the Bitcoin blockchain and illustrate some of its features.

11.1.1 Bitcoin

In Bitcoin, users are identified by an address (composed of a public key and
a private key) and can send transactions to other users. Usually, transactions
consist of a movement of bitcoin from a user to another user. A transaction
is composed of a set of input addresses and a set of output addresses. The
value sent as input is often greater than the output value: the difference is
collected as a transaction fee by the user (miner) that decides to include it
in a block. Users are called peers, and some of them are miners. To append
a block to the blockchain, a miner needs to provide a Proof of Work (PoW,
hashcash in case of Bitcoin). PoW is an algorithm belonging to the family of
consensus algorithms and consists in solving a hard computational problem,
namely finding a hash for a block such that its value is less than a certain
predefined target called difficulty. The difficulty value is dynamically adjusted
to keep the number of discovered blocks constant over time (approximately
one block every ten minutes). The PoW can, however, be easily verified so
that every user can check the validity of the proposed block.

The varying difficulty is the main bottleneck that limits the scalability
of the system. To speed up computations, usually miners group themselves
into mining pools3, to aggregate their computational power (also called hash
rate) and to increase the probability of finding a valid hash, since providing

2Here, we do not consider private blockchains or other hybrid solutions that hide part of
the data.

3In this dissertation, we will always use the term miner to indicate a mining pool, unless
otherwise specified.

174

a solution of the PoW without sharing resources is almost impossible. This
aggregation, however, increases the centralization, and goes against the core
decentralization principle of this blockchain. Moreover, the formation of min-
ing pools increases the probability of attacks [142]. Despite these drawbacks,
the bitcoin blockchain is currently completely mined by pools4.

The whole blockchain is stored in a peer-to-peer way, and factors such
as network latency can generate forks, i.e., a bifurcation in the flow of the
main chain. However, only the longest chain is the one considered valid. In
case of two chains of the same length, the next block that will be discovered
will have only one of the two as ancestor, so it will identify the main chain.
The presence of several alternative chains could be an indicator of a double
spending attack [22, 124, 142], a situation where a user wants to spend the
same amount of currency multiple times.

Once a user issues a transaction, this goes into the mempool, the set of
unconfirmed transactions. Miners select some of them to be included into a
block and starts the PoW. A constraint in Bitcoin imposes that the size of a
block must be less than 1Mb (even if there are some possible variations that we
will discuss later). If a miner can solve the problem, its block will be added to
the blockchain, and it receives the fees present in the included transactions plus
a reward (through a coinbase transaction) in bitcoin. Transactions included in
blocks are considered confirmed. The block reward decreases as the number of
blocks increases, to avoid the generation of an infinite number of bitcoin. Users
can attach high fees (usually measured in satoshi per byte, where 1 satoshi =
10−8 bitcoin) to prioritize transactions, since miners would gain more profits by
including them. However, there must be a balance between fees and priority:
if fees grow too quickly, users may be unwilling to pay such a high amount for
a transaction, and consequently they will abandon the system.

Different elements complicate the computation of the optimal amount of
fees for a transaction. Suppose there are four transactions waiting to be in-
cluded in a block: A with size 150kb and fee 150, B with size 250kb and fee
300, C with size 350kb and fee 450, and D with size 450kb and fee 600. These
values are greater than the average transaction size, but they are used only to
illustrate the process. We can compute the ratio fee/size (a quantity called fee

4https://btc.com/stats/pool

175

https://btc.com/stats/pool

rate) for all the four and obtain 1 for A, 1.2 for B, 1.28 for C, and 1.3 for D. If
we sort the transactions in descending order of fee rate, we get D, C, B, and A.
A miner could select the ones with the highest associated fee rate to maximize
the profits. However, in this case, transactions D, C, and B cannot be stored
in the same block since their total size (450 + 350 + 250 = 1050kb) is greater
than the block limit (1000kb = 1Mb). Consequently, the miner needs to solve
a knapsack problem to select the best transactions, a well-known NP-complete
problem.

Consider now instead a situation where there are different dependent trans-
actions. For example, suppose that C depends on A (it spends an output of
A). In this case, to get the reward from C, the miner should include both A
and C into the block, even if A has the lowest fee rate of the pool of avail-
able transactions. This scenario is called “Child Pay for Parent”, where a child
transaction (C) with a higher fee rate helps the parent transaction (A) with a
lower fee rate, by spending one of its outputs.

Moreover, the computation of the optimal fee rate is complicated by miners
mining empty blocks, to avoid wasting time checking the validity of the last
block and selecting a set of transactions. Also forks complicate the fee esti-
mation, since the invalidated transactions can be considered again. Clearly,
block discovery time and number of transactions issued per second influence
the computation.

There are several applications to compute the optimal fee rate. One of
them is available in Bitcoin Core5 (a Bitcoin client) and is accessible using the
command estimatesmartfee. The output of the command is the optimal fee
rate to attach to a transaction to have it confirmed with high probability within
N blocks, where N is selected by the user and can be up to 1008 (at the moment
of writing). In a nutshell, the algorithm6 works as follows: transactions are
grouped into exponentially spaced buckets. Each bucket boundary is 1.05
times greater than the previous one. The computation of the optimal value is
based on the number of transactions that enter in each bucket and the number
of transactions included in a block within the target. The process is further
refined and gives more importance to recent blocks than older ones.

5https://bitcoin.org/en/bitcoin-core/
6Code available at https://github.com/bitcoin/bitcoin/blob/master/src/policy/

fees.h

176

https://bitcoin.org/en/bitcoin-core/
https://github.com/bitcoin/bitcoin/blob/master/src/policy/fees.h
https://github.com/bitcoin/bitcoin/blob/master/src/policy/fees.h

Despite all the difficulties arising when considering fees, these cannot be re-
moved: removing fees from transactions will allow some malicious users to send
an infinite amount of transactions (since they are free), completely blocking
the system.

Another feature that limits bitcoin scalability is the maximum size of a
block, fixed to 1Mb. This value is at the heart of a very controversial topic7:
an increase of the size will allow the system to process a larger number of
transactions, but at the cost of higher computational requirements to store
and manage the blockchain, reducing its decentralization. Moreover, forks will
be more likely to happen, due to a slower block propagation time. Finally, a
change in the block size will require a hard fork (a drastic change), since it
would be backward incompatible, increasing the probability of system failure
if some nodes do not update the protocol, and reducing the reliability of the
overall system.

During the years, several proposals (called Bitcoin Improvement Proposals,
BIPs) tried to increase the number of Bitcoin transactions that can be managed
per second. Segregated Witnesses (SegWit) was one of the first, proposed at
the end of 20158. This solution suggested to increase the capacity of a block by
removing signature data from a transaction, and by introducing the concepts
of Virtual Size and block weight, measured in weight units instead of bytes.

Currently signatures are needed for executing transactions. If a user wants
to send transactions from multiple addresses to one, each of these require
its own signature, increasing the size of the transaction and making it more
expensive. A current proposal that will solve this problem is the introduction
of Schnorr signatures [109, 152]: after their implementation, users controlling
multiple addresses that want to gather funds from them to spend in a single
transaction will need only one signature, making the transaction lighter.

Schnorr signatures combined with SegWit will increase the Bitcoin scalabil-
ity, but the system will still be limited. There are alternative solutions under
rapid development that aim to construct a new layer on top of a blockchain,
without modifying the structure of the blockchain itself. Lightning Network
(LN) [129] is one of them, and we discuss it in Section 11.1.3.

7https://en.bitcoin.it/wiki/Block_size_limit_controversy
8https://en.bitcoin.it/wiki/Bitcoin_Improvement_Proposals

177

https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Bitcoin_Improvement_Proposals

At the moment of writing, all blockchains are affected by some problems.
PoW-based blockchains, such as Bitcoin [117] and Ethereum [173] are secure
and (theoretically) decentralized, but not very scalable [55], since their consen-
sus algorithm requires solving a hard computational problem. Currently, Bit-
coin can handle approximately 7 transactions per second, while Ethereum 15.
This is clearly a limitation and prevents their adoption as every-day payment
methods. Alternative consensus algorithms such as Proof of Stake (PoS), Del-
egated Proof of Stake (DPoS) are more scalable but less decentralized. There
is a plethora of possible consensus algorithms, see [44] for an overview and a
detailed comparison.

Here, we surveyed some of the basic concepts associated with Bitcoin
needed to understand the experiments that will be discussed in the next sec-
tions. We only scratched the surface of Bitcoin: for an in-depth and compre-
hensive treatment see [4].

11.1.2 Smart Contracts

Several blockchain systems allow running code in them using smart contracts,
initially proposed in 1994 [160] as computer protocols to facilitate a self-
enforcing agreement between two parties. Essentially, smart contracts are pro-
grams written in a quasi-Turing9 complete programming language that runs
in a blockchain environment. In the case of Ethereum, the main language is
Solidity, but there are some alternatives. Bitcoin also has a language for smart
contracts called Bitcoin script, but it is intentionally not Turing-complete.

The key feature is that users can enforce contracts without the need of
a central authority and without reciprocal trust. The execution of a smart
contract is deterministic, so it always produces the same result when provided
with the same inputs, even if there are some solutions to provide, for example,
randomization. Moreover, in most of the blockchain systems, smart contracts
cannot be modified, so an error in the code cannot be easily fixed. For this
reason, several tools have been proposed to analyse them to guarantee (at least
in principle) the desired behaviour; these will be discussed in Section 12.1.

9The programming language itself is Turing complete, but the execution of a smart
contract requires the usage of a certain amount of currency. Once the associated currency
is terminated, the execution stops, and hence the quasi-Turing completeness.

178

11.1.3 Lightning Network

There are several proposals to increase the number of processed transactions,
such as sharding [108] and sidechains [25]. For Bitcoin, one of the currently
most promising solutions is the Lightning Network [129] (LN). In the following,
when we use the term Lightning Network, we consider the Bitcoin Lightning
Network, even if the concept of LN can be extended to other blockchains.

The goal of LN is to build a layer of nodes on top of an underlying
blockchain, where transactions can be sent and processed in a faster way.
In these systems, users can open a bidirectional payment channel through a
transaction on the main chain. The opening transaction locks some funds on
the channel that can be used for small and fast payments without interacting
with the main blockchain. This allows users to avoid paying high transaction
fees and waiting long confirmation time. For security and privacy reasons,
the balance of a channel and its funds distribution at the two ends are un-
known10. The state of a channel (its balance) can be updated with a com-
mitment transaction not published on the main chain. To close the channel,
the two involved parties must agree on its balance and then publish a closing
transaction. However, in the case of uncooperative parties, Hashed Timelock
Contracts (HTLCs)11 ensure that funds are not lost. Moreover, payments can
also be routed towards nodes not directly connected, provided that there exists
a path between them, using multi-hop payments. Again, HTLCs ensure the
security of these, in case, for example, an intermediate node refuses to forward
the payment.

When the source and the destination of a payment coincide, the routing
operation is called rebalance. This operation involves a circular payment, so it
is useful when a node wants to refill a channel.

Payments are usually associated with small fees for intermediate nodes.
These can be of two types: fee base and fee rate. The former is fixed while the
latter is proportional to the size of the routed payment. Both are (usually)
requested from a node that forwards a payment. The capacity of a channel is
expressed in satoshi (10−8 bitcoin), the fee base in thousandths of a satoshi,

10https://github.com/lightningnetwork/lightning-rfc/blob/master/
07-routing-gossip.md

11https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

179

https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

and the fee rate in millionths of a satoshi.

180

Chapter 12

Analysis of Blockchain-related
Scenarios

In this chapter, we illustrate how several blockchain-related scenarios can be
modelled using Probabilistic Logic Programming. Sections 12.1, 12.2, and 12.3
discuss respectively how we can leverage PLP to model smart contracts, a
centralization of the hashing power with a subsequent double spending attack,
and transaction fees. Finally, Section 12.4 introduces both a deterministic and
a probabilistic model of the (Bitcoin) Lightning Network. The content of this
chapter is novel and was introduced in [10, 11, 16, 17, 18, 20, 22].

12.1 Smart Contract Analysis

In this section, we focus on smart contracts written in Solidity, a language
that can be compiled into bytecode and executed on the Ethereum Virtual
Machine (EVM) [40]. However, the model we propose can be extended to a
general programming language. As said before, the code of a smart contract
cannot be modified once deployed on a blockchain. Moreover, its execution of
is deterministic. For these reasons, several tools to analyse them have been
proposed during the years. For example, the authors of [107] performed static
analysis on the code, while the authors of [89] used a symbolic model to check
the execution flow. Another proposal is [76], where the authors defined the
EVM in a language that can be understood by a theorem prover, used to
ensure the correctness of the operations. All these solutions, however, can

181

detect bugs but cannot provide a quantitative impact of errors in the code.
In [43] the authors develop a new framework to extract utility values from a
smart contract through game theory considerations. Differently from them,
we propose a PLP encoding of Solidity smart contracts that allows us to study
how a bug quantitatively affects the execution. In this way, we can rely on the
well-studied semantics of probabilistic logic programs, and we do not need a
new specialized framework.

The interactions with a smart contract can be considered as probabilistic
since the involved parties are not under the control of a central authority.
The issuer may be interested in studying how the obtained profit evolves,
while the users may be interested in the possible rewards they would get by
interacting with it (for example, in the case of gambling games). We can
compute these values by translating a smart contract into a probabilistic logic
program, where each function corresponds to a predicate. This process involves
two steps: first, the smart contract is translated into a logic program (Prolog),
then probabilistic facts are added. The translation from a smart contract
function to a logic predicate is straightforward: every function corresponds to
a predicate with the same name and same number of arguments. Moreover, if
needed in the execution flow, the members of the globally msg object, such as
msg.sender or msg.value can be added as input arguments. The return value
of the function (if present) is as well added to the arguments of the predicate.

The following code shows a simple Solidity smart contract simulating a
bank.

1 contract simpleBank {

2 address owner;

3 mapping(address => uint) balances;

4

5 constructor () public {

6 owner = msg.sender;

7 balances[msg.sender] = 1000;

8 }

9

10 function transfer(address receiver , uint

amt) public {

182

11 require(balances[msg.sender] >= amt);

12 require(msg.sender != receiver);

13 balances[msg.sender] -= amt;

14 balances[receiver] += amt;

15 }

16 }

The function constructor is executed when the contract is created: it sets
the owner of the contract and issues 1000 tokens to the creator. The func-
tion transfer accepts two parameters: the address receiver of the receiver
and the amount amt the caller wants to transfer to the receiver. First, it
checks whether the sender is different from the receiver and whether it has
enough funds to transfer. Both these conditions are evaluated using the func-
tion require, that tests the condition and, in case of failure, throws an ex-
ception that stops the program. If the conditions are satisfied, the balances of
both parties are updated accordingly.

This small contract can be translated into a probabilistic logic program as
follows. We simulate the storage reserved for a smart contract by introducing
two more arguments in the predicate encoding a particular function that uses
it, one for the input list mapping all addresses to balances, and one for the
same list but updated with the new balances. We define a predicate find/3 to
retrieve the balance of the sender (identified with Sender) from BalanceList

and return it into BalanceSender. Similarly for the balance of the receiver.
Then, we perform the same checks of function require, and we update the
balances and the list using another pre-defined predicate update/3. This is
needed since Prolog variables cannot be modified once they are bound. We now
have a smart contract written in Prolog, that we turn into a probabilistic logic
program by adding some probabilistic facts. For example, we suppose that the
transferred amount from a user to another user (this operation can correspond
to placing a bet, where funds are sent to the address where the contract is
stored) is uniformly distributed between 0.5 and 2 Ether (the currency adopted
in Ethereum). This can be expressed, following the cplint hybrid program
syntax (see Section 8.2.1) with:

1 amount(A):uniform(A,0.5 ,2.0).

183

Overall, we obtain the following code:

1 amount(A):uniform(A,0.5 ,2.0).

2 transfer(Receiver ,Amt ,Sender ,BalanceList ,

NewBalanceList):-

3 find(Sender ,BalanceList ,BalanceSender),

4 find(Receiver ,BalanceList ,BalanceReceiver),

5 amount(Amt),

6 BalanceSender >= Amt ,

7 Sender \= Receiver ,

8 NewBalanceS is BalanceSender - Amt ,

9 NewBalanceR is BalanceReceiver + Amt ,

10 update(BalanceList ,Sender ,NewBalanceS ,

BalanceList1),

11 update(BalanceList1 ,Receiver ,NewBalanceR ,

NewBalanceList).

We can compute the expected transferred value using the predicate

mc_expectation/4

provided by the MCINTYRE [134] module.

12.1.1 Experiments

To see the advantages of a probabilistic logic encoding of a smart contract,
we conducted several experiments involving a smart contract for transferring
tokens, one for a Ponzi scheme, and one encoding a gambling game, all taken
from the Ethereum mainnet. We used the same machine described in Sec-
tion 7.2.1. The execution time is computed with the built-in SWI-Prolog [171]
predicate statistics/2, while the memory usage is the value maxresident

obtained with GNU Time1. For each experiment, we used the predicate
mc_expectation/4 with 1000 samples.

1https://www.gnu.org/software/time/

184

https://www.gnu.org/software/time/

Transfer

In the first experiment (transfer), we modelled a scenario where N users trade
(burn or transfer) some tokens. The function burn and transfer are the ones
available at the address 0xB8c77482e45F1F44dE1745F52C74426C631bDD52. In
our simulations, each user starts with 100 tokens. We want to know how many
transfers are needed to obtain a situation where a single user has more than
180 tokens. Transfers are random, and the amount is uniformly distributed
between 1 and 100. We also include a probability of 5% that tokens are burnt
instead of traded. All these values were chosen to illustrate the overall process.
Table 12.1 represents the relation among number of users, execution time of
the experiments, memory usage, and expected number of transactions. As
expected, the number of needed transfers to create a situation in which a user
has more than 180 tokens increases with the number of users.

The Solidity transfer function described before checks whether the sender
and the receiver are different. However, there are some real-world cases where
this check is omitted2, resulting in an unexpected generation of extra tokens.
Our method can also be effective to spot bugs and coding errors like this, clearly
if the conversion between imperative language (Solidity) and declarative (logic)
language (Prolog) is correct. To confirm this, we modified the previous code
by removing this check and ran again the same experiment, and we compute
the total amount of circulating tokens, represented as the sum of the balances
of the involved users. In every run, we choose two random (possibly the same)
users and perform a transfer. Results in Table 12.2 shows that, at the end
of the simulation, the total amount of circulating tokens exceeds the initial
amount.

Ponzi and Pyramid Schemes

Ponzi schemes are a very common type of smart contracts, present in both
Bitcoin [28, 167] and Ethereum [27]. A Ponzi scheme is a financial fraud that
promises a high return of the investments, as long as the number of involved
users keeps increasing. Clearly, this model quickly becomes unsustainable. In
these scenarios, probabilistic models of smart contracts are fundamental to

2https://gist.github.com/loiluu/0363070e1bada977f6192c8e78348438

185

https://gist.github.com/loiluu/0363070e1bada977f6192c8e78348438

Table 12.1: Details for the transfer experiment without bug.

of users Time (s) Memory (Mb) Expected Value
5 1.643 52.744 192.724
25 8.717 102.924 421.516
50 23.431 155.636 661.514
75 44.172 202.428 874.234
100 71.367 246.136 1071.335
125 101.48 285.208 1249.186
150 140.116 327.488 1441.242

Table 12.2: Details for the transfer experiment with bug.

of users Time (s) Memory (Mb) Initial Amount Final Amount
5 0.755 33.324 500 627.262
25 4.967 95.996 2500 2592.483
50 12.834 154.196 5000 5077.37
75 23.828 204.036 7500 7568.241
100 37.663 253.204 10000 10064.181
125 53.451 294.352 125000 12561.246
150 72.883 344.072 150000 15058.114

compute the expected payoff and avoid being cheated.
For this experiment (pyramid), we consider the code of a well-known pyra-

mid scheme (a variation of a Ponzi scheme) called Rubixi, available at the
address 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be. This example is
usually presented to see how a vulnerability allows anyone to become the owner
of the contract and withdraw the collected fees [9]. Here, we ignore this prob-
lem since we only want to conduct a quantitative analysis of the possible profit
that can be obtained without exploiting this bug. The logic of the contract is
simple: a user can send at least 1 Ether through the fallback function, a func-
tion that is executed when none of the provided functions matches the called
one. When the contract receives a certain number of tokens, it adds the new
participant to the participants list and redistributes the accumulated value to
the others if some conditions are met. We may be interested, for example, in
knowing the amount of collected fees in a certain time interval, or computing
the number of participants we need to wait before receiving a payment. To
answer the latter question, we model this contract with a probabilistic logic
program and we suppose that the amount of token sent is uniformly distributed

186

Table 12.3: Details for the pyramid experiment.

of users Time (s) Memory (Mb) # of users to wait
5 0.159 13.384 13.783
50 1.997 37.232 69.814
100 6.111 59.384 111.138
150 12.681 85.768 152.868
200 22.051 113.436 194.760
300 50.852 174.420 278.393
400 92.934 225.832 361.172

between 0.9 and 2, also considering a situation where a user sends less than the
minimum required amount. In this case, the amount is added to the collected
fees, but the user cannot participate in the scheme. From our analysis reported
in Table 12.3, we see that, for example, the fifth user entering the game must
wait at least 13 more people to enter the scheme before receiving a payoff.

Gambling

According to DappRadar3, in April 2020 half of the most used dApps (web
applications with the logic implemented by a smart contract) are gambling
games. For our experiment (gambling), we selected the code stored at the ad-
dress 0x999999C60566e0a78DF17F71886333E1dACE0BAE that allows to bet on
multiple games such as dice, roulette, or poker, whose outcomes are computed
by considering several payout masks. Randomization is obtained by combining
an externally generated commit value provided as input for the bet with other
values. We simulate a player betting on the outcome of a single die. We draw
the amount of the bet from a Poisson distribution with different values for the
mean, and sampled the transaction fees from a uniform distribution between
0.07 and 0.2 Finney (1 Finney = 10−3 Ether)4. Figure 12.1 and Table 12.4
show the results. Unsurprisingly, the decrease of the expected payout is related
to the amount of the bet and the number of trials.

3https://dappradar.com/
4These values are selected by considering data from https://bitinfocharts.com/

ethereum/ (April 2020)

187

https://dappradar.com/
https://bitinfocharts.com/ethereum/
https://bitinfocharts.com/ethereum/

0 100 200 300 400

−1,500

−1,000

−500

0

Number of trials

E
xp

ec
te
d
pa

yo
ut

(F
in
ne
y)

Gambling

λ = 50

λ = 100

λ = 150

λ = 200

Figure 12.1: Expected payout of a consecutive number of trials. λ represents
the mean of the Poisson distribution.

Table 12.4: Resource usage for the gambling experiment with λ = 150.

of trials Time (s) Memory (Mb)
5 0.517 9.344
50 4.890 11.016
100 8.757 18.924
150 12.938 28.22
200 17.439 27.076
300 27.011 143.896
400 37.437 201.996

12.1.2 Conclusions

In this section, we discussed a probabilistic logic encoding of a Solidity smart
contract that can be useful for testing the contract without deploying it, with
the possibility of finding bugs, as shown in the experiments. Moreover, the
adoption of a (probabilistic) logic language for smart contracts will allow al-
most everyone to write them, since a logic language is often more interpretable
with respect to an imperative language such as Solidity. This idea is also sup-
ported by [50] and [79], where the authors discuss the possible implications
of a logic language for smart contracts. Finally, our proposal is still far from
being completed: a formal model of the translation between Solidity and PLP
is missing, This will ensure that the model exactly corresponds to the real
contract.

188

12.2 Hashing Power Centralization and Double

Spending

The formation of large mining pools in the Bitcoin blockchain can eventually
lead to a situation where a single entity controls more than 50% of the total
computing power, as already happened in 20145. In this case, a majority
attack will be possible, where a group of people start mining an alternative
chain with the goal to revert some transactions. This scenario will make the
system completely unreliable. Here, we model the protocol proposed in [61]
to limit hashing power centralization and evaluate the probability of a double
spending attack [91, 124].

12.2.1 Preventing the Formation of Large Pools

To prevent the formation of large mining pools, the authors of [29, 61] proposed
a two-phase PoW. The first step is the same as the current PoW. The second
step consists in signing the header of a block with the private key of the
address that will receive the mining reward and then in finding again a new
hash that respects some constraints (less than a target value). Basically, it
requires to solve twice the PoW. If we call X and Y the difficulties of the two
PoWs, their ratio is crucial to prevent the formation of large pools according
to the authors. However, an optimal value is not provided in the papers. This
second step will require the pool operator to share its private key with all the
components of the pool, allowing everyone with that key to access the stored
funds and possibly steal them. Thus, the pool operator will share the key only
with trusted miners, preventing the formation of a large pool.

In this new proposal, a miner can be in one of the following four states: 0)
it tries to solve the original PoW. Upon success, it will move to state 1. 1) It
tries to find a second hash to satisfy the second part of the protocol. 2) It has
found both hashes, it receives the reward and goes back to state 1. 3) Another
miner found both hashes, so the miner will stop working on the current hash
and start with another one, going back to state 0. These four states can be
described by the Markov chain shown in Figure 12.2, where states are indicated

5https://en.bitcoinwiki.org/wiki/GHash.IO

189

https://en.bitcoinwiki.org/wiki/GHash.IO

by a0, a1, a2, and a3.

a0start a2

a1a3

Figure 12.2: Markov chain of the model.

If we suppose both X and Y finite (in [29] and [61] X has a finite value
while Y is infinite, i.e., every hash is acceptable), we can model a race between
two miners a and b with the following code:

1 a_found_y(_):0.15.

2 b_found_y(_):0.25.

3 b_found_x(_):0.10.

4 found_y(S):- a_found_y(S); b_found_y(S).

Here, we suppose that a finds the correct Y hash with probability 0.15, and b

with probability 0.25. found_y/1 is true when a or b have found the correct
second hash at state S. We can describe the transitions between states with:

1 trans(a0 ,S,a1):1.0/50; trans(a0 ,S,a0)

:1.0 -1.0/50: - \+ b_found_x(S).

2 trans(a1 ,S,a2):0.15; trans(a1 ,S,a1):1.0 -0.15: -

\+ b_found_y(S).

Transition between state a0 and a1 will happen with probability 1/50 and only
if b has not yet found the correct first hash for the current block (in this case,
there is no need to keep searching for this hash). Similarly, a will move from
a1 to a2 with probability 0.15 only if b has not yet found the second hash.
This code models the described situation:

1 trans(a0 ,S,a3):- b_found_x(S).

190

2 trans(a1 ,S,a3):- b_found_y(S).

3 trans(a2 ,S,a0):- found_y(S).

4 trans(a3 ,S,a0):- found_y(S).

If b finds either the first or the second hash, a will move to state a3 indepen-
dently from its current state. Once a is in a3, it will move to a0 to start this
process again. With the previous code we modelled the behaviour of a. The
code for modelling the behaviour of b is similar, where a is replaced by b.

We can write a predicate reach/3 to simulate the change of state:

1 reach(S, I, T) :-

2 trans(S, I, U),

3 reach(U, next(I), T).

4 reach(S, _, S).

This code states that starting at state S at time I, state T is reachable if there is
a transition (trans/3) from state S to state U at time I and T is reachable from
U at the next time point. Finally, we can approximate the probability to reach
state a2 starting from a0 by using predicate mc_sample/3 from the MCIN-
TYRE module [134]. For example, we can sample 1000 times reach(a0,0,a2)
and compute its probability with mc_sample(reach(a0,0,a2),1000,P), ob-
taining P = 0.068.

12.2.2 Double Spending

As previously discussed, there can be situations where multiple chains are
mined simultaneously. In this case, the next block will have a crucial role,
since it will identify the longest chain, and so the valid one. Because of this,
users should wait at least six blocks6 before considering the transaction com-
pletely confirmed. One of the most studied scenarios that can happen in these
circumstances is the double spending attack7, where a user spends twice the
same amount of bitcoin. The process goes as follows: first, the attacker creates
a transaction T1 with A as the output address and publishes it. We suppose
that T1 is included into block B1. Then, he/she starts mining a private fork
(chain) that does not include T1 but includes transaction T2 whose output

6https://en.bitcoin.it/wiki/Confirmation
7https://en.bitcoin.it/wiki/Irreversible_Transactions

191

https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Irreversible_Transactions

is the address of the attacker itself and not A. Figure 12.3 depicts this initial
position.

B0 B1

B2

Figure 12.3: Initial state of the double spending attack. Block B1 with trans-
action T1 is inserted in the chain after B0 while the attacker starts mining
another block (B2) without T1 inside and with B0 as ancestor.

After a certain number of blocks built on top of B1, the recipient of the
transaction is convinced that T1 is valid (Figure 12.4).

B0 B1 B3 B4 B5

B2 B6

d

Figure 12.4: General case. The “honest” chain has built 3 confirmation blocks
on top of B1 (B3, B4, B5) while only one block (B6) has been built on top
of B2 by the attacker. In this figure, d represents the distance between the
honest and the secret chain and is used to evaluate the advantage of the honest
chain over the attacker.

Now, the attacker needs to make his/her chain longer than the honest one
to be successful in the attack. In this case, the private chain will be published
and considered the valid one, and all the transactions in the blocks between
B1 and the last block will be invalidated (Figure 12.5).

B0 B1 B3 B4 B5

B2 B6 B7 B8 B9

Figure 12.5: Successful attack. The attacker has built a longer chain (marked
in red). The attacker will now publish all blocks from B2 to B9 and so all
blocks from B1 to B5 in the black chain will not be considered valid because
they are part of a chain which is not the longest one.

We make some simplifications in our models: the total hash rate of the

192

network as well as the difficulty are constant, and there is only one attack
going on (all the miners except for the attacker mine the honest chain).

The attack can be described by two functions: the attacker’s potential
progress function and the catch up function. The former returns the number
of blocks m mined by the attacker when the honest miners have found n

blocks. In the original bitcoin paper [117], this function is defined by a Poisson
distribution

P (m) =
e−λλm

m!

where q is the hash rate of the attacker, p = 1− q the hash rate of the honest
miners, and λ = np/q. However, in [142] the authors describe this process
with a negative binomial (Pascal) distribution:

P (m) =

(
m+ n− 1

m

)
pnqm.

In both cases, even if the attacker has already found a longer chain, it cannot
publish it until N confirmations are reached, otherwise the victim of the attack
will be aware of it. Once the N confirmations have been created, the race
between the attacker and the honest chain starts. Here, we are only interested
in knowing whether the attacker will succeed, and not in how long it will take.
This process, according to [117] and [142], can be modelled with a random
walk. If d is the difference between the two chains (as in Figure 12.4), an
increase of d by 1 means that the honest miners have found a block before the
attacker. We can define the probability that the attacker will catch up from
Z blocks behind [142] as

P (catch_up | Z = z) =

1 if q ≥ p

(q/p)z if q < p

and express this using the following probabilistic logic program:

1 move(T,1) :0.7; move(T,-1):0.3.

2

3 walk(InitialPosition):-

193

4 walk(InitialPosition ,0).

5

6 walk(0,_).

7 walk(X,T0):-

8 X > 0,

9 X < 1000,

10 move(T0,Move),

11 T1 is T0+1,

12 X1 is X+Move ,

13 walk(X1,T1).

We suppose that the distance between the chains increases by 1 with proba-
bility 0.7. If the gap between the two chains is greater than 1000, we consider
the attack failed. Predicate walk/2 encodes the random walk.

The attacker’s potential progress functions proposed in [117] and [142] can
be modelled in the cplint hybrid program syntax (Section 8.2.1) as:

1 attacker_progress_poisson(X):poisson(X,Lambda).

2 attacker_progress_pascal(X):pascal(X,N,P).

3

4 success_poisson:-

5 attacker_progress_poisson(A),

6 V is NumberOfConfirmations - A,

7 (V = 0 ->

8 true;

9 walk(V)

10).

11

12 success_pascal:-

13 attacker_progress_pascal(A),

14 V is NumberOfConfirmations - A,

15 (V = 0 ->

16 true;

17 walk(V)

18).

194

With attacker_progress_poisson/1 and attacker_progress_pascal/1 we
sample, respectively, a value from a Poisson probability distribution with pa-
rameter Lambda and a value from a Pascal probability distribution with pa-
rameters N (number of failures) and P (success probability). After that, we
compute the length difference V between the two chains (the d value from Fig-
ure 12.4). If the difference is 0, the attack is successful. Otherwise, we consider
a binomial random walk with V as the initial position. We can use the predi-
cate mc_prob/2 and mc_sample/3 again from the MCINTYRE module to get
the probability values. Figure 12.6 shows the obtained results using Lambda =
10 · (0.3/0.7), N = 10, X = 0.3, and NumberOfConfirmations = 10, and these
are in accordance with the values computed in [117] and [142].

1 5 10 15 20

10

20

30

40

50

60

Number of Confirmations

Su
cc
es
s
P
ro
ba

bi
lit
y
(%

) Poisson Distribution
Pascal Distribution

Figure 12.6: Success probability of a double spending attack by considering
Poisson and Pascal probability distributions for the number of blocks mined
by the attacker.

12.2.3 Conclusions

In this section, we encoded with PLP two models from [29, 61, 117] and [142],
confirming their effectiveness. The first model proposes an alternative protocol
to prevent the centralization of the hashing power while the second simulates
a double spending attack. Several extensions are possible, for example by
considering a variable hash rate or modelling alternative consensus algorithms

195

such as PoS or DPoS.

12.3 Transaction Fees

As introduced in the previous sections, Bitcoin transaction fees are a very com-
plex topic: miners want to maximize the reward while users want to minimize
the required fees to process a transaction, with several variables involved in
the computation. In the following, we consider Bitcoin. The time required to
discover a block can be represented with a Poisson distribution with parame-
ter λ = 10 [38]. This probability distribution is commonly used to model the
number of events occurring in a fixed interval of time. A prerequisite is that
the events are independent and they occur at a constant rate, as it happens
for block discovery: the discovery rate is kept fixed by an adjustment of the
difficulty of the PoW every 2016 blocks, and each discovery is independent.

Other variables that influence the optimal fee value are the size of the
transactions, the size of the blocks, and the number of transactions issued
per second. We modelled the first two values with normal distributions, and
the third with a Poisson distribution. A normal distribution is a continuous
probability distribution, while the size of a transaction is a discrete variable
that would be better modelled with a discrete distribution, such as the Poisson.
However, thanks to the central limit theorem, a Poisson distribution with mean
λ can be approximated with a Gaussian distribution with mean and variance λ
for sufficiently large values of λ. We retrieved from blockchain.com (October
2019) the values of the average size of a transaction and the average number
of transactions per second.

There are other factors that influence the optimal fee value. For example,
due to network delays, the set of unconfirmed transactions may be different
from miner to miner. Moreover, when two blocks are discovered at the same
time, call them A and B, some users may receive A and then B, others may
recieve them in the opposite order, generating a fork. In our simulations, we
do not consider these events, but they can be straightforwardly included with
the definition of new random variables.

We now introduce a model to estimate the amount of fees collected by a
miner over time. Then, we will extend this model to compute whether it is

196

blockchain.com

profitable or not for an attacker to generate a fork when the gap between the
value of collected transaction fees and the value of the coinbase transaction
reduces.

In addition to the previously introduced simplifications, we also make the
following assumptions: 1) the total mining power in the network is constant,
and the attackers controls a fraction β of it (while the remaining peers control
a fraction 1 − β), and 2) all the miners except for the attacker mine on the
main chain (are honest).

12.3.1 Analyzing Transaction Fees

The goal of this first experiment is to see how transaction fees affect the profit
of a miner. As already discussed, the total reward for a block is the sum of
the fees of the included transactions and the block reward. At the time of
the experiments (October 2019), the block reward was 12.5 bitcoin, a value
that halves every 210,000 blocks. Currently, as of October 2021, the reward is
6.25 bitcoin. As the number of mined blocks increases, the contribution of the
block reward decreases, so fees get a larger influence in the overall profit.

In our model, the block size B and the transactions fee rate R are modelled
with normal distributions. The total amount of collected fees is computed as
B ·R. We suppose an average block size of 700kb with variance 50. The value
of the average transaction fee rate is retrieved from blockchain.com (October
2019), and we suppose a variance of 4. The model is the following:

1 block_size(I,BlockSize):gaussian(BlockSize

,700 ,50).

2 fee_rate(I,FeeRate):gaussian(FeeRate ,18,4).

3

4 collected_fees(I,O):- block_size(I,B), fee_rate

(I,R), O is B*R/100000.

The code works as follows: the predicates block_size/2 and fee_rate/2

compute respectively the size of a block and the fee rate associated with a
transaction. These values are used in the predicate collected_fees/2 to get
the amount of fees received for the creation of a block (the value is divided by
105 since the average fee rate is in satoshi/byte and the block size in kilobyte

197

blockchain.com

but we want the value in bitcoin).
Figure 12.7a shows the expected profit of a miner as a function of the

average of the reward, and the expected profit of a miner given that we ob-
served different values of FeeRate in fee_rate/2. µ represents the mean of
the Gaussian distribution modelling the fee rate (in the previous listing, it was
fixed to 18). For the fee rate, the variance is fixed to 4 and the observed value
FeeRate varies between 16 and 20. Values are computed with the predicates
mc_expectation/4 and mc_lw_expectation/5 from the MCINTYRE pack-
age [134]: both sample a certain number of times a variable from the query
and return its expectation, but the second also accounts for the evidence and
each sample is weighted by its likelihood (likelihood weighting). For both, we
set the number of samples to 1000. Figure 12.7b shows how the expected profit
of a miner varies by changing the mean of the block size (in the code is fixed
to 700) and by observing different values of BlockSize in block_size/2. µ
represents the mean of the Gaussian distribution modelling the block size (in
the previous listing, it was fixed to 700). The variance is fixed to 50. For the
reward, we set the mean to 17 and the variance to 4.

12 14 16 18 20 22 24 26

0.1

0.12

0.14

0.16

Observed Fee Rate

P
ro
fit

(B
T
C
)

µ = 16
µ = 17
µ = 18
µ = 19
µ = 20

(a) Relation between the observed fee
rate and the profit of a miner. µ repre-
sents the mean of the distribution mod-
elling the fee rate.

680 700 720 740

0.115

0.120

0.125

Size

P
ro
fit

(B
T
C
)

µ = 690
µ = 700
µ = 710
µ = 720

(b) Relation between the size of a block
and the profit. µ represents the mean
of the distribution modelling the block
size.

Figure 12.7: Graphs relating the size of the block and the observed fee rate
with the profit of a miner. Dashed lines represent the values computed with
mc_expectation/3 (without observations).

In a second experiment, we wanted to compute the probability that a trans-
action with a certain associated fee is confirmed within a given number of

198

blocks. This information is crucial for a user since he/she typically wants to
attach the optimal fee to it. There are several involved variables: the average
number of transactions in a block, the average block discovery time, and the
average number of transactions added to the mempool per second. We mod-
elled them as previously discussed. Furthermore, as before, we also considered
the average fee rate: this value is modelled with a normal distribution whose
mean is re-sampled at each iteration to account for a quick change over time.
The obtained model is the following:

1 average_fee(_,M):uniform(M,15 ,25).

2 compute_fee(_,M,F):gaussian(F,M,4).

3 fee(I,F):- average_fee(I,M), compute_fee(I,M,F)

.

4 compute_time(F,M,V):gaussian(F,M,V).

5 number_of_txs_in_block(_,NB):gaussian(NB

,1600 ,1600).

6 block_discovery_time(_,Time):gaussian(Time

,500 ,500).

7 txs_per_second(_,Txs):poisson(Txs ,5).

8

9 generate_pool(N,N,[]):-!.

10 generate_pool(I,N,[F|T]):- I < N, fee(I,F), I1

is I+1,

11 generate_pool(I1 ,N,T).

12 get_len(A,B,B):- A >= B, !.

13 get_len(A,B,A1):- A < B, A1 is A-1.

14

15 loop_pool(FeeRate ,I,NBlocks ,Pool):- I =<

NBlocks ,!,

16 number_of_txs_in_block(I,NB), N11 is round(

NB),

17 length(Pool ,LP), get_len(LP ,N11 ,N1),

18 length(L,N1), append(L,RemPool ,Pool),

19 loop_pool_check(FeeRate ,I,RemPool ,NBlocks).

20 loop_pool_check(_,_,[],_):- !.

199

21 loop_pool_check(FeeRate ,_,[H|_],_):- H <

FeeRate ,!.

22 loop_pool_check(FeeRate ,I,RemPool ,NBlocks):- !,

I1 is I+1,

23 block_discovery_time(I,Time),

24 txs_per_second(I,Txs),

25 NNewTxs is Txs*Time , NT1 is round(NNewTxs),

26 generate_pool (0,NT1 ,NewArrived),

27 append(NewArrived ,RemPool ,NewPool),

28 sort(0, @>=, NewPool , PoolSorted),

29 loop_pool(FeeRate ,I1,NBlocks ,PoolSorted).

30

31 included(I,FeeRate ,NBlocks):-

32 loop_pool_check(FeeRate ,I,[FeeRate],NBlocks

).

We first create an initial pool of N transactions by sampling using the predicate
generate_pool/3. Then, the predicates loop_pool/4 and loop_pool_check/4
sort the pool in descending order of fees, compute the average number NB of
transactions in a block, the average block discovery time Time, and the average
number of transactions per second Txs. These values are used to evaluate how
many blocks we need to wait before seeing a transaction with fee rate F con-
firmed. The number of new transactions arrived during the last block creation
is given by Txs * Time (value stored in NNewTxs). To simulate the inclusion
of transactions in a block, we removed the best (i.e., with highest associated
fee rate) NB transactions from the pool. If the remaining transaction with the
highest fee rate has a value less than FeeRate (the target value we consider),
this means that our transaction has been successfully included into a block,
and the iteration stops. Otherwise, we simulate the arrival of new transactions
and repeat the process.

We used the predicates mc_sample/3 and mc_lw_sample/4, from the MCIN-
TYRE package [134] to compute the results. The first samples the goal a cer-
tain number of times and returns its probability as the fraction of successes
over the total number of samples, while the second, in addition, weights each
sample by the evidence. For example, mc_sample(included(1,17,I),5,P1)

200

17 18 19 20 21 22 23

0.4

0.6

0.8

1.0

Observed Fee Rate

P
ro
ba

bi
lit
y

φ = 16
φ = 17
φ = 18
φ = 19
φ = 20

Figure 12.8: The graph shows how transaction fees influence the probability
of confirmation within 1 block.

samples 5 times included(1,17,I) and returns its probability in P1. Sim-
ilarly, mc_lw_sample(included(1,17,I),fee(0,18),5,P2) samples 5 times
the predicate included(1,17,I) given that fee(0,18) has been observed and
returns its probability in P2. Results are computed with the parameters in the
previous code listing are shown in Figure 12.8. NBlocks is set to 1, φ repre-
sents the fees associated with a transaction, and the number of samples is 250.
For example, if φ = 16, the query is:
mc_lw_sample(included(1,16,1),included(0,ObservedFees,1),250,P)

with ObservedFees ranging between 17 to 23, as in Figure 12.8. As expected,
the probability of a fast confirmation decreases as the value of the observed
fees increases. If the value of the associated fee is greater than the observed
fee, the probability of inclusion is 1, since the considered transaction will be
the most profitable one, and will be included in the next block: for this reason,
these values are not reported in the graph.

12.3.2 Probability of a Profitable Fork

Currently, the gap between transaction fees and block reward is still significant.
In the next few years, the block reward will decrease, due to the specifications
of the protocol. If the number of users increases, the number of transactions
will increase as well. Consequently, there will be more competition to quickly

201

confirm transactions, and fees will probably increase. This will drive to a
scenario where the fees and the block reward have similar values. The goal of
this experiment is to see whether creating a fork in this situation is profitable.

In the analysis of a double spending attack (see Section 12.2), the model
can be split into two parts: the first, where the attacker starts to mine his/her
private chain, and the second, where he/she tries to catch up from (possibly)
several blocks behind [142]. Here, we focus on the second part, where the
attacker tries to catch up from z blocks behind the head. In our experiments,
we set z to 1. We can represent this scenario with a one-dimensional random
walk, where a particle starts at a given position > 0 and, at each time step,
can move one block left or right (see also Section 7.2). Supposing that the
attacker controls a fraction β of the total mining power (and all the remaining
miners are honest and work all on the same chain), z will increase by one with
probability 1− β (the honest miners found a block) and decrease by one with
probability β (the miner found a block in his private chain). In formulas:

zt+1 =

zt + 1 with probability 1− β

zt − 1 with probability β

The goal of the attacker is to generate a chain longer than the honest one. If
he/she can accomplish this, he/she will publish it, and this would be accepted
as the main chain, since it is the longest one. If so, all the transactions not
included in this new chain are invalidated. If the attacker controls more than
50% of the total hashing power, he/she will always succeed in the task. In our
models, since we are not sure whether the random walk terminates, we suppose
that if the gap z between the two chains is greater than 100 the attack fails.
In our experiments, we increase the base value of the average fee by a factor of
10. Here, we extend the model presented in [22] and discussed in Section 12.2
with an additional part considering transaction fees, and also discussing some
economic implications. The model is the following:

1 coinbase (1).

2 move(T,P1 ,1):1-Beta; move(T,P1 ,-1):Beta:- Beta

is P1/100.

3

202

4 walk(Z,S,BetaPercentage ,ThresholdMinedBlocks ,

TotalMinedByAttacker):-

5 walk(Z,0,S,BetaPercentage ,

ThresholdMinedBlocks ,0,

TotalMinedByAttacker).

6

7 walk(-1,S,S,_,_,V,V).

8 walk(Z,T0,S,BetaPercentage ,ThresholdMinedBlocks

,MinedBlocks ,VT):-

9 Z >= 0,

10 MinedBlocks < ThresholdMinedBlocks ,

11 Z < 100,

12 move(T0,BetaPercentage ,Move),

13 T1 is T0+1,

14 Z1 is Z+Move ,

15 (Move < 0 ->

16 V1 is MinedBlocks + 1;

17 V1 = MinedBlocks

18),

19 walk(Z1,T1 ,S,BetaPercentage ,

ThresholdMinedBlocks ,V1 ,VT).

20

21 reward_fork(BetaPercentage ,ThresholdMinedBlocks

,ExtraValue ,ExpectedReward):-

22 coinbase(C),

23 fee(1,AvgFee),

24 ExtraVal is AvgFee*ExtraValue ,

25 (walk(1,_,BetaPercentage ,

ThresholdMinedBlocks ,Mined) ->

26 fee(2,Fees),

27 ExpectedReward is (C+Fees)*Mined +

ExtraVal;

28 ExpectedReward is 0

29).

203

The predicate reward_fork/4 is used to compute the reward. It calls walks/5
to simulate a one-dimensional random walk. walk/5 wraps walk/7 that im-
poses the maximum gap of 100 blocks between the two chains. The predicate
move/3 increases or decreases this gap. The run continues until the attacker
succeeds or the gap is too big. fee/2 is the same predicate discussed before
(Section 12.3.1).

In the first experiment (threshold experiment), the goal is to see how the
controlled hashing power and the length of the private chain influence the
possible reward. For all the experiments, the average total reward for a block
(coinbase + fees) is normalized to 1, and the extra value stored in an already
mined block on the honest chain (variable ExtraValue in the previous listing)
is indicated with σ. If σ = 0.5, this means that the block from which the fork
starts has a 50% larger reward than the average.

Figure 12.9 shows the results of our experiments computed with the predi-
cate mc_expectation/4 with 10000 samples (also the values for the next two
experiments will be computed with the same predicate and the same number
of samples). The graphs in figures 12.9a and 12.9b are obtained by consid-
ering a successful attack where the attacker was able to create a chain with
length equal to the main chain. Figures 12.9c and 12.9d consider a successful
attack where the private chain is 1 block longer than the main chain. Graphs
in figures 12.9a and 12.9c have σ = 1 while graphs in figures 12.9b and 12.9d
have σ = 2. In particular, there is a value for each β where the expected value
settles. Clearly, if a miner controls a high fraction of the total hashing power,
the probability of success will be high. The larger is his/her power, longer
his/her private chain should be to get the maximum available reward. The
optimal length of the private chain does not change as the extra value in a
block increases.

In a second experiment (value experiment), we modelled the possible profit
gained by re-mining a block with extra value σ. The computed values are
reported in Figure 12.10. The graphs in figures 12.10a and 12.10c have β = 0.15

while graphs in figures 12.10b and 12.10d have β = 0.25. Figures 12.10a
and 12.10b contain values computed considering a successful attack where
the number of blocks for the two chains is the same, while in figures 12.10c
and 12.10d we have a scenario where the attacker succeeds only if its private

204

0 10 20 30 40 50

0.5

1.0

1.5

2.0

Private Chain Length

E
xp

ec
te
d
V
al
ue

β = 0.10
β = 0.15
β = 0.20
β = 0.25
β = 0.35

(a) Expected gained profit of an attacker
that is able to create a chain with length
equal to the main chain starting from a
block with twice average reward (σ = 1).

0 10 20 30 40 50

0.5

1.0

1.5

2.0

2.5

3.0

Private Chain Length

E
xp

ec
te
d
V
al
ue

β = 0.10
β = 0.15
β = 0.20
β = 0.25
β = 0.35

(b) Expected gained profit of an attacker
that is able to create a chain with length
equal to the main chain starting from a
block with three times the average re-
ward (σ = 2).

0 10 20 30 40 50

0.0

0.5

1.0

1.5

Private Chain Length

E
xp

ec
te
d
V
al
ue

β = 0.10
β = 0.15
β = 0.20
β = 0.25
β = 0.35

(c) Expected gained profit of an attacker
that is able to create a chain with one
more block than the honest chain start-
ing from a block with twice average re-
ward (σ = 1).

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

Private Chain Length

E
xp

ec
te
d
V
al
ue

β = 0.10
β = 0.15
β = 0.20
β = 0.25
β = 0.35

(d) Expected gained profit of an attacker
that is able to create a chain with one
more block than the honest chain start-
ing from a block with three times the
average reward (σ = 2).

Figure 12.9: Results for the threshold experiment.

chain is one block longer than the honest one. Results show that if an attacker
gives up too early, his/her expected reward can be lower than the maximum.

Finally, we computed the difference between the expected value obtained
from being honest and from forking the chain (optimal experiment). The
expected mining reward is the expected value of a binomial distribution with
probability of success β, where β is the fraction of the controlled hashing power.

205

0.4 0.6 0.8 1 1.2 1.4 1.6

0.6

0.7

0.8

Extra value (σ)

E
xp

ec
te
d
V
al
ue

l = 3
l = 6
l = 9
l = 12
l = 15

(a) Expected profit gained by re-mining
a block with variable extra value σ con-
trolling 15% of the total hashing power
(β = 0.15). The attack is successful if
the length of the private chain is equal
to the honest chain.

0.4 0.6 0.8 1 1.2 1.4 1.6

1.2

1.4

1.6

1.8

Extra value (σ)

E
xp

ec
te
d
V
al
ue

l = 3
l = 6
l = 9
l = 12
l = 15

(b) Expected profit gained by re-mining
a block with variable extra value σ con-
trolling 25% of the total hashing power
(β = 0.25). The attack is successful if
the length of the private chain is equal
to the honest chain.

0.4 0.6 0.8 1 1.2 1.4 1.6

0.16

0.18

0.20

0.22

0.24

0.26

Extra value (σ)

E
xp

ec
te
d
V
al
ue

l = 3
l = 6
l = 9
l = 12
l = 15

(c) Expected profit gained by re-mining
a block with variable extra value σ con-
trolling 15% of the total hashing power
(β = 0.15). The attack is successful
if the private chain is one block longer
than honest chain.

0.4 0.6 0.8 1 1.2 1.4 1.6

0.6

0.8

1.0

Extra value (σ)

E
xp

ec
te
d
V
al
ue

l = 3
l = 6
l = 9
l = 12
l = 15

(d) Expected profit gained by re-mining
a block with variable extra value σ con-
trolling 25% of the total hashing power
(β = 0.25). The attack is successful
if the private chain is one block longer
than honest chain.

Figure 12.10: Results for the value experiment.

We are interested in whether there exists an extra value σ that makes a fork
profitable and whether keeping mining a private chain is still feasible when
the gap with the honest chain is substantial. As Figure 12.11 shows, this is
feasible only for significant values of σ and β.

206

0 5 10 15 20

−10.00

−5.00

0.00

Length of the Private Chain

E
xp

ec
te
d
V
al
ue

β = 10
β = 15
β = 20
β = 25
β = 30

(a) σ = 2.

0 5 10 15 20
−12.00

−10.00

−8.00

−6.00

−4.00

−2.00

0.00

Length of the Private Chain

E
xp

ec
te
d
V
al
ue

β = 10
β = 15
β = 20
β = 25
β = 30

(b) σ = 4.

0 5 10 15 20
−12.00

−10.00

−8.00

−6.00

−4.00

−2.00

0.00

Length of the Private Chain

E
xp

ec
te
d
V
al
ue

β = 10
β = 15
β = 20
β = 25
β = 30

(c) σ = 6.

0 5 10 15 20

−10.00

−8.00

−6.00

−4.00

−2.00

0.00

Length of the Private Chain

E
xp

ec
te
d
V
al
ue

β = 10
β = 15
β = 20
β = 25
β = 30

(d) σ = 8.

0 5 10 15 20

−10.00

−8.00

−6.00

−4.00

−2.00

0.00

2.00

Length of the Private Chain

E
xp

ec
te
d
V
al
ue

β = 10
β = 15
β = 20
β = 25
β = 30

(e) σ = 10.

0 5 10 15 20

−8.00

−6.00

−4.00

−2.00

0.00

2.00

Length of the Private Chain

E
xp

ec
te
d
V
al
ue

β = 10
β = 15
β = 20
β = 25
β = 30

(f) σ = 20.

Figure 12.11: Results for the optimal experiment. Each graph shows the
difference between the expected value obtained from being honest and from
forking the chain starting from a block with n times the average reward (σ)
with different values of the fraction of the controlled mining power β.

207

12.3.3 Related Work

There are several related articles on the study of Bitcoin transaction fees.
In [92, 98], the authors adopt queuing theory to study the relation between
fees and confirmation time. In particular, in [92] the authors show that a
transaction with a small amount of associated fees requires a large confirma-
tion time if there is an increasing number of arrivals of transactions with fees
smaller than a certain threshold. Moreover, they state that an increase of the
block size will not be effective in reducing the confirmation time. There are
some studies that introduce new methods to avoid the fluctuation of the fees,
such as [30]. The authors of [161] proposed a game theory model to investigate
fees and observed that the current state of the system (as of 2018) incentivizes
the formation of large mining pools. An analysis on how block reward, trans-
action fees and their ratio influence the Bitcoin ecosystem can be found in [42].
In [104], the authors analyse a “whale attack”, where a user issues transactions
with large fees. In [113] the authors provide an in-depth analysis of transac-
tion fees looking at historical data. In [22, 124, 142] the authors analyse the
double spending attack and show that it is profitable only for high fractions of
controlled mining power. Finally, there are some works that analyse the eco-
nomic influence of bitcoin and cryptocurrencies [54, 94, 172] also by looking at
Google Trends and Wikipedia data [67, 101].

12.3.4 Conclusions

In this section, we proposed several PLP models to study transaction fees. In
particular, we analysed how fees influence the revenue of a miner, also in the
case when the difference between block reward and collected fees reduces.

Our result shows that, as expected, an increase in the block size will increase
as well the revenue also when the gap between fees and block reward reduces.
However, this situation requires a more accurate analysis since bigger blocks
will cause several problems, such as network delays due to slower propagation
times and consequently an increasing amount of (unintentional) forks.

We then extended the previous model to see whether it is profitable for an
attacker to fork the main chain to mine again a block with particularly high
fees attached. Our experiments state that this is profitable only if both the

208

hashing power of the attacker and the fees associated with the block are of
considerable amount. If the computing power is relatively small, the attack is
profitable only if it succeeds within a few blocks.

In general, our models show that the system is reliable even if the gap
between block reward and collected fees reduces, and forks are not profitable,
even for mining pools. This is a desirable property since it disincentivizes
attacks and preserves the consistency and reliability of the system. However,
when the fees overcome the block reward by a significant amount, mining pools
could be economically incentivized to deviate from the honest chain in some
cases (even if it is very unlikely to happen).

Finally, our models can be extended in several ways. For example, they can
be integrated with other variables, as discussed at the beginning of this section.
Moreover, decision theory models can be applied to compute the optimal set
of transactions instead of the probability.

12.4 Lightning Network Model

We can see the LN as a graph where users (identified with nodes) are connected
through edges with a certain capacity. A connection between node A and node
B with capacity Capacity is denoted with the fact edge(A,B,Capacity). The
whole network is represented with a set of edge/3 facts. For simplicity, in this
model we do not consider fee base and fee rate. However, they can be easily
included by adding two more arguments to edge/3. Payments can go in both
directions, so we represent them using the predicate connected/3

1 connected(A,B,C):- edge(A,B,C) ; edge(B,A,C).

that states that A and B are connected through a channel of capacity C if there
is an edge from A to B or from B to A with that capacity. This is also depicted
in Figure 12.12.

There can be multiple edges with the same source and destination. The
degree of a node is the number of edges incident to that node. We can search
for a path between two nodes with the following code:

1 connected_test(Source ,Next ,Size):-

2 connected(Source ,Next ,Cap),

209

a b

3

5

(a) Two directed edges.

a b
8

(b) One undirected edge.

Figure 12.12: Channel representation in the Lightning Network. Case (a)
corresponds to (b) in practice since the distribution is unknown.

3 Size < Cap.

4

5 path(Dest ,Dest ,_,_,Path ,Path).

6 path(Source ,Dest ,Size ,NSteps ,Visited ,Path) :-

7 length(Visited ,N),

8 N < NSteps ,

9 connected_test(Source ,Next ,Size),

10 \+ memberchk(Next ,Visited),

11 path(Next ,Dest ,Size ,NSteps ,[Next|Visited],

Path).

The predicate path(Source,Dest,Size,NSteps,Visited,Path) is true if there
is a path from Source to Dest with capacity at least Size. Nodes and edges
cannot be traversed twice. Line 10 checks this requirement with memberchk/2

that is a deterministic version of member/2, a standard Prolog predicate that
is true if the first argument is present in the list passed as the second ar-
gument. This is fundamental since, otherwise, we may get stuck in a loop
due to a perpetual visit of the same pair of nodes. We limit the length N

of the path with the standard Prolog comparison predicate </2. Similarly,
we can check whether a connection has enough capacity Cap to route a pay-
ment of size Size with connected_test/3. A sample call to path/6 could be
path(a,d,11,3,[],P): we search for a path P from a to d of at most 3 edges
that can route a payment of size 11, starting with an empty list ([]) of visited
nodes.

12.4.1 Deterministic Model

We conducted several experiments to study the LN. We selected three succes-
sive snapshots representing its state on 2nd August, 3rd August, and 4th Au-

210

gust 20208 [141]. Table 12.5 shows some statistics about these three datasets.

Dataset # Nodes # Edges Avg. Edge Capacity Total Capacity
February 4,562 30,249 2,761,826.794 83,542,498,678
March 4,709 30,607 2,839,773.151 86,916,936,824
April 4,838 30,400 2,935,025.096 89,224,762,929

Table 12.5: Datasets structure for the three LN states (February, March, and
April). Capacities are expressed in satoshi.

Each node can obtain a global vision of the network through the broadcast
messages channel_announcement and channel_update. The obtained data
are used to construct a path for a payment between nodes not directly con-
nected with an edge. However, there can be hidden payment channels, not
publicly announced, so there is no guarantee that the information about the
possible connections is complete.

We wrote the code using SWI-Prolog [171] and conducted several experi-
ments to describe the temporal evolution of the LN, focusing on several aspects.
First, we computed the node degree distribution (Figure 12.13a): most of the
nodes of the network have degree between 1 and 5 (more than 65% for all three
datasets). Then, we focused on the maximum possible rebalancing (source and
destination of the payment coincide) amount (Figure 12.13b): as expected, as
the degree of the nodes increases, the maximum rebalancing amount increases
as well. The computation took 2.39 hours to 6.92 hours for the February net-
work, 2.53 hours to 7.31 hours for the March network, and 2.65 hours to 7.1
hours for the April network on the machine described in Section 7.2.1.

We gathered the frequency of the most common capacities associated with
edges and reported them in Table 12.6. Results for all three instances are
almost the same, except for the fourth and the fifth positions in March, where
these are swapped with respect to February and April.

We computed the variation of the total capacity of the network (sum of
the capacities of all the edges) by removing the edges with the highest 50
capacities and the nodes associated with the highest 100 degrees. The goal is
to see how much of the total capacity is in the hands of a few. Figure 12.14a
shows that, by removing edges, the slope of the curve substantially reduces

8Datasets available at https://gitlab.tu-berlin.de/rohrer/discharged-pc-data

211

https://gitlab.tu-berlin.de/rohrer/discharged-pc-data

0 5 10 15 20

0

500

1,000

1,500

Degree

O
cc
ur
re
nc
es

February
March
April

(a) Nodes degree distribution (limited to
the top 20) for the three LN snapshots.

2 4 6 8 10

2

3

4

5

6

·106

Node DegreeAv
g.

M
ax

.
R
eb
al
an

ci
ng

A
m
ou

nt
(s
at
)

February
March
April

(b) Average maximum rebalancing
amount for each node of degree 2 to 11
for the three LN states.

Figure 12.13: Nodes degree distribution and average maximum rebalancing
amount.

after 50 removals. Moreover, removing the 100 nodes with the highest degrees
(Figure 12.14b) decreases the capacity of approximately 90%.

We considered the number of paths of length 2 and 3 involving nodes with
the same degree. We varied the degree between 1 and 10. We focused on short
paths since, on average, the length of the shortest path between two nodes is
2.8 [153]. Furthermore, longer paths also imply higher fees to pay, since the
payments require additional intermediate steps. This query was performed on
GNU/Linux machines with Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz,

Frequency (F) Capacity (F) Frequency (M) Capacity (M) Frequency (A) Capacity (A)
2,713 1,000,000 2,709 1,000,000 2,595 1,000,000
1,883 100,000 1,865 100,000 1,931 100,000
1,780 500,000 1,749 500,000 1,735 500,000
1,425 2,000,000 1,465 16,777,215 1,460 2,000,000
1,346 16,777,215 1,459 2,000,000 1,444 16,777,215
1,271 5,000,000 1,298 5,000,000 1,199 5,000,000
869 200,000 846 200,000 814 200,000
788 20,000 777 20,000 789 20,000
594 10,000,000 599 10,000,000 648 10,000,000
573 300,000 581 300,000 581 300,000

Table 12.6: Capacity of the edges (expressed in satoshi) and frequency for
February (F), March (M), and April (A).

212

0 10 20 30 40 50
8.0

8.2

8.4

8.6

8.8

9.0
·1010

Removed Edges

To
ta
lC

ap
ac
ity

(s
at
)

February
March
April

(a) Variation of the total network capac-
ity by removing the top 50 edges with
the largest capacity.

0 20 40 60 80 100
0

2

4

6

8

·1010

Removed Nodes

To
ta
lC

ap
ac
ity

(s
at
)

February
March
April

(b) Variation of the total network capac-
ity by removing the top 100 nodes with
the highest degree.

Figure 12.14: Variation of the total network capacity by removing edges and
nodes for the three LN states.

with a maximum allowed time of 24h, as it was very time-consuming. We were
not able to compute the number of paths for a length greater than 3 as the
query exceeded 24 hours. The computation of the number of paths of length 2
took 11.72 minutes, 11.58 minutes, and 13.56 minutes for the February, March,
and April network respectively. The computation of the number of paths of
length 3 took 13.42 hours, 15.14 hours, and 15.58 hours on the February,
March, and April network respectively. Figures 12.15a and 12.15c show that
the number of paths substantially decreases after the 3rd or 4th degree for the
three months for both paths of length 2 and 3.

Finally, we also considered the number of non-redundant paths of length 2
and 3 involving nodes with the same degree between 1 and 10. Differently from
the previous query, here we do not consider redundant paths, meaning that if
two nodes are connected with more than one path, its contribution to the total
value is still 1. Figures 12.15b and 12.15d show the results. The computation of
the number of paths of length 2 took 9.15 minutes, 10.08 minutes, and 10.75
minutes while for paths of length 3, 4.57 hours, 5.01 hours, and 5.71 hours
for February, March, and April network respectively, on the same machine
previously described.

Overall, we proposed an approach to compute different LN properties using
Logic Programming. However, there is uncertainty on the routing in LN, since,

213

2 4 6 8 10
0

1

2

3

·104

Node Degree

N
um

be
r
of

P
at
hs

(l
en

2)

February
March
April

(a) Number of paths of length 2 between
equal degree nodes (for variable degree).

2 4 6 8 10

0

1

2

3

·104

Node DegreeN
um

be
r
of

no
n
re
du

nd
an

t
pa

th
s
(l
en

2)

February
March
April

(b) Number of non redundant paths of
length 2 between equal degree nodes (for
variable degree).

2 4 6 8 10

2

4

6

·105

Node Degree

N
um

be
r
of

P
at
hs

(l
en

3)

February
March
April

(c) Number of paths of length 3 between
equal degree nodes (for variable degree).

2 4 6 8 10

0

1

2

3

·105

Node DegreeN
um

be
r
of

no
n
re
du

nd
an

t
pa

th
s
(l
en

3)

February
March
April

(d) Number of non redundant paths of
length 3 between equal degree nodes (for
variable degree).

Figure 12.15: Number of paths and non redundant paths of length 2 and 3
between equal degree nodes.

for example, some nodes may not be active, or refuse to forward a payment.
Moreover, the distribution of the funds in a channel is unknown. For all
these reasons, in the next section we see how this deterministic model can be
extended to a probabilistic one.

214

12.4.2 Probabilistic Model

As discussed in Section 11.1.3, the balance distribution of a channel is un-
known, so the task of routing transactions can be seen as probabilistic. Thus,
we can represent the capacity of a channel using a probability distribution. To
do this, we can extend the previously discussed code with a probabilistic fact
to model the capacity of a channel with a uniform distribution between L and
U (variables that will be bound to numbers). We can do this using the cplint
hybrid program syntax (see Section 8.2.1) with:

1 distr(X,L,U) : uniform_dens(X,L,U).

Consequently, the predicate connected_test can be modified as:

1 connected_test(Source ,Next ,Size):-

2 connected(Source ,Next ,Cap),

3 distr(C,0,Cap),

4 Size < C.

With this modification, we first collect the total capacity Cap of the channel
between two nodes, and then we state that the amount C between Source and
Next is uniformly distributed between 0 and Cap. The predicate succeeds if the
obtained value is larger than the payment size. Moreover, at each iteration,
the distribution of funds for the same edge does not change, i.e., if we sample a
path between two nodes, the distribution of funds in all the considered channels
remains the same.

The model can be further extended by considering intermittent edges. This
can be due to nodes that disconnect from the network or refuse to forward a
payment. To model this, we define a Bernoulli random variable that is true
with a certain probability, for example 0.95, with:

1 active(_):0.95.

With this addition, the predicate connected_test/3 becomes:

1 connected_test(Source ,Next ,Size):-

2 connected(Source ,Next ,Cap),

3 active(Next),

4 distr(C,0,Cap),

5 Size < C.

215

We choose a Bernoulli distribution for intermittent edges and a uniform
distribution for the capacity of the edges because we do not have further in-
formation. However, several extensions are possible: using a Gaussian dis-
tribution with the mean equal to half of the capacity of the channel, or the
probability that a node refuses a payment proportional to its size, associated
fees, or a combination of the two.

To conduct our experiments, we used a LN snapshot taken on 12th April
20219. We selected only the open channels, resulting in a graph with 14734
nodes, 44349 edges, and a total capacity of 125819660675 satoshi (1258.19
bitcoin). Table 12.7 shows a summary of the most common channel capacities
and node degrees.

Most Common Capacities Occurrences Degrees Occurrences Highest Capacities Occurrences
100000 3942 1 6958 500000000 4
1000000 3523 2 2575 477184791 1
500000 2794 3 1372 354000000 1
2000000 1533 4 802 300000000 2
16777215 1522 5 549 250000000 1
200000 1446 6 397 238135604 1
5000000 1359 7 263 225118006 1
20000 1297 8 209 200000000 28

10000000 1131 9 182 179792707 1
50000 1079 10 145 154222260 1

Table 12.7: Information about channel capacities (in satoshi) and node degrees.

We conducted some experiments to prove the effectiveness of PLP in mod-
elling the LN. To choose the range of the payment size, we first computed
the average of the capacities of all the connections, obtaining approximately
2837035 satoshi but with a standard deviation greater than 107. So, we counted
the number of connections that have less than the average capacity, less than
half of the average capacity, and less than a quarter of the average capacity,
obtaining respectively 35555 (≈ 80%), 31902 (≈ 72%), and 26077 (≈ 59%).
Results are shown in Figure 12.16a, where the X axis indicates the percentage
of the average capacity and the Y axes indicate the number of connections
(edges) with less than that value and the relative percentage with respect to
the total connections. To further analyse the distribution of the capacity, we
removed the nodes with the highest capacities and plotted the variation of the
total capacity. The results are shown in Fig 12.16b.

9Snapshot taken from https://ln.bigsun.xyz/.

216

https://ln.bigsun.xyz/

0 20 40 60 80 100

1

2

3

·104

Percentage of Average Capacity

N
um

be
r
of

C
on

ne
ct
io
ns

20

40

60

80

P
er
ce
nt
ag
e
of

C
on

ne
ct
io
ns

(a) Number and percentage of connec-
tions with less than a certain percentage
of the average capacity (2837035).

0 50 100 150 200

1.05

1.1

1.15

1.2

1.25

·1011

Number of Removed Connections

To
ta
lC

ap
ac
ity

Le
ft

85

90

95

100

P
er
ce
nt
ag

e
of

In
it
ia
lC

ap
ac
ity

Le
ft

(b) Value and percentage of capacity left
after removing the top n (X axis) con-
nections in terms of capacity.

As a first test, we computed the probability to successfully route a pay-
ment of varying size at the first attempt between two random different nodes
of the same degree. Some nodes along the path may not be active. Clearly,
a payment succeeds if all the intermediate nodes are active and forward the
payment. We fixed the number of intermediate edges to 2 and fixed the de-
grees of the source node and the destination node to 2, 5, and 10 for three
different tests. The goal is to see how the probability varies when intermit-
tent nodes may not be active. Probabilities are computed using the predicate
mc_sample(+Query:atom,+N:int,-Prob:float) from the MCINTYRE mod-
ule [134] with 1000 samples.

As Figure 12.17a shows, nodes with higher degrees have, as expected, a
higher probability to successfully route a payment at the first attempt. How-
ever, this gap reduces as the payment size increases. When nodes may be
disconnected, as shown in Figure 12.17b, the probability of a successful rout-
ing decreases, but not so drastically.

We conducted another experiment where we computed the probability of
a successful payment split into various equal parts between two random nodes
of variable degree. The payment size is split into N parts, and we computed
the probability that all these N parts are successfully routed at the first at-
tempt. This is a common scenario [123] since edges have limited capacity and
a payment of considerable size has low probability of being accepted by inter-
mediate nodes. However, splitting the payment into several parts increases the
fees needed to route it, since each sub-payment must be sent independently

217

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.2

0.4

0.6

0.8

Payment Size

P
ro
ba

bi
lit
y

Degree = 2
Degree = 5
Degree = 10

(a) Probability of a successful payment
of varying size between random con-
nected nodes of degree 2, 5, and 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.2

0.4

0.6

Payment

P
ro
ba

bi
lit
y

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

(b) Probability of a successful payment
of varying size between random con-
nected nodes of degree 2, with differ-
ent active probabilities for intermediate
nodes.

Figure 12.17: Probability of a successful payment of varying size between
random nodes.

and has an associated fee. The graphs in figures 12.18a, 12.18b, and 12.19a
show how the probability of a successful payment varies when it is split in 2, 3,
or 4 parts and intermediate nodes are always active. In figures 12.19b, 12.20a,
and 12.20b we repeated the experiment with a fixed degree of the source and
the destination (2), but we varied both the probability that a node is active
and the number of parts of a payment.

All the plots have a clear jump around 500000 (5 · 105) and 1000000 (106)
satoshi. This is probably due to the distributions of the capacities of the edges.
In fact, these two values are the second and third most common capacities, as
shown in Table 12.7. In our experiments, source and destination are randomly
chosen and we select a path if all the intermediate edges have enough total
capacity to route a payment of a specified size. If so, we proceed with the
probabilistic analysis, otherwise we search another path. However, if the value
of the payment is close to the total capacity of one of the edges of the path, the
routing will likely fail since we assumed a uniform distribution of the capacity.
For example, the routing of a payment of size 4.5 · 105 through a channel
of capacity 5 · 105 has only approximately 10% of chances to succeed (with
a uniform distribution). Many channels have capacity 5 · 105 so, when the
payment size gets closer to this value, the probability of a successful routing at

218

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.5

0.6

0.7

0.8

0.9

Payment Size (sat)

P
ro
ba

bi
lit
y

Degree = 2
Degree = 5
Degree = 10

(a) Probability of a successful payment
of varying size split into 2 equal parts,
between connected nodes of various de-
grees.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.7

0.8

0.9

1

Payment Size (sat)

P
ro
ba

bi
lit
y

Degree = 2
Degree = 5
Degree = 10

(b) Probability of a successful payment
of varying size split into 3 equal parts,
between connected nodes of various de-
grees.

Figure 12.18: Probability of a successful payment split in multiple parts be-
tween nodes of various degrees where intermediate nodes are always active.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.7

0.75

0.8

0.85

0.9

0.95

Payment Size (sat)

P
ro
ba

bi
lit
y

Degree = 2
Degree = 5
Degree = 10

(a) Probability of a successful payment
of varying size split into 4 equal parts,
between connected nodes of various de-
grees.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.4

0.5

0.6

0.7

0.8

Payment Size (sat)

P
ro
ba

bi
lit
y

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

(b) Probability of a successful payment
of varying size split into 2 equal parts,
between connected nodes of degree 2
with varying active probabilities.

Figure 12.19: Probability of a successful payment split in multiple parts be-
tween nodes of various degrees.

the first attempt decreases. If the size is greater than 5 ·105, these channels are
not considered since they do not have enough funds. Similarly for the value
106. There is another but less noticeable jump around 100000 (105), which is
the most common value for the capacity of a channel. This happens for the
same reasons just explained.

219

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.5

0.6

0.7

0.8

Payment Size (sat)

P
ro
ba

bi
lit
y

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

(a) Probability of a successful payment
of varying size split into 3 equal parts,
between connected nodes of degree 2
with varying active probabilities.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.5

0.6

0.7

0.8

Payment Size (sat)

P
ro
ba

bi
lit
y

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

(b) Probability of a successful payment
of varying size split into 4 equal parts,
between connected nodes of degree 2
with varying active probabilities.

Figure 12.20: Probability of a successful payment between nodes of various
degrees when intermediate nodes could be inactive.

The goal of these experiments was to prove the feasibility modelling the LN
with PLP, rather than provide an in-depth analysis of the LN, since it is very
dynamic and its structure rapidly changes, making all the computed values
quickly obsolete. Moreover, routing mechanisms are more sophisticated than
random routing, which we adopted here. However, our experiments show that
a PLP model is a useful representation of the network and can help to study
in depth several possible scenarios.

12.5 Conclusions

In this chapter, we constructed several probabilistic logic models that encode
different possible situations that may happen in a blockchain environment.
In Section 12.1, we provided a probabilistic logic analysis of Solidity smart
contracts and leveraged this to compute different profit values. In Section 12.2,
we presented two models regarding the centralization of the hashing power and
the double spending attack, proving their effectiveness. In Section 12.3, we
wrote a PLP model to represent how transaction fees can influence the whole
blockchain ecosystem, and studied whether for some miners it is profitable to
be dishonest. Finally, in Section 12.4, we provided two models for the LN, one

220

deterministic and one probabilistic, and computed several probability values
regarding the routing of the payments. Overall, PLP is a powerful formalism
for many application scenarios thanks to its expressivity combined with the
simplicity of the language.

221

222

Part V

Conclusions and Outlooks

223

Chapter 13

Conclusions

The work presented in this dissertation focuses on the extensions and appli-
cations of Probabilistic Logic Programming (PLP). In the first two parts we
introduce respectively the needed background knowledge regarding mathemat-
ical and logical concepts and already existing PLP languages and techniques
to perform inference. In Part II, we also provide a novel implementation of
a Markov Chain Monte Carlo algorithm to perform approximate inference in
PLP. Part III discusses our newly proposed extensions for PLP:

• Hybrid probabilistic logic programs, where discrete and continuous ran-
dom variables coexist. We start from an overview of the existing lan-
guages, with a particular focus on Probabilistic Constraint Logic Pro-
gramming. Then, we provide a new formal semantics and prove it well-
defined. Finally, we discuss several syntactic requirements to preserve its
properties.

• Probabilistic abductive logic programs, where PLP is extended with ab-
duction to manage uncertain and incomplete data. We provide a formal
definition of this new class and a practical algorithm to perform inference.

• Probabilistic optimizable logic programs, where some facts can be marked
as “optimizable” and their probabilities can be set. The goal is to set the
optimal values of these facts such that an objective function is optimized
and the constraints on probabilities of optimizable facts are satisfied, a
task that can be considered as parameter learning under constraints. To
perform reasoning, we propose an algorithm that extracts an equation

225

from a program and then leverages a constraint solver to compute the
solution.

• Probabilistic reducible logic programs, where, similarly to probabilistic
optimizable logic programs, some probabilistic facts can be marked as
“reducible” and they can be removed from the program. Here, the goal is
to remove as many reducible facts as possible while keeping the validity
of some constraints involving random variables values. This task can
be considered as structure learning under constraints. As before, we
propose a reasoning algorithm that works by extracting an equation and
passing it to a constraint solver. These last two extensions represent a
step towards the integration of constraints and probabilities.

The introduction of these new extensions is motivated by several examples
discussed in the correspondent sections.

In part IV, we apply the PLP formalism to the blockchain ecosystem. Af-
ter introducing basic blockchain concepts, especially focusing on Bitcoin, we
analyse:

• Smart contracts, i.e., programs executed on a blockchain: we provide a
possible PLP encoding of them and discuss its benefits.

• Hashing power centralization and double spending, two possible situa-
tions that can happen in a blockchain environment: we implement two
already existing models and see how PLP can be useful to test their
robustness.

• Transaction fees and how possible future scenarios can generate compe-
tition between users and miners.

• Lightning Network, a layer-two solution with the goal of increasing the
possible transactions per second and limiting some existing problems
in Bitcoin: starting from real snapshots of the network, we compute
several probability values involving payment routing. We consider both
a deterministic and a probabilistic model where users can disconnect
from the network.

226

Chapter 14

Future Work

The PLP field is vastly under-explored, so there are several possible future
streams of work involving different topics.

In this dissertation, we used an already proposed encoding for PLP that
leverages binary decision diagrams. A future work can be the exploration
of several alternative languages for knowledge compilation and see how they
relate in terms of compactness and expressivity. Moreover, newly proposed
works suggest a matrix encoding for a logic program: it can be interesting
to extend this also to probabilistic logic programs with the goal of leveraging
existing deep learning libraries operating on matrices.

Lifted inference is a technique for performing inference at a lifted level to
avoid grounding as much as possible. However, this technique can be applied
only to some classes of programs that present a particular structure. There
are few works that applied this concept to PLP and more work is needed.

Approximate inference is usually unavoidable when managing real-world
domains. In this dissertation we introduced two Markov Chain Monte Carlo
algorithms that mimics Metropolis Hastings and Gibbs sampling. However,
in the probabilistic programming literature there is a plethora of alternative
solutions. An interesting direction would be to provide an implementation of
these also for PLP. Moreover, a future work could consist in developing algo-
rithms for approximate inference that can be applied to our newly introduced
classes of programs.

We introduced a semantics for hybrid probabilistic logic programs and dis-
cussed the syntactic requirements, but a practical inference algorithm is miss-

227

ing. This would be of much interest given the expressivity of the language,
but its implementation is not trivial since the domain is infinite.

There are several possible directions in terms of modelling blockchain sce-
narios with PLP. For example, as discussed in Section 12.1, a smart contract
language based on logic will be of much interest, since it will permit using
directly the PLP model we proposed. In the context of the Lightning Net-
work, it would be interesting to extend the model discussed in Section 12.4
using, for example, inductive logic programming techniques to guess where
possible hidden nodes can be or where new nodes can be positioned. More-
over, an integration with the frameworks described in sections 10.1 and 10.2
would be interesting. This will allow to remove some of the possible connec-
tions, or tune their funds, while keeping the probability of successfully routing
a payment between some lower and upper bounds.

Neural-symbolic integration is currently one of the (if not the) hottest topics
in machine learning. Combining PLP with deep learning (neural networks)
will allow to integrate the expressivity of the former with the scalability of the
latter. Despite the enormous amount of research in this area, the proposed
solutions are still limited, and there is still disagreement on how these two
paradigms should be integrated. PLP could be one of the core components of
a possible integration, so work in this direction can be very exciting.

228

Bibliography

[1] Marco Alberti, Elena Bellodi, Giuseppe Cota, Evelina Lamma, Fabrizio
Riguzzi, and Riccardo Zese. Probabilistic constraint logic theories. In
Arjen Hommersom and Samer Abdallah, editors, Proceedings of the 3rd
International Workshop on Probabilistic Logic Programming (PLP), vol-
ume 1661 of CEUR-WS, pages 15–28, Aachen, Germany, 2016. Sun SITE
Central Europe.

[2] Marco Alberti, Elena Bellodi, Giuseppe Cota, Fabrizio Riguzzi, and Ric-
cardo Zese. cplint on SWISH: Probabilistic logical inference with a web
browser. Intelligenza Artificiale, 11(1):47–64, 2017.

[3] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni. Verifiable agent interaction in abduc-
tive logic programming: the SCIFF framework. ACM Transactions on
Computational Logic, 9(4):29:1–29:43, 2008.

[4] Andreas M. Antonopoulos. Mastering Bitcoin. O’Reilly Media, Inc.,
2014.

[5] Valentin Antuori and Florian Richoux. Constrained optimization un-
der uncertainty for decision-making problems: Application to real-time
strategy games. In 2019 IEEE Congress on Evolutionary Computation
(CEC), pages 458–465, 2019.

[6] Krzysztof R. Apt and Marc Bezem. Acyclic programs. New Generation
Computing, 9(3-4):335–363, 1991.

229

[7] Krzysztof. R. Apt, Howard. A. Blair, and Adrian Walker. Towards a The-
ory of Declarative Knowledge, pages 89–148. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1988.

[8] Andreas Arvanitis, Stephen H. Muggleton, Jianzhong Chen, and Hiroaki
Watanabe. Abduction with stochastic logic programs based on a possi-
ble worlds semantics. In Short Paper Proceedings of the 16th Interna-
tional Conference on Inductive Logic Programming (ILP-06). University
of Coruña, 2006.

[9] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of at-
tacks on ethereum smart contracts (sok). In International Conference
on Principles of Security and Trust, pages 164–186. Springer, 2017.

[10] Damiano Azzolini, Elena Bellodi, Alessandro Brancaleoni, Fabrizio
Riguzzi, and Evelina Lamma. Modeling bitcoin lightning network by
logic programming. Proceedings 36th International Conference on Logic
Programming (Technical Communications), 325:258–260, 2020.

[11] Damiano Azzolini, Elena Bellodi, Alessandro Brancaleoni, Fabrizio
Riguzzi, and Evelina Lamma. Modeling bitcoin lightning network by
logic programming. In Francesco Ricca, Alessandra Russo, Sergio Greco,
Nicola Leone, Alexander Artikis, Gerhard Friedrich, Paul Fodor, Ange-
lika Kimmig, Francesca Lisi, Marco Maratea, Alessandra Mileo, and Fab-
rizio Riguzzi, editors, Proceedings of the 36th International Conference
on Logic Programming (Technical Communications), pages 258–260, Wa-
terloo, Australia, 2020. Open Publishing Association.

[12] Damiano Azzolini, Elena Bellodi, Stefano Ferilli, Fabrizio Riguzzi, and
Riccardo Zese. Abduction with probabilistic logic programming under
the distribution semantics. International Journal of Approximate Rea-
soning, 142:41–63, 2022.

[13] Damiano Azzolini and Fabrizio Riguzzi. Optimizing probabilities in
probabilistic logic programs. Theory and Practice of Logic Programming,
21(5):543–556, 2021.

230

[14] Damiano Azzolini and Fabrizio Riguzzi. Reducing probabilistic logic pro-
grams. In Ahmet Soylu, Alireza Tamaddoni Nezhad, Nikolay Nikolov,
Ioan Toma, Anna Fensel, and Joost Vennekens, editors, Proceedings of
the 15th International Rule Challenge, 7th Industry Track, and 5th Doc-
toral Consortium at RuleML+RR 2021 co-located with 17th Reasoning
Web Summer School (RW 2021) and 13th DecisionCAMP 2021 as part
of Declarative AI 2021, volume 2956 of CEUR Workshop Proceedings,
pages 1–13, Aachen, Germany, 2021. Sun SITE Central Europe.

[15] Damiano Azzolini and Fabrizio Riguzzi. Syntactic requirements for well-
defined hybrid probabilistic logic programs. In Andrea Formisano, Yan-
hong Annie Liu, Bart Bogaerts, Alex Brik, Veronica Dahl, Carmine Do-
daro, Paul Fodor, Gian Luca Pozzato, Joost Vennekens, and Neng-Fa
Zhou, editors, Proceedings 37th International Conference on Logic Pro-
gramming (Technical Communications), pages 14–26, Waterloo, Aus-
tralia, 2021. Open Publishing Association.

[16] Damiano Azzolini, Fabrizio Riguzzi, Elena Bellodi, and Evelina Lamma.
A probabilistic logic model of lightning network. In Business Informa-
tion Systems Workshops, volume In press of Springer’s Lecture Notes
in Business Information Processing (LNBIP), Cham, Switzerland, 2021.
Springer International Publishing.

[17] Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. Analyz-
ing transaction fees with probabilistic logic programming. In Witold
Abramowicz and Rafael Corchuelo, editors, Business Information Sys-
tems Workshops, pages 243–254, Cham, 2019. Springer International
Publishing.

[18] Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. Studying
transaction fees in the bitcoin blockchain with probabilistic logic pro-
gramming. Information, 10(11):335, 2019.

[19] Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. An analysis
of Gibbs sampling for probabilistic logic programs. In Carmine Dodaro,
George Aristidis Elder, Wolfgang Faber, Jorge Fandinno, Martin Geb-
ser, Markus Hecher, Emily LeBlanc, Michael Morak, and Jessica Zangari,

231

editors, Workshop on Probabilistic Logic Programming (PLP 2020), vol-
ume 2678 of CEUR-WS, pages 1–13, Aachen, Germany, 2020. Sun SITE
Central Europe.

[20] Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. Model-
ing smart contracts with probabilistic logic programming. In Witold
Abramowicz and Gary Klein, editors, Business Information Systems
Workshops, volume 394 of Lecture Notes in Business Information Pro-
cessing, pages 86–98, Cham, 2020. Springer International Publishing.

[21] Damiano Azzolini, Fabrizio Riguzzi, and Evelina Lamma. A semantics
for hybrid probabilistic logic programs with function symbols. Artificial
Intelligence, 294:103452, 2021.

[22] Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi, and
Riccardo Zese. Modeling bitcoin protocols with probabilistic logic pro-
gramming. In Elena Bellodi and Tom Schrijvers, editors, Proceedings
of the 5th International Workshop on Probabilistic Logic Programming,
PLP 2018, co-located with the 28th International Conference on Induc-
tive Logic Programming (ILP 2018), Ferrara, Italy, September 1, 2018.,
volume 2219 of CEUR Workshop Proceedings, pages 49–61, 2018.

[23] Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, and Franco Ma-
sotti. A comparison of MCMC sampling for probabilistic logic program-
ming. In Mario Alviano, Gianluigi Greco, and Francesco Scarcello, ed-
itors, Proceedings of the 18th Conference of the Italian Association for
Artificial Intelligence (AI*IA2019), Rende, Italy 19-22 November 2019,
volume 11946 of Lecture Notes in Computer Science, Heidelberg, Ger-
many, 2019. Springer.

[24] Behrouz Babaki, Tias Guns, and Luc de Raedt. Stochastic constraint
programming with and-or branch-and-bound. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, pages 539–545, 2017.

232

[25] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter
Wuille. Enabling blockchain innovations with pegged sidechains, 2014.

[26] Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic rea-
soning with answer sets. Theory and Practice of Logic Programming,
9(1):57–144, 2009.

[27] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia.
Dissecting ponzi schemes on ethereum: identification, analysis, and im-
pact. arXiv preprint arXiv:1703.03779, 2017.

[28] Massimo Bartoletti, Barbara Pes, and Sergio Serusi. Data mining
for detecting bitcoin ponzi schemes. In Crypto Valley Conference on
Blockchain Technology, CVCBT 2018, Zug, Switzerland, June 20-22,
2018, pages 75–84. IEEE, 2018.

[29] Martijn Bastiaan. Preventing the 51%-attack: a stochastic analysis of
two phase proof of work in bitcoin, 2015. https://fmt.ewi.utwente.

nl/media/175.pdf, accessed October 20, 2021.

[30] Soumya Basu, David Easley, Maureen O’Hara, and Emin Gün
Sirer. Towards a functional fee market for cryptocurrencies. CoRR,
abs/1901.06830, 2019.

[31] Logan Beal, Daniel Hill, R Martin, and John Hedengren. Gekko opti-
mization suite. Processes, 6(8):106, 2018.

[32] Elena Bellodi, Marco Alberti, Fabrizio Riguzzi, and Riccardo Zese. MAP
inference for probabilistic logic programming. Theory and Practice of
Logic Programming, 20(5):641–655, 2020.

[33] Elena Bellodi, Marco Gavanelli, Riccardo Zese, Evelina Lamma, and
Fabrizio Riguzzi. Nonground abductive logic programming with proba-
bilistic integrity constraints. Theory and Practice of Logic Programming,
21(5):557–574, 2021.

233

https://fmt.ewi.utwente.nl/media/175.pdf
https://fmt.ewi.utwente.nl/media/175.pdf

[34] Elena Bellodi and Fabrizio Riguzzi. Learning the structure of proba-
bilistic logic programs. In Stephen H. Muggleton, Alireza Tamaddoni-
Nezhad, and Francesca A. Lisi, editors, 22nd International Conference
on Inductive Logic Programming, volume 7207 of LNCS, pages 61–75.
Springer Berlin Heidelberg, 2012.

[35] Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic
logic programs by searching the clause space. Theory and Practice of
Logic Programming, 15(2):169–212, 2015.

[36] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:993–1022, 2003.

[37] Beate Bollig and Ingo Wegener. Improving the variable ordering of OB-
DDs is NP-complete. IEEE Trans. Computers, 45(9):993–1002, 1996.

[38] R. Bowden, H. Paul Keeler, Anthony E. Krzesinski, and Peter G. Taylor.
Block arrivals in the bitcoin blockchain. CoRR, abs/1801.07447, 2018.

[39] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer
set programming at a glance. Commun. ACM, 54(12):92–103, December
2011.

[40] Vitalik Buterin. A next-generation smart contract and decentralized ap-
plication platform, 2014. https://github.com/ethereum/wiki/wiki/

White-Paper, accessed February 14, 2019.

[41] Turliuc Calin-Rares, Maimari Nataly, Russo Alessandra, and Broda
Krysia. On minimality and integrity constraints in probabilistic abduc-
tion. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 759–775. Springer, 2013.

[42] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind
Narayanan. On the instability of bitcoin without the block reward. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 154–167. ACM, 2016.

234

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[43] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner.
Quantitative analysis of smart contracts. In European Symposium on
Programming, pages 739–767. Springer, Cham, 2018.

[44] Natalia Chaudhry and Muhammad Yousaf. Consensus algorithms in
blockchain: Comparative analysis, challenges and opportunities. In
12th International Conference on Open Source Systems and Technolo-
gies (ICOSST), pages 54–63, 12 2018.

[45] Mark Chavira and Adnan Darwiche. On probabilistic inference by
weighted model counting. Artificial Intelligence, 172(6-7):772–799, 2008.

[46] Weidong Chen and David Scott Warren. Tabled evaluation with delaying
for general logic programs. Journal of the ACM, 43(1):20–74, 1996.

[47] Yuan S. Chow and Henry Teicher. Probability Theory: Independence,
Interchangeability, Martingales. Springer Texts in Statistics. Springer,
2012.

[48] Henning Christiansen. Implementing probabilistic abductive logic pro-
gramming with constraint handling rules. In Tom Schrijvers and Thom
Frühwirth, editors, Constraint Handling Rules, volume 5388 of Lecture
Notes in Computer Science, pages 85–118. Springer, 2008.

[49] Henning Christiansen and John P. Gallagher. Non-discriminating argu-
ments and their uses. In Logic Programming, 25th International Con-
ference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceed-
ings, volume 5649 of Lecture Notes in Computer Science, pages 55–69.
Springer, 2009.

[50] Giovanni Ciatto, Roberta Calegari, Stefano Mariani, Enrico Denti, and
Andrea Omicini. From the blockchain to logic programming and back:
Research perspectives. In Massimo Cossentino, Luca Sabatucci, and
Valeria Seidita, editors, Proceedings of the 19th Workshop “From Objects
to Agents”, Palermo, Italy, June 28-29, 2018., volume 2215 of CEUR
Workshop Proceedings, pages 69–74. CEUR-WS.org, 2018.

[51] Krzysztof Ciesielski. Set Theory for the Working Mathematician. London
Mathematical Society Student Texts. Cambridge University Press, 1997.

235

[52] Keith L. Clark. Negation as failure. In Logic and data bases, pages
293–322. Springer, 1978.

[53] Alain Colmerauer, Henri Kanoui, Robert Pasero, and Philippe Roussel.
Un systeme de communication homme-machine en français. Technical
report, Groupe de Recherche en Intelligence Artificielle, Université d’Aix-
Marseille, 1973.

[54] Shaen Corbet, Brian Lucey, Andrew Urquhart, and Larisa Yarovaya.
Cryptocurrencies as a financial asset: A systematic analysis. Interna-
tional Review of Financial Analysis, 62:182–199, 2019.

[55] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari
Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin
Gün Sirer, Dawn Song, and Roger Wattenhofer. On scaling decentralized
blockchains. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan
Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryp-
tography and Data Security, pages 106–125, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[56] Adnan Darwiche and Pierre Marquis. A knowledge compilation map.
Journal of Artificial Intelligence Research, 17:229–264, 2002.

[57] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 2 edition, 2002.

[58] Luc De Raedt, Kristian Kersting, Angelika Kimmig, Kate Revoredo, and
Hannu Toivonen. Compressing probabilistic Prolog programs. Machine
Learning, 70(2-3):151–168, 2008.

[59] Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming
concepts. Machine Learning, 100(1):5–47, 2015.

[60] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A
probabilistic prolog and its application in link discovery. In Manuela M.
Veloso, editor, IJCAI, pages 2462–2467, 2007.

[61] Ittay Eyal and Emin Gün Sirer. How to disincentivize large bitcoin
mining pools, 2014.

236

[62] Stefano Ferilli. Extending expressivity and flexibility of abductive logic
programming. Journal of Intelligent Information Systems, 51:647–672,
2018.

[63] Daan Fierens, Guy Van den Broeck, Maurice Bruynooghe, and Luc De
Raedt. Constraints for probabilistic logic programming. In D. Roy,
V. Mansinghka, and N. Goodman, editors, Proceedings of the NIPS Prob-
abilistic Programming Workshop, 2012.

[64] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shte-
rionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De
Raedt. Inference and learning in probabilistic logic programs using
weighted Boolean formulas. Theory and Practice of Logic Programming,
15(3):358–401, 2015.

[65] Carsten Fritz. Some fixed point basics. In Automata Logics, and Infinite
Games, pages 359–364. Springer, 2002.

[66] Tze Ho Fung and Robert A. Kowalski. The IFF proof procedure for
abductive logic programming. Journal of Logic Programming, 33(2):151–
165, 1997.

[67] David Garcia, Claudio J. Tessone, Pavlin Mavrodiev, and Nicolas Perony.
The digital traces of bubbles: feedback cycles between socio-economic
signals in the bitcoin economy. Journal of the Royal Society Interface,
11(99):20140623, 2014.

[68] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In 5th International Conference and Symposium
on Logic Programming (ICLP/SLP 1988), volume 88, pages 1070–1080.
MIT Press, 1988.

[69] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distribu-
tions, and the bayesian restoration of images. In Readings in computer
vision, pages 564–584. Elsevier, 1987.

[70] Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. Extending problog
with continuous distributions. In Paolo Frasconi and Francesca A. Lisi,

237

editors, 20th International Conference on Inductive Logic Programming
(ILP 2010), volume 6489 of LNCS, pages 76–91. Springer, 2011.

[71] Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De
Raedt. Parameter learning in probabilistic databases: A least squares
approach. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD 2008),
volume 5211 of LNCS, pages 473–488. Springer, 2008.

[72] Bernd Gutmann, Ingo Thon, and Luc De Raedt. Learning the param-
eters of probabilistic logic programs from interpretations. In Dimitrios
Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgian-
nis, editors, European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD 2011),
volume 6911 of LNCS, pages 581–596. Springer, 2011.

[73] Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice Bruynooghe,
and Luc De Raedt. The magic of logical inference in probabilistic pro-
gramming. Theory and Practice of Logic Programming, 11(4-5):663–680,
2011.

[74] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital doc-
ument. In Conference on the Theory and Application of Cryptography,
pages 437–455. Springer, 1990.

[75] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring net-
work structure, dynamics, and function using networkx. In Gaël Varo-
quaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of the
7th Python in Science Conference, pages 11–15, Pasadena, CA USA,
2008.

[76] Yoichi Hirai. Defining the ethereum virtual machine for interactive the-
orem provers. In International Conference on Financial Cryptography
and Data Security, pages 520–535. Springer, 2017.

[77] Pascal Hitzler and Anthony Seda. Mathematical Aspects of Logic Pro-
gramming Semantics. Chapman & Hall/CRC Studies in Informatics
Series. CRC Press, 2016.

238

[78] Joe Hurd. A formal approach to probabilistic termination. In Victor
Carreño, César A. Muñoz, and Sofiène Tahar, editors, 15th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs
2002), volume 2410 of LNCS, pages 230–245. Springer, 2002.

[79] Florian Idelberger, Guido Governatori, Régis Riveret, and Giovanni Sar-
tor. Evaluation of logic-based smart contracts for blockchain systems. In
International Symposium on Rules and Rule Markup Languages for the
Semantic Web, pages 167–183. Springer, 2016.

[80] Katsumi Inoue, Taisuke Sato, Masakazu Ishihata, Yoshitaka Kameya,
and Hidetomo Nabeshima. Evaluating abductive hypotheses using an
EM algorithm on BDDs. In 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), pages 810–815. Morgan Kaufmann
Publishers Inc., 2009.

[81] Muhammad Asiful Islam, CR Ramakrishnan, and IV Ramakrishnan. In-
ference in probabilistic logic programs with continuous random variables.
Theory and Practice of Logic Programming, 12:505–523, 2012.

[82] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pages 111–119. ACM Press, 1987.

[83] Joxan Jaffar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. The
semantics of constraint logic programs. Journal of Logic Programming,
37(1-3):1–46, 1998.

[84] Chuan Jiang, Junaid Babar, Gianfranco Ciardo, Andrew S Miner, and
Benjamin Smith. Variable reordering in binary decision diagrams. In
26th International Workshop on Logic and Synthesis, pages 1–8, 2017.

[85] Steven G. Johnson. The nlopt nonlinear-optimization package, 2020.

[86] Antonis C. Kakas, R. A. Kowalski, and Francesca Toni. Abductive Logic
Programming. Journal of Logic and Computation, 2(6):719–770, 1993.

239

[87] Antonis C. Kakas and Paolo Mancarella. Abductive logic programming.
In Proceedings of NACLP Workshop on Non-Monotonic Reasoning and
Logic Programming, 1990.

[88] Antonis C. Kakas and Paolo Mancarella. Database updates through
abduction. In Proceedings of the 16th VLDB, pages 650–661. Morgan
Kaufmann, 1990.

[89] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus:
Analyzing safety of smart contracts. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018.

[90] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja,
and Federico Olmedo. Weakest precondition reasoning for expected run-
times of probabilistic programs. In Peter Thiemann, editor, 25th Eu-
ropean Symposium on Programming, on Programming Languages and
Systems (ESOP 2016), volume 9632 of LNCS, pages 364–389. Springer,
2016.

[91] Ghassan Karame, Elli Androulaki, and Srdjan Capkun. Two bitcoins at
the price of one? double-spending attacks on fast payments in bitcoin.
IACR Cryptology ePrint Archive, 2012(248), 2012.

[92] Shoji Kasahara and Jun Kawahara. Priority mechanism of bitcoin and
its effect on transaction-confirmation process. CoRR, abs/1604.00103,
2016.

[93] Rohit J. Kate and Raymond J. Mooney. Probabilistic abduction using
markov logic networks. In Proceedings of the IJCAI-09 Workshop on
Plan, Activity, and Intent Recognition (PAIR-09), Pasadena, CA, July
2009.

[94] Paraskevi Katsiampa. Volatility estimation for bitcoin: A comparison of
garch models. Economics Letters, 158:3–6, 2017.

[95] Angelika Kimmig, Vítor Santos Costa, Ricardo Rocha, Bart Demoen,
and Luc De Raedt. On the efficient execution of ProbLog programs.

240

In 24th International Conference on Logic Programming (ICLP 2008),
volume 5366 of LNCS, pages 175–189. Springer, December 2008.

[96] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic
prolog for reasoning about possible worlds. In Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, volume 1, pages 209–
214. AAAI Press, 2011.

[97] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Prin-
ciples and Techniques. Adaptive computation and machine learning. MIT
Press, Cambridge, MA, 2009.

[98] David T. Koops. Predicting the confirmation time of bitcoin transac-
tions. CoRR, abs/1809.10596, 2018.

[99] Robert A. Kowalski. Predicate logic as programming language. In IFIP
Congress, pages 569–574, 1974.

[100] Dieter Kraft. Algorithm 733: Tomp-fortran modules for optimal control
calculations. ACM Trans. Math. Softw., 20(3):262–281, September 1994.

[101] Ladislav Kristoufek. Bitcoin meets google trends and wikipedia: Quanti-
fying the relationship between phenomena of the internet era. Scientific
reports, 3:3415, 2013.

[102] Anna L. D. Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig,
Guy Van den Broeck, and Siegfried Nijssen. Combining stochastic con-
straint optimization and probabilistic programming. In J. Christopher
Beck, editor, Principles and Practice of Constraint Programming, pages
495–511, Cham, 2017. Springer International Publishing.

[103] Joohyung Lee, Samidh Talsania, and Yi Wang. Computing lpmln using
asp and mln solvers. Theory and Practice of Logic Programming, 17(5-
6):942–960, 2017.

[104] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale
transactions. In International Conference on Financial Cryptography
and Data Security, pages 264–279. Springer, 2017.

241

[105] John W. Lloyd. Foundations of Logic Programming, 2nd Edition.
Springer, 1987.

[106] Michele Lombardi and Michela Milano. Allocation and scheduling of
conditional task graphs. Artificial Intelligence, 174(7):500–529, 2010.

[107] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 254–269. ACM, 2016.

[108] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. A secure sharding protocol for open
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 17–30, New York, NY, USA, 2016. ACM.

[109] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
Simple schnorr multi-signatures with applications to bitcoin. Designs,
Codes and Cryptography, 87(9):2139–2164, Sep 2019.

[110] Wannes Meert, Jan Struyf, and Hendrik Blockeel. Learning ground CP-
Logic theories by leveraging Bayesian network learning techniques. Fun-
damenta Informaticae, 89(1):131–160, 2008.

[111] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov,
Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.
Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing
in python. PeerJ Computer Science, 3:e103, January 2017.

[112] Steffen Michels, Arjen Hommersom, Peter J. F. Lucas, and Marina Ve-
likova. A new probabilistic constraint logic programming language based
on a generalised distribution semantics. Artificial Intelligence, 228:1–44,
2015.

242

[113] Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study
of bitcoin transaction fees. In International Conference on Financial
Cryptography and Data Security, pages 19–33. Springer, 2015.

[114] Stephen Muggleton. Learning stochastic logic programs. In Lise Getoor
and David Jensen, editors, Learning Statistical Models from Relational
Data, Papers from the 2000 AAAI Workshop, volume WS-00-06 of AAAI
Workshops, pages 36–41. AAAI Press, 2000.

[115] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. Journal of Logic Programming, 19:629–679, 1994.

[116] Stephen Muggleton et al. Stochastic logic programs. Advances in induc-
tive logic programming, 32:254–264, 1996.

[117] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
https://bitcoin.org/bitcoin.pdf, accessed October 20, 2021.

[118] Arun Nampally and CR Ramakrishnan. Adaptive MCMC-based infer-
ence in probabilistic logic programs. arXiv preprint arXiv:1403.6036,
2014.

[119] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic program-
ming. Information and Computation, 101(2):150–201, 1992.

[120] Matthias Nickles. A tool for probabilistic reasoning based on logic pro-
gramming and first-order theories under stable model semantics. In
Loizos Michael and Antonis Kakas, editors, Logics in Artificial Intel-
ligence, pages 369–384, Cham, 2016. Springer International Publishing.

[121] Davide Nitti, Tinne De Laet, and Luc De Raedt. Probabilistic logic pro-
gramming for hybrid relational domains. Machine Learning, 103(3):407–
449, 2016.

[122] Francesco Orsini, Paolo Frasconi, and Luc De Raedt. kProbLog: an
algebraic prolog for machine learning. Machine Learning, 106(12):1933–
1969, 2017.

243

https://bitcoin.org/bitcoin.pdf

[123] Dmytro Piatkivskyi and Mariusz Nowostawski. Split payments in pay-
ment networks. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 67–75. Springer, 2018.

[124] Carlos Pinzón and Camilo Rocha. Double-spend attack models with time
advantange for bitcoin. Electr. Notes Theor. Comput. Sci., 329:79–103,
2016.

[125] David Poole. Logic programming, abduction and probability - a top-
down anytime algorithm for estimating prior and posterior probabilities.
New Generation Computing, 11(3):377–400, 1993.

[126] David Poole. Probabilistic Horn abduction and Bayesian networks. Ar-
tificial Intelligence, 64(1):81–129, 1993.

[127] David Poole. Abducing through negation as failure: Stable models within
the independent choice logic. Journal of Logic Programming, 44(1–3):5–
35, 2000.

[128] David Poole. The independent choice logic and beyond. In Luc De Raedt,
Paolo Frasconi, Kristian Kersting, and Stephen Muggleton, editors,
Probabilistic Inductive Logic Programming, volume 4911 of LNCS, pages
222–243. Springer, 2008.

[129] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scal-
able off-chain instant payments, 2016.

[130] Teodor C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193–216. Morgan
Kaufmann, 1988.

[131] Teodor C. Przymusinski. Every logic program has a natural stratification
and an iterated least fixed point model. In Proceedings of the 8th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS-1989), pages 11–21. ACM Press, 1989.

[132] Matthew Richardson and Pedro Domingos. Markov logic networks. Ma-
chine Learning, 62(1-2):107–136, 2006.

244

[133] Fabrizio Riguzzi. Extended semantics and inference for the independent
choice logic. Logic Journal of the IGPL, 17(6):589–629, 2009.

[134] Fabrizio Riguzzi. MCINTYRE: A Monte Carlo system for probabilistic
logic programming. Fundamenta Informaticae, 124(4):521–541, 2013.

[135] Fabrizio Riguzzi. The distribution semantics for normal programs with
function symbols. International Journal of Approximate Reasoning,
77:1–19, 2016.

[136] Fabrizio Riguzzi. Foundations of Probabilistic Logic Programming: Lan-
guages, semantics, inference and learning. River Publishers, Gistrup,
Denmark, 2018.

[137] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Marco Alberti, and
Evelina Lamma. Probabilistic inductive constraint logic. Machine Learn-
ing, 110:1–32, 04 2021.

[138] Fabrizio Riguzzi and Nicola Di Mauro. Applying the information bottle-
neck to statistical relational learning. Machine Learning, 86(1):89–114,
2012.

[139] Fabrizio Riguzzi and Terrance Swift. Tabling and answer subsumption
for reasoning on logic programs with annotated disjunctions. In Technical
Communications of the 26th International Conference on Logic Program-
ming (ICLP 2010), volume 7 of LIPIcs, pages 162–171. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2010.

[140] Fabrizio Riguzzi and Terrance Swift. Well-definedness and efficient infer-
ence for probabilistic logic programming under the distribution seman-
tics. Theory and Practice of Logic Programming, 13(2):279–302, 2013.

[141] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged
payment channels: Quantifying the lightning network’s resilience to
topology-based attacks. In 2019 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), pages 347–356. IEEE, 2019.

[142] Meni Rosenfeld. Analysis of hashrate-based double spending. CoRR,
abs/1402.2009, 2014.

245

[143] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository
with interactive graph analytics and visualization. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 4292–
4293. AAAI Press, 2015.

[144] Tian Sang, Paul Bearne, and Henry Kautz. Performing bayesian infer-
ence by weighted model counting. In Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 1, AAAI’05, pages 475–
481. AAAI Press, 2005.

[145] Vítor Santos Costa, Ricardo Rocha, and Luís Damas. The YAP Prolog
system. Theory and Practice of Logic Programming, 12(1-2):5–34, 2012.

[146] Taisuke Sato. A statistical learning method for logic programs with dis-
tribution semantics. In Leon Sterling, editor, Logic Programming, Pro-
ceedings of the Twelfth International Conference on Logic Programming,
Tokyo, Japan, June 13-16, 1995, pages 715–729. MIT Press, 1995.

[147] Taisuke Sato. EM learning for symbolic-statistical models in statisti-
cal abduction. In Progress in Discovery Science, Final Report of the
Japanese Discovery Science Project, pages 189–200. Springer, 2002.

[148] Taisuke Sato and Yoshitaka Kameya. PRISM: a language for symbolic-
statistical modeling. In 15th International Joint Conference on Artificial
Intelligence (IJCAI 1997), volume 97, pages 1330–1339, 1997.

[149] Taisuke Sato and Yoshitaka Kameya. A viterbi-like algorithm and em
learning for statistical abduction. In Proceedings of UAI2000 Workshop
on Fusion of Domain Knowledge with Data for Decision Support, 2000.

[150] Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic pro-
grams for symbolic-statistical modeling. Journal of Artificial Intelligence
Research, 15:391–454, 2001.

[151] Taisuke Sato and Philipp Meyer. Tabling for infinite probability com-
putation. In Agostino Dovier and Vítor Santos Costa, editors, Techni-
cal Communications of the 28th International Conference on Logic Pro-
gramming (ICLP 2012), volume 17 of LIPIcs, pages 348–358. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

246

[152] Claus-Peter Schnorr. Efficient signature generation by smart cards. Jour-
nal of cryptology, 4(3):161–174, 1991.

[153] István Seres, László Gulyás, Dániel Nagy, and Péter Burcsi. Topological
Analysis of Bitcoin’s Lightning Network, pages 1–12. Springer Interna-
tional Publishing, 01 2020.

[154] Dimitar Sht. Shterionov, Joris Renkens, Jonas Vlasselaer, Angelika Kim-
mig, Wannes Meert, and Gerda Janssens. The most probable explana-
tion for probabilistic logic programs with annotated disjunctions. In
Jesse Davis and Jan Ramon, editors, 24th International Conference on
Inductive Logic Programming (ILP 2014), volume 9046 of LNCS, pages
139–153, Berlin, Heidelberg, 2015. Springer.

[155] Gerardo Simari and V. S. Subrahmanian. Abductive Inference in Prob-
abilistic Logic Programs. In Manuel Hermenegildo and Torsten Schaub,
editors, Technical Communications of the 26th International Conference
on Logic Programming, volume 7 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 192–201, Dagstuhl, Germany, 2010. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[156] Gerardo I. Simari, John P. Dickerson, Amy Sliva, and V. S. Subrahma-
nian. Parallel abductive query answering in probabilistic logic programs.
ACM Trans. Comput. Logic, 14(2), June 2013.

[157] Fabio Somenzi. CUDD: CU Decision Diagram Package Release 3.0.0.
University of Colorado, 2015.

[158] Krister Svanberg. A class of globally convergent optimization methods
based on conservative convex separable approximations. SIAM Journal
on Optimization, pages 555–573, 2002.

[159] Terrance Swift and David Scott Warren. XSB: Extending prolog with
tabled logic programming. Theory and Practice of Logic Programming,
12(1-2):157–187, 2012.

[160] Nick Szabo. Smart contracts, 1994. https://www.fon.hum.

uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html.

247

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

[161] Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
pages 713–728. ACM, 2018.

[162] Endriss Ulrich, Mancarella Paolo, Sadri Fariba, Terreni Giacomo, and
Toni Francesca. Abductive logic programming with CIFF: System de-
scription. In J.J. Alferes and J. Leite, editors, Logics in Artificial Intelli-
gence. JELIA 2004, volume 3229 of Lecture Notes in Computer Science,
Berlin, Heidelberg, 2004. Springer.

[163] Leslie G. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing, 8(3):410–421, 1979.

[164] Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt.
DTProbLog: A decision-theoretic probabilistic Prolog. In Maria Fox and
David Poole, editors, Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, pages 1217–1222. AAAI Press, 2010.

[165] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. Journal of the ACM,
38(3):620–650, 1991.

[166] Wiebe Van Ranst and Joost Vennekens. An opencl implementation of
a forward sampling algorithm for cp-logic. International Journal of Ap-
proximate Reasoning, 67:60–72, 2015.

[167] Marie Vasek and Tyler Moore. Analyzing the bitcoin ponzi scheme
ecosystem. In International Conference on Financial Cryptography and
Data Security, pages 101–112. Springer, 2018.

[168] Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. CP-logic:
A language of causal probabilistic events and its relation to logic pro-
gramming. Theory and Practice of Logic Programming, 9(3):245–308,
2009.

[169] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic pro-
grams with annotated disjunctions. In Bart Demoen and Vladimir Lif-
schitz, editors, 20th International Conference on Logic Programming
(ICLP 2004), volume 3131 of LNCS, pages 431–445. Springer, 2004.

248

[170] Toby Walsh. Stochastic constraint programming. Proceedings of the 15th
European Conference on Artificial Intelligence, 1:111–115, 2002.

[171] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
Swi-prolog. Theory and Practice of Logic Programming, 12(1-2):67–96,
2012.

[172] Mark T. Williams. Virtual currencies–bitcoin risk, 2014.

[173] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1–32, 2014.

[174] Pedro Zuidberg Dos Martires, Anton Dries, and Luc De Raedt. Knowl-
edge compilation with continuous random variables and its application
in hybrid probabilistic logic programming. CoRR, abs/1807.00614, 2018.

249

	I Introduction
	Motivation
	Goal of the Thesis
	Structure of the Thesis
	How to Read this Thesis

	II Background
	Probability Theory and Set Theory
	Set Theory
	Probability Theory
	Random Variables

	Ordinal Numbers, Mappings, and Fixpoints
	Ordinal Numbers
	Mappings and Fixpoints

	Logic and Logic Programming
	Propositional and First Order Logic
	Propositional Logic
	First Order Logic

	Logic Programming
	Semantics for Programs with Negation

	Abduction and Abductive Logic Programming

	Syntax and Semantics for Probabilistic Logic Programs
	ProbLog and LPADs
	Distribution Semantics
	Semantics for Programs with Function Symbols

	Conclusions

	Inference
	Exact Inference
	Decision Diagrams
	Systems to Perform Exact Probabilistic Logical Inference

	Approximate Inference
	Markov Chain Monte Carlo

	Conclusions

	III Extensions of Probabilistic Logic Programming
	Hybrid Programs
	Hybrid Probabilistic Logic Programs
	Probabilistic Constraint Logic Programming

	Semantics for Hybrid Programs with Function Symbols
	A Concrete Syntax
	Syntactic Requirements

	Conclusions

	Extending Probabilistic Logic Programming with Abduction
	Probabilistic Abductive Logic Programs
	Examples
	Algorithm
	Experiments

	Related Work
	Relation with MAP, MPE, and Viterbi

	Conclusions

	Integrating Constraints and Probability
	Probabilistic Optimizable Logic Programs
	Experiments

	Probabilistic Reducible Logic Programs
	Experiments

	Related Work
	Conclusions

	IV Applications of Probabilistic Logic Programming
	Blockchain
	Structure
	Bitcoin
	Smart Contracts
	Lightning Network

	Analysis of Blockchain-related Scenarios
	Smart Contract Analysis
	Experiments
	Conclusions

	Hashing Power Centralization and Double Spending
	Preventing the Formation of Large Pools
	Double Spending
	Conclusions

	Transaction Fees
	Analyzing Transaction Fees
	Probability of a Profitable Fork
	Related Work
	Conclusions

	Lightning Network Model
	Deterministic Model
	Probabilistic Model

	Conclusions

	V Conclusions and Outlooks
	Conclusions
	Future Work
	Bibliography

