
1. Introduction
Peat soils are organic-rich sedimentary deposits that formed by the accumulation of biomass in water-sat-
urated conditions. Peat bogs minimize organic matter decomposition, and serve as important carbon 
reservoir worldwide (Belyea & Malmer, 2004; Natali, Bianchini, Vittori Antisari, Natale, & Tessari, 2018; 
Rein, 2015; Smith et al., 2004). Globally, peat soils contain one-third of the world's soil carbon; their carbon 
budget exceeds that of the forests, and is comparable to that of the atmosphere (Joosten & Clarke, 2002).

Unfortunately, peat soils are episodically affected by burning, as soil organic matter (SOM) can fuel and 
sustain the burning process for a long time (Moreno et al., 2011; Rein, 2015). According to the literature, 
peat smoldering can reach maximum temperatures of 700°C that, although lower than that of flaming 
combustion (1,500–1,800°C, Rein, 2009; Rein et al., 2008), progressively degrades SOM (Kreye et al., 2011).

Abstract The effects of peat burning on organic-rich agricultural soils of the Mezzano Lowland (NE 
Italy) were evaluated on soil profiles variously affected by smoldering. Profiles were investigated for pH, 
electrical conductivity, bulk density, elemental and isotopic composition of distinct carbon (and nitrogen) 
fractions. The results suggest that the horizons affected by carbon loss lie at depths 10–70 cm, where the 
highest temperatures are developed. We suggest that the exothermal oxidation of methane (mediated 
by biological activity) plays a significant role in the triggering mechanism. In the interested soils we 
estimated a potential loss of Soil Organic Carbon of approximately 110 kg m−2 within the first meter, 
corresponding to 580 kg CO2 m−3. The released greenhouse gas is coupled with a loss of soil structure and 
nutrients. Moreover, the process plausibly triggers mobility of metals bound in organometallic complexes. 
All these consequences negatively affect the environment, the agricultural activities and possibly also 
health of the local people.

Plain Language Summary Peat soils are formed by accumulation of organic matter and 
represent a carbon sink. Unfortunately, they are often affected by burning as the organic matter can 
fuel combustion for a long time, ultimately releasing carbon dioxide and other greenhouse gases, and 
particulate matter (PM). It is not clear how peat burning ignite and spread. This study investigates the 
trigger mechanisms and effects of peat burning in the Mezzano Lowland (NE Italy). For this purpose, 
pH, electrical conductivity, bulk density and carbon elemental and isotopic compositions of Mezzano soil 
profiles variously affected by peat burning have been investigated. The results suggest that the burning 
doesn't propagate from surface and that the horizons affected by carbon loss lie at depths 10–70 cm, with 
temperatures up to 750°C. The process appears spontaneous, probably due to multiple factors such as 
drying, biological activity and exothermal oxidations. We estimated a loss of soil carbon of approximately 
110 kg for square meter, corresponding to a release of 580 kg of CO2 for cubic meter of burnt soil. This 
carbon loss and the consequent release of gas and PM negatively affect the environment, the agricultural 
activities and possibly also the health of the local people.
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Several studies have indicated that peat burning is triggered by surface fires that progressively propagates 
downward in low oxygen conditions (Joosten & Clarke, 2002), as in the cases of peat fires in Indonesia (Boe-
hm et al., 2001; Page et al., 2002; Usup et al., 2004) and Florida (Monroe et al., 2009; Watts & Kobziar, 2013). 
Noteworthy, these processes deserve particular attention, as they produce more greenhouse emissions than 
vegetation fires and become progressively frequent under drought conditions (Langmann & Heil, 2004). 
Considering that future climate change scenarios predict more frequent and severe drought events in many 
areas worldwide (IPCC, 2007), soil fires need to be better understood to manage and mitigate their detri-
mental effects (Abram et al., 2021), which can impact also the human health (Uda et al., 2019).

In Italy, peats (and associated soils) are mainly distributed in the north and were generated in alluvial basins 
from the late Würm (late Pleistocene) to the Holocene (Martinelli et al., 2015).

This paper presents a case study of peat burning in the Mezzano Lowland (ML; Figure  1), a reclaimed 
coastal wetland located in the easternmost Po Plain, which is located in northern Italy (Di Giuseppe 
et al., 2014a, 2014b). This area is renowned for peat burning since historical times (Cremonini et al., 2008; 
Martinelli et al., 2015), and is characterized by peat deposits exposed to the Mediterranean climate with 
frequent and persistent droughts (Marchina et  al.,  2017,  2019). To assess the effects of burning, we ap-
plied an analytical technique based on the distinctive thermal stability of the various carbon bearing-phases 
(Mörchen et al., 2019; Natali et al., 2020; Zethof et al., 2019, 2020) as well as isotope ratio mass spectrometry 
(Natali, Bianchini, & Vittori Antisari, 2018). With the obtained results we provide constraints on the effects 
of burning in the surrounding environment, evaluating the smoldering combustion effects on the local soil 
carbon stock.

2. Geomorphological Features
The Po Plain is a large alluvial basin filled by sediments eroded from the Alps and the Apennines, which 
have been transported and deposited by the Po River (Amorosi et al., 2002; Garzanti el al., 2012; Bianchi-
ni et al., 2002, 2012, 2013). In particular, the ML represents the terminal (deltaic) portion of the Po Riv-
er catchment close to the Adriatic Sea and has been historically characterized by wetlands reclaimed ca. 
60–70 years ago. The ML soils therefore evolved from alluvial and deltaic lacustrine sediments (Di Giuseppe 
et al., 2014a, 2014b; Natali, Bianchini, Vittori Antisari, Natale, & Tessari, 2018; Simeoni & Corbau, 2009; 
Stefani & Vincenzi, 2005) and are organic-rich, including repeated levels of peats (Miola et al., 2006). The 
total ML peat volume is estimated to be 177  ×  106  m3 (Cremonini et  al.,  2008). The ML peat soils are 
also renowned for methane seepage and local thermal anomalies recorded down to a depth of 1 m (Bonzi 
et al., 2017). Analogous thermal anomalies have been observed in other parts of the Po Plain and ascribed to 
the exothermal oxidation of CH4 mediated by biochemical processes (Capaccioni et al., 2015).

3. Materials and Methods
3.1. Investigated Samples

The sub-rectangular sampling area extended from 44°41′17.08″N, 12°00′09.34″E (upper left corner) to 
44°40′35.45″N, 12°00′51.96″E (lower right corner). It was investigated in July 2018 (Figure 2), when the 
area experienced ongoing peat fires at its southern edge. The northern edge was instead affected by fires in 
the past (Martinelli et al., 2015). Each peat fire event was confined to a subcircular area of approximately 
3–4 m in diameter, characterized by the absence of vegetation (Figure 1b). Five trenches, approximately 2 m 
long, 1 m wide and 1 m deep, were dug to access the soil profile for inspection, and the well-exposed sides 
of the pits were observed carefully to determine the different soil horizons. Soil profile TOR1 was the only 
one dug in the sector affected by the active fire, while other two profiles (TOR2 and TOR3, Figure 1b) were 
dug in the sector affected by past fire events. They were characterized by horizons having reddish color (Fig-
ure 1c), consisting of very fine ashy particles that obliterated the original structural characteristics. Other 
two profiles (TOR4 and TOR5) were dug in sectors of the investigated area not interested by peat smolder-
ing, to perceive the original soil condition preceeding the burning processes.
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Thirty-four representative samples (of about 1–2 kg) were collected from horizons of the soil profiles TOR1–
TOR3 variously affected (F) by peat burning, and soil profiles TOR4 and TOR5 unaffected (NF) by peat 
burning.

The soil horizons were described according to Schoeneberger et al. (2012). We attributed specific suffixes to 
the horizons where peat smoldering induced different effects due to the temperature increase; for example, 
Oipy was attributed to the pyrolyzed organic horizon with peat carbonization, 2Ccl to the calcined mineral 
horizon, and ABov to the overheated organo-mineral horizon.

3.2. Experimental Firing of NF Soil Profiles

In the laboratory, we burnt samples from horizons of the profile TOR4 which is located in a sector unaf-
fected by natural fire, to simulate the processes and to evaluate the thermal transformation of soil samples 
induced by peat burning, following the method by Gonzalez-Vila (2003). Thermal heating was applied for 
12 h at different temperatures using an electric muffle. Three replicates were prepared using 100-ml porce-
lain crucibles, each containing 20 g of soil sample. After isothermal heating at 105, 200, 400, and 600°C, we 
used 4 g of heated soil to quantitatively determine the different carbon fractions.
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Figure 1. (a) Geographic location of the study area (black dashed line) within the the Mezzano Lowland (red dashed line) in the easternmost Padanian plain 
(Northern Italy), facing the Adriatic Sea. (b) Satellite image (Google Earth, year 2010) showing the study area and the sampling locations of the investigated soil 
profiles. Note the presence of several fired elliptical areas. (c) Photographs of the fired (TOR1, TOR2, TOR3) and non-fired (TOR4 and TOR5) soil profiles and 
(d) relative geographic coordinates.
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3.3. pH, Electrical Conductivity and Bulk Density

To determine the soil physicochemical parameters, the samples were air-dried and sieved through a 2-mm 
mesh sieve. Soil pH was measured by potentiometric titration on a 1:2.5 (w/v) soil:distilled water suspension 
with a Crison pH meter. Soil electrical conductivity (EC), expressed as deciSiemens per meter (dS m−1), was 
obtained on a 1:2.5 (w/v) aqueous suspension filtered with a Whatman® 42 filter paper using an Orion con-
ductivity-meter. Undisturbed soil samples collected in the steel cylinders of known volume were weighed 
after drying at 105°C for 24 h to calculate the bulk density (BD), which is the weight of dry soil divided by 
the total soil volume expressed in grams per cubic centimeter (g cm−3).

3.4. Temperature-Dependent Differentiation of Total Carbon

We used the Elementar SoliTOC Cube elemental analyzer, in compliance with the DIN 19539 standard, to 
carry out the temperature-dependent differentiation of total carbon (TC) in the investigated soil samples. 
This method is also known as “smart combustion” (Zethof et al., 2019). Powdered samples were loaded in 
stainless steel crucibles and placed in an 80-position autosampler. The crucibles were picked up by a stainless 
steel arm and placed in the dynamically heated portion of the combustion column at an initial temperature 
of 60°C. The analytical run required approximately 1,600 s and involved a three-step heating of the samples 
to 400, 600, and 900°C with holding time of 230, 120, and 150 s, respectively. The CO2 produced during 
the sample combustion was collected by two dedicated traps and sent to an IR detector for the continuous 
measurement of carbon. The DIN 19539 standard involves the separation and analysis of two oxidizable soil 
carbon pools with different thermal stabilities (i.e., thermally labile organic carbon—TOC400— stripped out 
at temperatures below 400°C, and residual oxidizable carbon—ROC—at temperatures of 500–600°C) and 
one carbon pool derived from the thermal breakdown of carbonate minerals at 650–850°C (total inorganic 
carbon (TIC)). At the end of the analytical run, an internal fan reset the temperature of the dynamically 
heated portion of the column to 60°C. The same analytical device was used by Natali et al. (2020) to quantify 
the carbon pools in a soil sample set characterized by substantial textural and geochemical variability. They 
defined TOC as the sum of the TOC400 and ROC organic carbon pools. For the samples considered in this 
study, analyses were performed in triplicate, and the data are expressed with the average and the standard 
deviation. Further constraints were provided by an analytical cross-check obtained analyzing the same 
samples with independent methods (see Table S1).
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Figure 2. Pictures showing an ongoing peat fire phenomenon in the neighbors of profile TOR1. (a and c) Note that the 
inner part of the fired elliptical area is depressed with respect to the neighbors, and (d) that smoke developed at depth 
escapes from the superficial layer of unburned peat.
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3.5. Carbon Isotope Analysis by EA-IRMS

We used the Elementar Vario MICRO Cube elemental analyzer (EA) coupled with the IsoPrime100 iso-
tope ratio mass spectrometer (IRMS) in the continuous-flow mode. Powdered samples were weighed and 
wrapped in tin capsules. These capsules allowed loading of up to 40 mg of sample material and were sub-
sequently introduced into the Vario MICRO Cube autosampler for the analysis. Flash combustion occurred 
in a sealed quartz tube filled with copper oxide grains in an excess of high-purity O2 gas (grade purity 6). 
The carbon and nitrogen gaseous species were released by the burnt samples and were transferred to an-
other tube maintained at 550°C. This tube contained chips of native copper, which reduced the nitrogen 
oxides (NOx) to N2. The formed CO2 and N2 gases were carried by He (grade purity 5) gas flow within a trap 
containing Sicapent® to remove H2O. The CO2 and N2 gases were finally separated by a temperature pro-
grammable desorption column, and were quantitatively determined using a thermo-conductivity detector 
(TCD).

The CO2 gas was conveyed to the IRMS to determine carbon isotopic ratios. The detected isotopic masses of 
the sample were compared to those of the reference CO2 (grade purity 5) gas. The reference gas was previ-
ously calibrated using various reference materials such as the limestone JLs-1 (Kusaka & Nakano, 2014), the 
peach leaves NIST SRM1547 (Dutta et al., 2006), the Carrara Marble (calibrated at the Institute of Geosci-
ence and Georesources of the Italian National Research Council), the Jacupiranga carbonatite (Beccaluva 
et al., 2017; Santos & Clayton, 1995) and the synthetic sulfanilamide provided by Isoprime Ltd. Mass peaks 
were recalculated as isotopic ratios using the Ion Vantage software package.

Elemental precision was estimated by repeated standard analyses. Accuracy was evaluated by comparing 
the reference and measured values. Both parameters were approximately 5% of the absolute measured val-
ue, but uncertainty increased for contents approaching the detection limit (0.001 wt%). The concentrations 
obtained with this instrument and those obtained with the SoliTOC described in the previous section are in 
excellent agreement (see comparison in Table S1).

Carbon isotope ratios were expressed with the δ notation in per mil (‰), relative to the international Vienna 
Pee Dee Belemnite isotope standard (Gonfiantini et al., 1995). The δ13C values were characterized by an av-
erage standard deviation of ±0.1‰, as defined by the repeated analyses of the above-mentioned standards.

3.6. Statistical Analysis

The statistical analysis was conducted by R (R Core Team, 2017). The analysis of variance (ANOVA test) was 
applied to every variable in order to determine the statistical differences between the different soil profiles. 
The PCA was subsequently applied to examine differences in elemental and isotopic parameters between 
F and NF soil profiles (package “FactoMineR” (Le et al., 2008); package “factoextra” (Kassambara, 2017)).

4. Results
4.1. pH, Electrical Conductivity and Bulk Density

The physicochemical parameters of the soil horizons from the five investigated soil profiles are shown in 
Table 1. The pH values generally decreased with depth in all investigated profiles, but the F and NF profile 
trends (and average values) are characterized by significant differences. The pH of the NF profiles (TOR4 
and TOR5) varied from 2.4 (TOR4, 2AC, 63–75 cm depth) to 7.6 (TOR5, Op, 22–30 cm depth), with average 
pH value of 5.5. The F profiles (TOR1–TOR3) displayed a comparable pH range, varying from 3.3 (TOR3, 
Cg, 70–90 cm depth) to 8.3 (TOR2, 3Cov, 43–65 cm depth), with an average of pH value of 6.6. A marked 
increase in pH characterized the horizons at intermediate depths (35–70 cm) of the F profiles, whereas a 
slight pH decrease was observed in the NF profiles at comparable depths. EC of the F profiles had an average 
of 8.1 dS m−1 generally higher than what observed in NF profiles (average 5.3 dS m−1). Noteworthy, EC in F 
profiles presented an inverse relationship with depth, with a general decrease in EC at depths of 35–70 cm. 
The BD of the F profiles was heterogeneous, varying between 0.51 and 1.19 g cm−3, with the lowest values 
recorded between depths of 12  cm (TOR2, ACov, 12–38  cm depth) and 43  cm (TOR1, BCov, 30–43  cm 
depth). The BD of the NF profiles (average 1 g cm−3) generally increased with depth and was higher than 
that in the F profiles (average 0.8 g cm−3) that showed the lowest values in the 30–70 cm depth range.
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4.2. Soil Carbon Pools on F and NF Profiles

Carbon speciation of the F and NF peat profiles was carried out in compliance with the DIN 19539 
standard, where four carbon fractions were measured: TC, TOC400, ROC, and TIC. The carbon specia-
tion results are presented in Table 1 and Figures 3 and 4. The two-way ANOVA test showed that all the 
elemental and isotopic variables of F and NF samples were affected by both the profile and the depth of 
sampling (p-values < 0.0001).

TC of the NF peat profiles was determined to be generally higher than that of the F profiles.

The TC of the NF peat profiles equaled approximately 20–25 wt% from the surface down to a depth of 
40 cm, diminished at the Cg and C horizons, and reached the maximum of 34 wt% in the Oi horizon of 
TOR4 at a depth of 54–63 cm.

The TC of the F peat profiles was comparable with that of the NF profiles in the shallow horizons (16–
25 wt%, down to a depth of 15 cm) and dramatically decreased (down to 0 wt% in some cases) at varia-
ble depths between 14–73 cm (TOR1), 12–65 cm (TOR2), 28–50 cm (TOR3). Profile TOR2 presented a 
notable exception, where the intermediate 2Ckov horizon (38–48 cm depth) was characterized by a TC 
reaching 9 wt%. The TC of the F profiles increased downward, with values up to 10 wt% at 73–84 cm in 
TOR1, 23 wt% at 65–72 cm in TOR2, and 27 wt% at a depth of 50–70 cm in TOR3.

The distribution of TOC400 with depth was determined to be similar to that of TC, suggesting that most 
carbon in the investigated peat profiles belongs to the thermally labile organic pool. In the NF profiles, 
TOC400 was on average 20 wt% down to a depth of 50 cm, decreasing in the Cg and 2Cg horizons in TOR4, 
and in the C horizon in TOR5. The relative amount of the TOC400 fraction (TOC400%) was always >75% of 
the TC along the NF profiles.

In the F profiles, the TOC400 values (14–24 wt%) were comparable with those of the NF profiles in the 
shallower horizons down to a depth of 15 cm, dramatically decreasing (approaching zero) at depths be-
tween 14–73 cm (TOR1), 12–65 cm (TOR2), and 28–50 cm (TOR3). The deeper horizons of the F profiles 
were characterized by a marked increase in the TOC400 values, varying from 8.3 wt% at 73–84 cm in TOR1, 
to 22 wt% at 65–72 cm in TOR2, and to 26 wt% at 50–70 cm in TOR3.

The ROC content was similar in the F and NF profiles in the shallow horizons, showing values around 
1 wt%. A marked ROC decrease occurred in the lower horizons of the F profiles, where ROC reached ap-
proximately 0 wt% at 30–73 cm in TOR1, 0.2–0.3 wt% at 12–65 cm in TOR2, and 0.2–0.3 wt% at 30–50 cm 
in TOR3, followed by a variable ROC increase with depth.

The TIC content varied from 2.8 wt% (TOR5) to 0.2 wt% (TOR2 and TOR4) in the superficial horizons 
and decreased with depth in both the F and NF profiles. The only exception was represented by the TOR1 
profile, characterized by a TIC approaching zero in the intermediate horizons (30–73 cm depth), with a 
slight increase in the TIC values downward. The relative amount of TIC with respect to TC (TIC%) varied 
from 0% to 95%, with the highest values recorded in the intermediate horizons of the F profiles.

The bulk carbon isotopic composition (δ13CTC) of the NF horizons varied between −27.5‰ (TOR5, Oi, 
36–45 cm depth) and −21.5‰ (TOR5, Ap, 0–25 cm depth).

A marked variation was observed in the δ13CTC of the F profiles, where δ13CTC changed from −27.2‰ 
(TOR1, 3Oipy, 73–84 cm depth) to −6.6‰ (TOR2, 2Ckov, 38–48 cm depth), with less negative values 
recorded in the intermediate horizons (Figures 3 and 4).

A very good linear correlation between δ13CTC and TIC% (r2 = 0.9) confirmed that the bulk carbon isotop-
ic value is directly related to the relative amount of a carbonate endmember.

The total nitrogen (TN) elemental content was also determined and varied from 1.56 wt% (TOR1, 0–14 cm 
depth) to 0.01 wt% (TOR1, 30–73 cm depth), showing a significant positive correlation with the TOC 
(TOC400 + ROC) parameter.

Differences between F and NF soil profiles can be emphasized with a statistical elaboration of the avail-
able data, as shown in the PCA reported in Figure 5. The PCA is able to group the TOR profiles on the 
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Figure 3. Carbon speciation of soil profiles variably affected by peat smoldering (TOR1, TOR2, TOR3). Histograms 
refer to the three soil carbon pools defined by the DIN 19539 standard (TOC400, ROC, total inorganic carbon). The bulk 
carbon isotopic composition (δ13CTC) is also reported. Note that the depth of the smoldering zone is indicated by the 
yellow box. See text for further details.
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basis of many variables called principal components, which can describe correlations among the studied 
samples. We considered the  TOC400, ROC, TC, TIC, N and δ13C as principal components and we focused 
the statistical analyses on horizons ranging from 30 to 70 cm where smoldering was effective. Noteworthy, 
the first and second PCA axes explained 74.6% and 20.3% of the variance, respectively. In the plot the NF 
profiles showed a clear grouping, which was driven by high content of organic carbon fractions (TOC400, 
ROC, and TOC) and N. On the other hand, F profiles plot in opposite areas of the PCA diagram, reflecting 
lower content of organic carbon fractions and N.
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Figure 4. Carbon speciation in soil profile TOR4, taken as representative soil profile unaffected by peat smoldering. 
Histograms refer to the three soil carbon pools defined by the DIN 19539 standard (TOC400, ROC, total inorganic 
carbon). The bulk carbon isotopic composition (δ13CTC) is also reported.

Figure 5. Principal component analysis of F and NF soil profiles.
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4.3. Soil Carbon Pools of the Experimentally Fired Profiles

The results of carbon speciation of the experimentally fired soil horizons from the NF profile (TOR4) are 
presented in Table 2 and Figure 6.

TC varied insignificantly in the samples heated to 200°C, except for horizon 2AC, where the TC content was 
reduced by 40% between 105°C and 200°C. A remarkable TC decrease was recorded in the samples heated 
to 400°C, and very little carbon was left in the samples after heating them to 600°C. The TC decrease with 
the increasing temperature was irrespective of the TC content in the untreated samples.

Regarding the carbon fractions, TOC400 was the most abundant, and its relative contribution in the un-
treated samples varied from 93% (Op3) to approximately 75% (2Cg). TOC400 did not exhibit any remarkable 
variation in the samples heated to 200°C, whereas it generally disappeared when the temperatures reached 
400°C.

The relative contribution of ROC with respect to TC varied from approximately 5% (Op3) to 26% (2Cg) in the 
untreated samples. The behavior of ROC in response to thermal treatment was similar to that of TOC400 in 
the samples heated to 200°C. A slight non-systematic variation of ROC was recorded in the samples heated 
to 400°C, and ROC disappeared when the temperature reached 600°C.

The TIC content remained nearly constant during all heating treatments for all samples and was best repre-
sented in the Op3 horizon, where it constituted 0.20 wt% and 0.15 wt% in the untreated and treated (heated 
to 600°C) samples, respectively.

The relative amount of inorganic carbon with respect to TC (TIC%) increased with increasing temperature, 
and the highest variations were recorded in the samples heated to 400°C and 600°C when the two organic 
fractions were exhausted. TIC% was less than 1% in the untreated samples and up to 26% in the samples 
heated to 600°C.
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Profile Horizon Depth cm T treatment (°C)

DIN19539 by SoliTOC Cube

TOC (wt%) TC (wt%)

EA IRMS

TOC400 (wt%) ROC (wt%) TIC (wt%) TN (wt%) δ13CTC exp (‰)

TOR4 Op3 25–38 105 21.83 ± 0.92 0.70 ± 0.01 0.19 ± 0.03 22.53 ± 0.91 22.73 ± 0.94 1.20 ± 0.01 −25.9 ± 0.1

200 21.01 ± 0.44 1.39 ± 0.51 0.21 ± 0.02 22.40 ± 0.06 22.62 ± 0.06 1.30 ± 0.08 −25.6 ± 0.1

400 0.56 ± 0.16 1.39 ± 0.14 0.26 ± 0.02 1.94 ± 0.02 2.21 ± 0.03 0.30 ± 0.00 −21.4 ± 0.2

600 0.14 ± 0.08 0.24 ± 0.12 0.15 ± 0.02 0.40 ± 0.17 0.55 ± 0.15 0.02 ± 0.00 −17.5 ± 0.3

TOR4 Cg 47–54 105 2.09 ± 0.10 0.37 ± 0.03 0.03 ± 0.00 2.46 ± 0.08 2.49 ± 0.08 0.22 ± 0.03 −27.0 ± 0.2

200 1.83 ± 0.08 0.42 ± 0.03 0.03 ± 0.00 2.26 ± 0.10 2.28 ± 0.10 0.23 ± 0.02 −27.0 ± 0.0

400 0.09 ± 0.00 0.18 ± 0.03 0.03 ± 0.00 0.27 ± 0.00 0.30 ± 0.00 0.12 ± 0.01 −26.1 ± 0.2

600 0.04 ± 0.02 0.02 ± 0.02 0.01 ± 0.00 0.08 ± 0.01 0.08 ± 0.01 0.01 ± 0.01 −26.6 ± 0.1

TOR4 2AC 63–75 105 11.03 ± 0.69 0.44 ± 0.15 0.06 ± 0.01 11.47 ± 0.58 11.54 ± 0.58 0.53 ± 0.01 −26.2 ± 0.1

200 5.99 ± 0.09 0.73 ± 0.15 0.04 ± 0.00 6.73 ± 0.20 6.76 ± 0.20 0.45 ± 0.02 −26.0 ± 0.1

400 0.08 ± 0.02 0.25 ± 0.02 0.04 ± 0.00 0.33 ± 0.00 0.37 ± 0.00 0.13 ± 0.00 −24.7 ± 0.3

600 0.04 ± 0.03 0.01 ± 0.00 0.01 ± 0.00 0.06 ± 0.01 0.08 ± 0.01 0.02 ± 0.01 −26.5 ± 0.3

TOR4 2Cg 75–5+ 105 1.96 ± 0.00 1.30 ± 0.08 0.04 ± 0.00 3.27 ± 0.08 3.31 ± 0.09 0.24 ± 0.01 −21.4 ± 0.3

200 2.01 ± 0.03 1.11 ± 0.15 0.04 ± 0.00 3.12 ± 0.17 3.16 ± 0.17 0.26 ± 0.01 −21.2 ± 0.4

400 0.14 ± 0.00 0.59 ± 0.03 0.05 ± 0.01 0.74 ± 0.03 0.79 ± 0.03 0.12 ± 0.01 n.a.

600 0.06 ± 0.04 0.02 ± 0.01 0.02 ± 0.00 0.10 ± 0.01 0.11 ± 0.01 0.02 ± 0.00 −21.5 ± 0.3

Abbreviations: EA, elemental analyzer; IRMS, isotope ratio mass spectrometer; n.a., not analyzed; TC, total carbon; TIC, total inorganic carbon; TN, total 
nitrogen.

Table 2 
Carbon Fractions (and Isotope Composition) and Nitrogen of the Experimentally Fired Horizons From Soil Profile TOR4
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The carbon isotopic composition (δ13CTCexp) was less negative when the temperature increased. The greatest 
variation was recorded in the Op3 horizon, where δ13CTCexp were −26.1‰ and −17.5‰ in the untreated 
and treated (heated to 600°C) samples, respectively. This variation is likely related to the loss of TOC400 and 
increased TIC contribution to TC when the temperature escalated.

5. Discussion
5.1. Effects of Soil Burning in the Mezzano Lowland

The significant differences recorded in the physicochemical characteristics of the F and NF peaty soil pro-
files give insights on the magnitude of fire events in terms of their temperature, depth, and loss of carbon 
stock. The opposite trend of pH variation at depths of 14–73 cm (TOR1), 12–65 cm (TOR2), and 28–50 cm 
(TOR3) of the F with respect to the NF (TOR4 and TOR5) soil profiles suggests that burning modified the 
ML peaty soils at depth. The observed increase in pH in the F profiles at the intermediate depths men-
tioned above is consistent with the destabilization of organic acids and the enhanced contribution of car-
bonates and oxides, as a consequence of firing events (Granged et al., 2011a, 2011b; Kutiel et al., 1990; Ulery 
et al., 1995). The observed variation (3–4 pH units) in the F profiles suggests that they underwent high fire 
intensity (Ulery et al., 1995). The F profile horizons are also characterized by lower EC values compared 
with those of the NF profiles in the aforementioned depth intervals, likely due to the destruction of clay 
minerals and the formation of oxides at temperatures exceeding 500°C (Terefe et al., 2008). Low BD values 
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Figure 6. Carbon speciation of experimentally fired horizons from soil profile TOR4. Histograms refer to the three 
soil carbon pools defined by the DIN19539 standard (TOC400, ROC, total inorganic carbon). The bulk carbon isotopic 
composition (δ13CTCexp) is also reported.
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(0.60–0.51 g cm−3) noted in some horizons of the TOR1, TOR2, and TOR3 profiles can be ascribed to “un-
packing” of particles (Ngole-Jeme, 2019) resulting from the loss of structure due to degradation of mineral 
and organic components.

The temperature to which the F profiles were exposed can be estimated by analyzing carbon fractions with 
different thermal stabilities. The thermally labile fraction (TOC400) is always present in the superficial hori-
zons of the F profiles, with average relative amounts (TOC400%) of 90%, and is comparable to that observed 
in the NF profiles. The marked decrease in the TOC400 fraction with depth (until it disappears) indicates that 
the F soil profiles were heated to over 400°C at depths of 14–73 cm (TOR1), 12–65 cm (TOR2), and 28–50 cm 
(TOR3) (Figure 3). The soil color change from dark brown (in the upper and lower horizons) to reddish at 
the intermediate depths also supports this finding, indicating burning temperatures of 300°C–500°C (Terefe 
et al., 2005, 2008). A sudden increase in the TOC400 fraction at greater depths in the F soil profiles suggests 
a sharp decrease in the firing temperature downward.

The distribution of ROC along the F soil profiles is more variable. Only TOR1 records the total exhaustion 
of ROC at depths of 30–73 cm, whereas TOR2 and TOR3 show a significant decrease in the ROC content 
(down to 0.2 wt%) at depths of 12–65 and 30–50 cm, respectively. Such ROC content distribution indicates 
that the firing temperature exceeded 600°C only in TOR1, whereas TOR2 and TOR3 were subjected to max-
imum temperatures of 400–600°C. These observations provide new insights into the thermal persistence 
of SOM, which was previously thought to disappear at temperatures of 450–500°C (Knoepp et al., 2005). 
The TIC fraction gradually decreases with depth in the F and NF profiles. The total exhaustion of TIC was 
only recorded in profile TOR1 at depths of 30–73 cm, suggesting that the layer was subjected to the max-
imum temperature (potentially exceeding 750°C) during the fire event. The significant correlation of TN 
with TOC400 (and not with ROC) indicates that nitrogen is mostly volatilized at relatively low temperatures 
(T < 400°C) during firing events, as already reported in the literature (Turner et al., 2007). Moreover, the 
ubiquitous persistence of high TOC400 and TN values in the superficial layers of the F profiles indicates that 
smoldering generally started and developed with variable intensity between depths of 10 and 70 cm.

Both the organic-rich (Op3) and organic-poor (Cg) horizons present similar thermal behavior of their car-
bon fractions. The total disappearance of the TOC400 fraction (and TN) at heating temperatures over 400°C 
makes this fraction a robust thermal marker for the investigated profiles. Analogous conclusions can be 
made for the ROC fraction, which indicates heating temperatures below 600°C. The TIC fraction varied 
little in the experimental heating interval, and its presence in profiles TOR2 and TOR3 mainly implies that 
they did not undergo carbonate destabilization, which should occur at a temperature of approximately 
750°C.

The bulk carbon isotopic composition of the experimentally heated NF horizons becomes less negative with 
increasing temperatures. This trend is similarly observed in the natural F profiles but does not imply the 
neoformation of carbonates during firing. The least negative values recorded in profile TOR2 at depths of 
12–65 cm likely reflect the concentration of soil carbonates originally present in this horizon.

5.2. Triggering Mechanisms of Soil Burning in the Mezzano Lowland

Peat burning in the ML is not induced by surface flaming with downward propagation, as it is triggered at 
depth and develops in the 10–70 cm-deep soil horizons via smoldering combustion. This evidence suggests 
self-combustion of the organic-rich soils. Similar processes have been described in the literature, especially 
in dry and warm conditions (Restuccia et al., 2017), and are explained as the result of multiple reaction 
steps including drying, biological activity, and oxidation, that are necessary to trigger the the spontaneous 
ignition of peat-soils (Yuan et al., 2021).

In the present case-study we suggest that the exothermal oxidation of methane (Christophersen et al., 2001; 
Pehme et al., 2020), which in the ML typically rises from the deep stratigraphic layers, plays an additional 
role either in triggering the peat smoldering. The hypothesis is based on the fact that peat smoldering in 
the area is spatially associated to localized sectors characterized by high CH4 seepage (with fluxes up to 
120 g m−2 day−1, according to Cremonini et al., 2008). Soil heating occurs at depth where there is the transi-
tion between anoxic and oxic conditions with concomitant methanotrophic bacteria activity that promotes 
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temperature well exceeding 40°C (Capaccioni et al., 2015), which is con-
sidered a thermal condition necessary for self-heating propensity (Yuan 
et al., 2021).

In this light, a possible strategy to minimize the peat-smoldering occur-
rence would require (a) the controlled collection of the upraising meth-
ane and (b) to maximize the irrigation efficiency of the area, that should 
be specifically planned to convey water at the soil depths where smold-
ering is effective.

5.3. Environmental Consequences of Peat Burning in the 
Mezzano Lowland

Peat burning implies environmental consequences in terms of release of 
greenhouse gases (Kohlenberg et al., 2018; Prosperi et al., 2020). The data 
described above allow the calculation of the soil organic carbon (SOC) 
stock in the F and NF profiles, and in turn the SOC stock is useful for 
estimating losses caused by burning events. The NF profile of TOR4 has 

a SOC stock of approximately 150 kg m−2 for a thickness of 90 cm. These values are representative for ML 
soils unaffected by peat burning, as highlighted by the analyses of other soil profiles from the surroundings 
(see Table S2). A decrease in the SOC stock is observed in profiles TOR3 and TOR2 and, especially, in TOR1, 
characterized by the lowest SOC stock 38 kg m−2 for a thickness of 96 cm. We infer that peat fires in the 
ML degraded up to two-thirds of the previous SOC stock. Although the extent of peat fire events is variable, 
we estimate that an average loss of the SOC stock within the first meter of depth is approximately 110 kg 
m−2, potentially corresponding to approximately 580 kg CO2 m−3 of emissions. As reported in Figure 7, 
the resulting emission coefficient is 725 g of CO2 for kg of smoldered soil, a value that is compatible with 
what observed in other study-cases of smoldering peat soils in temperate climatic settings. However, carbon 
emissions plausibly include a wide spectrum of distinct components, where CO2 is accompanied by CO, 
volatile organic components as well as by particulate matter (PM) having micrometer and sub-micrometer 
size range (Hu et al., 2018).

5.4. Impacts of Peat Burning on the Human Health

The peat burning generates long-term smoke which is released in the air (Figure 2d). These emissions are 
mainly composed by carbon monoxide, carbon dioxide, nitrate and sulfate, which are hazardous volatiles 
for the human health and if inhaled can trigger several symptoms from throat irritation, cough, and head-
aches to serious respiratory and cardiovascular problems, especially for people with existing asthma, em-
physema, and heart disease (Hinwood & Rodriguez, 2005; Hu et al., 2018; Rappold et al., 2011).

Besides volatiles, the peat burning releases fine particles such as PM10 and/or PM2.5 depending on the pre-
dominance of coarse (particle diameter < 10 μm) or fine (particles diameter < 2.5 μm) soil fractions (Hin-
wood & Rodriguez,  2005). If inhaled PM10 and PM2.5 cause damages of lung tissue and respiratory and 
cardiovascular problems (Hu et al., 2018). The potential heath risk of the smoke is even more serious con-
sidering the duration of the peat burning, as the prolonged or repeated smoke and particulate exposure by 
local people may aggravate the adverse health outcomes causing long-term health effects.

Additional concerns are related to elements potentially toxic (e.g., several heavy metals such as Co, Cr, Cu, 
Ni, V, Zn, Pb, As, Mo, Se, Cd, Mo) that in the studied soils appear bounded in organo-metallic compounds 
(Di Giuseppe et al., 2014b, 2014c), because they could be released in the environment, in concomitance with 
the SOM destabilization, contaminating air, aquifers and soils (Kohlenberg et al., 2018).

In our view, the volatilization in the atmosphere or the dissolution in the hydrosphere of elements critical 
for the human health deserve further research on the peat-burning processes occurring in the Mezzano 
Lowland. In addition, the designed authorities should inform and educate locals about the health-risk of 
the peat smoke exposure.
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Figure 7. CO2 emission of burning Mezzano Lowland peat-soils, 
compared with that of burning peat-soils from other areas.
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6. Conclusions
Peat fires variously affect the first meter of soil profiles in the ML, and their intensity can be evaluated 
recording the differential consumption of the carbon pools with distinct thermal stabilities. The main dam-
age to soil carbon budget occurs in the 10–70 cm-deep horizons, where smoldering temperatures of 400–
600°C cause the total exhaustion of TOC400 and variably decrease the ROC contents. Evidence of extreme 
temperatures overcoming the destabilization of carbonates (≥750°C) is limited to the inner horizons of 
the smoldering zone. The process appears spontaneous and shows anologies with what observed in other 
case-studies where peat self-combustion requires multiple reaction steps (drying, biological activity, and 
oxidative oxidation), but in the ML is possibly facilitated by the concomitant upraising of deep methane and 
its exothermal oxidation. The estimated carbon emission is 110 kg m−2, corresponding to 580 kg CO2 m−3, 
values in the same order of magnitude estimated in other temperate areas affected by smoldering peat-soils. 
The consequent release of significant amounts of greenhouse gases is coupled with a loss of soil structure, 
nutrients (e.g., nitrogen), and possibly also toxic elements (e.g., heavy metals). The consequences are surely 
negative for the environment, the agricultural activities and plausibly also for the health of the local people, 
and deserve further investigation to plan mitigation strategies for ongoing and future smoldering episodes.
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