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Abstract 

A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin 

current in spin-Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i-DMI) is 

developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well 

as the  frequencies and spatial profiles of the excited spin wave modes. It is found, that the frequency of the 

excited spin waves exhibits a quadratic red shift with the i-DMI strength. At the same time, in the range of 

small and moderate values of the i-DMI constant, the averaged wave number of the excited spin waves is 

almost independent of the i-DMI, which results in a rather weak dependence on the i-DMI of the threshold 

current of the spin wave excitation. The obtained analytical results are confirmed by the results of 

micromagnetic simulations.  

 

PACS numbers: 75.30.Ds, 76.50.+g, 75.78.Cd, 75.76.+j 
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I. Introduction 

 In recent years, the excitation of microwave magnetization oscillations driven by a spin-

polarized electric current or pure spin current has attracted much attention , both among 

theoreticians and experimentalists. Magnetization dynamics in spin-torque oscillators (STOs) and 

spin-Hall oscillators (SHOs) can exhibit various types of behaviour, including highly nonlinear and 

non-stationary dynamics1, 2, 3, making these oscillators an  interesting test system for the 

investigation of nonlinear phenomena in ferromagnets. At the same time, STOs and SHOs 

demonstrate properties, that make them suitable for a wide range of applications, such as generators 

of microwave signals4,  5,  6, 7, 8, 9, 10 neuromorphic computing11, microwave-assisted magnetic 

recording12, etc. 

 The STOs and SHOs, in which spin-polarized electric current (or pure spin current) is 

injected locally in an unbounded ferromagnetic layer, are an important class of oscillators13, 14, 15 , 

because propagating spin waves can be excited in these oscillators  in the case of out-of-plane 

magnetization 16, 17, 18, 19, 20, 21, 22, 23, 24. Excitation of propagating spin waves makes these oscillators  

promising for signal-processing applications in all spin-wave logic25 and magnonics26., and  for the 

development of large arrays of phase-locked auto-oscillators efficiently coupled by  the propagating 

spin waves 27, 28, 29. 

 In the case when the SHO free layer is influenced by the interfacial Dzyaloshinskii–Moriya 

Interaction30, 31  (i-DMI), which is an antisymmetric exchange interaction, appearing at the interface 

between a ferromagnet and a heavy metal with large spin-orbit coupling32, the SHO could acquire 

an additional functionality. The i-DMI is known to introduce the frequency nonreciprocity into the 

spectrum of propagating spin waves32, 33, 34, 35, 36 leading to several potential physical and 

technological implications, such as creation of unidirectional spin-wave emitters, separation of 

signal and idler waves in frequency and wave number domains in spin-wave devices, which use 

parametric and nonlinear spin-wave processes, etc. 37,  38,  39, 40. In recent theoretical works,41,  42 it 
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has been shown that the i-DMI in STO and SHO results in the excitation of two-dimensional 

nonreciprocal spin waves, and, at a sufficient strength of the i-DMI, in the generation of spiral spin 

wave modes. 

 The main purpose of this work is the development of an analytical model, which describes 

the excitation of two-dimensional nonreciprocal spin waves in a nanocontact SHO (the quasi-one-

dimensional case of a nanowire-based SHO has been already considered theoretically in Ref. [41]. 

Our approach is based on an approximate solution of the linearized Landau-Lifshitz-Gilbert-

Slonczewski (LLGS) equation and, in fact, is a generalization of the Slonczewski’s theory14 to the 

case of the presence of the i-DMI. The developed theory allows one to calculate profiles of the 

excited spin waves, which are approximately described by a combination of Laguerre’s polynomials 

and Tricomi’s hypergeometric functions, as well as to calculate the excitation threshold and 

frequency of excited spin waves, both of which become lower with the increased i-DMI strength. 

 The paper is organized as follows. Sections II describes the model system used in this study. 

In Sec. III a step-by-step derivation of the analytical formalism is presented. Analytically calculated 

results are compared with micromagnetic modeling in Sec. IV. Finally, conclusions are given in 

Sec. V. 

 

II. Device under study and micromagnetic simulations 

 The device under investigation is shown in Fig. 1. It is a typical SHO, consisting of a 

ferromagnetic/ heavy metal bilayer. The current is injected locally in the bilayer by using a gold 

concentrator of a double-triangular shape with a distance d between the tips. The system is biased 

by an external magnetic field Bext, applied in the y-z plane and making the angle θB with the film 

normal (axis z) (Fig. 1(b)). The bias magnetic field is required in order to tilt the film static 

magnetization from the in-plane direction, and, if the angle θM between the static magnetization and 

film normal is sufficiently small, the SHO supports excitation of propagating spin waves. 
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Otherwise, either a nonlinear self-localized bullet mode is excited due to the negative nonlinear 

frequency shift, or a transient regime of mode coexistence is realized19, 43. 

 In our micromagnetic simulations we used the parameters of a Pt(5nm)/CoFeB(1nm) 

bilayer, having a rectangular in-plane cross-section of 1500 nm × 3000 nm. The gold concentrator 

was assumed to be 150 nm thick, with the distance between the tips of d = 100 nm. Details on the 

calculation of the electric current and the spin current profiles can be found in Ref. [41]. For the 

materials parameters of the ferromagnetic layer we assumed: gyromagnetic ratio γ = 2π×28 GHz/T, 

the saturation magnetization MS =1000×103 A/m, the exchange stiffness A = 2.0×10-11 J/m, the 

constant of perpendicular surface anisotropy Ks=5.5×10-4 J/m2 (resulting in the effective volume 

anisotropy of Ku=5.5×105 J/m3), the Gilbert damping parameter αG =0.03 and the spin-Hall angle 

αH=0.1. The i-DMI parameter D was varied in a range44 in order to systematically study its effect on 

the nonreciprocal propagation of spin waves.  Experimentally a i-DMI parameter variation can be 

realized by the variation of the ferromagnetic film thickness or by use of a different material, 

covering the ferromagnetic film from another side. The external bias magnetic field was applied at 

the angle θB = 15°. For these parameters, the CoFeB layer had an easy-plane total (material plus 

shape) anisotropy. It is known that a partial compensation of the demagnetization field by the 

perpendicular anisotropy allows one to reduce the critical current density necessary to excite 

propagating spin wave modes in a tilted external field41. All the micromagnetic simulations in this 

study have been performed using a state of the art micromagnetic solver45. 
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Fig. 1. Sketch of the device under investigation. (a) x-y in-plane view and (b) x-z cross-section. The 

indication of azimuthal angle φ related to the wave vector, the direction of the applied field Bext , the 

angle θB and the angle θM of the equilibrium magnetization M vector are also shown. 

 

III. Analytical model 

In this section we present a two-dimensional analytical model developed to study the 

nonreciprocal propagation of spin waves in the presence of i-DMI interaction. In subsection III (a) 

we derive the linearized dynamical equation of motion for the magnetization, describing the spatial 

and temporal dependence of the spin-wave amplitude. Subsection III (b) is devoted to the general 

solution of the linearized equation of motion to obtain the analytical expression for  the spatial 

profiles of the two-dimensional spin-wave mode,  and to determine its  angular-dependent wave 

number and group velocity. Subsection III (c) describes the calculation of the angular-dependent 

spin wave vector, highlighting the influence of the i-DMI . In subsection III (d), the computation of  

the threshold current density is described, and the explicit quadratic dependence of the generation 

frequency on the i-DMI parameter is found. Finally, in the subsection III(e) the main equations of 

our theoretical model are analyzed. 
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(a) Initial equations 

     Dynamics of magnetization ( ),tM r  of a ferromagnetic layer under the influence of spin current 

is described by the LLGS equation: 

 ( )2
FM2

G B H
eff z

s S

d d g
dt M dt eM t

α μ α
γ= × + × − × × ×

M MB M M M M e J   (1) 

where g is the Landè factor, Bμ  is the Bohr magneton, e is the electron charge, tFM is the thickness 

of the ferromagnetic layer, αH is the spin-Hall angle and J is the electric current density flowing in 

the Pt layer. The effective field Beff includes the contributions of external field extB , demagnetization, 

exchange, and i-DMI contributions ( ( )22 / ·i DMI s z zD M M−
⎡ ⎤∇ −∇= ⎣ ⎦M eB , where D is the i-DMI 

constant).  

       Equation (1) is used in micromagnetic simulations, but it is too complex for the analytic 

analysis. From Eq. (1) one can derive a dispersion relation of linear spin waves propagating in the 

ferromagnetic film (for this purpose one needs to neglect two last non-conservative terms and to 

represent the full magnetization of the film as a sum of its static magnetization and a small dynamic 

deviation)46  

 ( ) ( )( )2 2 2 2 21 sink H M H M M an M M xk k N Dkω ω ω λ ω ω λ ω θ ω= + + + − + % ,  (2) 

where k is the wave vector of a spin wave, H effBω γ= , effB  is the effective static magnetic field, 

0M sMω γμ= , ( )2
u 02 /an sN K Mμ=  where Ku is the anisotropy constant, 2

0 s2 / ( )A Mλ μ=  is the 

material exchange length, and ( )2
M 0 s2 sin /D D Mθ μ=%  is the normalized i-DMI constant. One can 

see, that the nonreciprocity, induced by the i-DMI, depends on the magnetization angle, and 

disappears in the case of perpendicular static magnetization (θM = 0). Therefore, it is desirable to 

choose a large magnetization angle, which, however, should be smaller than the critical value, 



7 

 

corresponding to the change of sign of the nonlinear frequency shift from positive to negative, so 

that the propagating spin waves could be excited.19,23 Since we consider an ultrathin ferromagnetic 

film, the in-plane dynamic dipolar contribution is neglected in Eq. (2). In the range 2 2
0M kω λ ω  the 

dispersion relation can be approximated as:  

   2 2
0k M M xk Dkω ω ω λ ω≈ + +% % ,     (3) 

where ( )( )2
0 1 sinH H M an MNω ω ω ω θ= + −  is the ferromagnetic resonance frequency and 

2 2 2
0(2 (1 )sin ) / 2H M an MNλ λ ω ω θ ω= + −% . 

 Making a formal substitution ( )/xk i d dx→− , ( )/yk i d dy→−  in the simplified dispersion 

equation, it is possible to obtain the following dynamical equation describing the spatial and 

temporal evolution of the spin wave complex amplitude a = a (x,y):  

 2 2
0 ( )M M G

a i a i i D a a J a
t x

% %ω ω ω λ ω α ω σ
⎛ ⎞∂ ∂ ⎟⎜=− =− − ∇ − − +⎟⎜ ⎟⎟⎜⎝ ⎠∂ ∂

r , (4) 

which differs from the one used by Slonczewski16 by the presence of the i-DMI term. The spin 

wave damping is accounted for by the term Gα ω , while the influence of the spin current could be 

easily calculated from Eq. (1) within the framework of the perturbation theory47, and is given by the 

term ( )J aσ r  with the coefficient FMsin / (2 )B H M Sg eM tσ μ α θ=  and r =(x,y), describing the spin-

Hall efficiency.  

 We have not included the Oersted field in the model (which results in a spatial dependence 

of ω0), because it does not introduce any qualitative change41. Thus, the only spatially dependent 

parameter in Eq. (4) is the distribution of the current density. We approximate it in a cylindrical 

system (see subsection III.b) with the function ( )J r J=  if effr R<  and ( ) 0J r =  otherwise with r the 

radial coordinate, i.e. we assume that current is flowing only within a circle of the radius Reff. For 

spin-Hall oscillators with concentrators like the one shown in Fig. 1 it is an approximation, and the 
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value of the effective radius Reff, which is of the order of the half distance between the concentrator 

tips, should be determined by comparison with simulations (see Sec. IV). Simultaneously, such a 

case can be exactly realized in an STO42.  

 

(b) General solution of the eigenvalue problem 

 Equation (4) can be considered as an eigenvalue problem, whose solution gives the values of 

the spin wave excitation frequency ω and the critical current J. In the considered geometry it is 

convenient to express Eq. (4) in cylindrical coordinates ( ),ρ φ : 

 ( )
2 2

2 2 2

1 1 sincos 0a i A a W iG a% φ
φ

ρ ρ ρ ρ φ ρ ρ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜⎟+ + + − ⎟ + + =⎜ ⎜⎟ ⎟⎜ ⎜ ⎟⎟ ⎜⎜∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
. (5)  

Here we introduce a dimensionless coordinate eff/r Rρ= , and the following dimensionless 

parameters: 2
eff /A DR% %% λ= , describing the  strength of the i-DMI, ( ) ( )2 2

0 eff / MW R %ω ω ω λ= − , 

proportional to the generation frequency offset from the FMR frequency, and the normalized total 

damping G, which is equal to ( ) ( )2 2
1 eff /G MG J R %α ω σ ω λ= −  within the active region ( 1ρ < ) and to 

( ) ( )2 2
2 eff /G MG R %α ω ω λ=  outside the active region. 

 Equation (5) does not allow an exact analytical solution, because the dependencies on the 

radial and azimuthal coordinates cannot be separated due to the presence of the i-DMI term. At the 

same time, in the absence of the i-DMI this separation can be done rigorously, and the solution, 

corresponding to the lowest excitation threshold has a simple form ( )a a ρ= , i.e. it is radially 

symmetric, and does not depend on the azimuthal angle φ. Hence, we can assume, that, at least in 

the range of a relatively weak i-DMI, the radially symmetric solution is only weakly modified, and 

the dependence on φ is also weak. This approximation allows us to consider the azimuthal 

coordinate not as an independent variable, but as a parameter which affects the radially symmetric 
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solution ( )a aφ ρ= , i.e. to neglect the derivative / φ∂ ∂  in Eq. (4). As will be shown below, this 

approximation leads to correct dependencies of the generation frequency and threshold in the i-DMI 

range of interest.  

 Owing to the mentioned approximation, Eq. (5) is simplified to : 

 ( )
2

2

1 cos 0iA a W iG a% φ
ρ ρ ρ ρ

⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟+ + + + =⎜ ⎟⎜ ⎟⎜∂ ∂ ∂⎝ ⎠
. (6)  

Equation (6) is a generalized confluent Riemann hypergeometric equation. Its general solution is a 

linear combination of a Laguerre’s polynomial L (often known as a particular form of a Kummer’s 

hypergeometric function) and a confluent hypergeometric function U (often known as  a Tricomi’s 

hypergeometric function) times an exponential function, namely: 

 ( ) ( ) / 2
1 2

1 1, ,1,
2 2 2 2

ia e C L i C U iα β ρ
φ

α α
ρ βρ βρ

β β
− +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎜ ⎟ ⎟⎜ ⎜ ⎟= − − + +⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠
,  (7) 

where the parameters α  and  β  are defined as: cosA%α φ=  and ( ) 2 2
1,2 1,24 cosW iG A%β φ= + + . 

The coefficients C1, C2 should be determined from the boundary conditions and proper asymptotes. 

Since the function U is divergent at 0ρ → , the solution in the active region ( 1ρ < ) is given by the 

Laguerre’s polynomial solely: 

 ( ) ( )1 / 2
,1 1

1

1 ,
2 2

ia e L iα β ρ
φ

α
ρ β ρ

β
− +

⎛ ⎞⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜⎝ ⎠
. (8) 

The solution outside the active region should have the asymptotic form of a decaying propagating 

wave, i.e ( ) 21/2
,2 ~ gc Gia e e ρκρ

φ ρ ρ −−  with cg >0. This property is satisfied by the following 

combination: 

 ( ) ( )

[ ]
2

2

1 /
/ 2

,2 2 2
2 2 2

1 1, ,1,
2 2 1 / 2 / (2 ) 2 2

i ia Ce L i U i
α β

α β ρ
φ

α α
ρ β ρ β ρ

β α β β

+
− +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟⎜= − − − +⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎟⎜ Γ −⎝ ⎠ ⎝ ⎠⎝ ⎠
,  (9) 
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where [ ]xΓ  is the gamma-function. The coefficient C is determined by the continuity of the solution 

at the boundary of the active region: ( ) ( ),1 ,21 1a aφ φ= . In the case of zero i-DMI, 0α= , the above 

solutions are simplified to ( ) ( )1 0 1 / 2a Jρ βρ=  and ( ) ( )(1)
2 0 2 / 2 / 2a CHρ β ρ= , respectively, where 

0J  and (1)
0H  are the Bessel and Hankel functions of the zero order, which is in full accordance 

with16,48. 

 

(c) Angular dependence of spin-wave wave number 

 Using asymptotic expansions of Laguerre polynomial and hypergeometric function one can 

show, that at 1ρ   the solution expressed in Eq. (9) behaves as 

( ) ( )21/2 /2
,2 2~ exp[ / 2]a iα β

φ ρ ρ β α ρ− − − , i.e. has a form of a wave, propagating from a point source, 

and having an angular-dependent wave number, which is determined by the term exp[ ]ik rφ . The 

wave number is equal to [ ] ( )2 effRe / 2k Rφ β α= − , or, in the initial parameters can be expressed as: 

 2 2 2
2

1 cos 4 cos
2 M

k D D%% %
%φ

ω ω
φ λ φ

ωλ
0

⎡ ⎤−⎢ ⎥= − + +⎢ ⎥
⎢ ⎥⎣ ⎦

. (10)  

This expression can be also directly obtained from the spin-wave spectrum Eq. (3). which confirms 

the correct asymptotic behavior of the solution given by Eqs. (8, 9). The exponential decay of the 

spin waves, caused by damping, is described by the term exp[ / ]G grr vα−  with  

( )22 cosgr Mv k Dω λ φ= +% %      (11) 

 being the spin-wave group velocity (to derive this expression we used the assumption of small 

damping, 1Gα  ). 
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 The dependence of the spin-wave wave number on the azimuthal angle is nonreciprocal, in 

the sense  that k kφ π φ−≠ , which is a consequence of  the i-DMI. The averaged value of the wave 

number is equal to 

 
( )

( )

2 2 2

2 2 2

4 /
4

M M

M

D Dk E
D

ω ω λ ω ω
πλ ω ω λ ω

0

0

⎡ ⎤− + ⎢ ⎥= ⎢ ⎥− +⎢ ⎥⎣ ⎦

% % %

% % %
,  (12) 

where E [m] is the complete elliptic integral of the second kind. For small i-DMI it is simplified to: 

( ) ( )2 2 24 / / 2Mk Dω ω λ ω λ0= − +% %% . In the section below, we will find the excitation frequency 

ω , and will show, that the averaged value of the spin-wave wave number is almost independent of 

D%  in the range of a relatively weak i-DMI  

 

(d) Determination of the threshold current and generation frequency. 

 The generation frequency and threshold current density can be determined by the application 

of the boundary conditions to the general solution Eqs. (8, 9). The boundary conditions require 

continuity of the function ( )aφ ρ  and its derivative at the boundary of the active region ( 1ρ = ). The 

first condition is satisfied automatically by the selection of the coefficient C in Eq. (9). However, 

since we use approximate solutions, the condition on the derivatives ,1 ,21 1
/ /da d da dφ φρ ρ

ρ ρ
= =

=  

cannot be satisfied exactly for all the azimuthal angles φ simultaneously by any values of the 

generation frequency and the bias current density. Therefore, instead of the condition of the exact 

matching of derivatives, we use the condition of the minimization of a total mismatch of the 

derivatives. This approach is analogous to the collocation and least squares method used to 

approximate numerical solution of differential and integral equations.49,50,51 

For this purpose, we construct the functional of the quadratic deviation of the derivatives at the 

boundary of the active region: 
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 [ ] ( )
2

2
1

0

,W G d
π

φ φΦ = ∫ F , (13)  

where  

 ( ) ,1 ,2

1

da da
d d
φ φ

ρ

φ
ρ ρ

=

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
F .  (14)  

The normalized generation frequency W and the threshold G1 are, then, given by the minimum of 

[ ]1,W GΦ .  

 Let us find an analytical approximation for the generation frequency and threshold. Taking 

into account the structure of the functions ( ),iaφ ρ , we can consider the function F  as the function 

of three variables: cosA%α φ= , 1β  and 2β . The value of  α  is proportional to the i-DMI strength, 

which is considered relatively small in the model. Thus, we can expand the function F  in a series 

leaving only a linear term in α, namely 0 cosfC A% φ= +F F , where ( )0 0A%= =F F . After the 

integration one gets
2 2 2

00
/ 2fd C A%

π
φΦ= +∫ F . Consequently, the condition of the function 

minimum 1/ / 0W G∂Φ ∂ =∂Φ ∂ =   does not depend on Cf. This means, that we can set 0α=  in the 

definition of the function F , at least for a small i-DMI. This property is, in fact, more general – the 

generation frequency and threshold should be the same for i-DMI of the same strength but opposite 

values, because the change D D→−  corresponds to the simple inversion of the x-axis. Thus, odd 

functions of D can be safely disregarded.  

 Setting 0α=  the function in Eq. (13) is simplified to: 

 ( ) ( )1 11 1 2 1 1 2
0 1 1 02 2 2 2 2 2

J H J Hβ β β β β β⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜= −⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
F   (15) 

Following Ref. [16], we, first, consider the case of zero Gilbert damping. Then, the function of Eq. 

(15) has exact zero at the values 2 2cos /4 1.43W A% φ+ ≈  and ( )2 2
1 ff / 1.86e MG JRσ ω λ=− ≈−% . One can 
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see, that the value of the normalized threshold current G1 does not depend on the angle φ, thus, it is 

the solution of the problem of minimization of the functional Φ . Since we disregard at this moment 

Gilbert damping, the found value of the current density J corresponds to the compensation of the 

radiation losses, and, as we see, this threshold value does not depend on the i-DMI. This feature will 

be explained below. 

 The last step is finding the generation frequency W. As it was pointed out, ( ) 0φ =F  if 

2 2
0cos / 4 1.43W A W% φ+ = ≈ . The function ( )φF  close to this point can be expanded in a Taylor 

series as ( ) ( ) ( )2 2
01 1,0 cos / 4C C W A W%

β βφ β β φ≈ − = + −F  (one can directly verify, that 

( )φF is approximately linear in 2 2
1 cos / 4W A%β φ= + , but not in W). Using this expression in Eq. 

(13), one finds that the minimum of the functional Φ  is achieved at 2
0 / 4W W A%= −  with the 

accuracy of ( )4O A% , that is the solution we are searching for. Returning to the initial variables the 

generation frequency can be expressed as: 

 
2 2

0 2 2
eff

1.43
4M M
D

R

% %

%
λ

ω ω ω ω
λ

= + − . (16)  

The threshold current density is found after the addition of the Gilbert damping contribution. In the 

range of small values of the Gilbert damping (compared to the radiation losses) this contribution is 

simply equal to G GJσ α ω= ,16 because small damping does not change the spin wave profiles, and, 

consequently, radiation losses. In this case its role is simply to increase the threshold current to the 

value 0 GJ Jσ σ α ω= + , so that the “negative damping” in the active area GJσ α ω−Γ = −  reaches 

the threshold value , h 0t Jσ−Γ = . Thus, summarizing all the contributions, the threshold current 

density turns out to be : 
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2

th 2
ff

1.86 M G
e

J
R
λ

σ ω α ω= +
%

. (17)  

Equations (16) and (17) are the  central results of the presented analytical model. In the limit of a 

zero i-DMI they are reduced to the ones, derived in Ref. [16], as it should be. 

 

(e) Analysis of the obtained equations 

 According to Eq. (16) the presence of the i-DMI leads to a red shift of the generation 

frequency. This shift is independent of the geometry of the SHO active area, i.e. on Reff, and is equal 

to 2 2/ 4M Dω ω λΔ =− %% . The reason of the frequency shift is clear – the i-DMI results in a decrease 

of the minimum frequency in the spectrum of spin waves. Indeed, the expression for the spin-wave 

spectrum of Eq. (3) can be rewritten as: 

                           ( )( )22 2 2 2 2
0 / 2 / 4k M x y Mk D k D% % %% %ω ω ω λ λ ω λ= + + + − ,                        (18) 

i.e. the spectrum is shifted in the kx direction,  and is lowered by the value of 2 2/ 4M Dω ω λΔ =− %% . 

The last value is exactly the same as the red shift of the generation frequency. This is absolutely 

natural, because the exchange interaction results in a certain offset of the generation frequency from 

the minimum frequency in the spectrum. This offset is the same for any i-DMI, because the 

structure of the spectrum remains the same except for the kx-shift, to which the exchange interaction 

is not sensitive. Thus, one can expect that the red shift of the generation frequency 

2 2/ 4M Dω ω λΔ =− %%  remains the same in all the i-DMI range, not only in the range of relatively 

small values. Our simulations below confirm this expectation. Also, it becomes clear, that in the 

one-dimensional case (nanowire along x-direction), the red shift is also given by the same 

expression 2 2/ 4M Dω ω λΔ =− %% , as shown by the exact one-dimensional analytical model in Ref. 

41. 
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 Above we have also found that, in the absence of Gilbert damping, the generation threshold 

is independent of the i-DMI. In this case the threshold is determined by the compensation of the 

radiation losses radΓ . The radiation losses are proportional to the spin-wave group velocity given by 

Eq. (11), so the total radiation losses are obtained after the integration over kφ , and are proportional 

to rad kΓ  , where the averaged spin-wave wave number is given by Eq. (12). Substituting the 

expression for the generation frequency (Eq. (16) into Eq. (12)) one finds that, in the range of 

relatively small i-DMI, ( )( )
4

2
0 01 / 2 / 4k k D k λ
⎛ ⎞⎟⎜≈ − ⎟⎜ ⎟⎝ ⎠

%% , where 0 eff1.43 /k R= . In the above 

presented model we have neglected the terms of the order of 4D% . Thus, the radiation losses are 

independent of the i-DMI within the model, and, naturally, the obtained threshold current is also 

independent of the i-DMI. Expression for k  gives, also, the range of the i-DMI, where the model 

is valid: ( )( )
4

2
0/ 2 / 4 1D k λ%%  . Outside this range, one may expect a decrease of the threshold 

current since the averaged group velocity decreases. Moreover, if 2
02D k λ> %%  spin waves in the 

same direction become non-propagating (evanescent), since their wave vector becomes imaginary 

(see Eq. (10)). This feature was observed in simulations in Ref. 42. However, to calculate the 

threshold dependence on this region analytically one should find a way to describe a general 

solution without approximation of the small values of i-DMI, which lies beyond the scope on this 

article. 

 

IV. Comparison with micromagnetic simulations and discussion 

 In this section, we compare predictions of the above presented analytical model with the 

results of our micromagnetic simulations. The geometry and parameters of our micromagnetic 

simulations are described in Sec. II, and  the value of the bias magnetic field was 400 mT. In this 
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case the parameters determined by means of the analytical model are equal to: FMR frequency 

0 2 7.81GHzω π= × , effective exchange constant 5.64nmλ=% , effective i-DMI parameter 

0.62nmD D= ×% , where D is expressed in mJ/m2. The effective radius of the active region is 

estimated from the difference of the generation frequency from the FMR frequency in the absence 

of the i-DMI. In the simulations we found 0 2 7.8GHzω π= ×  and gen 2 8.7GHzω π= × , which, 

according to Eq. (15), results in the effective radius eff 42.2nmR = . The effective radius is close to the 

half distance between the concentrator tips, as should be expected. 

 First, in Fig. 2 we compare analytical approximation Eqs. (8, 9) of the profile of excited 

spin-wave mode with the micromagnetic ones. One can clearly see, that spin wave profiles deviate 

from a purely cylindrical symmetry, and this deviation increases with the i-DMI, as expected. The 

analytical approximation describes micromagnetic spin wave profiles reasonably well, and the weak 

deviation is related to the spatial distribution of the spin current, which is not of perfect radial 

symmetry (see, e.g., Supplementary Material in Ref. [41]), as was assumed in the model.  

 

 

Fig. 2. Spatial profile of the excited spin-wave mode at different i-DMI strengths, (a) and (b) – 

theory (real part of the solution Eqs. (8, 9)), (c) and (d) – micromagnetic simulations. The 

rectangular cross section is 1500 nm × 3000 nm. 
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      Quantitative comparison of the spin wave profiles can be made via the calculation of the angular 

dependence of the spin-wave wave number. Analytically, this dependence is given by Eq. (10), in 

which one should calculate the generation frequency using Eq. (16). Micromagnetic dependence 

was found by calculation of distances between the zeros directly from the time evolution of the 

spatial distribution of the magnetization. Spin-wave wave number monotonically increases when 

the azimuthal angle is varied from o0φ=  (+x direction) to o180φ=  (–x direction); at negative 

angles the dependence is symmetric, ( ) ( )k kφ φ− = . The maximum difference of the wave numbers 

( ) ( )o180 0k k−  is determined solely by the i-DMI strength, while the mean value, mainly, by the 

size of the active region. Again, we note quite a good description of the micromagnetic data by the 

analytical expression.  

                                          

Fig. 3. Wave number of excited propagating spin-wave mode at different strength of i-DMI; 

symbols – micromagnetic simulation, lines – analytical expression (Eq. (10)). 

 

 Next, we look at the dependence of the generation frequency on the i-DMI, which is shown 

in Fig. 4(a). Simulated frequencies follow the predicted trend, and decrease with the i-DMI as 

2 2/ 4M Dω ω λΔ =− %% . It should be noted that the equality of characteristic contributions of the i-
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DMI and non-uniform exchange interaction, which corresponds to the condition 2
02D k λ= %%  (when 

the argument of the elliptic integral in Eq. (12) is equal to 1), in our case takes place at the i-DMI 

strength 22.93 mJ/mD= . Thus, the red shift of the generation frequency follows the same trend not 

only in the range of relatively small i-DMI values, but remains the same for a large i-DMI, as was 

predicted in Sec. III(e).  

 To prove additionally this feature, we analyzed the data of micromagnetic simulation in 42, 

where STO with an active area of exactly circular shape was studied. We use the data presented for 

the smallest bias current (3 mA), for which the nonlinear effects should be small. In that case, the 

characteristic value of the i-DMI, when its effect becomes the same as the effect of exchange 

interaction, is 0.85 mJ/m2. As one can see from the inset in Fig. 4(a), the generation frequency 

follows the dependence of Eq. (16) in all the studied i-DMI range, including the range, where i-

DMI becomes dominant (D > 0.85 mJ/m2). 
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Fig 4. Dependences of the generation frequency (a) and threshold current density (b) on the i-DMI 

strength: symbols – micromagnetic data, lines – analytical model (Eqs. (16) and (17), respectively). 

Inset in (a) shows the dependence of the generation frequency for the STO studied 

micromagnetically in Ref. [42]: points are the micromagnetic data retrieved from Fig. 2(a) in Ref. 

[42] at the bias current of 3 mA, line shows the result of the analytical model (Eq. (16)).  

 

 For the calculation of the threshold current density one needs the value of the spin-Hall 

efficiency 0sin Mσ σ θ=  . The theoretically calculated value is 3 2
0 5.8 10 m /(A s)σ −= × ⋅ . By determining 

the value of 0σ  from the matching of the calculated threshold by means of Eq. (17) in the absence 

of i-DMI and the micromagnetic data, we get a slightly higher value of 3 2
0 6.6 10 m /(A s)σ −= × ⋅ . 

This discrepancy is, mainly, attributed to a non-uniform spatial distribution of the current density, 

created by the concentrators. Below, we use the last value of the spin-Hall efficiency for analytical 

calculations of the threshold current. 

 According to Eq. (17), which is valid in the range of relatively small i-DMI, the threshold 

current weakly depends on the i-DMI, because only the Gilbert losses are dependent on the i-DMI 

due to i-DMI-induced red shift of the generation frequency, while the radiation losses don’t depend 

on the i-DMI. In the range of relatively small i-DMI values ( 21.5mJ/mD≤ ) our micromagnetic 

simulations confirm this prediction. However, when the strength of the i-DMI becomes comparable 

to the strength of the exchange interaction, we observed a decrease of the generation threshold 

current. As was pointed in Sec. IIIe, this decrease is related with a decrease of the averaged spin-

wave group velocity, and, consequently, of the radiation losses. 

 Finally, we should note that the presented theory is rigorously valid for the STOs with 

circular active region, while in the case of an SHO with concentrators one needs to use adjusting 

parameters: effective radius Reff and modified spin-Hall efficiency σ. To check if these parameters 
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are set solely by the geometry of the concentrators we made simulations for different values of the 

bias magnetic field, which leads to a different magnetization angle, and compared these results with 

the corresponding curves calculated analytically. The i-DMI in this part of study is not taken into 

account, since the effects of the i-DMI on the generation frequency and threshold don’t depend on 

the Reff (see Eqs. (16, 17)). As one can see from Fig. 5(a), the generation frequency has a constant 

offset from the FMR frequency, and is almost perfectly described by the analytical expression Eq. 

(16) with a constant Reff = 42.2 nm. The dependence of the threshold current density also agrees 

very well with the numerically calculated one in all the bias field range, especially noting that the 

accuracy of the determination of the critical parameters in simulations are often not very high, 

because of the properties of numerical noise. Summarizing this part, we found that the adjustable 

parameters of the analytical model are determined by the current density distribution, and could be 

found from 1-2 reference points of micromagnetic simulations. 
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Fig.5. (a) Frequency of FMR and frequency of the excited spin waves at the threshold as functions 

of the bias magnetic field. (b) Dependence of the threshold current on the bias magnetic field . 

Symbols – micromagnetic data, lines – analytical theory. Figures are plotted for the case of zero i-

DMI.  

 

V. Conclusions 

 In summary, in this study we have proposed an analytical model for the description of the 

excitation of two-dimensional nonreciprocal spin waves in spin-torque and spin-Hall oscillators in 
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the presence of i-DMI. In the range of weak and moderate i-DMI the analytical problem of the spin 

wave excitation is reduced to the eigenvalue problem for the generalized confluent Riemann 

equation. The profiles of the excited spin waves are described by a linear combination of a 

Laguerre’s polynomial and a confluent hypergeometric function, and exhibit nonreciprocal behavior 

with the angular dependence of the spin-wave wave number.  

 It is shown that the frequency of the excited spin waves at the threshold exhibit a quadratic 

red shift with the increase of the  i-DMI strength. This shift is a direct consequence of the lowering 

of the spin-wave spectrum bottom in the presence of the i-DMI. Therefore, this shift  is proportional 

to the ratio between the characteristic i-DMI length and the exchange length, and could be 

expressed by the same functional dependence in all the studied i-DMI range, including the range , 

where i-DMI  makes a dominant contribution to the properties of the excited  spin waves.  

 At the same time, the averaged spin-wave wave number and spin-wave group velocity are 

almost independent of the i-DMI in the range of small and moderate i-DMI. Consequently, the 

radiation losses remain the same, and the i-DMI affects the excitation threshold current only via its 

weak influence on the Gilbert losses, which are proportional to the generation frequency. However, 

when the effect of the i-DMI becomes comparable or greater than that of the exchange interaction, 

we observed a decrease of the generation threshold, which is attributed to the decrease of the 

averaged group velocity. 
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