
January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

1International Journal of Modern Physics C
c© World Scientific Publishing Company

Portable multi-node LQCD Monte Carlo simulations using OpenACC

Claudio Bonati

Università di Pisa and INFN Sezione di Pisa,

Largo Pontecorvo 3, I-56127 Pisa, Italy

claudio.bonati@df.unipi.it

Enrico Calore

Università degli Studi di Ferrara and INFN Sezione di Ferrara,

Via Saragat 1, I-44122 Ferrara, Italy
enrico.calore@fe.infn.it

Massimo D’Elia

Università di Pisa and INFN Sezione di Pisa,

Largo Pontecorvo 3, I-56127 Pisa, Italy
massimo.delia@unipi.it

Michele Mesiti

Academy of advanced computing, Swansea University,
Singleton Park, Swansea SA2 8PP, UK

michele.mesiti@swansea.ac.uk

Francesco Negro

INFN Sezione di Pisa,
Largo Pontecorvo 3, I-56127 Pisa, Italy

fnegro@pi.infn.it

Francesco Sanfilippo

INFN Sezione di Roma3,

Via della Vasca Navale 84, I-00146 Roma, Italy

sanfilippo@roma3.infn.it

Sebastiano Fabio Schifano

Università degli Studi di Ferrara and INFN Sezione di Ferrara,

Via Saragat 1, I-44122 Ferrara, Italy
schifano@fe.infn.it

Giorgio Silvi

Jülich Supercomputing Centre, Forschungszentrum Jülich,
Wilhelm-Johnen-Straße, 52428 Jülich, Germany

ar
X

iv
:1

80
1.

01
47

3v
1

 [
he

p-
la

t]
 4

 J
an

 2
01

8

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

g.silvi@fz-juelich.de

Raffaele Tripiccione

Università degli Studi di Ferrara and INFN Sezione di Ferrara,

Via Saragat 1, I-44122 Ferrara, Italy

tripiccione@fe.infn.it

Received Day Month Year
Revised Day Month Year

This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for

staggered fermions, purposely designed to be portable across different computer archi-

tectures, including GPUs and commodity CPUs. Portability is achieved using the Ope-
nACC parallel programming model, used to develop a code that can be compiled for

several processor architectures. The paper focuses on parallelization on multiple com-

puting nodes using OpenACC to manage parallelism within the node, and OpenMPI
to manage parallelism among the nodes. We first discuss the available strategies to be

adopted to maximize performances, we then describe selected relevant details of the
code, and finally measure the level of performance and scaling-performance that we are

able to achieve. The work focuses mainly on GPUs, which offer a significantly high level

of performances for this application, but also compares with results measured on other
processors.

Keywords: Lattice-QCD; OpenACC; Portability; MPI; GPU

PACS Nos.: 07.05.Bx 12.38.Gc

1. Introduction

Monte Carlo simulations play a key role in the study of several aspects of Quan-

tum Chromodynamics (QCD), the quantum field theory that describes the strong

interaction in the standard model of particle physics. Lattice QCD is a computa-

tional scheme based on importance sampling Monte Carlo simulations used to study

QCD in the non-perturbative regime, i.e. when the theory is strongly interacting

and perturbation theory cannot be applied. This approach has been extremely ef-

fective in obtaining first principles calculations of the hadron masses1,2 and of the

thermodynamical properties of the quark-gluon plasma3, while technical difficulties

are still encountered when a large baryon chemical potential is present4. Despite

the continuous efforts in the development of more and more efficient algorithms5,

Lattice QCD simulations still require a tremendous amount of computing resources.

Lattice QCD simulations belong to the class of HPC grand challenge applica-

tions, with physics results strongly limited by available computational resources6,7.

For this reason in the mid ’80s the increasing request for computational resources

triggered the development of massively parallel supercomputers 8,9,10,11,12,13 specif-

ically designed and optimized to match the computing requirements of Lattice QCD

algorithms. This approach lost its effectiveness as general purpose supercomputers

started to be available on the market; interestingly enough, the architectures of

these commercial machines were still similar to the ones of their LQCD-optimized

2

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 3

predecessors, with low frequency and low power CPUs in each node and toroidal

interconnection between the nodes. Nowadays we are in the middle of a new change

of paradigm in the field of High Performance Computing (HPC), in which the typ-

ical node-to-node communication harness is all-to-all, and “slim” computing nodes

are being replaced by “fat” ones, based on multi- and many-core CPUs or Graphic

Processing Units (GPUs).

While the most recent CPU and GPU architectures seem to follow a converging

evolutionary path, with an always increasing level of vectorization, different pro-

gramming languages are still used to develop applications for CPUs and GPUs.

This poses significant portability issues, that need to be seriously addressed, as

there is still no clear consensus on the computing architectures – CPUs or GPUs –

that will be mostly adopted in the near future.

The OpenACC14 standard is a solution designed to address portability issues

across several computing architectures, using a programming model similar to

OpenMP15, but specifically designed to allow applications to run on accelerators. It

abstracts code functionalities to a descriptive level, leaving architecture-specific im-

plementations to the compiler. Using this approach, the same source code may run

on all processors, GPUs and also CPUs, supported by the compiler, achieving an

easy and good level of code portability. OpenACC is becoming increasingly popular

among several scientific communities for coding many lattice-based applications to

run mainly on GPU accelerators, including Lattice Boltzmann Methods16,17,18, and

more recently also Lattice QCD 19,20.

The change from “slim” to “fat” nodes, however, does not affect only the porta-

bility of the code, but also its parallel structure. In fact: i) the traditional strategy

to minimize the surface over volume ratio of the tiles is no more a priori the opti-

mal approach to get the best parallel efficiency, ii) different levels of parallelization

must be exploited, ii) and data organization plays an increasing relevant role for

computing performances.

In our previous work20 we have described an OpenACC implementation of a

state-of-the-art Monte Carlo Lattice QCD application, derived from an earlier ver-

sion coded using CUDA21, and able to run only on single-accelerator systems, in-

cluding GPUs (NVIDIA and AMD), and also CPUs. In this paper we extend our

OpenACC code to run also on accelerators-based parallel computing machines, dis-

cussing in detail how we have structured the code, the strategies that have guided

our design choices, and presenting several performance results on different comput-

ing architectures. We focus mainly on GPU-based clusters since for this kind of

applications they offer a level of performances an order of magnitude higher than

standard high-end commodity CPUs. We describe how we distribute the workload

of the application among the GPUs, the strategies used to overlap communications

and computation, and analyze computing efficiency and strong scalability on several

nodes. As in the previous work, we use the PGI compiler able to target all versions

of NVIDIA GPUs as well as commodity CPUs, offering code portability and the

possibility to measure, compare and analyze also performance figures of clusters

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

4 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

based on recent multi-core Intel Xeon CPUs.

The structure of this paper is as follows: in Sec. 2 we briefly recall the global

structure of Lattice QCD simulation algorithm, mainly focusing on those aspects

that are relevant for parallelization; in Sec. 3 we analyze several parallelization

strategies to distribute the data-domain over several computing-nodes and the tools

available to exchange data, and in Sec. 4 we describe the details of our implemen-

tation. Finally, in Sec. 5 we analyze the parallel efficiency and scaling figures of the

code, and in Sec. 6 we draw our conclusions.

2. Algorithms for Lattice QCD

In this section we summarize the basic algorithmic ingredients of a typical Lattice

QCD simulation that are needed to understand the parallel structure of our imple-

mentation. We will use the same notation of a previous paper describing a single

device implementation20, to which we refer for more details and reference to the

original literature22,23.

In a Lattice QCD simulation the space-time continuum is approximated by a

lattice of spacing a and extents aNt, aNx, aNy, aNz. The fundamental variables are

the gauge fields Uµ(x), which are 3× 3 unitary complex matrices associated to the

links (x, µ) of the lattice (x is a site of lattice and µ a direction), the momenta Hµ(x)

conjugated to the gauge fields (3 × 3 complex Hermitian and traceless matrices)

and the pseudofermions φ(x), associated to the site x of the lattice. These variables

have to be sampled according to the probability distribution (for the case of a single

staggered fermion)

P (U,H, φ) ∝ exp

(
−1

2
H2 − Sg[U]− φ†M [U (k)]−1/4φ

)
, (1)

where H2 stands for the sum over the whole lattice of the traces of the squared

momenta, while the scalar function Sg(U) (the gauge part of the action) is a

sum of traces of path-ordered products along closed circuits of the gauge vari-

ables Uµ(x). In our code we used for Sg the so-called tree-level Symanzik improved

discretization24,25, in which only 1×1 and 1×2 rectangular paths (with all possible

orientations) enter the action.

The last term in Eq. (1) is the fermion part of the action and M [U (k)] is the

Dirac matrix: in the staggered discretization this matrix connects nearest neighbor

sites of the lattice and the hopping term between the sites x and x + µ is pro-

portional to the k−times stout smeared26 gauge field U
(k)
µ (x) (with the convention

U
(0)
µ (x) ≡ Uµ(x), the case k = 0 corresponds to the simple staggered fermions).

Since M [U (k)] connects only nearest neighbor sites it is convenient to use an even-

odd preconditioning23,27; it can be shown that it is sufficient to have pseudofermions

associated only to the even sites of the lattice. In the following we will denote by

Doe and Deo the two out-of-diagonal blocks of M [U (k)] (note, for future reference,

that D†oe = −Deo)

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 5

We use the Rational Hybrid Monte Carlo algorithm28,29,30 (RHMC) to sample

the probability distribution in Eq. (1), using a Markov chain Monte Carlo approach:

the fractional power of M(U) is approximated to machine precision by a rational

function of M(U) and the update is performed by a combination of Molecular

Dynamics (MD) evolution of the gauge fields and accept/reject steps, like in the

ordinary Hybrid Monte Carlo update31,5. Pseudofermions enter quadratically in

the action, so they are generated by an heatbath step at the beginning of the MD

evolution and remain constant along the MD trajectory.

Most of the simulation time is spent in the computation of the force acting on

the gauge field (needed for the MD evolution) and in the evaluation of the action

at the end of the trajectory, needed for the accept/reject step. These high level

operations map at intermediate level to the following two operations: products of

Uµ(x) matrices along some simple paths and solutions of linear equations of the

form:

(m2 I −DeoDoe + σ(i))ϕ(i) = b , i ∈ {1, . . . , r} , (2)

where m is the fermion mass, r is the order of the rational approximation used in

the RHMC and σ(i) are the positions of the poles of the rational approximation.

Since the linear operators acting on the left-hand side of Eq. (2) are positive definite,

these equations can be conveniently solved by using the shift (also known as multi-

mass) form of the Conjugate Gradient32,33, whose elementary building blocks are

vector linear algebra (basically scalar products and sums) and the application of

the matrices Doe and Deo to a vector.

Also for the multi-node implementation, as for the single-node, several algo-

rithmic improvement can be implemented on top of the basic scheme described

so far, however these improvements typically do not require any additional effort

in the parallelization. Features that are implemented but not described here for

this reason are multi-step34,35 and improved integrators36,37,38, the use of multiple

pseudofermions29 and of different values of the stopping residuals and of the rational

approximation orders in different parts of the RHMC30.

3. Parallelization and data exchange on regular lattices

In this section we first analyze design options for the development of a multi-process

parallel version of our LQCD code20, and then we give an overview of the available

tools for data communications in parallel systems.

3.1. Strategies for parallelization

Designing a parallel multi-process LQCD code is in principle straightforward7. One

splits the physical lattice in regular tiles of the same size, and maps them onto a

cluster of processing nodes. Doing that, the processing load is balanced among the

processing elements, and communication patterns among the computing nodes are

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

6 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

regular, predictable and only involve (logically) nearest-neighbor processes. How-

ever, if processes reside on different computing nodes, node-to-node communication

introduces overheads that may seriously hamper the scaling behavior of the code,

as the number of processing nodes increases.

Consider a lattice of N points in D dimensions (i.e. with linear size L = N1/D,

D = 4 in our case), and parallelize it on d ≤ D dimensions, dividing the lattice

in regular sub-lattice tiles and mapping them onto Np processors. As information

exchange is roughly proportional to the surface of each computational domain,

while computing grows as the domain volume, one should in principle minimize the

surface-over-volume ratio (S/V) ' d N
1/d
p . One is then led to the conclusion that

the largest possible choice for d (d = D, d = 4 in our case) should have the best

asymptotic scaling behavior. This depends on the apparently obvious assumption

that node-to-node communication bandwidth does not depend on the size of data-

messages, and on the way the physical lattice is tiled. However, this is not necessarily

the case for currently available large cluster systems, for many reasons:

• communication of data buffers, corresponding to physical surfaces not

stored in contiguous memory locations, implies a gather-and-scatter over-

head that may seriously reduce sustained communication bandwidth;

• as one increases d, the size of each communication chunk becomes smaller;

however, since communication functions have large startup latencies, this

reduces effective sustained bandwidth39;

• current available multi- and many-core processors have large memories and

high computing-power, making the computation more coarse-grained com-

pared to previous machines, such as several generations of Blue-Gene sys-

tems. Near-peak sustained performance on these processors implies sub-

stantial streaming computation, thus each processor need to handle a large

enough data-domain, limiting the number of computing nodes that can be

used for many lattice-domain sizes of interest from the physics point of

view;

• tiling the lattice domain on many dimensions implies a significantly more

complex code structure, that may hamper further optimization steps40.

For these reasons, in this work we have decided to tile our lattice in just one di-

mension (d = 1), leaving all three remaining dimensions fully contained within each

processing node. However we have taken care to allow an arbitrary mapping among

the code coordinates (0, 1, 2, 3) and the physical ones (t, x, y, z), so one can select

which physical coordinate should be tiled onto the processors; this is obviously

relevant when using asymmetric lattices.

For further analysis, we now consider the amount of data items that must be

transferred across node boundaries for the most compute intensive operations that

we have described in the previous section. Consider first the evaluation of the Dirac

operator; since the matrices Doe and Deo connect only neighboring sites (and pseud-

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 7

ofermions are constant along the MD evolution), in the solution of Eq. (2) we need

only to communicate (after each application of Deo or Doe) the values of the pseud-

ofermions in a slice of thickness 1 along the boundaries. Since the pseudofermions

field is represented by 3 double complex numbers for each even site, we must

transfer 48 bytes for unit of surface in both directions. Some communication is ob-

viously needed also in the computation of the scalar products, but this is negligible

with respect to the previous one.

A larger amount of data transfer is required for the gauge fields: the function

Sg uses the products of gauge fields along 1 × 1 and 1 × 2 rectangles; thus in

the computation of the (gauge part of the) force acting on Uµ(x) we need the

values of the gauge field at sites that are up to 2 lattice spacing away from x. As a

consequence, for the computation of the so called “staples” (that are in the LQCD

context the equivalent of the stencils for partial differential equations), we need

to communicate the values of the gauge fields in a slice of thickness 2, for a total

amount of 768 bytes (using gauge link compression) for unit of surface.

The other relevant strategy for scaling performance is the implementation of

overlap between computations and node-to-node communications. Consider for in-

stance the evaluation of the Dirac operator; the physical points sitting on a contact-

surface between two processing elements have a data dependency with the adjoining

physical points, sitting on the logically-neighbor processor. It is customary to or-

ganize halo-regions, containing updated copies of the data corresponding to those

points; the obvious strategy is that one: i) applies first the Dirac operator to the

points belonging to the contact-surface and then, ii) applies the Dirac operator to

all other bulk lattice points and at the same time transfers the freshly computed

data values to the corresponding halos on the neighbor processors.

Summing up, in our 1-d tiling approach on Np processors, for a given lattice size,

communication time Tc is roughly constant in time, while the processing time Tp de-

creases as 1/Np; we then expect for the total processing time TT ' max [Tc, Tp(Np)],

that is (nearly) perfect scaling as long as Tc ≤ Tp followed by a regime in which

adding processors yields almost no performance improvement.

3.2. Tools for data exchange

Large GPU clusters are widely heterogeneous computing systems, with compute

nodes hosting one or more CPU processors, each acting as host for a variable number

of GPUs directly connected to their host through the PCIe bus interface, together

with the network interface, such as Infiniband.

The complexity of this structure implies that what, at the application level,

is a plain GPU-to-GPU communication, may involve different hardware routes,

different communication protocols, and correspondingly different performances both

in terms of latency and bandwidth. A large development effort has been put in

place in recent years to make communication programming relatively transparent

to hardware details and at the same time provide a reasonable level of efficiency. We

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

8 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

use several such developments in our code and briefly describe them here. Current

implementations of MPI, like OpenMPI indeed, support several features to allow

for easy and efficient communications among GPUs. The following are included in

our code:

• CUDA-aware MPI41 allows to specify buffers allocated on the GPU mem-

ory as arguments of the MPI operations, making codes terser and more

readable.

• For GPUs attached to the same host, CUDA-IPC moves data directly across

GPUs without staging on CPU memory, making communication faster39.

• GPUs attached to different CPUs of the same node communicate through

CPU-memory staging, pipelining all communication steps to shorten com-

munications latency.

• For GPUs belonging to different nodes, GPUDirect RDMA42 moves short

data packets from the GPU to the network interface without any involve-

ment of the host CPU. For longer data packets due to PCIe architectural

bottlenecks, RDMA becomes less effective42. In this case, GPUDirect sim-

plifies the operation by sharing a common staging region between the GPU

and the network interface.

4. Parallel Implementation

Our code uses plain C99 language, the standard MPI library and OpenACC. The

MPI library is used to perform the first coarse tiling of the lattice, with tiles of

equal size along one direction as described in Sec. 3. Different processes operate on

different sub-lattices, with each process typically associated to one processor unit

(e.g. a CPU or a GPU) and communications between neighboring processes being

managed by the MPI library. OpenACC directives are used to take care of the

parallelization across the computing elements of each single processing unit (e.g. a

CPU or a GPU).

OpenACC14 is a directive based language abstracting parallel programming to

a descriptive level, relieving programmers from specifying how codes should be

mapped onto the target architecture. It is similar to OpenMP and was introduced

to manage parallelism on accelerators, such as GPUs, although it is designed to

be architecture agnostic43, and the same code can be compiled and run also on

standard CPU processors. For more detail on the OpenACC implementation see

our previous work20.

The RHMC algorithm conceptually consists of two different units, namely molec-

ular dynamics (MD) and the Metropolis test. In the Metropolis test the value of

the action (i.e. the exponent in Eq.1) has to be computed before and after the MD

evolution and the most compute-intensive part of this unit is the solution of a linear

systems of the form in Eq. (2). As noted in Sec. 2 this basically amount to repeated

applications of the linear operators Deo and Doe, which connect nearest neighbors

lattice sizes through the U (k) link matrices.

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 9

In the MD step the main task is to update the SU(3) link matrices U (0) in Eq.1,

which is done by solving a set of first-order differential equations which involve

the gauge links and their conjugate momenta. In the computation of the force

driving the MD evolution two terms are present: one coming from φ†M [U (k)]−1/4φ

(the fermionic term), and the other coming from Sg(U) (the gauge term). As far

as the fermionic term is concerned, the most compute-intensive step is the already

discussed multi-shift Conjugate Gradient solver for the Dirac operator. In our lattice

discretization of the theory (i.e. the tree-level improved Symanzik gauge action) the

evaluation of the gauge term of the force requires the computation of products of

U (0) link matrices along the perimeter of 1 × 1 plaquettes and 2 × 1 rectangles.

Once the force acting on each link is computed, the MD algorithm proceeds in an

embarrassingly parallel way until the next computation of the force is required.

Another part of the algorithm which is not embarrassingly parallel is the one

related to the so-called stouting procedure26, which enters the algorithm in two

places. The first place is the computation of the k-stouted links U (k) (which are

used in the Dirac operator) starting from the original links U (0) which enter the

gauge term. The second place is the computation of the force in the MD evolution,

since the fundamental variables to evolve are the U (0) links, but the fermionic part

of the action depends on U (k) (see 26 for the procedure to be used). For both these

computations data relative to a 1-site thick halos have to be communicated. Since

however the computing time spent in the stouting procedure is roughly one order

of magnitude smaller than the time spent in the pure gauge molecular dynamics

evolution and in the Dirac operator, the impact on the global performance of any

optimization of the communication pattern used in this step would be minimal.

In the following we will focus on the communication-related aspects of the imple-

mentation (for a more detailed description of the algorithm see our previous paper20

or the standard references 22,23).

4.1. Data structures, domain partitioning and data compression

Thanks to the 1d-tiling approach we adopt, there is no need for gather-scatter oper-

ations since data to be moved between processes are already at contiguous memory

locations. A graphic view of the data structures used in the code is shown in Fig.1.

We store the pseudofermions fields is the vec3 soa structure (see listing 1 and

Figure 1). It consist of 3 arrays of double (or float) C99 complex numbers, ar-

ranged in a Structure of Arrays (SoA) layout44,20. Each array has LNH SIZEH

= n0,locn1,locn2,loc(n2,loc + 2h)/2 elements, where ni,loc are the sizes of the local

lattice and h is the “largest” needed halo size, which is 1 for the Dirac operator,

and 1 or 2 for the gauge part depending on the choice of Sg.

The data pertaining to the two halo regions for the current process are stored in

the first and last section of the array (red in Figure 1). The local data domain also

splits in three parts: two “borders” (blue in Figure 1), that are the parts of the local

domain corresponding to the halos for neighboring processes, and a “bulk” region,

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

10 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

which is not involved in communications.

We store data related to the SU(3) matrices representing the gauge configuration

using the su3 soa structure, consisting of 3 vec3 soa structures corresponding to the

rows of the matrixa.

We use several techniques to reduce the amount of data exchanged with memory

and with neighbor nodes, in an attempt to increase overall performance. Indeed,

all performance critical kernels are strongly memory-bound on currently available

processors (for instance the Dirac operator has an arithmetic intensity which is ≈ 6

times lower than the machine balance45 on recent GPUs).

For the gauge variables, we make use of gauge link compression: the third row

of an SU(3) matrix can be computed from the first two as r3 = (r1 ∧ r2)∗ thanks

to the orthonormality conditions, so we do not read it from memory and we do

not include it in communications. This technique is successfully used to alleviate

bandwidth related issues, e.g. in the GPU implementation of the whole algorithm,

and in MPI communications.

A different compression technique is used for quark-related variables. Remember

that each quark flavor is related to a U(1) field uµ(x) = exp(iθµ(x)), by which we

handle antiperiodic boundary conditions in the time-direction, staggered phases, the

imaginary chemical potential and background (electro-)magnetic fields. Hence, while

applying the Dirac operator, pseudofermions must be multiplied by uµ(x)Uµ(x) in-

stead of Uµ(x). We reduce data access request by storing in memory θµ(x) and

recomputing uµ(x) = cos θµ(x) + i sin θµ(x) on-line. Even if trigonometric func-

tions are very compute-intensive (approximately 15(30) floating point operations in

single(double)-precision) this approach leaves the code memory-bound and increases

performance.

typedef struct vec3_soa_t{
double complex c0[LNH_SIZEH],c1[LNH_SIZEH],c2[LNH_SIZEH];

} vec3_soa;

typedef struct su3_soa_t{
vec3_soa r0,r1,r2;

} su3_soa;

4.2. The Doe and Deo operators

The application in the local domain of the Doe and Deo operators requires halos

which are 1-site thick. Both functions are split into 3 pieces, two of which compute

the result on the borders (using also data from the halos) and one computes the

result on the bulk (which needs no data from the halos). After the computation ends,

aThis data structure is also used to store temporary results of the computations which are GL(3)
matrices.

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 11

(a) The vec3 soa data structure

(b) The su3 soa data structure

Figure 1. Graphical view of how data structures corresponding to the vec3 soa and the su3 soa
data-types are stored in memory. This layout allow to exploit instruction vectorization of the code.

all halos must be updated: freshly computed data belonging to the borders must

be sent to neighboring processes while new halo data must be retrieved from them.

A schematic of this procedure is shown in Algorithm 1. The data to be transferred

from and to each process in this case consists of 6 packets of size 8 n0,locn1,locn2,loc
bytes, as seen in Figure 1 (a typical size is around 250KB).

4.3. The molecular dynamics evolution

For the pure gauge part of the molecular dynamics evolution, each iteration of the

algorithm involves three steps: computing the forces from the gauge configuration

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

12 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

Algorithm 1 Parallelization of the Doe operator in our 1D-tiling approach (the

Deo case is the same).

1: φ
(1)
o,l = Doe,lφ

(0)
e on the lower border (on stream 1)

2: φ
(1)
o,u = Doe,uφ

(0)
e on the upper border (on stream 2)

3: φ
(1)
o,b = Doe,bφ

(0)
e in the bulk (on stream 3)

4: Wait on stream 1 and 2

5: Start asynchronous communications of fermion halos of φ
(1)
o , that is φ

(1)
o,l and

φ
(1)
o,e {6 send requests, 6 recv requests}

6: Wait on stream 3 and on the 12 requests

at fictitious time t, evolving the momenta according to the evaluated forces to time

t + δt1, and finally evolving the gauge configuration to t + δt2 (where δt1 and δt2
depend on the algorithm chosen). Notice that this is a constrained system. The first

step is the only one that involves inter-process data moves: the so-called staples

(which consist of products of all but one links along the perimeter of a rectangle)

must be computed for 1×1 and 1×2 rectanglesb. For this step an update of the halos

of the gauge configuration is required. The gauge configuration consists of 8 su3 soa

structures depicted in Figure 1. The data to be transferred to and from each process

consists of 96 packets, having size 8n0,locn1,locn2,loc bytes (as in the case of the Doe

and Deo operators). In order to allow for the superposition of communications

of halos with computation in the bulk, we adopted the procedure described in

Algorithm 2: all three steps are completed first on the borders, communications of

the updated gauge configuration halos are started, the three steps are performed

on the bulk, and then we wait for completion of all communication steps before

starting the next iteration.

5. Performance results

In this section we initially describe the computing system we have used to run all the

simulations, i.e. the COKA cluster, and then we analyze scaling and performance

figures of the MPI-OpenACC application described in the previous sections.

In most Lattice QCD simulations one wants to complete a given number of

Monte Carlo trajectories on a lattice of a specific size in the shortest possible time,

so we focus on Strong Scaling, that is we analyze the compute time as a function of

the number of compute devices used to solve the same problem size, as one splits the

same lattice in smaller and smaller tiles. We study in larger details the two most time

consuming phases of the code – the Dirac operator and the pure gauge molecular

dynamics, describing their scaling behavior – but we also show performance results

for the full code running on thermalized configurations with typical state-of-the-art

physics parameters.

bThe 1 × 2 staples are only needed in case the tree-level Symanzik improved action is used.

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 13

Algorithm 2 Parallelization of a block of pure-gauge molecular dynamics in our

1D-tiling approach.

1: gauge force on the lower border

2: gauge force on the upper border

3: new momenta on the lower border

4: new momenta on the upper border

5: new configuration on the lower border

6: new configuration on the upper border

7: start asynchronous communications of new gauge configuration halos {96 send

requests, 96 recv requests}
8: force on the bulk

9: new momenta on the bulk

10: new configuration on the bulk

11: Wait on the 192 requests

We analyze in finer details performance – and performance bottlenecks – for

GPUs, since these processors have by far higher sustained performance than other

architectures. However, since our code is fully portable to X86 CPUs we also show

some results for them.

5.1. The COKA cluster

All our tests have been done on the COKA cluster, a GPU-based HPC cluster jointly

operated by INFN and Università degli Studi di Ferrara, with a peak performance

of ≈ 100 TFLOPs.

The COKA cluster has 5 computing nodes, each node embedding 2× Intel Xeon

E5-2630v3 CPUs and 8× NVIDA K80 dual-GPU boards. Each board hosts 2×
GK210 GPUs, so there are 16 CUDA devices on each node. Nodes are intercon-

nected with 56Gb/s FDR InfiniBand links; each node has 2× Mellanox MT27500

Family [ConnectX-3] HCA, allowing multirail networking46 for a doubled inter-node

bandwidth. The two InfiniBand HCAs are connected respectively to the two PCIe

root complexes, connected on their turn to the two CPU sockets. This allows for a

symmetric hardware configuration, where each GPU has one local InfiniBand HCA,

connected to the same PCIe root complex, so data messages do not need to traverse

the inter-socket communication link (i.e. the Intel Quick Path Interconnect in this

case). In all tests we have used the OpenMPI library, version 1.10.7, exploiting its

CUDA-aware MPI capabilities, when running on GPUs.

5.2. The Dirac Operator

In this section we measure the Strong Scaling behavior and aggregate performance

of the Dirac operator. We consider two different lattice sizes i.e. 323 × 48 and

323 × 64, which are relevant for physics simulations, and easily divisible across

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

14 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

various numbers of GPUs. We split the former lattice on 1, 2, 4, 6, 8 and 12 GPUs,

and the latter lattice on 2, 4, 8 and 16 GPUs.

As discussed in Sec. 3, this kernel scales perfectly as long as communication

time is hidden by computing time over the bulk of the lattice. This is confirmed

in Figure 2, where we can see a perfect Strong Scaling behavior up to 8 GPUs for

both lattice sizes. Further increasing the number of GPUs does not increase the

performance anymore for the 323 × 48 lattice, thus the speedup reaches a plateau.

On the other hand, for the bigger 323 × 64 lattice, using more than 8 GPUs we

can still have a performance increase, although using 16 GPUs we are far from an

optimal speedup.

Figure 2. Relative Speedup of the Dirac Operator in double precision on two lattices of size

323 × 48 and 323 × 64, for a growing number of GPUs hosted in the same compute node of the
COKA Cluster.

To shed more light on this behavior we use the PGI Profiler to extract traces of

the GPU kernel executions from an actual run of the code. From Figure 2, we know

that for a lattice of 323 × 48 sites the Dirac operator scales up to 8 GPUs. Thus

we profiled two different runs, using the same lattice size, and using respectively

8 and 12 GPUs, looking for execution differences which could explain the scaling

impairment. Results are shown in Figure 3, clearly showing to which extent the

computation phases overlap with communication in the two different cases.

The Dirac Operator has 7 different kernels, shown in different colors and labeled

in Figure 3a. The first three blocks on the left, acc Doe d3p, acc Doe d3m and

acc Doe bulk, refer to the execution of the Doe kernel, respectively on the borders

and on the bulk of the lattice, while acc Deo d3p, acc Deo d3m and acc Deo bulk,

show Deo, again on the borders and on the bulk of the lattice. Eventually, a final

kernel, shown in red, is run for each iteration, performing just a zaxpy operation,

corresponding to the final sum of Eq. 2.

Unlabeled yellow bars, represent MPI communications, as seen from the GPUs

point of view; there are 6 communication steps for each iteration of Deo or Doe, as

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 15

(a) One iteration using 8 GPUs. The time-lines of the kernels executing on two neighboring

GPUs are shown, one over the other.

(b) One iteration using 12 GPUs. The time-lines of the kernels executing on two neighboring

GPUs are shown, one over the other.

Figure 3. Time-line of the execution of the Dirac operator on a lattice of 323 × 48 sites using
different numbers of GPUs (8 in Fig. 3a and 12 in Fig. 3b). Purple-blue colored: execution of Deo

and Doe on the borders of the lattice; turquoise colored: execution of Deo and Doe operations on

the bulk of the lattice; gold colored: communication steps, as seen from the GPUs. Bulk operations
are fully (3a) or partially (3b) overlapped with communication.

expected. More interestingly, we can see that in Figure 3a communications are fully

overlapped in time with the kernels operating on the bulk of the lattice. On the

other hand, in Figure 3b, the execution time of those same kernels take a shorter

amount of time, as we use a higher number of GPUs, so tiles are smaller. In the

latter case, since communication time is approximately constant w.r.t. the tile size,

the data transfer step is not completely hidden behind computation time on the

bulk. This analysis (done on the actual code) fully explains the scalability limit

displayed in Figure 2, since the overall execution time can not be decreased when

communication time becomes the limiting factor.

From this analysis for the 323 × 48 lattice, we obtain that we have a perfect

Strong Scaling if lattice tiles associated to each GPU are at least 6 sites thick, that

is each GPU processes a 323 × 6 slice of the lattice. This analysis also explains the

behavior of the larger 323 × 64 lattice in Figure 2: we should have a perfect Strong

Scaling up to 10 GPUs and then reach the plateau. As 64 is not divisible by 10 we

cannot test precisely this configuration, but, using 16 GPUs, we see a 10× speedup,

corresponding to the expected plateau figure.

In order to convert our scaling results into absolute performance figures, we

have counted the floating point operations and memory accesses needed to apply

the Dirac operator to each lattice site, directly accessing GPU hardware counters

(through the PGI Profiler) and then double checking the results against theoretical

expectations. From these measured values we have computed the actual sustained

performance (floating point operations per second) and bandwidth (data bytes per

second). This results are shown in Figure 4 for several runs using an increasing

number of GPUs, on a 323×48 lattice. Note that we include in our operation count

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

16 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

Figure 4. Aggregate performance (GFLOP/s) and bandwidth (Gbyte/s) for the Dirac operator

om a 323 × 48 lattice. Several runs of the same benchmark have been performed with different
numbers of GPUs in the COKA Cluster.

the additional computational load associated to the data compression techniques

that we have described in section 4.1.

As an example, using both GPUs of a NVIDIA K80 board, as shown in Fig-

ure 4, our implementation of the staggered Dirac Operator has a performance of

' 339 GFLOP/s in double precision and a sustained bandwidth of ' 290 GBytes/s

(partially given also by cache accesses), that is ≈ 80% of the aggregated raw peak

memory bandwidth of the processor (taking into account the bandwidth penalty as-

sociated to Error-correcting-Codes (ECC) that we use throughout to increase data

reliability). These figures are consistent with those obtained by other codes adopting

non-portable architecture-specific languages47.

5.3. Gauge part of the Molecular Dynamics

We now consider the Gauge part of the molecular dynamics, which is the second

most time consuming step of the whole Monte Carlo code, after the Dirac operator.

As shown in Figure 5, for this phase of the simulation an almost perfect speedup

can be appreciated up to 12 and 16 GPUs, respectively for the 323 × 48 and the

323 × 64 lattices (the same lattice sizes considered in Figure 2 for the Dirac opera-

tor). This different behavior can be explained by the fact that the computation-time

versus communication-time ratio is more favorable in this case: to very first approx-

imation, for each lattice site we use a data set which is 32 times larger than for

the Dirac operator, but the operation count increases by ≈ 300. As a consequence,

communications do not become the scaling limiting factor. Indeed, the true limiting

factor encountered when increasing the number of compute devices (i.e. GPUs for

this test), is the length of the tiling dimension. In fact, here lattice borders have a

thickness of 2 lattice sites, so Figure 5 shows an almost perfect scaling up to the

point at which the bulk size reaches zero (since 48/12 = 64/16 = 4) and the lattice

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 17

Figure 5. Relative speedup of the pure gauge part of the molecular dynamics kernel for two

different lattices of size 323 × 48 and 323 × 64, as a function of the number of GPUs.

cannot be further divided across more devices.

5.4. Full Simulation

To have a comprehensive view of the performance and scaling behavior of a complete

run, as a representative example, we choose a simulation of QCD with 2 light (up

and down) and 1 intermediate (strange) flavors over a 323×48 lattice, that is part of

a production run regarding the study of QCD at finite baryon density and towards

the chiral limit. In this particular simulation (with quark mass 0.0015 in lattice

units and β = 3.3600), the quark mass is about 1/3 of its physical value and the

lattice spacing is around 0.3 fermi (3× 10−16 meters). For the computations in the

molecular dynamics we are using floating-point operations, while for the Metropolis

test we are using double-precision ones.

We have run the same simulation on different numbers of CPUs and GPUs

available on the COKA cluster, demonstrating the actual code portability offered

by the OpenACC programming model, and measuring performance. Our results

are shown in Figure 6, as a function of the number of computing devices. We plot

the aggregate performance (floating point operations per second) and aggregate

Memory Bandwidth (data bytes per second). These metrics allow to appreciate both

the strong scaling behavior and the differences in absolute performance between the

two architectures.

In Figure 6 we see that GPUs have much higher performance than CPUs for

this kind of application. This was partly expected, since, when using just one pro-

cessor, we had already measured a performance gap of approximately one order of

magnitude20; this gap widens further when using multiple devices. As an example

using two CPUs. execution times increases ≈ 14× w.r.t. two GPUs. In order to

put this figure in perspective, we note that the limitations of the compiler when

targeting CPUs, that we had described in our previous work20, still hold today;

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

18 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

Figure 6. Aggregate performance (GFLOP/s) and bandwidth (read/write GByte/s) for a full

simulation on a 323 × 48 lattice (see the text for a list of simulation parameters). The same
simulation has been performed using different numbers of processors (CPUs or GPUs) in the

COKA Cluster.

however, when using multiple devices, the performance measured on CPUs is fur-

ther degraded by two main factors:

• The COKA cluster is a GPU dense machine, as each node hosts 16 CUDA

devices. This translates to the fact that all the GPU related points of Fig-

ure 6 are given by simulations executing on a single-node, without requiring

inter-node communications, but only faster intra-node data transfers be-

tween GPU memories. On the other side, each node hosts only two CPUs,

so CPU related points in Figure 6 refer to simulations run respectively on

1, 2, 3 and 4 nodes.

• When running on GPUs, communications can be overlapped with commu-

nications and small kernels (such as computations on the lattice borders)

can run concurrently on the same device, as shown in Figure 3. On the

other side, the current version of the PGI compiler completely ignores –

when targeting CPUs – async clauses to OpenACC directives, and fully

serialize the execution of different kernels and communications.

These factors can be, at least partially, overcome by: i) the use of CPU

“denser” machines e.g. using CPUs with an higher core number or even Xeon Phi

processors48; ii) the use of a compiler able to exploit the async OpenACC clause.

We also expect that single-CPU performance can be significantly increased,

with improved data layouts. Remember that the data-layout chosen for this

code (i.e. Structure of Array) allows code vectorization on both GPU and CPU

architectures44; however, recent work49,48,50 has shown that more complex data

structures are able to increase the performance of memory sub-system performance

on Intel CPUs and also Xeon-Phi accelerators. This has been demonstrated also for

other lattice-based simulation codes51.

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 19

We conclude at this stage that our code is actually portable to clusters adopting

either Intel CPU or NVIDIA GPU architectures, but an additional effort is needed

in the direction of performance portability, both on the programming side and on

the side of improved compiler support for CPU architectures. In this latter regard

we add that the community developing the GCC compiler seem to be strongly

committed in supporting OpenACC and GCC, version 7, is expected to compile

OpenACC codes for x86 CPU architecture.

6. Conclusions

In this work we have presented a full state-of-the-art production-grade code for Lat-

tice QCD simulations with staggered fermions, coded using the OpenACC directive-

based programming model to make the code portable across different computing

architectures, and MPI to allow the code to run on multi-node systems where each

node may have more then one accelerator installed.

This work extends the code we have developed in a previous work20 designed to

run on single-accelerator systems, turning it into a fully working MPI version able to

exploit multi-node HPC clusters and multiple accelerators board within each com-

puting node. We have described our implementation, detailing how parallelization

has been exploited, and the strategies adopted to improve parallel efficiency, such

as overlapping of MPI transfers with computation to hide communications time

overheads. We have measured the scalability behavior of our code on the COKA

GPU-based HPC cluster, and make also some tests on Intel CPU architectures.

In this first implementation we have decides to use the 1d-tiling strategy, to keep

the code structure simple, avoiding to handle non contiguous data communications,

that for GPU-based clusters are not easily manageable39, and also easily exploit-

ing computation and communication overlap. As already commented in Sec. 3, this

basic strategy keeps communication time constant while increasing the number of

nodes, and for this reason the code scales as long as the communication time is

hidden by the computation time.

In conclusion, our final result is a LQCD Monte Carlo code portable on a large

subset of HPC clusters, based on both GPUs and standard CPUs, with satisfactory

figures of aggregate performance and scalability. Performances measured on CPUs

are lower compared with that of GPUs; this results is inline to what we have mea-

sured in our previous work, and the main reason is that the compiler does not fully

yet support this architecture. We would like to highlight that this has not been a

mere exercise on performance scalability: our efforts have been driven by the actual

need to scale on multi-GPU architecture (basically for large RAM requirements)

within the context of a project regarding QCD at finite baryon density, for which

the present code has been already in full production since several months.

In the near future we plan to further optimize our code for Intel processors,

without impacting the performance on NVIDIA GPUs, hoping for a contextual

further development of the available compilers. We plan also to carefully assess the

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

20 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

performance and scalability of our code on Intel KNL Xeon Phi clusters, as soon as

the support for this architecture is added to the PGI compiler, or as soon as other

compilers become available. On a longer time scale, we also plan to split the lattice

across more dimensions and investigate the impact on performance, scalability and

code maintainability, and to investigate the impact of different memory layout to

improve vectorization of codes especially on multi-core CPUs.

Acknowledgments

EC and FN acknowledge financial support from the INFN HPC HTC project. We

thank the INFN Computing Center in Pisa for providing us with the development

framework, and Università degli Studi di Ferrara and INFN-Ferrara for granting

access to the COKA cluster. This work has been developed in the framework of the

COKA and COSA projects of INFN.

Bibliography

1. A. Bazavov et al., Rev. Mod. Phys. 82, 1349 (2010), doi:10.1103/RevModPhys.
82.1349.

2. Z. Fodor and C. Hoelbling, Rev. Mod. Phys. 84, p. 449 (2012), doi:10.1103/
RevModPhys.84.449.

3. H.-T. Ding, F. Karsch and S. Mukherjee, Thermodynamics of Strong-Interaction Mat-
ter from Lattice QCD, in Quark-Gluon Plasma 5 , ed. X.-N. Wang 2016, pp. 1–65.
doi:10.1142/9789814663717_0001.

4. G. Aarts, J. Phys. Conf. Ser. 706, p. 022004 (2016), doi:10.1088/1742-6596/
706/2/022004.

5. A. Kennedy, arXiv preprint hep-lat/0607038 (2006).
6. C. Bernard, N. Christ, S. Gottlieb, K. Jansen, R. Kenway, T. Lippert, M. Lscher,

P. Mackenzie, F. Niedermayer, S. Sharpe, R. Tripiccione, A. Ukawa and H. Wittig,
Nuclear Physics B - Proceedings Supplements 106-107, 199 (2002), doi:https://
doi.org/10.1016/S0920-5632(01)01664-4.

7. G. Bilardi, A. Pietracaprina, G. Pucci, F. Schifano and R. Tripiccione, Lecture Notes
in Computer Science 3769, 386 (2005), doi:10.1007/11602569_41.

8. M. Albanese et al., Comput. Phys. Commun. 45, 345 (1987), doi:10.1016/0010-
4655(87)90172-X.

9. P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen, C. Cristian, Z. Dong,
A. Gara, B. Joo, C. Jung, C. Kim, L. A. Levkova, X. Liao, G. Liu, R. D. Mawhinney,
S. Ohta, K. Petrov, T. Wettig and A. Yamaguchi, IBM Journal of Research and
Development 49, 351 (March 2005), doi:10.1147/rd.492.0351.

10. F. Belletti, S. F. Schifano, R. Tripiccione, F. Bodin, P. Boucaud, J. Micheli, O. Pene,
N. Cabibbo, S. De Luca, A. Lonardo, D. Rossetti, P. Vicini, M. Lukyanov, L. Morin,
N. Paschedag, H. Simma, V. Morenas, D. Pleiter and F. Rapuano, Computing in
Science and Engineering 8, 50 (2006), doi:10.1109/MCSE.2006.4.

11. N. R. Adiga et al., An Overview of the BlueGene/L Supercomputer, in Supercomput-
ing, ACM/IEEE 2002 Conference, Nov 2002. doi:10.1109/SC.2002.10017.

12. G. Goldrian, T. Huth, B. Krill, J. Lauritsen, H. Schick, I. Ouda, S. Heybrock, D. Hierl,
T. Maurer, N. Meyer, A. Schaefer, S. Solbrig, T. Streuer, T. Wettig, D. Pleiter, K.-H.
Sulanke, F. Winter, H. Simma, S. Schifano, R. Tripiccione, A. Nobile, M. Drochner,

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

Portable multi-node LQCD Monte Carlo simulations using OpenACC 21

T. Lippert and Z. Fodor, Computing in Science and Engineering 10, 46 (2008),
doi:10.1109/MCSE.2008.153.

13. R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Co-
teus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu, P. Boyle, N. Chist
and C. Kim, IEEE Micro 32, 48 (March 2012), doi:10.1109/MM.2011.108.

14. OpenACC directives for accelerators http://www.openacc-standard.org/.
15. The OpenMP API specification for parallel programming http://www.openmp.

org/specifications/.
16. S. Blair, C. Albing, A. Grund and A. Jocksch, Accelerating an mpi lattice boltz-

mann code using openacc, in Proceedings of the Second Workshop on Accelerator
Programming Using Directives, WACCPD ’15 (ACM, New York, NY, USA, 2015).
doi:10.1145/2832105.2832111.

17. J. Kraus, M. Schlottke, A. Adinetz and D. Pleiter, Accelerating a c++ cfd code
with openacc, in Accelerator Programming using Directives (WACCPD), 2014 First
Workshop on, 2014. doi:10.1109/WACCPD.2014.11.

18. E. Calore, A. Gabbana, J. Kraus, S. F. Schifano and R. Tripiccione, Concurrency and
Computation: Practice and Experience 28, 3485 (2016), doi:10.1002/cpe.3862.

19. S. Gupta and P. Majumdar, ArXiv e-prints (October 2017), arXiv:1710.09178.
20. C. Bonati, S. Coscetti, M. D’Elia, M. Mesiti, F. Negro, E. Calore, S. F. Schifano,

G. Silvi and R. Tripiccione, International Journal of Modern Physics C 28 (2017),
doi:10.1142/S0129183117500632.

21. C. Bonati, G. Cossu, M. D’Elia and P. Incardona, Comput. Phys. Commun. 183, 853
(2012), doi:10.1016/j.cpc.2011.12.011.

22. H. J. Rothe, Lattice gauge theories. An Introduction. (World Scientific, 2005).
23. T. DeGrand and C. DeTar, Lattice methods for quantum chromodynamics (World

Scientific, 2006).
24. P. Weisz, Nuclear Physics B 212, 1 (1983).
25. G. Curci, P. Menotti and G. Paffuti, Physics Letters B 130, 205 (1983).
26. C. Morningstar and M. Peardon, Physical Review D 69, p. 054501 (2004).
27. T. A. Degrand and P. Rossi, Computer Physics Communications 60, 211 (1990),

doi:http://dx.doi.org/10.1016/0010-4655(90)90006-M.
28. M. Clark, A. Kennedy and Z. Sroczynski, arXiv (2004), hep-lat/0409133.
29. M. Clark and A. Kennedy, Physical review letters 98, p. 051601 (2007).
30. M. Clark and A. Kennedy, Physical Review D 75, p. 011502 (2007).
31. S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Physics letters B 195, 216

(1987).
32. B. Jegerlehner, arXiv (1996), hep-lat/9612014.
33. V. Simoncini and D. B. Szyld, Numerical Linear Algebra with Applications 14, 1

(2007).
34. J. Sexton and D. Weingarten, Nuclear Physics B 380, 665 (1992).
35. C. Urbach, K. Jansen, A. Shindler and U. Wenger, Computer Physics Communications

174, 87 (2006).
36. I. Omelyan, I. Mryglod and R. Folk, Physical Review E 65, p. 056706 (2002).
37. I. Omelyan, I. Mryglod and R. Folk, Computer Physics Communications 151, 272

(2003).
38. T. Takaishi and P. De Forcrand, Physical Review E 73, p. 036706 (2006).
39. E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S. F. Schifano and R. Tripiccione,

Parallel Computing 58, 1 (2016), doi:10.1016/j.parco.2016.08.005.
40. E. Calore, D. Marchi, S. F. Schifano and R. Tripiccione, Optimizing communications in

multi-GPU Lattice Boltzmann simulations, in High Performance Computing Simula-

January 8, 2018 1:33 WSPC/INSTRUCTION FILE lqcd-oacc-mpi

22 C. Bonati & E. Calore & M. D’Elia & M. Mesiti & F. Negro & F. Sanfilippo & S.F. Schifano & G. Silvi & R. Tripiccione

tion (HPCS), 2015 International Conference on, July 2015. doi:10.1109/HPCSim.
2015.7237021.

41. An Introduction to CUDA-Aware MPI
http://developer.nvidia.com/content/introduction-cuda-aware-
mpi.

42. Benchmarking GPUDirect RDMA on modern server platforms
http://devblogs.nvidia.com/parallelforall/benchmarking-
gpudirect-rdma-on-modern-server-platforms.

43. S. Wienke, C. Terboven, J. Beyer and M. Mller, LNCS 8632, 812 (2014), doi:10.
1007/978-3-319-09873-9_68.

44. C. Bonati, E. Calore, S. Coscetti, M. D’Elia, M. Mesiti, F. Negro, S. F. Schifano
and R. Tripiccione, Development of scientific software for HPC architectures using
OpenACC: the case of LQCD, in The 2015 International Workshop on Software En-
gineering for High Performance Computing in Science (SE4HPCS), ICSE Companion
Proceedings2015. doi:10.1109/SE4HPCS.2015.9.

45. J. D. McCalpin, IEEE Technical Committee on Computer Architecture (TCCA)
Newsletter (Dec 1995).

46. J. Liu, A. Vishnu and D. K. Panda, Building multirail InfiniBand clusters: MPI-level
design and performance evaluation, in Proceedings of the 2004 ACM/IEEE conference
on Supercomputing , 2004.

47. R. Li, C. DeTar, S. Gottlieb and D. Toussaint, ArXiv e-prints (November 2017),
arXiv:1712.00143.

48. I. Kanamori and H. Matsufuru, ArXiv (December 2017), arXiv:1712.01505.
49. J. Jeffers, J. Reinders and A. Sodani, Chapter 26 - Quantum Chromodynamics, in

Intel Xeon Phi Processor High Performance Programming , eds. J. Jeffers, J. Reinders
and A. Sodani (Morgan Kaufmann, Boston, 2016), pp. 581 – 598, Second edn. doi:
10.1016/B978-0-12-809194-4.00026-0.

50. B. Joó, M. Smelyanskiy, D. D. Kalamkar and K. Vaidyanathan, Chapter 9 - wilson
dslash kernel from lattice QCD optimization, in High Performance Parallelism Pearls,
eds. J. Reinders, and J. Jeffers (Morgan Kaufmann, Boston, 2015), pp. 139 – 170.
doi:https://doi.org/10.1016/B978-0-12-803819-2.00023-9.

51. E. Calore, A. Gabbana, S. F. Schifano and R. Tripiccione, The International
Journal of High Performance Computing Applications , 1 (2017), doi:10.1177/
1094342017703771.

