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Abstract 

Background:  Sex differences are underappreciated in the current understanding of cardiovascular disease (CVD) 
in association with chronic kidney disease (CKD). A hallmark of CKD is vascular aging that is characterised, amongst 
others, by; systemic inflammation, microbiota disbalance, oxidative stress, and vascular calcification—features linked 
to atherosclerosis/arteriosclerosis development. Thus, it is the necessary to introduce novel biomarkers related to 
athero-/arteriosclerotic damage for better assessment of vascular ageing in patients CKD. However, little is known 
about the relationship between uraemia and novel CVD biomarkers, such as growth differentiation factor-15 (GDF-
15), cartilage glycoprotein-39 (YKL-40) and matrix metalloproteinase-9 (MMP-9). Therefore, we hypothesise that there 
are sex-specific relationships between GDF-15, YKL-40, MMP-9 levels in end-stage kidney disease (ESKD) patients in 
relation to gut microbiota, vascular calcification, inflammation, comorbidities, and all-cause mortality.

Methods:  ESKD patients, males (n = 151) and females (n = 79), not receiving renal replacement therapy were 
selected from two ongoing prospective ESKD cohorts. GDF-15, YKL-40 and MMP9 were analysed using enzyme-linked 
immunosorbent assay kits. Biomarker levels were analysed in the context of gut microbiota-derived trimethylamine 
N-oxide (TMAO), vascular calcification, inflammatory response, oxidative stress, comorbidities, and all-cause mortality.

Results:  Increased GDF-15 correlated with higher TMAO in females only, and with higher coronary artery calcifi‑
cation and IL-6. In females, diabetes was associated with elevated GDF-15 and MMP-9, whilst males with diabetes 
only had elevated GDF-15. No associations were found between biomarkers and CVD comorbidity. Deceased males 
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Background
Chronic kidney disease (CKD) is highlighted as a clini-
cal model of early vascular ageing (EVA) that is asso-
ciated with exaggerated development of cardiovascular 
complications. Uraemia-induced proatherogenic profile 
of circulating biomarkers are related to inflammageing 
and senescence [1, 2], which alongside traditional risk 
factors, contributes to a specific phenotype of vascular 
malfunctions resulting in the increased arterial stiff-
ness [3]. Biological sex is an important determinant of 
circulating levels of various biomarkers and sex-spe-
cific pathophysiological mechanisms [4, 5]. These may 
occur not only for cardiovascular disease (CVD), but 
also under uraemia when CVD complications emerge 
prematurely [6]. Uraemia-induced vascular dysfunc-
tion can induce a vicious circle whereby deteriorating 
kidney function will be accompanied by higher inci-
dence of cardiovascular events and mortality [7]. As a 
consequence of reduced renal clearance, uraemic tox-
ins accumulate in the body causing additional toxicity 
to arteries and other organs [8]. Thus, it has been sug-
gested that the uraemia-induced EVA with following 
adverse cardiovascular outcomes, characterised by; sys-
temic inflammageing, endothelial dysfunction, micro-
biota disbalance, oxidative stress, vascular smooth 
muscle cell (VSMC) senescence, and calcification, are 
linked to atherosclerosis/arteriosclerosis development 
[9].

Gut microbiota plays an important role in the patho-
genesis of CVD as risk factors have been shown to 
induce gut dysbiosis. Gut dysbiosis through inflam-
mation and activation of the gut–blood barrier leads to 
increased levels of gut microbiota-derived metabolites, 
such as trimethylamine N-oxide (TMAO), which has 
been observed in atherosclerotic CVD [10] and diabetes 
mellitus [11]. TMAO is a uraemic compound normally 
filtered by the kidneys, but is found to accumulate with 
dysfunctional renal status [12]. Although the evidence for 
sex-specific production of TMAO is mostly reported in 
animal studies [13, 14], differences in males and females 
may be related to differences in food eating patterns [15]. 
Sources of TMAO include ingestion from fish/seafood or 

indirectly through metabolic conversion of choline and 
carnitine from food, such as red meat and eggs [12].

Recently, growth differentiation factor 15 (GDF-15) and 
cartilage glycoprotein 39 (YKL-40) have gained atten-
tion as possible biomarkers of vascular remodelling, and 
thus CVD [16, 17]. GDF-15 belongs to the transforming 
growth factor ß superfamily and is involved in regulat-
ing inflammatory and apoptotic pathways [18], linked 
to cancer [19], acute and chronic CVD [18], pulmonary 
conditions [20], and CKD [21]. This biomarker plays an 
important role in vascular calcification and arterial stiff-
ening in the general population [21–23], and increasing 
evidence suggests that this factor may serve as a potential 
marker for kidney failure [24]. However, no significant 
sex-specific differences have been observed so far [25].

YKL-40, a 40-kDa plasma glycoprotein and a member 
of the “mammalian chitinase-like proteins”, is also related 
to inflammatory response [26], and like hsCRP, is not 
disease specific. Since atherosclerosis has an inflamma-
tory component, it is unsurprising that YKL-40 could be 
used as a biomarker for identifying the early stages of this 
disease [26]. Additionally, increased YKL-40 levels have 
been suggested to serve as a marker of renal function and 
composite renal outcome [27].

As a finalising detail in this puzzle the disbalance in 
MMPs, which belong to a large family of endopeptidases 
that remodel the extracellular matrix (ECM), regulate 
the activity of many important non-ECM molecules 
contributing to vascular ageing and remodelling. Their 
proteolytic activity is regulated at transcriptional and 
post-translational levels, but also at the tissue level by 
endogenous inhibitors known as tissue inhibitors of met-
alloproteinases [28]. Increased expression and activation 
of MMP-9 under inflammatory and oxidative stress con-
ditions plays an important role in atherosclerosis, arte-
rial aneurysm formation, plaque instability, and has been 
associated with clinical manifestations of CKD and CVD 
[29, 30]. Moreover, as oestradiol modulates MMP (e.g., 
MMP-9, MMP-2) activity, as assessed in the development 
of glomerulosclerosis-associated renal injury [31], the 
effect of MMP-9 could be sex-specific. In animal mod-
els, female sex hormones reduced MMP-2 and MMP-9 

and females had higher GDF-15 concentrations (p = 0.01 and p < 0.001, respectively), meanwhile only YKL-40 was 
increased in deceased males (p = 0.02).

Conclusions:  In conclusion, in males GDF-15 and YKL-40 were related to vascular calcification, inflammation, and 
oxidative stress, whilst in females GDF-15 was related to TMAO. Increased levels of YKL-40 and GDF-15 in males, and 
only GDF-15 in females, were associated with all-cause mortality. Our findings suggest that sex-specific associations of 
novel CVD biomarkers have a potential to affect development of cardiovascular complications in patients with ESKD.

Keywords:  Biomarkers, Calcification, Cardiovascular disease, Chronic kidney disease, End stage kidney disease, TMAO, 
Uraemia
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activity in aortic tissue and protected from experimental 
abdominal aortic aneurysm formation [32].

Little is known, especially within sexes, about the rela-
tionship of the uraemic phenotype and the three bio-
markers GDF-15, YKL-40 and MMP9. Although some 
studies report increasing levels with kidney function 
deterioration [33, 34] and vascular remodelling [30], 
there is still a huge knowledge gap with regard to their 
interplay with athero-/arteriosclerosis. Both athero-/
arteriosclerosis affect arteries in CKD and determine 
outcomes. Since inflammation, oxidative stress, calcifica-
tion [35], and gut microbiota [36] are related to vascular 
ageing, and particularly to these biomarkers, it is impor-
tant to address all these processes.

We hypothesise that there are sex-specific relationships 
of GDF-15, YKL-40, MMP-9 with vascular outcomes 
(athero-/arteriosclerosis) and mortality in end-stage kid-
ney disease (ESKD). We aimed to test whether there are 
sex differences in circulating biomarkers in patients with 
ESKD, and whether there are sex-specific differences in 
GDF-15, YKL-40, MMP-9 levels in relationship to: (1) gut 
microbiota (by TMAO); (2) coronary artery calcification 
(by CAC score), and arteriosclerosis (by scoring of medial 
calcification in epigastric arteries); (3) inflammation (by 
hsCRP, TNF and IL-6); (4) oxidative stress (by 8-hydroxy-
2ʹ-deoxyguanosine; 8-OHdG), and (5) comorbidities and 
all-cause mortality.

Methods
Study population
Among a total of ESKD 340 patients (defined as CKD-
EPI eGFR value < 15  mL/min/1.73  m2), 230 patients not 
receiving renal replacement therapy (RRT) (haemodialy-
sis or peritoneal dialysis) were selected from two ongo-
ing prospective CKD cohorts from the Division of Renal 
Medicine, Karolinska University Hospital, Sweden. One 
cohort included incident CKD patients [37] awaiting 
dialysis allocation, and the other included living-donor 
kidney transplantation cohort [38]. One patient who was 
recruited subsequently in both cohorts was excluded. 
Samples used in this study were collected at baseline 
prior to any dialysis and/or transplantation treatment. 
The complete study population consisted of both males 
(n = 151) and females (n = 79).

The Regional Ethical Committee (EPN), Stockholm, 
Sweden, approved the study protocols, which were per-
formed in accordance with the Declaration of Helsinki. 
Written informed consent was obtained from all subjects 
involved in the study.

Clinical characteristics
Clinical data were recorded at baseline, at first visit, 
are presented in Table  1 stratified by sex. Clinical data 

included information on demographics, medications, 
comorbidities (CVD and diabetes mellitus), smoking his-
tory, in addition to subjective global assessment (SGA), 
alongside albumin and hand-grip strength measure-
ments, for determination of malnutritional status.

All patients underwent non-contrast multi-detector 
cardiac CT (LightSpeed VCT or Revolution CT; GE 
Healthcare, Milwaukee, WI, USA) scanning with stand-
ard ECG-gated protocol, to evaluate coronary artery 
calcification (CAC) Agatston scores as described previ-
ously [39, 40]. Presence of CAC was defined as total CAC 
score > 0.

Histological assessment of arterial medial calcifica-
tion was performed by a pathologist in uraemic vascular 
biopsies obtained from inferior epigastric arteries in liv-
ing donor kidney recipients, as presented in our previous 
paper [41].

Biochemical measurements
Overnight fasting blood samples were collected in the 
morning, serum was isolated for necessary analyses, 
and samples were either analysed immediately or frozen 
at − 70  °C for future analyses. Biochemical assessments 
of haemoglobin, albumin, creatinine, blood lipids were 
measured using routine clinical laboratory techniques. 
Biochemical measurements are presented in Table 1. For 
eGFR calculation creatinine-based CKD-EPI equation 
was used [42].

Biomarkers of vascular remodelling, inflammation, 
oxidative stress, and uraemic dysfunction
Three CVD biomarkers, GDF-15, YKL-40, and MMP-9 
were analysed in serum using enzyme-linked immu-
nosorbent assay (ELISA) kits. Human GDF-15 Quan-
tikine ELISA kit (DGD150; R&D Systems, UK), Human 
YKL-40 Quantikine ELISA kit (DC3L10; R&D Systems), 
and Human MMP-9 Quantikine ELISA kit (DMP900; 
R&D Systems) were performed according to the manu-
facturer’s instructions, with minor alterations described 
herein. Serum samples were diluted fourfold for GDF-
15, and 101-fold for both YKL-40 and MMP-9 analyses 
using the specified diluents in the manufacturer instruc-
tions. Patient samples were run as singlets to account for 
the number of samples. Inter-assay coefficients of vari-
ance were 14.2%, 13.9%, and 9.9% for GDF-15, YKL-40, 
and MMP-9 assays, respectively, calculated from low, 
medium, and high concentration manufacturers quality 
control standards included on each assay plate. Intra-
assay coefficients of variance were 4.8%, 1.6%, and 2.7% 
for GDF-15, YKL-40, and MMP-9, respectively, calcu-
lated from 16 duplicate samples loaded onto one assay 
plate for each analyte.
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Table 1  Clinical, laboratory, and imaging characteristics of the end-stage kidney disease (ESKD) study population stratified by sex

Bold signifies statistical significance p < 0.05

Continuous data expressed as median ± quartile range (Q1–Q3), or †Mean ± SD, and statistical comparisons by Mann–Whitney U test and Student’s t-test, dependent 
on not-normal distributed and †normal distributed data

Nominal data expressed as frequency (%) and statistical comparison by Chi-squared test

ACEi/ARB angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, AVC aortic valve calcification, CAC​ coronary artery calcification, eGFR estimated 
glomerular filtration rate, GDF-15 growth differentiation factor-15, HbA1c glycated haemoglobin, hsCRP high-sensitive C-reactive protein, IL-6 interleukin-6, MMP-9 
matrix metalloproteinase-9, SGA subjective global assessment, TMAO trimethylamine N-oxide, TNF tumour necrosis factor, YKL-40 40-kDa plasma glycoprotein, 
8-OHdG 8-hydroxy-2ʹ-deoxyguanosine

ESKD patients Female (n = 79) Male (n = 151) p

Age, years 55 (42–62) 54 (42–65) 0.16

Cardiovascular disease, n (%) 16 (20.3) 52 (34.4) 0.012

Diabetes mellitus, n (%) 14 (17.1) 43 (28.5) 0.06

Body mass index, kg/m2 23.8 (21.5–27.7) 24.3 (22.3–27.7) 0.35

Systolic blood pressure, mmHg 139 (129–152) 146 (135–160) 0.03

Diastolic blood pressure, mmHg 82 (74–91) 85 (78–94) 0.06

Smoking history, n (%) 10 (12.7) 14 (9.3) 0.61

SGA, > 1 n (%) 28 (35.4) 46 (30.5) 0.42

Handgrip strength 20 (17–25) 32 (25–39) < 0.001

eGFR, mL/min/1.73m2 5.5 (4.4–8.3) 6.3 (5.1–8.3) 0.07

Medications at cohort entry

 ACEi/ARB, n (%) 47 (59.5) 120 (79.5) 0.001

 β-blockers, n (%) 45 (57.0) 104 (68.9) 0.07

 Ca-blockers, n (%) 47 (59.5) 94 (62.3) 0.68

 Statins, n (%) 26 (32.9) 60 (39.7) 0.31

Biochemicals

 Total cholesterol, mmol/L 4.7 (4.0–5.3) 4.2 (3.5–4.7) < 0.001

 High-density lipoprotein, mmol/L 1.5 (1.2–1.8) 1.1 (0.9–1.4) < 0.001

 Triglycerides, mmol/L 1.6 (1.1–2.2) 1.5 (1.2–2.0) 0.79

 Apolipoprotein A1, g/L 1.4 (1.3–1.6) 1.3 (1.1–1.5) < 0.001

 Apolipoprotein B, g/L 0.9 (0.7–1.0) 0.8 (0.7–1.0) 0.14

 Lipoprotein(a), mg/L 327 (102–848) 199 (77–563) 0.18

 †Albumin, g/L 34.0 (4.6) 34.0 (5.0) 0.92

 Creatinine, µmol/L 648 (498–817) 757 (612–922) 0.001

 †Haemoglobin, g/L 109 (13) 107 (12) 0.24

 HbA1c, mmol/mol 28 (22–34) 30 (25–39) 0.15

Biomarkers of inflammation, oxidative stress, and uraemic dysfunction

 hsCRP, mg/L 2.1 (0.8–6.9) 2.3 (1.0–8.9) 0.65

 IL-6, pg/mL 4.0 (2.3–7.7) 5.9 (2.6–9.5) 0.25

 TNF, pg/mL 14.8 (10.9–18.3) 15.6 (12.1–19.5) 0.30

 8-OHdG, ng/mL 0.3 (0.2–0.6) 0.2 (0.1–0.3) 0.03

 TMAO, μM 69.0 (37.7–93.9) 72.6 (48.9–108.0) 0.21

Biomarkers of interest

 GDF-15, ng/mL 4.5 (3.6–5.4) 4.5 (3.4–5.6) 1.00

 MMP-9, ng/mL 328.7 (208.0–552.1) 275.8 (168.9–546.1) 0.44

 YKL-40, ng/mL 120.4 (86.9–173.2) 114.1 (78.9–187.5) 0.90

Vessel physiology

 CAC score, AU 16.5 (0.0–672.0) 68.5 (0.0–1072.0) 0.13

 CAC score, positive n (%) 25 (59.5), [n = 42] 53 (69.7), [n = 76] 0.26

 Media calcification, n (%) 11 (57.9), [n = 19] 33 (84.6), [n = 39] 0.03

 Intimal fibrosis, n (%) 3 (15.8), [n = 19] 14 (35.9), [n = 39] 0.11

Follow-up data

 All-cause mortality, n (%) 7 (8.9) 21 (13.9) 0.27
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Inflammatory and oxidative stress markers, e.g., hsCRP, 
TNF and IL-6, 8-OHdG, were measured using routine 
clinical laboratory techniques. TMAO measurements in 
serum samples were done via mass spectrometry as pre-
viously described [43].

Statistical analyses
Continuous data are expressed as either median ± inter-
quartile range or mean ± standard deviation dependent 
on data distribution, either not normal or normal dis-
tribution, respectively. Categorical data are expressed at 
frequency with percentage. All statistical analyses were 
selected in accordance with the data distribution. For 
comparing continuous data between males and females 
non-parametric Mann–Whitney U test or parametric 
Student’s t-test were selected. Categorical data were com-
pared using Chi-squared test. Correlation analyses were 
performed by using Spearman correlation for continuous 
variables. Linear regression analysis for identification of 
independent variables associated to analysed biomarkers 
was used. Statistical analyses were carried out using SPSS 
(v.27.0, IBM, USA) and R-Commander (Rcmdr; v.3.3).

Results
Study population description
This study enrolled patients with ESKD (CKD-EPI eGFR 
based on creatinine < 15  mL/min/1.73  m2), including 79 
females and 151 males. As expected, CVD and hyperten-
sion were more prevalent in males, and likely the rea-
son why they were treated more often with ACEi/ARB 
medications (Table  1). Meanwhile females had higher 
high-density lipoprotein (HDL) concentrations in com-
bination with higher apolipoprotein A1 levels and ele-
vated 8-OHdG biomarker (Table  1). The concentrations 
of GDF-15, MMP-9 and YKL-40 did not differ between 
males and females (Table 1).

Observed sex‑specific correlations
Correlation analyses (Additional file  1: Tables S1, S2) 
identified sex-specific associations between analysed 
biomarkers and other variables. GDF-15 in males cor-
related with creatinine-based eGFR (−  0.19, p = 0.03), 
haemoglobin (−  0.18, p = 0.04), and hand grip strength 
(−  0.39, p < 0.001) (Additional file  1: Table  S1). Surpris-
ingly, MMP-9 in females was related only to diastolic 
blood pressure (−  0.26, p = 0.03) (Additional file  1: 
Table  S2). In males MMP-9 was strongly correlated 
with glycated-haemoglobin (HbA1C) (0.30, p = 0.002) 
and 8-OHdG (−  0.74, p < 0.001), and weakly associated 
with lipoprotein(a) (−  0.19, p = 0.03), albumin (−  0.20, 
p = 0.02) and YKL-40 (− 0.19, p = 0.02) (Additional file 1: 
Table S1). As for YKL-40, in females YKL-40 was associ-
ated with triglycerides (0.28, p = 0.02), albumin (−  0.27, 

p = 0.02) and haemoglobin (− 0.41, p < 0.001) (Additional 
file 1: Table S2), while in males none of these sex-specific 
relationships were observed.

Gut microbiota biomarker TMAO interplay with YKL40 
in males and with GDF‑15 in females
In male patients, from the living-donor transplanta-
tion cohort, TMAO was associated with YKL-40 level, 
although only a trend (p = 0.08, Fig. 1.). Conversely, GDF-
15 significantly correlated with TMAO in females from 
the more severe incident CKD cohort (p = 0.01, Fig. 2.).

Sex‑specific GDF15 associations with vascular calcification, 
inflammation, and oxidative stress
Increased GDF-15 levels adjusted to age, kidney func-
tion, comorbidities (CVD and DM), and mortality 
were associated with higher CAC score on CT-scans in 
males (Table 2). In addition, those males who had CAC 
score > 400, reflecting severe coronary artery disease, had 
higher GDF-15 concentration (Fig. 3). We could not find 
any associations between GDF-15 and arteriosclerosis, 
determined as medial calcification in epigastric artery 
biopsies.

We identified that GDF-15 related with the inflamma-
tory response, reflected by correlations with hsCRP, IL-6 
and TNF (Additional file 1: Tables S1, S2). In males, lin-
ear regression revealed a pronounced independent IL-6 
interplay with GDF-15 adjusted for age, kidney function, 
comorbidities (CVD, DM) and eventually to all-cause 
mortality (Table 2). Oxidative stress biomarker 8-OHdG 
failed to show the same associations.

GDF‑15, MMP‑9, and YKL‑40 role in comorbidities 
and nutrition status in females and males
We analysed age-adjusted biomarkers with regard to 
DM, CVD, and nutrition measures. DM was associated 
with increased adjusted GDF-15 level in both females 
and males (females: ß = 1.49, SE = 0.60, p = 0.02, males: 
ß = 1.34, SE = 0.56, p = 0.02), and with MMP-9 specifi-
cally in females (ß = 208.49, SE = 88.39, p = 0.02). CVD 
was not related to age-adjusted biomarkers.

Since sex-specific relationships of biomarkers and 
other variables were observed, we performed sex divided 
linear regression analyses (Table 3). Interestingly, higher 
age-adjusted MMP-9 activity in males was linked to 
lower 8-OHdG concentration and lower plasma albumin 
level and higher HbA1c and remained significant even 
after adjusting to DM (p = 0.02 and p = 0.04, respectively, 
Table 3). Increased YKL-40 concentration in females was 
associated with lower albumin level, in other words the 
markers of nutrition and volaemia. GDF-15 was related 
to albumin level similarly in both males and females.
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YKL‑40 and GDF‑15 as sex‑dependent biomarkers linked 
to all‑cause mortality in ESKD
All-cause mortality was 21 (13.8%) in males and 7 
(8.8%) in females. Higher age-adjusted GDF-15 con-
centration predicted all-cause mortality in both females 
and males (p = 0.01 and p < 0.001, respectively,  Fig. 4A). 

Elevated YKL-40 level predicted mortality only in 
males (p = 0.02, Fig. 4B).

Antihypertensive and lipid‑lowering treatment effect 
on GDF15 concentration in females and males
GDF-15 levels were significantly higher in female patients 
on beta-blockers (p = 0.01), calcium channel blockers 

Fig. 1  Linear regression analysis with YKL-40 as dependent variable and TMAO—living donor transplantation cohort. Correlation coefficient for 
males (n = 39): r = 0.298, p = 0.077; for females (n = 20): r = − 0.169, p = 0.474

Fig. 2  Linear regression analysis with GDF-15 as dependent variable and TMAO. Incident dialysis cohort. Correlation coefficient for males (n = 53): 
r = 0.069, p = 0.622; for females (n = 29): r = 0.471, p = 0.011
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(p = 0.03), or statins (p = 0.04) (Additional File 1: Fig. 
S1A). In males none of the above-mentioned observa-
tions were present (Additional File 1: Fig S1B).

Discussion
The current concept of sexual dimorphism in the urae-
mic phenotype and its relation to CVD risk needs fur-
ther clarification. In the present study,  no sex-specific 
differences of the three novel vascular biomarkers GDF-
15, YKL-40, and MMP-9 were observed in patients with 
ESKD. However, sex-specific associations were found 

between the analysed biomarkers and specific hallmarks 
for vascular remodelling, such as vascular calcifica-
tion, inflammation, oxidative stress, as well as all-cause 
mortality.

In this study, TMAO was positively associated with 
higher GDF-15 levels in females. TMAO has been 
observed in atherosclerotic CVD and in type 2 diabetes 
mellitus [44]. Thus, it could be speculated that this rela-
tionship between TMAO and GDF-15 identifies urae-
mic females who are undergoing EVA. However, a trend 
between YKL-40 and TMAO exists in males, stressing 
the importance of uraemia-induced chronic inflamma-
tion and dysbiosis in vascular remodelling in CKD, which 
can eventually lead to increased cardiovascular risk [45, 
46]. Further studies are warranted in larger cohorts to 
gain further insight to the relationship between TMAO 
and GDF-15 and/or YKL-40 in CKD patients.

Gut microbiota disintegration is a potential mechanism 
linked to inflammageing [47], a pro-inflammatory status 
closely linked to CKD and premature CVD pathology. In 
our cohort, both GDF-15 and YKL-40 were correlated 
with one another, age, and inflammatory markers (IL-6 
and hsCRP) in both males and females. These biomark-
ers correlation with inflammation is in concordance with 
previous studies [26, 48], performed in general popula-
tion and in CKD patients on dialysis [1, 34], though vali-
dation is warranted in a lager cohort. The inflammageing 
concept also includes oxidative stress, and herein we see 
a sex-specific association between MMP-9 and 8-OHdG, 
a nuclear and mitochondrial DNA stress marker, in ESKD 
males only. The negative relationship might be explained 
by the compensatory activation of endogenous antioxi-
dants that suppress 8-OHdG [49]. Previously reported 
within this cohort, which was a sub-group for the current 
biomarker analysis, 8-OHdG showed a sex-adjusted asso-
ciation with all-cause mortality in CKD patients inde-
pendent of inflammation markers [50].

The crucial driver of EVA, alongside inflammation and 
oxidative stress, is the occurrence of vascular calcifica-
tion [2]. All these drivers show sex-specific associations 
with GDF-15 levels in ESKD males in the current study. 
These compelling findings show that GDF-15 levels are 
associated with greater coronary artery calcification in 
males only, independent of age, comorbidities, glomeru-
lar filtration rate, and mortality. The higher prevalence 
of CVD among males could explain this relationship 
followed by both higher GDF-15 and YKL-40 in these 
patients. Besides, associations between GDF-15 and 
coronary artery calcium have been reported previously, 
in both the general population [23] and population with-
out CVD [51], and provide additional prognostic value to 
cardiac event prediction [52]. Sex disaggregated analyses 
on GDF-15 are extremely few, however, serum GDF-15 

Table 2  GDF-15 linear regression analysis in males

Bold signifies statistical significance p < 0.05

Model 1: adjusted for age, cardiovascular disease, diabetes mellitus, kidney 
function

Model 2: Model 1 + adjusted for mortality

lnCAC​ logarithmic coronary artery calcification, expressed as ln(CAC + 1), hsCRP 
high sensitivity C-reactive protein, IL-6 interleukin 6, TNF tumour necrosis factor

Estimate Standard error p-value

Vascular calcification

 Model 1

  lnCAC score 0.285 0.131 0.034
 Model 2

  lnCAC score 0.286 0.125 0.026
Inflammatory biomarkers

 Model 1

  IL-6 0.199 0.076 0.011
  hsCRP − 0.020 0.061 0.747

  TNF-alfa − 0.029 0.044 0.504

 Model 2

  IL-6 0.167 0.080 0.040
  hsCRP − 0.028 0.061 0.654

  TNF-alfa − 0.019 0.044 0.675

Fig. 3  Average GDF-15 concentration in regards of CVD severity in 
males and females. CVD severity assessed by CT scan and extent of 
coronary artery calcification set to a nominal scale ranging from none 
(Agatston score = 0; females n = 17; males n = 23), mild to moderate 
(Agatston score = 1–400; females n = 13; males n = 23), and severe 
calcification (Agatston score > 400; females n = 12; males n = 29). Data 
presented as median (IQR). Kruskal–Wallis; **p < 0.01
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levels have been reported as a predictor of secondary 
cardiovascular events exclusively in females [53, 54]. This 
previous investigation, in conjunction with our current 
study, reports different sex-specific associations of serum 
GDF-15 levels with CVD incidence in two very differ-
ent populations (i.e. males with ESKD and females with 
CVD) [54]. Taken together, the associations of GDF-15 
observed here in ESKD males indicate that this may be 
used as a potential marker of EVA and inflammageing in 
CKD. Additionally, GDF-15 has shown a positive associa-
tion with carotid–femoral pulse wave velocity [22], a gold 
standard for clinical measurement of arterial stiffness 
that is an early marker of accelerated vascular ageing and 
subclinical CVD [55]. This highlights that uraemic milieu 
plays a crucial role in vascular remodelling by completely 
changing biomarker expression and disease phenotype, 
and that there is a critical need of further investigations 
with the essential addition of reporting sex disaggregated 
analyses.

YLK-40 has previously been described as a predic-
tor of CVD mortality, specifically in DM-type 2 patients 
[56, 57]. Herein, serum YKL-40 levels displayed sex-
specific association in males only with CVD, DM, and 
all-cause mortality, with only the latter being confirmed 
in adjusted regressions. YKL-40 is an inflammatory 
response protein and has been found at elevated levels in 
patients with CVD [26]. In the aging general population 
(50–89 years), and aging population with CVD, elevated 
YKL-40 levels were predictors of all-cause and CVD 
mortality [58]. Few studies have reported on circulating 
YKL-40 in the context of CKD, with none reporting on 
mortality. However, recently a report has shown an asso-
ciation between elevated YKL-40 with the progression of 
diabetic kidney disease and eGFR decline [57]. To date, 

no study has explicitly reported sex disaggregated data on 
the serum levels of YKL-40 in CKD or CVD populations. 
However, sex differences in plasma YKL-40 levels have 
been presented in studies assessing neuroinflammation 
conditions, such as Alzheimer’s disease, where YKL-40 
levels were found higher in males [59]. Whilst explicit sex 
differences in YKL-40 levels alone were not observed in 
our ESKD cohort, the sex-specific associations explored 
thereafter could give precedent to study YKL-40 further 
in a sex disaggregated approach including larger cohorts 
prospectively based on eGFR through CKD stages.

Surprisingly, no association with MMP-9 and CVD 
comorbidity was observed in the current study, nor any 
sex-specific associations with CVD morbidity. Never-
theless, previous studies have observed higher MMP-9 
activity in females, compared to males, in various vascu-
lar pathologies including advanced coronary atheroscle-
rotic plaques [60] and abdominal aortic aneurysm [61]. 
MMP-9 activity is also closely related to use of vitamin 
K antagonists [62], unfortunately data about anticoagula-
tion therapy and/or vitamin K insufficiency status were 
absent for our study. Further investigation is required to 
fully assess the role of MMP-9 in CKD, and any sex-spe-
cific association with EVA. Tissue inhibitors of MMP-1 
should also be included as this marker tightly regulates 
the activity of MMP-9.

In the current investigation, only patients not receiv-
ing renal replacement therapy (haemodialysis or perito-
neal dialysis) were selected, because the dialysis has been 
found to affect the analysed biomarkers. For example, 
YKL-40 concentration [63] as well as MMP-9 activity [64] 
decreases after a haemodialysis session. We acknowledge 
the overall cohort in this study represents a combination 
of ESKD patients undergoing transplantation, who are 

Table 3  Sex divided linear regression models with biomarkers adjusted to age

Bold signifies statistical significance p < 0.05

eGFR estimated glomerular filtration rate, HbA1c glycated haemoglobin, 8OHgG 8-hydroxy-2’-deoxyguanosine

Males Females

MMP-9-dependent variable YKL-40-dependent variable

Estimate SE p Estimate SE p

Albumin, g/L − 17.346 6.520 0.012 − 3.852 2.242 0.090

HbA1c, mmol/mmol 6.503 2.841 0.013 – – –

Haemoglobin, g/L – – – − 2.794 0.822 0.001
8OHdG − 696.603 213.836 0.005 – – –

GDF-15 dependent variable GDF-15 dependent variable

Estimate SE p Estimate SE p

eGFR, mL/min/1.73 m2 − 0.184 0.094 0.052 – – –

Albumin, g/L − 0.173 0.048 0.001 − 0.106 0.049 0.035
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appreciated as a lower risk group suitable enough for sur-
gery, meaning their CVD risk burden was relatively lower 
than those more typical predialysis patient (where a more 
aggravated vascular phenotype could be expected). Fur-
ther investigations are warranted to assess the effects of 
dialysis treatment, both haemodialysis and peritoneal 
dialysis, and the levels of these novel biomarkers in the 
contexts of CVD risk burden and sex differences. It is 
appreciated that TMAO levels can be affected by dietary 
intake, unfortunately in the current study patients diets 
were not assessed, future prospective investigations 
should consider the inclusion of diet assessments when 
analysing TMAO levels. Finally, with respect to sex com-
parisons, it should be noted that the reproductive sta-
tus was not recorded for females included in this study. 
Therefore, the protective effects of oestrogens that are 
commonly found at higher levels in pre- and peri-men-
opausal females, compared to post-menopausal females 
and males, may play a role in some of the sex differences 
observed in the current investigation. Future studies 
should include assessments of reproductive status for 
females, or better yet, endogenous sex hormone meas-
ures for both females and males.

Perspectives and significance
In summary, we report that in males GDF-15 and YKL-
40 were related to vascular calcification and inflammage-
ing, while in females a relationship between GDF-15 and 
TMAO was observed. Sex-specific associations were 
observed with higher MMP-9 levels in diabetic females, 
as well as with higher HbA1c levels in males, together 
these associations stress a link between long-term hyper-
glycaemia and EVA. Elevated YKL-40 in males and 

elevated GDF-15 in both males and females were associ-
ated with all-cause mortality. Our data suggest that sex-
specific associations exist in relation to GDF-15, YKL-40, 
and MMP-9, which have the potential to affect the devel-
opment of vascular complications in ESKD. Further stud-
ies are warranted to address sex differences in biomarker 
levels involved in athero- and arteriosclerosis in different 
stages of CKD.
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