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Abstract 56 

Transcranial magnetic stimulation (TMS) is an accessible, non-invasive technique to 57 

study cortical function in vivo. TMS studies have provided important 58 

pathophysiological insights across a range of neurodegenerative disorders and 59 

enhanced our understanding of brain reorganisation after stroke. In 60 

neurodegenerative disease, TMS has provided novel insights into the function of 61 

cortical output cells and the related intracortical interneuronal networks. 62 

Characterisation of cortical hyperexcitability in amyotrophic lateral sclerosis and 63 

altered motor cortical function in frontotemporal dementia, demonstration of 64 

cholinergic deficits in Alzheimer’s disease and Parkinson’s disease are key 65 

examples where TMS has led to advances in understanding of disease 66 

pathophysiology and potential mechanisms of propagation,, with the potential for 67 

diagnostic applications. In stroke, TMS methodology has facilitated the 68 

understanding of cortical reorganisation  that underlie functional recovery. These 69 

insights are critical to the development of effective and targeted rehabilitation 70 

strategies in stroke. The present Review will provide an overview of cortical function 71 

measures obtained using TMS and how such measures may provide insight into 72 

brain function. Through an improved understanding of cortical function across a 73 

range of neurodegenerative disorders, and identification of changes in neural 74 

structure and function associated with stroke that underlie clinical recovery, more 75 

targeted therapeutic approaches may now be developed in an evolving era of 76 

precision medicine. 77 

 78 
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Introduction 87 

The ability to modify human brain function is a long held scientific aspiration. 88 

Centuries ago, cognitive neuroscientists used torpedo fish and eels to electrically 89 

stimulate the brain, while more conventional electricity was first used for brain 90 

stimulation in the 18th century. It was only three decades ago that Pat Merton and 91 

colleagues [1] achieved electrical stimulation of the motor cortex through the intact 92 

scalp to generate a relatively synchronous muscle response. One of the issues with 93 

this methodology of transcranial electrical stimulation (TES), however, was the 94 

stimulation of pain fibres on the scalp. Subsequently, Barker and his team [2] 95 

became the first to use magnetic stimulation (TMS) in the human brain to achieve 96 

simultaneous muscle activity. Over 18000 scientific publications relating to TMS 97 

have appeared (http://www.webofknowledge.com, topic = “transcranial magnetic 98 

stimulation” search) since Barker’s first description, with over a third of these in the 99 

last 5 years alone, indicative of the pace at which the field is moving forward.  100 

The aim of the present Review is to provide the clinician with an overview of 101 

physiological considerations involved with TMS, including cortical output measures 102 

that provide important information regarding pathophysiological alterations in 103 

neurodegenerative disorders and post stroke reorganisation of neural structure and 104 

function. This Review aims to provide an overview of TMS applications and their 105 

utility in providing a functional understanding of disease mechanisms and the 106 

potential for development of novel diagnostic and prognostic tools in neurological 107 

disease. 108 

 109 

Measures of cortical function 110 

TMS induces current flows in the brain by application of a pulsed magnetic field 111 

leading to depolarisation of the underlying cortical neurons (Figure 1). The resultant 112 

electrical activity in the brain can be modified by the shape and orientation of the coil 113 

used, combined with underlying neuronal anatomy and orientation relative to the coil, 114 

magnetic pulse wave form, intensity, frequency and pattern of stimulation [3-6].  115 

The precise nature of the neuronal circuitry activated by TMS remains incompletely 116 

understood. Applying TMS over the motor cortex (Figure 2), generates a 117 

corticomotor neuronal volleys which may be a result of direct excitation of cortical 118 

Page 3 of 36

https://mc.manuscriptcentral.com/jnnp

Journal of Neurology, Neurosurgery, and Psychiatry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

 

 

4

neurons (Direct or D-waves) or trans synaptic excitation (Indirect or I-waves). The I-119 

waves are thought to originate through a complex interaction between cortical output 120 

cells (Betz cells, layer V) and interneuronal cells [3,7-9].  121 

Following a brief overview of TMS output measures, their application as potential 122 

diagnostic and prognostic markers will be further considered.  123 

A widely used experimental paradigm involves application of TMS to the motor 124 

cortex with recording electrodes placed over an intrinsic hand muscle in the 125 

contralateral limb (Figure 2). The resultant motor-evoked potential (MEP) on 126 

electromyography (EMG) is typically recorded from the abductor pollicis brevis (APB), 127 

abductor digiti minimi (ADM) or the first dorsal interosseous (FDI) muscle. This 128 

paradigm can be applied to quantity excitability characteristics of the underlying 129 

motor cortex.  130 

 131 

Motor Threshold (MT) indicates the ease with which motor cortex output cells and 132 

corticomotor neurons can be excited. MT is thought to reflect the density of 133 

corticomotor neuronal projections onto the anterior horn cells. It thus, follows, that 134 

MTs tend to be lower in the dominant hand [10] and correlate with the performance 135 

of fine motor tasks [11]. MTs have the potential of providing a biomarker of cortical 136 

neuronal membrane excitability. Voltage gated sodium channels are critical to 137 

cortical axon excitability [12] while excitatory synaptic neurotransmission in the 138 

neocortex is mediated by the glutaminergic alpha-amino-3-hydroxy-5-methyl-4-139 

isoxazoleproprionic acid (AMPA) receptors [13]. Thus voltage gated sodium channel 140 

blocking drugs increase MT [14,15] while glutaminergic agonists decrease it [16]. 141 

Interestingly, neuromodulatory agents affecting GABA, dopaminergic, noradrenergic 142 

and cholinergic systems, do not affect the motor threshold [17]. 143 

MT was initially defined as the minimum stimulation intensity (% maximum stimulator 144 

output) required to achieve an MEP response of (amplitude >50 µV) in the target 145 

muscle in 50% of stimulus trials [18]. Evolving studies in threshold tracking TMS 146 

have led to redefinition of the MT as stimulus required to achieve and maintain a 147 

target MEP response of 0.2mV (± 20 %) [19,20]. MT tends to be lower in a 148 

voluntarily contracting muscle (active motor threshold, AMT) when compared to that 149 

in a muscle at rest (resting motor threshold, RMT) [21].  150 
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Single Pulse TMS measures 151 

Motor Evoked Potential (MEP) amplitude represents summation of descending 152 

corticospinal volleys onto motor neurons comprising of direct (D) and indirect (I) 153 

waves on to the spinal motor neurons [22,23]. Increasing MEP amplitude with 154 

increase in stimulus intensity generates a sigmoid stimulus response curve [21]. 155 

MEP may be represented as a percentage of peripheral stimulation derived 156 

compound muscle action potential (CMAP), to account for the lower motor neuron 157 

contribution.  158 

Although, the MEP reflects the density of corticomotor neuronal projections onto 159 

motor neurons similar to the MT, [24], the neurotransmitter pathways involved in the 160 

generation of the MEP are different. GABAergic agents acting via the GABAA 161 

receptor suppress the MEP while glutaminergic and noradrenergic agents increase 162 

the MEP amplitude [25,26].  163 

The main limitation in utilising the MEP response as a biomarker of cortical motor 164 

neuronal function is the significant intersubject and intertrial variability in MEP 165 

latency and amplitude [27].  166 

Central Motor Conduction Time (CMCT) is a measure of the time taken by a 167 

neural impulse to travel from the motor cortex to stimulate the spinal or bulbar motor 168 

neuron, and thus, is also indicative of the integrity of corticospinal tracts [28]. CMCT 169 

is an overall reflection of time to activation of the pyramidal cells and conduction time 170 

of neural impulses in the corticospinal tract. 171 

In TMS studies, CMCT is usually calculated using the F wave method or cervical 172 

nerve root stimulation method [29,30]. Both these methods measure the delay 173 

between the MEP latency and time to generate a response using peripheral 174 

stimulation. The key distinction between these two methods is the inclusion of the 175 

spinal motor neuron while measuring the peripheral stimulation time. In the F wave 176 

method, a peripheral nerve is supramaximally stimulated leading to antidromic 177 

stimulation which travels up the nerve root to the spinal motor neuron. This, in turn 178 

stimulates the efferent root orthodromically, generating an F wave. In the cervical 179 

nerve root stimulation, the peripheral conduction time is estimated as the time taken 180 

to generate a CMAP by directly stimulating the spinal nerve root. The CMCT can be 181 

variable with a range of physiological and subject dependent factors such as age, 182 
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gender, hand dominance and neck position  183 

Cortical Silent Period (CSP) refers to a transient cessation of voluntary activity on 184 

electromyography (EMG) in a target muscle measured after magnetic stimulation of 185 

the contralateral motor cortex. CSP is a reflection of GABAB receptor mediated 186 

cortical inhibition [31,32] and also appears to be influenced by the density of 187 

corticomotor neuronal projections onto the spinal motor neuron [27]. It is, thus, the 188 

longest in the upper limb muscles.  189 

CSP is calculated as the time interval between the onset of the MEP response and 190 

resumption of voluntary EMG activity following TMS [31], and increases with stimulus 191 

intensity.  192 

Paired Pulse TMS Paradigms 193 

Paired pulse techniques provide insights into functioning of intracortical excitatory 194 

and inhibitory circuits [27] by measuring the modulation of the cortical response to a 195 

test stimulus preceded by a conditioning stimulus. The two commonly applied paired 196 

pulse paradigms comprise are referred to as the constant stimulus [33] and threshold 197 

tracking [19] techniques. Either can be used to measure the short interval 198 

intracortical inhibition (SICI), long interval intracortical inhibition (LICI) and 199 

intracortical facilitation (ICF), each of which is an index of cortical motor function. 200 

Paired pulse TMS paradigms (Figure 2) used to determine the SICI and ICF consist 201 

of a subthreshold conditioning stimulus followed, at prespecified intervals (ISI), by a 202 

suprathreshold test stimulus. The constant stimulus paired pulse paradigms [33] 203 

measure the variation in MEP responses, while keeping the test and conditioning 204 

stimuli constant. Inhibition is observed at ISI of 0-5 ms facilitation at longer intervals 205 

between the stimuli. To overcome the issue of inherent MEP variability, which was 206 

used as an output measure in the constant stimulus protocols, threshold tracking 207 

protocols [19,34] were developed. These rely on using a fixed target amplitude MEP 208 

response and track the test stimulus intensity required to achieve this response. 209 

Higher stimulus intensity required to maintain this target response indicates inhibition 210 

while a lower intensity suggests facilitation. The target MEP response is chosen from 211 

the steepest part of the stimulus response curve (Figure 2c), thus reducing the 212 

variation in the outcome variable.  213 

Studies using cervical epidural electrode recordings suggest that SICI is associated 214 
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with a reduction in the amplitude of I waves in a temporal pattern consistent with 215 

inhibitory post synaptic potentials mediated via GABAA receptors [35,36]. Drugs 216 

potentiating GABAA receptor mediated neurotransmission, thus, increase the SICI. 217 

Other neurotransmitter systems may have an indirect role via modulation of GABAA 218 

receptors, as indicated by SICI alterations using glutaminergic agents, dopamine 219 

agonists and noradrenergic blockers [37,38]. The cortical signature of SICI is likely to 220 

be a combination of synaptic processes, inhibitory interneuronal interactions and 221 

axonal refractoriness [20,39-41]. 222 

The physiological processes driving ICF remain even less well understood. 223 

Interestingly, ICF is decreased by antiglutaminergic agents [37] and is not associated 224 

with changes in I waves [27] which coincide with SICI [15]. 225 

LICI occurs when a suprathreshold conditioning stimulus is followed by a test 226 

stimulus at an ISI of 50-300 ms [3]. LICI seems to be mediated via GABAB receptors 227 

[42,43]. 228 

Short latency afferent inhibition (SAI) is the suppression of TMS induced MEP 229 

response after peripheral nerve stimulation [44,45]. Thus, when a median sensory 230 

stimulation is administered approximately 20 ms prior to the TMS pulse over the 231 

contralateral motor cortex, the MEP response from the APB muscle is suppressed. It 232 

reflects inhibitory modulation of large sensory fibres on the motor cortex and is likely 233 

to involve central cholinergic transmission [46,47]. 234 

Repetitive TMS paradigms (rTMS) 235 

Repetitive TMS (rTMS) with applications of trains of TMS pulses over several 236 

minutes duration [48], produces cortical changes that last beyond the duration of 237 

stimulation, in a frequency dependent manner [14,49]. Simple rTMS protocols 238 

involve application of single stimuli at fixed interstimulus intervals (ISI) and their 239 

effects depend of the frequency of stimuli used. A low frequency stimulation (≤1Hz) 240 

depresses cortical excitability, while high frequency (5-20Hz) stimulation increases 241 

excitability (Figure 1). Patterned rTMS protocols utilise a combination of different ISIs, 242 

a common example of this being theta burst TMS (TBS), that incorporates triplet 243 

TMS pulses (bursts of 3 pulses at 50 Hz repeated at 200 ms intervals) to induce 244 

longer lasting effects than conventional rTMS protocols for a relatively shorter 245 

duration of application [50]. Continuous theta burst stimulation (cTBS), usually 246 

Page 7 of 36

https://mc.manuscriptcentral.com/jnnp

Journal of Neurology, Neurosurgery, and Psychiatry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

 

 

8

involving trains of uninterrupted stimulation for 20-40 s, has an inhibitory effect on 247 

corticospinal excitability whereas intermittent theta burst stimulation (iTBS) has the 248 

opposite effect. 249 

At a larger scale, TMS may enhance the understanding of systems level changes in 250 

brain circuitry. The application of rTMS over a specified cortical region has effects on 251 

remote brain areas [51] that may modulate network activity in the brain leading to 252 

behavioural alterations not directly related to the area being stimulated by the TMS 253 

directly [52] . In terms of specificity, the same output can be elicited using a variety of 254 

stimulation sites. For instance, motor activity changes are associated with stimulation 255 

of the primary motor cortex M1 [50], supplementary motor area SMA [53] dorsal pre-256 

motor cortex PmD [54], as well as non-motor areas such as the cerebellum [55] and 257 

dorsolateral pre frontal cortex (DLPFC) [56].The potential for rTMS effects to last 258 

beyond the duration of stimulation this has been observed in a number of therapeutic 259 

applications in neurological disorders [57,58]. However, therapeutic applications of 260 

rTMS are outside the scope of this article. 261 

 262 

Safety considerations 263 

With the rapid increase in TMS applications in research and rehabilitation trials, 264 

safety in the clinical setting remains an important consideration. Although rare, 265 

seizure risk is mainly pertinent to rTMS protocols with an estimated risk in the region 266 

of 0.1% [59,60]. Most reported cases of seizures with TMS occurred before 1998 267 

when higher frequency trains were routinely administered and typically occurred in 268 

patients who had a previous history of seizures. Resting EEG abnormalities have 269 

been noted during TMS, though mostly in patients with epilepsy and they do not 270 

predict occurrence of seizures [61,62]. Isolated rare cases in patients have been 271 

reported since with concomitant seizure threshold lowering drugs (e.g. SSRI) or after 272 

sleep deprivation [59]. Risk of minor adverse events such as mild headache, tinnitus, 273 

cutaneous discomfort, neck muscle contraction, nausea, light headedness or 274 

syncope, unilateral eye pain and lacrimation remains less than 5%. To put this into 275 

perspective, the risk of seizures with penicillins and carbapenem drugs is up to 5% 276 

[63] and increases further with predisposing factors. To date, meta analyses of 277 

published treatment trials of TMS [64-66] have been reassuring and support safe use 278 
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of TMS in patients and healthy volunteers.  279 

 280 

TMS is considered safe in individuals with other stimulator devices such as VNS 281 

systems, cardiac pacemakers, and spinal cord stimulators provided that the TMS coil 282 

is not activated near the implanted wires [59]. Due to risk of induced currents, TMS 283 

should be avoided in patients with DBS, cochlear implants and with epidural 284 

electrodes. Additional safety studies are required to establish safe levels of currents 285 

that could be used with these implanted devices. Ex vivo studies have, reassuringly, 286 

demonstrated minimal, well below prescribed safety limits, heating of metal stents 287 

and aneurysm clips with rTMS protocols that have current approval for clinical uses 288 

[67,68]. However, caution is still warranted before more definitive evidence of safety 289 

becomes available from in vivo animal models and subsequently, human studies.  290 

 291 

Cortical dysfunction in neurodegenerative disease 292 

Assessment of cortical function in neurodegenerative disease has provided valuable 293 

pathophysiological insights and has the potential for diagnostic applications (Table 1). 294 

(i) Emerging biomarkers in amyotrophic lateral sclerosis (ALS) 295 

Determining the relationship between upper and lower motor neuron dysfunction 296 

remains key to understanding the pathogenesis of amyotrophic lateral sclerosis 297 

(ALS) [69,70]. Initial studies using single pulse TMS approaches demonstrated a 298 

reduction in motor threshold and the cortical silent period as features of early 299 

disease, providing preliminary evidence for cortical hyperexcitability in ALS 300 

[71,72]. Paired pulse techniques have, subsequently, provided more detailed 301 

evidence cortical excitability in terms of reduction or absence of SICI and 302 

increase in ICF [19]. SICI reductions precede electrophysiological evidence of 303 

peripheral neurodegeneration [73] as well as clinical evidence of lower motor 304 

neuron dysfunction in ALS [74]. SICI and ICF reduction are also seen in atypical 305 

variants of ALS with phenotypic predominance of lower motor neuron dysfunction 306 

[75], while these changes are not seen in ALS mimic disorders [76,77] such as 307 

spinobulbar muscular atrophy, despite a comparable disease burden. These 308 

findings strongly support the notion of cortical primacy in ALS [78]. Other 309 
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contributory evidence for this theory is the demonstration of reduced transcallosal 310 

inhibition in ALS [79]. Partial normalisation of SICI following the administration of 311 

riluzole [80], an antiglutaminergic drug used in ALS points to a pathogenic role for 312 

cortical hyperexcitability in ALS. This also highlights the potential application of 313 

TMS parameters in future clinical trials of ALS. 314 

SICI has been shown to be the greatest sensitivity and specificity for as a 315 

diagnostic marker in ALS [81]. Combining TMS measures with peripheral 316 

neurophysiological measures can, thus, potentially greatly increase the 317 

diagnostic accuracy in ALS [82]. 318 

 319 

(ii) Motor cortical alterations in Alzheimer’s disease (AD) 320 

The appearance of motor signs in AD is a late event in the natural history 321 

of the illness [83] and is likely due to the spread of pathology into the motor 322 

cortices and striatal structures with disease progression [84]. TMS studies 323 

have demonstrated a bimodal pattern for changes in the motor threshold in 324 

AD. RMT appears to be reduced in early AD and shows progressive 325 

decline despite anticholinergic treatment [85,86]. The early changes may be 326 

related to modulation of glutaminergic pathways by changes in activity of 327 

muscarinic cholinergic receptors [87], suggesting a degree of functional 328 

reorganisation [88,89]. In later stages of AD, the observed increase in MT is 329 

a likely due to cortical neuronal degeneration, indicative of more 330 

widespread cortical dysfunction [86]. Evidence regarding SICI changes in 331 

AD is more variable [47,90]. A more recent study has found alterations in 332 

LICI which correlate with cognitive scores [91].  333 

Loss of short latency afferent inhibition (SAI) appears to be a more consistent 334 

feature in AD [47,92,93], and seems to be normalised by administration of 335 

cholinesterase inhibitors [47]. SAI appears to be mediated by cholinergic neurons 336 

[94] and indirectly by GABAergic interneuronal inputs to cholinergic pyramidal 337 

neurons [95,96]. Muscarinic ACh receptor blockade with scopolamine specifically 338 

inhibits SAI, while not affecting the short interval intracortical inhibition, cortical 339 

silent period and intracortical facilitation, which are believed to be mediated by 340 

GABAergic interneurons [39].   Interestingly, SAI does not seem to be affected in 341 
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frontotemporal dementia (FTD), a disorder which does not directly involve the 342 

cholinergic system [97] unlike AD [98]. 343 

SAI changes have also been demonstrated in patients with Down’s syndrome 344 

who are at risk of developing early onset AD [99]. These findings have the 345 

potential for translation to the clinic for differentiating FTD from AD and are likely 346 

to be more cost effective than imaging modalities such as PET.  347 

TMS has also been used to demonstrate the disruption of long term potentiation 348 

(LTP) related cortical changes early on in the disease trajectory [100] in keeping 349 

with animal models of AD [101]. As such, LTP-like cortical alterations could 350 

provide a viable biomarker useful to assess synaptic impairment and predict 351 

subsequent cognitive decline progression in AD patients [102]. 352 

 353 

(iii)  Quantifying motor cortex dysfunction in Parkinson’s disease (PD) 354 

and other movement disorders 355 

While the degeneration of dopaminergic neurons in the substantia nigra and 356 

involvement of nigrostriatal pathways are the primary pathogenic changes in 357 

PD, functional changes in the motor cortices have been well recognised [103-358 

105]. SICI reductions have been reported in PD [106,107] particularly at 359 

higher stimulus intensities [108] suggesting a dysfunction in intracortical 360 

facilitatory pathways. Longitudinal evaluation of cortical dysfunction in PD 361 

revealed alterations in CSP between the less and more affected brain 362 

hemispheres which correlate with motor progression [109]. SAI reductions 363 

have also been documented in PD [110], particularly in the context of 364 

cognitive symptoms [111,112], suggesting a possible role for cholinergic 365 

pathways in the pathogenesis of cognitive dysfunction. TMS studies have also 366 

found alterations in interhemispheric inhibition, supporting the view that mirror 367 

movements in PD patients originate from crossed corticospinal projections 368 

rather than unmasking of ipsilateral projections PD [113,114]. In genetic forms 369 

of PD, distinct patterns have been found using TMS. Reduction in SICI 370 

recruitment have been found in asymptomatic Parkin mutation carriers, 371 

without significant changes in overall SICI, indicative of altered cortical 372 

function in asymptomatic carriers [115]. SICI reduction has not been noted in 373 
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Parkin patients. Given that SICI appears normal in Parkin patients and CMCT 374 

is prolonged, the reduced SICI recruitment may be indicative of a 375 

compensatory change in the motor cortex to subclinical dopaminergic 376 

dysfunction in mutation carriers.  377 

On the other hand, patients with leucine-rich repeat kinase2 (LRRK2), appear 378 

to have a markedly hyperexcitable motor cortex when compared to those with 379 

idiopathic PD, which is a likely contributor to functional changes in patients 380 

[116]. 381 

Motor cortical changes appear in the early stages if Huntington’s disease (HD) 382 

as shown by imaging studies [117,118] and pathological confirmation of 383 

neuronal loss in the primary motor and anterior cingulate cortices [119]. 384 

Moreover, motor symptomatology correlates with primary motor cortex 385 

involvement [119,120] while cognitive and behavioural features seem to 386 

correspond with changes other regions including prefrontal and anterior 387 

cingulate cortical areas [118-120]. TMS studies have captured early motor 388 

cortical dysfunction in HD including a higher MT and a reduced SAI, the latter 389 

being related to motor symptoms [121]. In addition, cortical hyperexcitability in 390 

terms of decreased SICI and increased ICF [122,123] have also been shown 391 

in HD, especially in the context of motor symptoms, indicating a potential role 392 

for both GABA [124] and glutaminergic pathways in HD pathogenesis. 393 

Atypical parkinsonian syndromes include progressive supranuclear palsy 394 

(PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) 395 

and are clinically and pathologically heterogeneous disorders. Motor cortical 396 

and corticospinal involvement is seen in these disorders to varying degrees 397 

[125-127]. Reduced SICI and abnormalities in interhemispheric inhibition have 398 

been demonstrated in PSP [128,129], the latter being more evident in the 399 

Richardson syndrome compared with parkinsonism predominant PSP [130]. 400 

RMT is elevated in CBD [128,131] and along with reduced SICI and may 401 

correlate with primary  motor cortex atrophy [132], indicating more severe 402 

neuronal loss in the motor cortex in CBD. Increased motor thresholds, 403 

reduced SICI and interhemispheric inhibition changes have also been 404 

demonstrated in MSA [128,133,134]. However, the correlation between these 405 

changes and clinical features remains less clear [135,136], and findings 406 

regarding interhemispheric inhibition are inconsistent [137]. Motor cortex 407 
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functional alterations have also been reported in PSP [129] and MSA [134]. 408 

Overall, findings from TMS studies suggest that primary motor cortex 409 

disinhibition may be an early process in PSP. In contrast, in CBD, global 410 

changes in inhibitory process may be secondary to neurodegeneration in the 411 

motor cortex.  412 

 413 

 414 

(iv) Novel insights in frontotemporal dementia (FTD)  415 

FTD encompasses three heterogeneous disorders including behavioural variant 416 

frontotemporal dementia (bvFTD), semantic dementia and progressive nonfluent 417 

aphasia. Characteristic phenotypic features in FTD include deficits in social 418 

cognition, executive function, language and behaviour. There is emerging 419 

evidence to suggest that ALS and FTD lie on a disease continuum with motor 420 

features prominent at one end and cognitive features at the other [138,139]. 421 

Concurrence of these two conditions in patients with C9orf72 mutation [140,141], 422 

occurrence of TAR DNA binding protein-43 (TDP-43) pathology in both conditions 423 

[142], clinical and electrophysiological evidence of upper motor neuron 424 

dysfunction in FTD [143], alongside evidence of behavioural and cognitive 425 

function in ALS are all supportive of this notion [144,145]. 426 

Motor cortex involvement in FTD occurs with the spread of pathology from frontal 427 

regions posteriorly [138], and anterior cingulate and M1 involvement on imaging 428 

overlaps with the imaging patterns seen in ALS [146]. TMS studies have shown 429 

central motor circuit abnormalities in FTD (reduced or absent MEP, increased 430 

MEP latency, increased CMCT) even in the absence of clinical evidence of 431 

pyramidal tract involvement, while MT and SAI have been found to be normal 432 

[97,143]. Earlier studies had found no significant changes in SICI and ICF, but 433 

more recent studies indicate SICI reductions in FTD [143,147]. SICI reductions in 434 

FTD seem to occur to a lesser degree than those seen in ALS. The preservation 435 

of cholinergic pathways evidenced by relatively normal SAI in conjunction with 436 

abnormalities in SICI and ICF have been utilised to distinguish FTD from AD 437 

[147]. 438 

 439 
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Understanding and predicting recovery after stroke 440 

Recovery from stroke is modulated by the intrinsic capacity of the brain to reorganise 441 

surviving brain networks. This process takes place through a variety of complex 442 

cellular processes including inflammation, growth factors, changes in excitatory and 443 

inhibitory neurotransmitters, transcriptional changes, axonal sprouting, neurogenesis, 444 

gliogenesis and synaptogenesis [148]. While there is variation related to stroke 445 

subtype and individual patient factors [149], severity of the initial deficit after stroke is 446 

the predominant predictor of recovery, referred to as proportional recovery. [150,151]. 447 

The ability to elicit and MEP response after stroke is a predictor of proportional 448 

recovery, regardless of the severity of initial impairment [152,153]. 449 

Studies in the motor domain indicate that patients with mild to moderate upper limb 450 

deficit are able to recover 70% of lost function in the first three months after stroke. 451 

However, in patients with severe stroke, recovery is proportional to initial severity in 452 

about half of the patients with the other half making no recovery at all. Stroke lesion 453 

induced structural and functional changes in the brain occur in the early phase after 454 

stroke coinciding with a period of heightened reorganisation, which can support 455 

some restoration of function referred to as spontaneous biological recovery [150]. 456 

While the precise biological mechanisms underlying spontaneous biological recovery 457 

are incompletely understood, evidence from animal models [154] suggests that 458 

behavioural training administered in a critical time window [155,156] can facilitate 459 

this process. The overarching goal of neuromodulatory approaches is to augment 460 

the process of spontaneous recovery and to change the trajectory of poor recovery 461 

to proportional recovery. 462 

Early after stroke, glutaminergic excitotoxicity leads to cell death and counteracts 463 

GABAergic inhibition [148,157,158] .The balance between glutaminergic 464 

excitotoxicity and GABAergic inhibition can influence regenerative processes and 465 

may reverse in later phases of recovery. TMS based approaches can be used to 466 

better understand these excitability changes and to guide therapeutic 467 

neuromodulation in an appropriate time window. 468 

Increased transcallosal inhibition  from the contralesional hemisphere [159,160], may 469 

suppress excitability of the lesioned hemisphere. More recent work has determined 470 

that transcallosal inhibition from ipsilesional to contralesional hemisphere may 471 
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increase in chronic stroke patients [161]. Both these patterns seem to interfere with 472 

functional recovery [162,163]. A meta-analysis of TMS studies of post stroke cortical 473 

changes found no asymmetry in interhemispheric inhibition in stroke patients in the 474 

small number of available studies. In terms of experimental rehabilitation 475 

programmes, facilitating affected M1 excitability directly may be more beneficial than 476 

suppressing unaffected M1 excitability to promote post-stroke recovery [164]. 477 

Contralesional activity may play some role in improving function [165,166]. An 478 

important determinant of recovery that interacts with excitability changes is the 479 

extent of structural damage to key pathways [167,168]. Current understanding of 480 

recovery is well described under the ‘bimodal balance recovery model’ [169]. This 481 

model suggests that changes in interhemispheric activity interact with the extent of 482 

surviving neural pathways, referred to as the ‘structural reserve’. Thus, in strokes 483 

with a smaller deficit and a large structural reserve, interhemispheric imbalance 484 

predicts poorer outcomes. In these patients, restoration of activity towards the 485 

physiological equilibrium should be a primary therapeutic goal. On the other hand, in 486 

strokes with more severe deficits and lower structural reserve, the interhemispheric 487 

imbalance may allow some compensatory changes leading to varying amounts of 488 

functional recovery. 489 

TMS has been used to interrogate cortical reorganisation in patients with stroke and 490 

can be useful for prognosis. The ability to elicit an MEP response after stimulation of 491 

the lesioned motor cortex might help predict motor function recovery [170,171]. 492 

Conversely, inability to elicit an MEP after ipsilesional TMS and increased MEP after 493 

contralesional stimulation seems to predict poorer recovery of motor function 494 

[172,173]. Likewise, appearance of MEP responses after ipsilesional stimulation, 495 

when MEP responses were not elicited previously, is associated with better 496 

functional recovery [174]. Alterations in cortical excitability in the lesioned 497 

hemisphere have been demonstrated using TMS in stroke patients [175] (Figure 3). 498 

Prolongation of CSP in the lesioned hemisphere, indicating increased intracortical 499 

inhibition, has been demonstrated after subcortical stroke [176]. On the other hand, 500 

SICI and long interval intracortical inhibition (LICI) are suppressed in the affected 501 

hemisphere [177-179], while ICF seems to be unaltered after stroke [178,180-182]. 502 

Contralesional changes in excitability are less marked. MEP responses and motor 503 

thresholds appear to be largely intact [170,181,183-186] in the paretic limb, while 504 
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some studies suggest alteration in SICI [177,178,181,187]. Indeed, recent work 505 

evaluating longitudinal changes in cortical excitability after stroke using TMS from as 506 

early as the first week after stroke up to a year afterwards, shows that contralesional 507 

hyperexcitability evolves differently in patients with different stroke types and may 508 

have an adaptive role when ipsilesional pathways are significantly disrupted 509 

[179,187]. SICI is decreased in both the affected and unaffected hemisphere after 510 

stroke, but tends to remain suppressed only in patients with larger strokes and more 511 

severe clinical deficits [187]. 512 

Clearer understanding of neuroplastic changes underlying recovery is essential for 513 

development of personalised rehabilitation strategies for patients and application in 514 

clinical trials [168] accounting for the topography of damaged and surviving neural 515 

pathways after a stroke. The predicting recovery potential (PREP) algorithm 516 

illustrates how a sequential consideration of clinical, TMS and imaging factors can 517 

provide prognostic information for motor function recovery in stroke [188,189]. The 518 

key factors incorporated into this algorithm are the extent of clinical weakness, ability 519 

to elicit an MEP response in the paretic hand and the degree of corticospinal tract 520 

involvement on diffusion tensor imaging. Such a sequential approach has been 521 

shown to increase therapy efficiency while achieving good clinical outcomes in post 522 

stroke rehabilitation [153]. 523 

In summary, TMS has evolved as a readily accessible, non-invasive 524 

neurostimulation tool with potentially wide ranging diagnostic and prognostic 525 

applications. Separately, TMS provides a unique research tool to investigate 526 

pathophysiological changes in the cortex in stroke and neurodegenerative disorders. 527 

Applications of TMS based biomarkers in clinical trials are likely to emerge. In an 528 

evolving era of precision medicine, TMS based approaches have the potential to 529 

make personalised rehabilitative and restorative interventions in the future a reality, 530 

with better understanding of mechanisms of loss of function in neurodegeneration 531 

and the trajectory of recovery in stroke. 532 

 533 

 534 

 535 

 536 
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 537 

Table 1 Cortical function alterations across neurodegenerative 538 

disorders  539 

 540 

 RMT % MEP % SICI (%) ICF (%) CSP (ms) CMCT 
(ms) 

SAI (%) 

ALS 
[19,70,72] 

Reduced 
Increased 
Inexcitabl
e 

Increased 
Normal 

Reduced 
 

Increased 
Normal 

Reduced 
 

Increased 
Normal 

N/A 

AD 
[47,86,90,92,
93]  

Reduced 
Increased 

Increased 
Normal 

Reduced 
Normal 

Normal Normal 
Reduced 

Normal Reduced 

PD 
[103,106,110
-112] 

Normal Normal Reduced 
Normal 

Normal Reduced 
Normal 

Normal Reduced 
Increased 
Normal 

HD [121,122]  Increased 
 

Reduced Reduced Increased 
 

Increased 
Reduced 

Normal Reduced 

FTD [97,147]  Normal Absent 
Reduced 

Reduced 
Normal 

Normal Normal Increased 
Normal 

Normal 

MSA 
[128,133,134
] 

Increased 
Normal 

Normal Reduced Normal Increased Normal Reduced 
Normal 

PSP [128-
130]  

Normal Increased Reduced Normal Reduced Normal Normal 

 541 

ALS (amyotrophic lateral sclerosis), FTD (frontotemporal dementia), AD (Alzheimer’s disease), PD (Parkinson’s disease), PSP 542 
(progressive supranuclear palsy), MSA (multiple system atrophy), HD (Huntington’s disease), RMT (resting motor threshold), 543 
MEP (motor evoked potential), CMCT (central motor conduction time), CSP (cortically silent period), SICI (short interval 544 
intracortical inhibition), ICF (intracortical facilitation), SAI (short latency afferent inhibition) 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
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Figure legends 613 

 614 

Figure 1. TMS using a circular coil showing the lines of flux of the magnetic field and 615 

directions of stimulating and induced currents. 616 

 617 

Figure 2. The paired-pulse threshold tracking TMS (TT-TMS) paradigm to measure 618 

cortical excitability. 2a) Short interval intracortical inhibition (SICI) occurs at an 619 

interstimulus interval (ISI) of 0-7 ms while intracortical facilitation (ICF) occurs at an 620 

ISI of 7-10 ms. 2b) TMS coil placed over the vertex stimulates the motor cortex and 621 

the response is recorded from the opposite abductor pollicis brevis muscle. 2c) 622 

Change in stimulus intensity required to achieve a target motor evoked potential 623 

(MEP) of 0.2 mV(±20%) is used to quantify the SICI and ICF. 624 

 625 

Figure 3. TMS may be used to stimulate the perilesional cortex after stroke and/or 626 

suppress excitability of the opposite hemisphere. 627 

 628 

 629 

 630 
 631 
 632 
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Figure 1. TMS using a circular coil showing the lines of flux of the magnetic field and directions of stimulating 
and induced currents.  
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Figure 2. The paired-pulse threshold tracking TMS (TT-TMS) paradigm to measure cortical excitability. 2a) 
Short interval intracortical inhibition (SICI) occurs at an interstimulus interval (ISI) of 0-7 ms while 

intracortical facilitation (ICF) occurs at an ISI of 7-10 ms. 2b) TMS coil placed over the vertex stimulates the 

motor cortex and the response is recorded from the opposite abductor pollicis brevis muscle. 2c) Change in 
stimulus intensity required to achieve a target motor evoked potential (MEP) of 0.2 mV(±20%) is used to 

quantify the SICI and ICF.  
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Figure 3. TMS may be used to stimulate the perilesional cortex after stroke and/or suppress excitability of 
the opposite hemisphere.  
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