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Abstract 

Introduction: The assessment of coronary lesions severity has always been a relevant topic in the 

management of the patient undergoing coronary angiography. Fractional flow reserve (FFR) has been 

introduced as an objective index to determine the significance of a coronary stenosis with a positive impact 

on clinical outcomes has been demonstrated for FFR-guided coronary interventions. However, several 

technical drawbacks have been pointed out in clinical practice limiting the diffusion of FFR worldwide. To 

exceed these limits, other indices and the quantitative flow ratio (QFR) have been recently developed and 

tested in clinical studies.  

Areas covered: This review aims to provide a brief overview of functional assessment of coronary stenosis 

and a particular attention to the QFR, to its validation and application studies for its potential applicability 

in clinical practice. QFR through a computational fluid dynamics (CFD) analysis, proved to be useful in 

discriminating functionally significant stenosis, with an excellent correlation with FFR values, and 

considerable advantages in terms of acquisition time and costs.  

Expert Opinion/Commentary: QFR is an innovative angiographic-based technique that uses modern 

software for three-dimensional vessel reconstruction, and flow models calculation. The significant technical 

benefits reported in the management of patients with intermediate coronary stenosis, make it a modern, 

effective and usable tool.  

 

Key words 

myocardial ischemia, coronary physiology, quantitative flow ratio, coronary artery disease, coronary 

angiography, percutaneous coronary intervention, 3D-angiography, fractional flow ratio 
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1. Introduction  

Coronary artery disease (CAD) represents one of the main causes of morbidity and mortality worldwide 

(1,2). In the last decades, newer diagnostic and therapeutic techniques have certainly provided an essential 

contribution to CAD management, significantly improving patients’ outcomes. Percutaneous coronary 

intervention (PCI) is nowadays one of the most common invasive procedure performed worldwide, 

providing a survival benefit in acute coronary syndromes patients and symptom relief in stable patients 

with significant stenosis and proven myocardial ischemia (3–8).  However, the decision of whether to 

perform PCI in intermediate lesions is difficult, as both physician visual assessment (PVA) and quantitative 

coronary analysis (QCA) have shown poor correlation with functional stenosis severity. In this contest, 

functional evaluation of coronary stenosis has progressively assumed a crucial role (9), and the use of 

Fractional Flow Reserve (FFR) allowed improving the decision making in patients with intermediate 

coronary stenosis. To date, in the 2013 European Society of Cardiology (ESC) on Stable Coronary Artery 

Disease, FFR-guided PCI has a class I A recommendation to identify haemodynamically relevant coronary 

lesions in stable patients when evidence of ischaemia is not available, and class IIa A recommendation to 

manage PCI in patients with multivessel disease (MVD) (10), these indications are recently strengthened by 

the 2018 ESC / EACTS Guidelines on myocardial revascularization that place the FFR in class IA as well as the 

iFR (3).  In addition to the FFR, in the last few years, several invasive and non-invasive tests emerged for the 

anatomic and functional evaluation of coronary stenosis severity. The development of X ray-related 

diagnostic and angiographic techniques has sought to find an alternative tool for the functional assessment 

of coronary stenosis. The Coronary Computed Tomographic Angiography (CCTA) has shown a high 

diagnostic performance for the detection of coronary lesions causing ischemia (11). Afterward, functional 

assessment of coronary stenosis was studied using three-dimensional quantitative coronary angiography 

(3D-QCA) and blood flow simulation (12), and the combined use of 3D-QCA and Thrombolysis In Myocardial 

Infarction (TIMI) frame count have been used to obtain FFR-derived calculation (13). This less-invasive 

technique, called Quantitative Flow Ratio (QFR), uses 3 different flow simulation models: fixed-flow QFR 

[fQFR], contrast-flow QFR [cQFR]), adenosine-flow QFR [aQFR], allowing the discrimination between 

functionally significant non-significant stenosis. The definition of this as a less invasive technique is more 
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correct than a non-invasive technique because the patients to whom it can be applied are patients who are 

nevertheless subjected to coronary angiography. Thus, it is a less invasive technique compared to other 

functional indices such as FFR and iFR that require a pressure wire. 

 

2. Coronary artery stenosis: assessment and functional significance 

Coronary stenosis, generally due to an atheromatous thickening or plaque of the artery wall, limits the flow 

gradient in maximum vasodilation conditions and significantly alters the coronary flow control systems. At 

rest, coronary microcirculation responds with vasodilatation to compensate the pressure drop downstream 

the stenosis, but often it is not able to further expand if necessary (i.e., for an increased flow and oxygen 

demand) (14,15). Significant coronary stenosis is described by the 2017 American College of Cardiology and 

American Heart Association (ACC/AHA) Appropriate Use Criteria for revascularization for patients with 

stable Heart Disease (16) as a 70% or more luminal diameter reduction by visual assessment. However, it 

has been documented that, the relationship between quantitative stenosis severity on coronary 

angiography and the level of functional flow limitation is weak (17,18), and increasing clinical data have 

confirmed that a simple percentage description of the stenotic coronary does not characterize the full 

physiological impact on its perfused myocardium (19)(20). 

 

2.1 Angiography and its evolution 

Selective coronary angiography is the gold-standard for the diagnosis of CAD (21), and remains the 

accepted imaging method for the study of the coronary tree, despite the development of other non-

invasive imaging techniques, such as computed tomography (CT) and cardiac magnetic resonance (CMR) 

(19). Before 1958, it was thought that any procedure that involved injecting contrast into the coronary 

arteries could be dangerous or even fatal. Thanks to the work of Mason Sones, coronary angiography was 

born and evolved (22), creating the conditions for the development of percutaneous revascularization 

(3,10,23). For a long time, the PVA remained the only method available to assess stenosis severity. 

However, this quick method has a marked inter- and intra-observer variability, providing consistent 

limitations (24,25), and reporting substantially higher readings of stenosis severity than QCA (26). Since the 
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1980s, investigators have developed and implemented methods of quantitative coronary angiography 

(QCA) analysis using automated or semi-automated edge recognition (27). QCA is based on contrast 

coronary angiography that obtains parameters that quantify the significance of coronary stenosis 

empirically (28) and, differently from PVA, has a good inter- and intra-observer reproducibility (29). Initially, 

the software was designed for “single-vessel” 2D-QCA, and its use in bifurcation lesions resulted biased for 

the detection of vessel outline at the ostium site. Subsequently, a software suitable for bifurcations was 

developed making this technique applicable also in complex vessel anatomies (30,31). 

However, the use of 2D-QCA to analyze three-dimensional structure implies several critical limitations, for 

example coronary segments can overlap, and vessel tortuosity and lesion eccentricity may result in 

distortions and/or errors in the diagnosis of severe stenosis; thus, using 2D-angiographic images, many of 

the concerns of traditional angiography persists (29). To overcome these issues, novel imaging techniques 

have been developed, including rotational angiography and 3D-modeling techniques, that use 2 or more 

angiographic projections to analyze vessels anatomy and create a 3D-model (32). Several studies tried to 

standardize the procedures for the acquisition of images for 3D reconstruction as much as possible (33,34). 

3D-coronary modeling showed to be a more precise tool for the evaluation of the lengths of coronary 

segments than standard QCA (35). 3D-quantitative coronary angiography (3D-QCA) exploits multiple 

images obtained from conventional coronary angiography to reconstruct three-dimensional views by a 

proper algorithm, and it could theoretically be able to evaluate stenosis and predict lesions producing 

ischemia more accurately because it examines and measures lesions from 3-dimensional views.  

This tool has been validated in different populations (36), and demonstrated an excellent correlation with 

intracoronary imaging techniques in the evaluation of stenosis severity and length (37), finding clinical 

applications in the decision-making for the treatment of significant lesions.  

The development of 3D-QCA allows a more correct anatomical valuation of coronary stenosis, but the 

discordance between anatomical severity and the functional significance persists (19).  
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2.2 Fractional flow reserve 

Fractional Flow Reserve (FFR) is the ratio between the average pressures downstream and upstream the 

stenosis during maximum hyperemia conditions and represents the fraction of coronary flow preserved 

despite the presence of luminal stenosis calculated as FFR = Pd/Pa, where Pd is the pressure downstream 

the stenosis and Pa aortic pressure.  

FFR is an invasively measured parameter that can reliably assess the aptitude of a lesion to induce 

myocardial ischemia (38), measuring the trans-stenotic pressure gradient directly to obtain the trans-

stenotic flow indirectly (39). This method is based on the physiological principle that in a general condition 

of hyperemia, a proportionality exists between pressure and flow (18,40).  

Although several drugs, administered by intracoronary (i.c.) or intravenous (e.v.) route, can be used to 

induce maximal hyperemia (i.e., adenosine, sodium nitroprusside, nicorandil, nitrate, and papaverine) (41–

43), currently e.v. adenosine is considered the gold-standard for the technique (9,44).  

A value of FFR = 1 represents a condition of normality (injury-free vessel), whereas values <1 can indicate 

the presence of an atherosclerotic lesion. According to the main studies (9,38,45,46) showing the clinical 

efficacy of FFR, the reference cut-off to determine the significance of stenosis is 0.80. A lesion with values 

>0.80 is to be considered not hemodynamically significant; a lesion associated with a value <0.80 is to be 

considered hemodynamically significant (9,45).  

Several studies have validated the FFR, showing that the combination of anatomical evaluation of the 

coronary arteries lumen with a functional assessment by FFR guidance is crucial to adapt the treatment of 

patients with CAD (18,47,48). The first randomized trial that established the efficacy and safety of the FFR-

guided PCI was DEFER study (49,50) that shows defer PCI in patients with stable coronary artery disease 

and normal FFR value is safe, and the clinical outcome of patients is favorable. In the Fractional Flow 

Reserve versus Angiography for Multivessel Evaluation (FAME) study has been shown that a strategy of 

FFR-guided treatment in patients with MVD is associated with more favorable long-term outcomes (51). 

The results in favor of the FFR-guided PCI strategy are also confirmed in the 5-year follow-up study (52) 

with a reduction of Major Adverse Cardiac Event (MACE) in the FFR-guided group compared to 
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angiography-guided group, and number of stents located per patient was considerably higher in the 

angiography-guided group. 

The FAME 2 study is a randomized trial investigating patients with CAD assessed with angiography that 

could be treated with PCI (46). Patients with at least one functionally significant stenosis (FFR<0.80) were 

randomized to PCI + optimal medical therapy (OMT) or medical therapy alone, while patients with non-

functionally significant stenosis were enrolled and treated with medical treatment only. The study was 

interrupted due to a significant increase in the risk of MACE in patients randomized to OMT to those 

randomized to PCI + OMT, as the incidence of the primary end-point was 12.7% and 4.3% respectively (p 

<0.001). Also in the 5-year follow up the results were overlapping, an initial FFR-guided PCI strategy was 

related with a lower rate of the primary composite end point of death, myocardial infarction, or urgent 

revascularization than OMT alone (53). 

In the FAMOUS-NSTEMI study (54), in patients with non-ST-elevation myocardial infarction , FFR use 

resulted in a change in the treatment plan in more than 20% of cases, and the overall number of 

revascularization was reduced. At 1-year follow-up, there were no differences in outcomes (MACE) 

between the randomized groups, showing the feasibility and clinical utility of a functional approach in these 

patients. This strategy can reduce the number of inappropriate revascularizations and maximize the benefit 

of PCI as shown in a study in which the stenosis which resulted in the most pressure drop was treated first 

and then the functional evaluation was repeated: no events related to deferred injuries suggesting that the 

strategy of FFR-guided revascularization was safe (55) (56). 

 

2.3 Instantaneous wave-free ratio 

The instantaneous wave-free ratio (iFR) is the ratio of pressure and flow in the latter 75% of diastole based 

on the wave intensity analysis (WIA) with its assumed wave-free period. This technique uses a pressure 

wire, and samples intracoronary pressure during the diastolic “wave-free” period (WFP), a period in the 

cardiac cycle when microvascular resistance is already constant and minimal, therefore it does not require 

adenosine administration (57–59). 
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In the VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of 

Coronary Artery Stenosis Severity in EverydaY Practice (VERIFY) study (58), and in the VERIFY 2 Study (60) 

the results affirmed that there was no diagnostic advantage to utilizing an iFR-guided revascularization 

strategy compared with FFR. This initial studies did not give the expected results, probably because the 

number of patients was not sufficient. The most important results derived from the iFR-SWEDEHEART (61) 

and the Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation (DEFINE-FLAIR) 

studies (62) that aimed to investigate whether iFR was non-inferior to FFR concerning clinical outcomes 

between patients who have an indication for assessment of coronary artery stenosis (63,64). The iFR-

SWEDEHEART study showed that there was no difference respect to the rate of MACE at 12 months in 

patients with stable angina or an acute coronary syndrome, with iFR-guided revascularization strategy 

compared with an FFR-guided revascularization strategy.  In the same direction were the results of the 

DEFINE-FLAIR study (62). Also, in this case, coronary revascularization guided by iFR was non-inferior to 

revascularization guided by FFR concerning the risk of MACE at 1 year. However, based on these results, iFR 

stands as a safe tool and usable for intracoronary functional assessment when the administration of 

adenosine is not desirable (Table 1). 

Lately, with the new 2018 ESC / EACTS Guidelines on myocardial revascularization the iFR received 

recognition as being recommended in class IA as at the FFR for the study of intermediate stenosis. (3) 

 

2.4 Resting full-cycle ratio 

Resting full-cycle ratio (RFR) is a novel non-hyperemic index of coronary stenosis severity measuring the 

ratio of the pressure at the point of lowest resting diastolic pressure (Pd) compared to aortic pressure (Pa) 

through the cardiac cycle. It measures the pressure difference in the cardiac cycle and does not require an 

ECG and regardless of timing within the cardiac cycle. A minimum of four, but preferentially five, 

consecutive heart cycles were needed to determine the RFR (65).  

It’s different from iFR because it is measured during a precise section of diastole, the “wave-free period” 

where it is supposed that coronary flow is maximal and resistance minimized.  
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The "VALIDATE-RFR" (Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the 

Resting Full-cycle Ratio) study aimed to confirm the reliability of the RFR (65). It’s a retrospective study and 

the primary endpoint was the agreement between RFR and iFR. RFR was retrospectively measured in 651 

waveforms in which iFR was measured using a proprietary Philips/Volcano wire, and it demonstrated a 

good correlation with iFR (R2=0.99, p<0.001). The diagnostic accuracy was 97.4%, sensitivity 98.2%, 

specificity 96.9%, positive predictive value 94.5% and negative predictive value 99.0%, thus showing itself 

as a new and equivalent tool to iFR. 

 

3. Quantitative Flow Ratio (QFR): fractional flow reserve by 3D-angiography 

As discussed above, coronary angiography has several important limits in determining the severity of 

intermediate coronary stenosis. The measurement of FFR selectively in all the lesions considered as 

angiographically significant allows identifying those lesions able to induce myocardial ischemia. Indeed, this 

approach permits a redefinition of the coronary pathology from the morphological level to the functional 

level. The QFR method combines a 3D reconstruction of the target vessel, based on two angiographic 

projections and the contrast flow velocity to compute the “FFR value” without the need for pressure 

and/or flow wires. The QFR stands as mediation between the physiological and angiographic evaluation of 

coronary stenosis. Two studies, in particular, have laid the groundwork for this, the DISCOVER-FLOW 

(Diagnosis of ISChemia-Causing Stenoses Obtained Via NoninvasivE FRactional FLOW Reserve) and VIRTU-1 

(VIRTUal Fractional Flow Reserve From Coronary Angiography) studies (66).  

In the DISCOVER-FLOW study, computational fluid dynamics (CFD) analysis has been applied to coronary 

computed tomographic angiography (CCTA) data to predict FFR (11) and, the addition of FFR to CCTA has 

shown to improve clinical decision-making, and demonstrated a good correlation with the invasive 

measurement of FFR. 

The VIRTU-1 study aimed to develop a computer model that could accurately predict myocardial fractional 

flow reserve (FFR) from angiographic images deriving from rotational coronary angiography. Virtual 

fractional flow reserve (vFFR) and measured fractional flow reserve (mFFR) values were closely correlated 

(66).   
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Tu et al. (13) investigated a fast computer model to quantify the functional significance of moderately 

obstructed coronary arteries. They used 3D-QCA, and the mean volumetric flow rate at hyperemia was 

calculated using TIMI frame count combined with 3D-QCA proving that computation of FFR-QCA is an 

innovative system that allows assessing the functional significance of intermediate coronary stenoses. In 

particular, 77 vessels in 68 patients have been analyzed, while the testing group comprised 22 vessels in 20 

patients. They found a good correlation (r = 0.81; p < 0.001) and agreement between FFR-QCA and FFR. 

Applying FFR cutoff value of ≤ 0.80, all coronary vessels with intermediate stenosis resulted in a higher area 

under the curve (0.93 [95% CI: 0.86 to 0.99]) than did MLA (0.73 [95% CI: 0.61 to 0.85]. FFR-QCA upgraded 

the diagnostic performance of coronary angiography, with 88% accuracy, 78% sensitivity, 93% specificity, 

82% positive predictive value, and 91% negative predictive value.  

FFR-QCA was more accurate than FFR-CT (13), probably because image resolution in X-ray angiography is 

greater than coronary computed tomography angiography and for the evaluation of the downstream 

microcirculation. Furthermore, FFR-CT is influenced by calcified coronary heart disease and heart rhythm 

(13). CT-FFR is indicated for low-intermediate risk patient screening, in whom a delay in the results is not an 

issue and it is manly used to avoid further stress tests and unnecessary invasive procedures. FFR-QCA 

method of calculating the severity of intermediate stenoses appears a safe and cost-saving tool during 

diagnostic angiography. 

On these assumptions is based the prospective multicenter FAVOR Pilot Trial study (Functional Assessment 

by Various Flow Reconstructions) (67), that defined this new tool as quantitative flow ratio (QFR). The 

FAVOR study aimed to track the best way to use this technology, investigating offline computation of QFR 

as paralleled with conventional pressure wire-based FFR.  

Computation of QFR is possible online and offline, using a software package (QAngio XA 3D, Medis Medical 

Imaging System, Leiden, the Netherlands), currently the only software available.  

As discussed above, the CFD is applied and this allows the calculation of the index by an algorithm.  

First, for the computation of QFR, is necessary to acquire two diagnostic angiographic projections, at least 

25° apart, allowing 3D reconstruction (Figure 1). The reliability of this angio based 3D model is critical for 

QFR assessment.  Tu et al. (68) demonstrated a very close correlation with both IVUS and OCT (r= 0.8 and 



Acc
ep

ted
 M

an
us

cri
pt

0.89, respectively). Starting from the assumption that the flow moves across the stenosis, and follows the 

fluid-dynamic rules, the mass flow rate along the selected vessel can be established by the mean flow 

velocity and the reference sizing from 3D-QCA. In particular CFD quadratic mathematical algorithm instead 

of fully developed Navier-Stokes equation was applied, thanks to its faster computation time without loss 

of accuracy. Moreover with this model the side branches reconstruction was not necessary anymore. 

Frame rate count was calculated in both angiographic views to obtain patient specific hyperemic flow 

velocity estimation during contrast injection and adenosine administration. A detailed description of 

equation and assumptions used for QFR calculation have been previously described (67), and are depicted 

in Figure 2.  Three different computations were executed with different mean hyperemic flow velocities: 

fixed-flow QFR [fQFR], contrast-flow QFR [cQFR]), adenosine-flow QFR [aQFR] (Table 2).  

All three models were compared with the FFR value measured by the pressure wire. Good correlations with 

standard FFR were observed for fQFR (r = 0.69 [p < 0.001]); cQFR (r =0.77 [p < 0.001]); and aQFR (r = 0.72 [p 

< 0.001]). The diagnostic accuracy of all approaches for predicting an FFR of ≤ 0.80 was good, particularly 

for cQFR and aQFR models (86% and 87% respectively).  

cQFR improved the diagnostic performance of coronary angiography, with a sensitivity of 74%, specificity of 

91%, positive predictive value of 80%, negative predictive value of 88% (67). With cQFR value >0.90 or ≤ 

0.70, all stenoses were considered appropriately as compared with FFR with the cutoff value of 0.80 (Figure 

3). 

The cQFR calculation without pharmacologic hyperemia induction, enhanced the diagnostic accuracy 

related to fQFR and aQFR but not further improve its FFR estimation, partly explained by submaximal 

hyperemia induction from contrast (69). This provides an even lower cost in the context of an already more 

economically favorable technique compared to the FFR. Data coming from another smaller study confirm 

this trend in the reliability of this new tool (70).  

The FAVOR II China study was the first trial with adequate power to measure the diagnostic accuracy of 

QFR (71). The primary end-point was the diagnostic accuracy of online QFR (≤0.8 or >0.8) to identify 

functional coronary stenosis using FFR (≤0.8 or >0.8) as the reference standard. 308 patients were 

consecutively enrolled at 5 centers. Online analysis vessel-level QFR had a diagnostic accuracy of 92.7%, 
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and offline analysis vessel-level QFR had a high diagnostic accuracy of 93.3%. The FAVOR II Europe and 

Japan study shows QFR superior sensitivity and specificity for detection of functional significant lesions in 

comparison with 2D-QCA using FFR as the reference standard (72). In a total population of 329 patients 

enrolled in 11 centers, data from 274 patients were analyzed. The sensitivity and specificity of QFR were 

both 88%, the positive predictive value with FFR as reference was 78% and the negative predictive value 

was 94%. Another datum coming from the study, and that should not be underestimated amongst the 

advantages of the QFR, concerns the times of obtaining the result. Indeed, the comparison between QFR 

and FFR showed a significant difference in times that resulted of 4.8 min (IQR 3.5-6.0) and 7.0 min (IQR 5.0-

10.0), respectively (p<0.001) (72). 

Afterward, the WIFI II study (Wire-Free Functional Imaging II) aimed to evaluate the feasibility and 

performance of QFR (73).  It was a predefined substudy to the Dan-NICAD study (Danish Study of Non-

Invasive Diagnostic Testing in Coronary Artery Disease) that analyzed 362 consecutive patients with 

suspected CAD on CCTA with an indication to ICA. FFR was performed in 292 lesions from 191 patients, and 

QFR was calculated from blinded observers in 240 lesions.  In this case, the median QFR was 0.84 (IQR, 

0.77–0.89) and the QFR computation showed a correlation of r=0.70 (P<0.0001), and precision with a mean 

difference of 0.01±0.08 (P=0.08) with FFR. The QFR computation accuracy was 83% with 66 true positives, 

132 true negatives, 20 false positives, 22 false negatives and it improved when eliminating cases with FFR 

values in the range of 0.77 to 0.83 (83%–87%; P=0.002) around the diagnostic cut point. The QFR limits to 

performance specificity and sensitivity >90% were 0.78 and 0.87 respectively, while >95% accuracy were 

0.71 and 0.90.  

Regarding the times, Yazaki et al. give us information: in their study, the average time to calculate QFR was 

266 s (IQR, 181 - 332 s), including time for 2 optimal angiographic acquisition and complete the QFR 

calculation (74) (Table 3).  

 

3.1 QFR in non-standard clinical scenario 

Asserted its reliability, safety, and economy, the QFR computation has been then applied in different 

patient settings.  
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Emori et al. (75) have experienced the QFR for assessing myocardial ischemia in prior myocardial infarction. 

It is a retrospective, single centre study that analyzed 75 prior MI-related coronary arteries in 75 patients. 

They used FFR and only 2 different flow models: (1) fixed-flow QFR (fQFR) and (2) contrast-flow QFR (cQFR) 

and highlighted no difference in fQFR, cQFR and FFR correlation between the prior-MI-related and non- 

prior-MI-related coronary arteries. fQFR resulted reduced as compared with FFR in prior-MI-related 

coronary arteries. This could be explained because it is based on anatomic information obtained from 3D-

QCA and then may not consider the vital myocardium. The value of cQFR vs. FFR was significantly lower in 

prior-MI-related coronary arteries compared with non-prior-MI-related arteries, with the vital myocardium 

insufficiently taken into account by the TIMI frame count analysis.  

In a recent study, Spitalieri et al. (76) investigated different aspects of QFR in 3 patient cohorts: a) the 

reproducibility and agreement of QFR values of nonculprit lesions (NCLs) in ST-segment elevation 

myocardial infarction (STEMI) patients that received FFR assessment of  NCLs; b) diagnostic accuracy of QFR 

vs FFR in NLCs in STEMI patients with multivessel disease; c) the long-term clinical outcomes of NCLs 

according to QFR result in STEMI with multivessel disease. Compared to these three points, they found a 

good reproducibility of QFR computation, an excellent diagnostic accuracy with standard FFR measurement 

as a reference, and the potential prognostic value using the functional SYNTAX score (FSS). 

Indeed, patients with incomplete revascularization have a 2.3-fold increase in the risk of patient-oriented 

cardiac events, while patients with complete functional revascularization had a long-term outcome similar 

to those obtaining complete revascularization (76).  

The Angio-based Fractional Flow Reserve to Predict Adverse Events After Stent Implantation (HAWKEYE - 

NCT02811796) is currently investigating the use of QFR after stent implantation in about 600 patients. This 

trial will assess the relationship between QFR value and adverse events and will evaluate the best QFR 

value able to discriminate the cumulative occurrence of adverse events. In the study, STEMI patients are 

also included as an independent cohort to obtain preliminary results. This approach will allow extending 

the horizon of functional assessment in the revascularized patient, a territory not much explored for 

invasive assessment with FFR / iFR.  
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3.2 Why operators need a new tool to assess intermediate stenosis? 

The disparity between the angiographic and functional evaluation of the stenosis and the consequent 

classification of the patients in single-, two-, or three-vessel disease was confirmed by the validation studies 

of FFR (39,42,44).  

Despite the demonstrated benefits of physiology-based revascularization, to date the reference techniques 

for the evaluation of intermediate coronary stenosis are still rarely used. FFR has clinical guideline 

recommendations, but its application in coronary catheter laboratories worldwide remains low (77). 

Indeed, although the use of FFR has grown every year in the last decade (78), this varies significantly across 

countries and centers, ranging from 3% to 30% of the total volume of PCI (77–79).  The poor penetration of 

the FFR in daily practice is probably due to the costs, equipment and operator choice. An international 

survey with 495 participants on interventional strategy analyzed 4421 lesions showing that in most cases 

the participants relied only on angiographic appearance that was discordant in 47% with the known FFR. 

This confirms that visual assessment continues to dominate the treatment decisions for intermediate 

stenosis, with a significant gap between recommendations and practice. The iFR, exceeding the 

administration of adenosine and eliminating the side effects and reducing costs, did not further shift the 

use of physiology-based guidance (77).  

The Evolving Routine Standards of FFR Use (ERIS) study (79) is an investigator-driven, nationwide, 

prospective, cross-sectional study involving 76 Italian centers that have the aim to describe the current use 

of invasive coronary physiology assessment and recognize the causes for its little use in daily practice. Also 

in this case, the main reason for not using physiology assessment was the operator’s confidence that 

clinical and angiographic data alone were sufficient.  

In this context, the use of the QFR could increase because it has several advantages: it is a less-invasive 

technique, which costs little, can be calculated offline, and is closer to the operators' approach. Hence, QFR 

can represent a valid and handy option in the cath-lab, leading to more appropriate revascularizations. 
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4. Conclusions 

Angiographic evaluation of coronary stenosis has proved to be poorly performing, and although the 

evolution of angiography has led to the development of techniques such as QCA, this is not adequate 

especially for intermediate stenosis assessment. For the evaluation of the significance of coronary stenosis, 

FFR is considered the reference technique having robust validation and outcome data and being 

recommended by the guidelines for myocardial revascularization, leading to revascularization only in the 

case of significant stenosis. Further angiographic developments up to 3D-QCA that allows a three-

dimensional reconstruction of the coronary vessel, using principles of flow models and TIMI frame count, 

the QFR was developed. QFR computation, and its three different models (fQFR, cQFR and aQFR), showed 

good reproducibility and good correlation with FFR. Furthermore, quantifying vessel dimensions, this is 

useful for the fast computation of FFR adding anatomical details for optimal stent sizing if subsequent 

revascularization is planned.  

QFR appears as a safe and cost-reducing diagnostic modality improving the utilization of functional guided 

decision making, having the advantage of not using the pressure wire and using less drugs, reduction in 

procedure time and risk for the patient.  

 

5. Expert commentary 

The assessment of intermediate coronary stenosis is still an open question. The limitations to the coronary 

flow imposed by atherosclerosis are mainly related to geometry, severity, length, rigidity and vasomotility 

of stenosis. These parameters, unfortunately, cannot be assessed by the “view” of the operator, and also 

the development of techniques (such as QCA) resulted not adequate. One of the main problems of 

angiography is that it is a two-dimensional representation of three-dimensional structures. Evidence 

suggest the superiority of a functional study of intermediate lesions, showing that the insertion of the 

pressure wire in the diagnostic path of the patient allows to pursue therapeutic appropriateness, reach an 

accurate diagnosis, and improve outcomes, avoiding adverse events associated with improperly implanted 

stents. In a subgroup of the FAME study, the SYNTAX score (SS) was compared with a SYNTAX FFR guided 

score, defined as "functional SYNTAX score" (FSS), resulting only from the lesions with an FFR ≤0.80, in 
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predicting 1-year major adverse events (80). Interestingly, calculating the FSS for each patient, the 32% was 

moved to a low-risk group with better accuracy for major adverse events compared to the SS. This strategy 

can reduce the number of inappropriate revascularizations and maximize the benefit of PCI as shown in a 

study in which the stenosis which resulted in the most pressure drop was treated first and then the 

functional evaluation was repeated: no events related to deferred injuries suggesting that the strategy of 

FFR-guided revascularization was safe (55) (56). 

The key weaknesses in daily clinical management are represented by the poor use and penetrance of 

physiology evaluation techniques. The use of the FFR is the gold standard, and it has progressively 

increased over the years, in parallel with the availability of scientific data to support its usefulness and its 

cost-effectiveness but nowadays is still underused. The reasons are different, but among all the belief of 

the operator in the angiography assessment stenosis emerges. The iFR seemed to increase the use of the 

functional evaluation being more manageable, without adenosine administration and with shorter times 

compared to FFR, but this has not improved its use in recent years. 

The QFR exploiting the angiographic evolution with three-dimensional reconstruction of the vessel and 

dynamic fluid computations is able to discriminate significant lesions from non-significant lesions. It uses 3 

different flow simulation models: fixed-flow QFR [fQFR], contrast-flow QFR [cQFR]), adenosine-flow QFR 

[aQFR]. Some argue that QFR is a redundant tool, having FFR and iFR a large amount of patients enrolled in 

validation and outcomes studies. But QFR exceeds the limits of FFR and iFR, showing an excellent 

correlation with FFR values in the assessment of intermediate stenosis, reporting technical advantages such 

as time and costs reduction, not requiring the use of an intracoronary pressure wire. QFR is used in high-

risk patients not as a screening test to decide whether the patient needs the angiography or not, but once 

the indication to coronary angiography is established, to define if the found lesion needs to be treated or 

not. While demonstrating an excellent technical performance, the QFR does not have outcomes studies 

yet, a factor that penalizes it as compared with the reference techniques. Currently, a trial is underway to 

evaluate this aspect: the FAVOR III China (NCT NCT03656848). It is a prospective, multicenter, randomized, 

clinical trial comparing the clinical outcome and cost-effectiveness of the two strategies, QFR-guided PCI 

versus standard angiography-guided PCI, in evaluation of patients with CAD.  
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However, the important technical advantages reported in the management of patients with coronary heart 

disease and intermediate stenosis, make it a modern, effective and usable tool.  

 

6. Five-year view 

The techniques available in the laboratory of hemodynamics are constantly evolving, and the progress of 

the last 20 years is the testimony. QFR is an innovative angiographic-based technique that uses modern 

software for three-dimensional vessel reconstruction, and flow models calculation. The combination of past 

and present makes it a familiar and contemporary technique at the same time. The advantages offered 

regarding less-invasiveness, offline analysis, and reduction of time and costs, open the way for an ever-

increasing use. Currently underused, in the next 5 years it could be one of the main tools for the evaluation 

of intermediate stenosis. Moreover, the ongoing studies in the evaluation of patients who have been 

already revascularized can favor its use in a field that is not very applicable for FFR and iFR. 

 

Key issues 

• Percutaneous coronary intervention (PCI) is currently the most common invasive procedure 

performed providing a survival benefit in acute and chronic coronary artery disease (CAD). The 

assessment of coronary lesions severity by physician during invasive coronary angiography has 

been proved unsatisfactory to discriminate between functionally significant and non-significant 

coronary stenosis.  

• Fractional Flow Reserve (FFR) studies the stenosis during maximum hyperemia conditions (with 

adenosine administration), with a pressure wire estimanting the aptitude of a lesion to induce 

myocardial ischemia. Currently, this has guidelines recommendations for the management of 

intermediate coronary stenosis. The instantaneous wave-free ratio (iFR) uses a pressure wire but it 

does not need adenosine administration. Despite the scientific evidence has shown benefits in 

revascularization based on functional assessment, FFR and iFR are still poorly used in clinical 

practice. 
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• Quantitative Flow Ratio (QFR) uses 3D vessel reconstruction from 2 orthogonal angiographic 

images and computational fluid dynamics analysis. It allows rapid computation of FFR pullbacks 

from 3D-QCA, and provides 3 different flow models: fixed-flow QFR [fQFR], contrast-flow QFR 

[cQFR]), adenosine-flow QFR [aQFR].  

• QFR proved to be useful in discriminating functionally significant stenosis, demonstrating an 

excellent correlation with FFR values, and considerable advantages in terms of acquisition time and 

costs (i.e., not requiring the use of an intracoronary pressure wire).  

New fields of application are opening up for this technique, also in the assessment of non-culprit 

lesions and in post-stenting evaluation. 
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Figure and table legends 
 
Figure 1. 3D reconstruction of Left anterior descending artery (LAD) from two 2D angiographic view of at 
least 25° apart. 
 
Figure 2: Fast computational QFR algorithm and its main assumptions. 
 
 
Figure 3. QFR vs. FFR for coronary stenosis assessment. (A) 2D-QCA of LAD vessel. (B) 3D-QCA C) QFR value 
for LAD: the upper diagram shows the 3D model maximum and minimum diameter. The red line represents 
the ideal reference vessel diameter. The lower plot is the virtual pressure pullback.  Each drop represents 
the singular lesion functional weight.  
ADO i.c.= intracoronary adenosine. LAD= left anterior descending. FFR= fractional flow reserve.  QCA= 
Quantitative coronary angiography. QFR= quantitative flow ratio.  
 
 
Table 1.  Main validation and outcome studies of FFR and iFR. 
CAD= coronary artery disease. iFR= instantaneous wave-free ratio. FFR= Fractional Flow Reserve. MACE= 
Major Adverse Cardiac Event. NSTEMI= Non ST Elevation Myocardial Infarction. Pts= patients  
 
Table 2. Three different QFR computations in three different flow models. 
aQFR= adenosine Quantitative Flow Ratio. cQFR= contrast Quantitative Flow Ratio. fQFR= fixed 
Quantitative Flow Ratio. HFV =hyperemic flow velocity. i.v.= intravenous 
 
Table 3. Main features, strengths and limitations of FFR, iFR, and QFR.  
aQFR= adenosine Quantitative Flow Ratio. cQFR= contrast Quantitative Flow Ratio.  
iFR= instantaneous wave-free ratio. FFR= Fractional Flow Reserve. Pa= aortic pressure. Pd= pressure 
measured downstream the stenosis. QFR= Quantitative Flow Ratio.  
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Study FFR/iFR Sample 
size 

Study design Population Primary Endpoint Outocomes 

Bech et al.49 

DEFER study 
FFR 325 

pts 
Prospective, 
randomized 
study 

Stable CAD  No adverse 
cardiac events  
during 24 months 
of follow-up. 

No beneficial 
treating with PCI a 
nonischemic lesion 
(FFR <0.75) 

Tonino et al. 

51 
FAME 

FFR 1005 
pts 

Prospective, 
randomized 
study 

Multivessel 
disease 

Composite 
endpoint (death, 
MI, and repeat 
revascularization) 
at 1 year follow 
up 

Lower rate of the 
composite 
endpoint in the 
FFR-guided group 
vs. angiography-
guided group 
(FFR<0.80) 

De Bruyne et 
al. 46 
FAME 2 

FFR 888 
pts 

Prospective, 
randomized 
study 

Stable CAD Composite of 
death from any 
cause, nonfatal 
myocardial 
infarction, or 
urgent 
revascularization 

FFR-guided PCI + 
(OMT) vs. OMT 
alone decreased 
the rate of urgent 
revascularization 
(FFR<0.80) 

Layland et al. 
54  
FAMOUS 
NSTEMI  

FFR 350 
pts 

Prospective, 
randomized 
study 

NSTEMI 
patients 

The between-
group difference 
in the proportion 
of patients 
allocated to 
medical 
management. 
 

Angiography-
guided 
management had 
higher rates of 
coronary 
revascularization 
vs. FFR-guided 
management. 
(FFR<0.80) 

Berry et al. 58 
VERIFY  

iFR 200 
pts 

Observational 
study 
 

Patients 
undergoing FFR 
assessment for 
standard clinical 
indications 
 

Comparison of 
FFR vs. iFR for 
assessment of 
coronary artery 
stenosis severity 
in routine 
practice 

iFR correlates 
poorly with FFR 
(iFR <0.80)  
 

Hennigan et 
al. 60 
VERIFY 2 

iFR 197 
pts 

Single-center 
prospective 
study 

Angiographically 
intermediate 
coronary 
stenoses in 
which FFR 
measurement 
was clinically 
indicated 

The level of 
agreement of iFR 
versus Pd/Pa   
using binary 
cutoff values in 
reference to FFR 
≤0.80. 

Binary cutoff 
values for iFR and 
Pd/Pa result in 
misclassification of 
1 in 5 lesions (iFR< 
0.90) 

Jeremias et 
al. 59 
RESOLVE 

iFR 1768 
pts 

Multicenter, 
non -
randomized, 

Coronary artery 
disease 
undergoing 

Evaluate the 
level of 
diagnostic 

iFR and Pd/Pa 
compared with FFR 
demonstrated an 
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retrospective 
study  
 

physiological 
lesion 
assessment by 
FFR  
 

accuracy of iFR 
and Pd/Pa 
compared with 
FFR 

overall accuracy of 
~80%  
for both  
(iFR <0.90) 

Götberg et al. 
61 
iFR-
SWEDEHEART 

iFR 2037 
pts 

Prospective, 
randomized 
study 

Patients with 
stable angina 
pectoris or 
acute coronary 
syndrome  
 

Noninferiority iFR 
compared FFR. 
The rate of a 
composite of 
death from any 
cause, nonfatal 
myocardial 
infarction, or 
unplanned 
revascularization  

iFR-guided 
revascularization 
strategy was non-
inferior to an FFR-
guided 
revascularization 
strategy with 
respect to the rate 
of MACE at 12 
months (iFR<0.89) 

Davies et al. 
62 
DEFINE-FLAIR 

iFR 2492 
pts 
 

Prospective, 
randomized 
 study 

CAD with at 
least one 
intermediate 
stenosis in a 
native artery 
 

1-year risk of 
MACE, which was 
a composite of 
death, nonfatal 
myocardial 
infarction, or 
unplanned 
revascularization. 

Coronary 
revascularization 
guided by iFR was 
noninferior to 
revascularization 
guided by FFR 
concerning the risk 
of MACE at 1-year 
(iFR<0.89) 

 
 
Table 1.  Main validation and outcome studies of FFR and iFR. 
CAD= coronary artery disease. iFR= instantaneous wave-free ratio. FFR= Fractional Flow Reserve. 
MACE= Major Adverse Cardiac Event. NSTEMI= Non ST Elevation Myocardial Infarction. Pts= 
patients  
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 fQFR cQFR aQFR 

Complete name Fixed Quantitative Flow 
Ratio 

Contrast Quantitative 
Flow Ratio 

Adenosine Quantitative 
Flow Ratio 

3D-QCA reconstruction 3D model 
reconstruction from 2 
angiographic 
projections  
with angles ≥ 25º apart, 
acquired by monoplane 
or biplane systems. 

3D model 
reconstruction from 2 
angiographic 
projections  
with angles ≥ 25º apart, 
acquired by monoplane 
or biplane systems. 

3D model 
reconstruction from 2 
angiographic 
projections  
with angles ≥ 25º apart, 
acquired by monoplane 
or biplane systems. 

 
 Flow 

velocities 

A fixed empiric HFV of 
0.35 m/s that was 
derived from previous 
FFR studies was used 
for computation. 

Frame count analysis is 
performed, without 
pharmacologically 
induced hyperemia, to 
derived the HFV. 

Frame count analysis is 
performed during 
hyperemia, induced by 
i.v. administration of 
adenosine. 

Correlation with FFR r= 0.69 r= 0.77 r=0.72 
Diagnostic accuracy for 

identifying an FFR 
of ≤0.80 

 
80% 

 
86% 

 
87% 

 
Table 2. Three different QFR computations in three different flow models. 
aQFR= adenosine Quantitative Flow Ratio. cQFR= contrast Quantitative Flow Ratio. fQFR= fixed 
Quantitative Flow Ratio. HFV =hyperemic flow velocity. i.v.= intravenous 
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 FFR iFR QFR 
Indication Intermediate coronary 

stenosis assessment. 
Intermediate coronary 
stenosis assessment. 

Intermediate coronary 
stenosis assessment. 

Guidelines 
recommendations 

Class IA10 Class IA3 -  

Pressure wire use Yes 18 Yes 57 No 70 
Hyperemia Needed 18 Not needed 57,58,60 Needed for aQFR 70 

3D-reconstruction No No Yes 
Cut-off value for ischemia <0.80 10,50 <0.8964 <0.80 73,74 

Hemodynamic principles PdHyperemia/PaHyperemia 
18,40 

Pdwave-free period/Pawave-free period 
57 

Fluid dynamic equations, 
emulating hyperaemic 
flow velocity 69 

Strengths Currently, the gold 
standard for coronary 
lesions assessment. 
Evidence from outcome 
studies. 

Adenosine not required. 
Supported by outcome 
studies. 

Non-invasive. Cheap. Not 
requiring pressure wire. 
No need for adenosine 
(cQFR only). Faster than 
FFR and iFR. 

Limits Invasive. Expensive. 
Use of pressure wire 
and adenosine.  

Invasive. Expensive. Use of 
pressure wire.  

No outcome studies are 
available.  

 
Table 3. Main features, strengths and limitations of FFR, iFR, and QFR.  
aQFR= adenosine Quantitative Flow Ratio. cQFR= contrast Quantitative Flow Ratio.  
iFR= instantaneous wave-free ratio. FFR= Fractional Flow Reserve. Pa= aortic pressure. Pd= 
pressure measured downstream the stenosis. QFR= Quantitative Flow Ratio.  
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Figure1 
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Figure2 
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Figure3 
 

 




