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Abstract: The clinical evidence for the success of tyrosine kinase inhibitors in combination with 

microtubule targeting agents prompted us to design and to develop single agents which possess both 

epidermal growth factor receptor (EGFR) kinase and tubulin polymerization inhibitory properties. A 

series of 6-aryl/heteroaryl-4-(3’,4’,5’-trimethoxyanilino)thieno[3,2-d]pyrimidine derivatives were 

discovered as novel dual tubulin polymerization and EGFR kinase inhibitors. The 4-(3’,4’,5’-

trimethoxyanilino)-6-(p-tolyl)thieno[3,2-d]pyrimidine derivative 6g was the most potent compound 

of the series as an antiproliferative agent, with IC50 values in the single- or double-digit nanomolar 

range. This derivative bound to the colchicine site of tubulin and inhibited tubulin polymerization at 

submicromolar concentrations and inhibited EGFR activity with an IC50 of 30 nM. Our data suggested 

that the excellent in vitro and in vivo profile of 6g may be derived from its dual inhibition of tubulin 

polymerization and EGFR kinase. 
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INTRODUCTION 

The microtubule system of eukaryotic cells involves the non-covalent polymerization of -and -

tubulin heterodimers and acts as an essential element of the cytoskeleton. Microtubules are crucial 

for a variety of fundamental cellular processes, including the formation of the mitotic spindle during 

mitosis, formation and maintenance of cell shape, organization of intracellular architecture, secretion, 

cellular transport, regulation of motility and organelle transport inside the cell.1 Given their 

significant role in these cellular functions, microtubules are an attractive molecular target for 

anticancer drug discovery and are still among the most reliable chemotherapeutics.2 Numerous 

chemically diverse antimitotic agents, many of which are natural products, interact specifically with 

tubulin and alter tubulin polymerization.3 Moreover, several small molecules inhibiting tubulin 

polymerization are able to damage the already existing vasculature in developing tumors, acting as 

vascular disrupting agents (VDAs).4 

Combretastatin A-4 (CA-4, 1a, Figure 1), isolated from the bark of the South African tree Combretum 

caffrum,5 is one of the well-known natural tubulin binding molecules affecting microtubule dynamics. 

CA-4 strongly inhibits the polymerization of tubulin by binding to the colchicine site.6 The disodium 

phosphate prodrug of CA-4 (CA-4P, 1b) is water-soluble, and there have been promising results with 

1b as a tumor VDA in phase II clinical trials.7 Its structural simplicity, along with its ability to 

selectively damage tumor neovasculature, makes CA-4 of great interest from the medicinal chemistry 

point of view.8 

A growing body of evidence showing that antimitotic agents, and in particular microtubule 

destabilizing drugs, have multiple effects beyond mitosis.9 Several lines of evidence suggested mixed 

mechanisms that are not so far fully understood to explain the activities of tubulin binding agents, 

and these mechanisms probably extend beyond simple antimitotic effects. Moreover, there is 

evidence that the efficacy of microtubule targeting agents also involve interphase effects.10  
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Figure 1. Structures of tubulin depolymerizing agents CA-4 and CA-4P and selected EGFR (2a-d) 

and VEGFR-2 (2e) tyrosine kinase inhibitors. 

The epidermal growth factor receptor (EGFR) is a trans-membrane bound tyrosine kinase involved 

in cellular signal-transduction pathways, and it plays a crucial role in the regulation of essential 

functions that affect tumor growth and progression. These include cell proliferation, differentiation, 

migration, apoptosis and angiogenesis.11 The EGFR is a component of the ErbB family, which 

consists of four receptors: the EGFR (ErbB1, HER1), the human epidermal growth factor receptor-2 

(HER2, ErbB-2), the human epidermal growth factor receptor-3 (HER3, ErbB3) and the human 

epidermal growth factor receptor-4 (HER4, ErbB4).12 Among the known receptor tyrosine kinases 

(RTKs), the ErbB family, in particular EGFR and HER2 have been extensively studied and clinically 

validated as targets for cancer therapies, being over-expressed in a wide number of human tumors 



 5 

and associated with cancer proliferation, angiogenesis and metastasis.13 In the absence of ligand, 

EGFR exists as monomers on the cell surface, while binding of ligand to EGFR leads to the formation 

of receptor homo- and heterodimers, depending on whether EGFR is dimerized with another EGFR 

or with other ErbB family members, respectively.14 There are currently eight drugs approved by the 

FDA targeting this family: four monoclonal antibodies (trastuzumab, cetuximab, panitumumab and 

pertuzumab) and four small-molecule inhibitors based on a central 4-aminoarylquinazoline core 

[Gefitinb (2a), erlotinib (2b), lapatinib (2c) and afatinib (2d)].15 These latter synthetic EGFR 

inhibitors have been approved by the FDA for the treatment of patients with non-small cell lung 

cancer (NSCLC).16 Unfortunately, the duration of benefit derived from tyrosine kinase inhibitor 

based-therapy is relatively short, due to the development of acquired resistance.17a The development 

of multi-targeted inhibitors represents a valid approach to overcome the acquired drug resistance to 

tyrosine kinase inhibitors.17b Twelve clinical trials were found on clinicaltrials.gov site (accessed in 

October 2018) in which the FDA approved the EGFR kinase inhibitors gefitinib, erlotinib and 

lapatinib being used in combination with the microtubule targeting agents docetaxel, vinorelbine, 

paclitaxel and other chemotherapeutic agents for the treatment of a variety of cancers including, lung 

cancer, head and neck cancer and hepatocellular carcinoma.18
 

A large number of thienopyrimidine derivatives have been reported to show remarkable antitumor 

activity against different cancer types by means of inhibiting multiple enzymes, as well as by 

modulating the activity of many receptors.19 In an effort to develop non-quinazoline EGFR inhibitors, 

using the strategy known as “scaffold hopping”, bioisosteric thieno[2,3-d]pyrimidine and thieno[3,2-

d]pyrimidine scaffolds have been reported as interesting structural elements employed for the 

development of novel EGFR or EGFR and vascular growth factor receptor-2 (VEGFR-2) dual 

inhibitors.20 

Munchhof et al. reported the design and structure-activity relationship (SAR) of a series of 6-aryl 

substituted thieno[3,2-d]pyrimidines with general structure 3, identified as VEGFR-2 and EGFR dual 

inhibitors (Figure 2).21 Kemnitzer and colleague reported the discovery of N-methyl-4-
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(methoxyanilino)thieno[3,2-d]pyrimidine 4 as a potent apoptosis inducer through inhibition of 

tubulin assembly, with IC50<1 M in the tubulin polymerization assay.22 This compound inhibited 

the growth of a panel of five cancer cell lines (T-47D, HT-29, H-1299, MX-1 and MDAAMB 435) 

with IC50 values ranging from 4 to 40 nM. Much research has been conducted on the structural 

modification of the thieno[3,2-d]pyrimidine skeleton, with the 4-, 6- and 7-positions as the main 

targets for chemical modifications to increase antitumor activity.23  

Lin et al. have also reported a series of 2,7-diaminothiazolo[4,5-d]pyrimidines with general formula 

5, with various structural modifications at the 2- and 7-positions, as potent EGFR inhibitors, with 

IC50 values ranging from micromolar to single digit nanomolar.24 Compound 5a, characterized by 

potent and selective EGFR activity (IC50: 12 nM), proved to be active in vitro as an antiproliferative 

agent against the human ovarian adenocarcinoma (SK-OV-3) cell line, with an IC50 of 0.57 M. 

Unfortunately, compound 5a showed no in vivo antitumor efficacy in a tumor xenograft model in 

nude mice.  

 

Figure 2. Chemical structures of representative thieno[3,2-d]pyrimidines and thiazolo[4,5-

d]pyrimidines as known tubulin polymerization (4) and EGFR kinase (3 and 5) inhibitors. 
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These results led us to start a pharmacophore exploration and optimization effort around the 

thieno[3,2-d]pyrimidine skeleton, which was maintained as the key scaffold for the discovery of new 

antitumor agents. We replaced the 5’-aminoindole side chain at the C-4 position of 6-

phenylthieno[2,3-d]pyrimidine derivatives with general structure 3 with a 3’,4’,5’-trimethoxyanilino 

moiety, to furnish a first series of 4-(3’,4’,5’-trimethoxyanilino)-6-aryl/heteroaryl thieno[3,2-

d]pyrimidine derivatives with general structure 6 (Figure 3). By maintaining the 3’,4’,5’-

trimethoxyanilino group at the 4-position, the first stage of our study was to evaluate the steric and 

electronic effects of different substituents on the benzene portion at the C-6 position of the 4-(3’,4’,5’-

trimethoxyanilino)thieno[2,3-d]pyrimidine nucleus. Besides the hydrogen, the examined substituents 

included electron withdrawing groups (EWGs), such as F, Cl, Br, I and NO2, and the electron 

releasing methyl and methoxy groups (ERGs). The bioisosteric replacement of phenyl with the thien-

2-yl ring was also explored.  

Because it is well known that the trimethoxyphenyl skeleton is the characteristic structural 

requirement to maximize the activity of a large series of inhibitors of tubulin polymerization 

inhibitors, such as colchicine, CA-4 and podophyllotoxin,25 all newly prepared compounds retain the 

3’,4’,5’-trimethoxyanilino moiety at the common C-4 position of the thieno[2,3-d]pyrimidine and 

isomeric thieno[3,2-d]pyrimidine nucleus, as well as at the C-7 position of the thiazolo[4,5-

d]pyrimidine system.  

In the second small series of compounds, the thiophene nucleus was replaced by the bioisosteric 

thiazole ring, to obtain the derivatives 7a-d, characterized by the presence of an anilino moiety at its 

C-7 position. The electron-withdrawing chlorine atom (7b) and the electron-releasing methyl and 

methoxy groups (7c and 7d, respectively) were introduced at the para-position of the phenyl portion 

of the anilino moiety.  

In a third series of compounds 8a-l, we explored the replacement of the thieno[3,2-d]pyrimidine 

system, which characterizes derivatives with general structure 6, by the isomeric thieno[2,3-

d]pyrimidine nucleus. The SAR was investigated by the insertion of different substituents (Cl, Me or 
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OMe) on the phenyl at the C-5 or C-6 positions of the 4-(3’,4’,5’-trimethoxyanilino)thieno[2,3-

d]pyrimidine core.  

 

Figure 3. Design strategy for thieno[3,2-d]pyrimidines 6a-j. Target compounds containing the 

thiazolo[4,5-d]pyrimidine (7a-d) and thieno[2,3-d]pyrimidine (8a-l) scaffolds. 
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These three series of compounds, obtained by replacing the thieno[3,2-d]pyrimidine scaffold with the 

isomeric thieno[2,3-d]pyrimidine and the bioisosteric thiazolo[4,5-d]pyrimidine skeletons, were 

designed to determine the potential of incorporating in a single molecule both VEGFR-2 and/or 

EGFR kinase inhibition and antitubulin activity.  

The biososteric replacement of the thiophene ring of the structure motif of the thieno[2,3-

d]pyrimidine nucleus with a furan or pyrrole provided two series of furo[2,3-d]pyrimidine and 

pyrrolo[3,2-d]pyrimidine derivatives, respectively, identified by Gangjee et al. as multitarget receptor 

tyrosine kinase and microtubule inhibitors.26-28 A literature search also revealed that recent studies 

have yielded different series of chemically diverse small molecules acting as EGFR kinase and 

tubulin polymerization inhibitors derived from anthranilic acid29 or benzo[b]furan30 or obtained by 

replacing the quinazoline core of compounds 2a-d with a quinazolinone31,32 or triazolo[4,3-

a]quinoxaline33 scaffold. 

RESULTS AND DISCUSSION 

Chemistry. Preparation of thieno[3,2-d] pyrimidine and thiazolo[4,5-d]pyrimidine derivatives 6a-j 

and 7a-d, respectively, was accomplished using the general convergent synthetic route shown in 

Scheme 1. Cyclization of methyl 5-aryl/heteroayl-3-aminothiophene-2-carboxylate and ethyl 2-

anilino-4-aminothiazole-5-carboxylate 9a-j and 9k-n, respectively, with formamide (HCONH2) 

yielded the corresponding 6-aryl/heteroaryl-thieno[3,2-d]pyrimidin-4(3H)-ones 10a-j and 2-

arylaminothiazolo[4,5-d]pyrimidin-7(6H)-ones 10k-n. The subsequent chlorination of the carbonyl 

group with phosphorus oxychloride (POCl3) provided 4-chlorothieno[3,2-d]pyrimidine and 7-

chlorothiazolo[4,5-d]pyrimidine derivatives 11a-j and 11k-n, respectively. Finally, the nucleophilic 

substitution with 3,4,5-trimethoxyaniline in refluxing isopropanol furnished the final compounds 6a-

j and 7a-d, respectively.  
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Scheme 1. Synthesis of thieno[3,2-d]pyrimidines 6a-j and thiazolo[4,5-d]pyrimidines 7a-da 

 

aReagents and conditions. a: HCONH2, 180 °C; b: POCl3, 110 °C; c: 3,4,5-trimethoxyaniline, 

isopropanol, reflux. 

The isomeric 4-(3’,4’,5’-trimethoxyanilino)-thieno[2,3-d]pyrimidine derivatives 8a-l were 

synthesized following the procedure reported in Scheme 2. Thieno[2,3-d]pyrimidin-4(3H)-one 

derivatives 13a-l variously substituted at their C-5 or C-6 position were prepared by the 

cyclocondensation of ethyl 2-aminothiophene-3-carboxylate derivatives 12a-l with HCONH2 at 180 

°C for 8-12 h. These intermediates were subjected to chlorination by the action of POCl3 at reflux to 

furnish the 4-chlorothieno[2,3-d]pyrimidine analogues 14a-l. The final step of the synthesis involved 

nucleophilic displacement of the 4-chloride atom of 14a-l with 3,4,5-trimethoxyaniline in refluxing 

isopropanol to obtain the 4-(3’,4’,5’-trimethoxyanilino)thieno[3,2-d]pyrimidine derivatives 8a-l.  

 

Scheme 2. Synthesis of thieno[2,3-d]pyrimidines (8a-l)a 
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aReagents and conditions. a: HCONH2, 180 °C; b: POCl3, 110 °C; c: 3,4,5-trimethoxyaniline, 

isopropanol, reflux. 

In vitro antiproliferative activities. Table 1 summarizes the antiproliferative effects of 4-(3’,4’,5’-

trimethoxyanilino)-6-substituted thieno[3,2-d]pyrimidine derivatives 6a-j against a panel of five 

human cancer cell lines [including EGFR wild-type (EGFRwt) NSCLC A549 cells], using CA-4 as 

the reference compound. The corresponding thieno[2,3-d]pyrimidine isomers 7a-d and the 2-anilino-

7-(3’,4’,5’-trimethoxyanilino)thiazolo[4,5-d]pyrimidine 8a-l were also evaluated for their activities 

on the same panel of cells, but because they were all inactive (IC50>10 M), with only a few 

exceptions on selected cancer cell lines (derivatives 6h, 6k and 6l), these biological data are presented 

in the Supplementary Information section as Table 1s and Table 2s, respectively.  

 

 

 

 

Table 1. In vitro cell growth inhibitory effects of compounds 6a-j and CA-4 
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Compound  

IC50 
a(M) 

A549 HeLa HT29 Jurkat RS4;11 

6a 2.3±0.7  0.17±0.02 0.35±0.06 0.01±0.006 0.26±0.10 

6b 5.1±1.9 1.7±0.8 0.21±0.07 0.08±0.03 0.36±0.1 

6c 13.5±3.0 0.45±0.09 1.9±0.8 0.26±0.04 1.9±0.3 

6d 0.60±0.11 0.09±0.03 0.087±0.033 0.003±0.001 0.005±0.002 

6e 0.53±0.16 0.22±0.09 0.15±0.04 0.03±0.005 0.19±0.04 

6f 0.77±0.26 0.28±0.15 0.25±0.13 0.30±0.06 0.17±0.04 

6g 0.019±0.008 0.001±0.0005 0.02±0.007 0.001±0.0005 0.002±0.001 

6h 0.43±0.13 0.17±0.08 0.06±0.04 0.005±0.001 0.004±0.001 

6i 8.8±1.9 3.2±0.1 3.3±0.8 3.0±1.0 5.4±1.3 

6j 1.1±0.3 4.9±1.4 6.3±1.4 2.0±0.3 1.3±0.4 

CA-4 0.18±0.05 0.004±0.0001 3.1±0.1 0.005±0.0001 0.001±0.0001 

 

aIC50= compound concentration required to inhibit tumor cell proliferation by 50%. Data are expressed as the mean ± 

SE from the dose-response curves of at least three independent experiments. 

The unsubstituted phenyl derivative 6a was weakly active (IC50: 2.3 M) against A549, moderately 

potent against HeLa, HT-29 and RS4;11 with IC50 values of 0.17, 0.35 and 0.26 M, respectively, 

but showed high activity (IC50: 10 nM) against Jurkat cells. The bioisosteric 2-thienyl analogue 6b 

was 2-, 8- and 10- fold less active than 6a against A549, Jurkat and HeLa cells, respectively, while 

the difference in potency between 6a and 6b was minimal in RS4;11 cells. Only in HT29 cells 6a 

was less active than 6b, with IC50 values of 0.35 and 0.21 M, respectively.  

The introduction of electron-releasing or electron-withdrawing substituents at the para-position of 

the phenyl ring at the C-6 position of the thieno[3,2-d]pyrimidine nucleus appeared to have 

considerable biological effects, enhancing antiproliferative activity compared with the unsubstituted 

phenyl analogue 6a. These compounds include the p-Cl (6d; IC50: 3-600 nM), p-Me (6g; IC50: 1-20 

nM) and p-OMe (6h; IC50: 4-430 nM) derivatives. The p-tolyl derivative 6g displayed the strongest 

growth inhibitory activity against A549, HeLa, HT29, Jurkat and RS4:11, with IC50 values of 19, 1, 

20, 1 and 2 nM, respectively.  
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The introduction of a fluorine atom at the para-position of the phenyl ring (compound 6c) caused a 

reduction of activity of 2-26-fold relative to the unsubstituted phenyl derivative 6a, while the presence 

of other halogen groups led to an improvement in antiproliferative activity. Increasing the size of 

halide from fluorine to chlorine, resulting in compound 6d, produced a 5- to 87-fold increase in 

antiproliferative activity in the five cell lines. Replacing chlorine with bromine (6e), reduced activity 

2-38-fold against four of the five cancer cell lines, but 6d and 6e were equally potent against A549 

cells. For the p-Br and p-I derivatives 6e and 6f, respectively, nearly identical activities were observed 

in three of the five cancer cell lines, the exception being the HT-29 and Jurkat cells, in which 6f was 

2- and 10-fold more potent than 6e, respectively.  

The small and weak electron-releasing methyl group at the para-position of the phenyl ring, to yield 

derivative 6g, improved significantly antiproliferative activity relative to 6a. Derivative 6g exhibited 

the greatest cell growth inhibitory effects among the tested compounds, with IC50 values of 1-20 nM 

against all cell lines, as compared with the range 0.8-3100 nM obtained with CA-4. Compound 6g 

was equipotent with CA-4 against RS4;11 cells, while it was from 2- to 1.5x105 times more active 

against the other four cancer cell lines.  

Replacement of the methyl group of 6g with a more electron-releasing methoxy group at the para-

position of the phenyl ring (compound 6h) resulted in a 2-170-fold reduction in antiproliferative 

activity against all cancer cell lines, indicating that the methyl and methoxy groups are not 

bioequivalent at the para-position of the phenyl ring. The reduction in activity was more evident, 23- 

and 170-fold, against A549 and HeLa, respectively, while only a 2-, 3- and 5-fold reduced activity 

was observed against RS4;11, HT-29 and Jurkat cells.  

Compound 6i, with a methoxy group at the meta-position of the phenyl ring, was one to four orders 

of magnitude less active than the para-methoxy isomer 6h, indicating that the position of the methoxy 

group was important for in vitro activity.  

Among the strong electron-withdrawing groups, the small polar nitro substituent, intermediate in size 

between chlorine and bromine, when placed in the para-position of the phenyl ring, furnished a 
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compound (6j) with reduced antiproliferative activity (IC50: 1.1-6.3 M) relative to the unsubstituted 

phenyl derivative 6a. 

Inhibition of tubulin polymerization and colchicine binding. To investigate whether the 

antiproliferative effects of these compounds were related to an interaction with tubulin, compounds 

6a-b and 6d-h were evaluated for inhibition of the polymerization of tubulin (Table 2). For 

comparison, CA-4 was examined in contemporaneous experiments as a reference compound. The 

same derivatives were also examined for inhibitory effects on the binding of [3H]colchicine to tubulin.  

Table 2. Inhibition of tubulin polymerization and colchicine binding by compounds 6a-b, 6d-h and 

CA-4 (1a) 

Compound 

Tubulin assemblya 

IC50±SD (M) 

Colchicine binding b 

% inhibition±SD 

6a 10±2 n.d. 

6b 18±1 n.d 

6d 3.3±0.3 36±3 

6e 2.5±0.3 35±4 

6f 2.5±0.2 35±2 

6g 0.71±0.05 76±0.7 

6h 2.8±0.2 31±3 

CA-4  1.2±0.1 98±0.7 

a Inhibition of tubulin polymerization. Tubulin was at 10 M. 
b Inhibition of [3H]colchicine binding. Tubulin, colchicine and tested compound were at 1, 5 and 5 M, respectively. 

n.d.: not determined 

Compounds 6e-h strongly inhibited tubulin assembly, with derivative 6g as the most active of the 

series, being almost 2-fold more active than CA-4 in this assay (IC50: 0.71 and 1.2 M for 6g and 

CA-4, respectively). Compounds 6e, 6f and 6h were half as active (IC50: 2.5, 2.5 and 2.8 M, 

respectively) and 6d about one-third as active (IC50: 3.3 M) as CA-4. Compounds 6a and 6b showed 

weak antitubulin polymerization activities (IC50: 10 and 18 M, respectively), which were consistent 

with their low antiproliferative activity. Thus, the order of inhibitory effects on tubulin 
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polymerization was 6g>CA-4>6e=6f=6h>6d>>6a>6b. This order of activity as inhibitors of tubulin 

assembly correlates well with their order of activity as antiproliferative agents.  

Inhibitory effects on colchicine binding studies were performed on compounds with tubulin assembly 

IC50  <5 M. Derivative 6g, the agent with the greatest antiproliferative activity, proved to be the 

most active inhibitor of the binding of [3H]colchicine to tubulin, since 46 and 76% inhibition occurred 

with this agent at 1 and 5 M, respectively. This compound was less potent than CA-4, which in these 

experiments inhibited colchicine binding by 86 and 98%, respectively, at 1 and 5 µM.  

For the tested compounds 6a-b and 6d-h, there was a positive correlation between inhibition of both 

tubulin assembly and colchicine binding and antiproliferative activity. These data are consistent with 

the conclusion that tubulin was an intracellular target of the tested compounds. 

EGFR and VEGFR-2 kinase inhibitory activity assay. Compounds 6a-b and 6d-h were further 

evaluated for their EGFR and VEGFR-2 kinase inhibitory activities. The approved VEGFR-2 and 

EGFR inhibitory agents sunitinib and erlotinib (2b), respectively, were used as positive controls. The 

data compiled in Table 3 showed potent inhibition of EGFRwt kinase by compounds 6a-b and 6f-h, 

but no inhibition of VEGFR-2 (IC50>1 M) was observed. All tested molecules, with the exception 

of 6d and 6e, were more potent than sunitinib as EGFR kinase inhibitors, with the 2-thienyl derivative 

6b as the most potent compound of the series. All evaluated molecules showed lower potency than 

erlotinib, with 6b about 1.7-fold less potent. Three of these compounds (6f-h) were discovered to 

possess dual EGFR and tubulin polymerization inhibitory activity, and a good correlation was 

observed between antiproliferative activities, inhibition of tubulin polymerization and inhibition of 

EGFR binding. 

Compound 6g, with the most potent effect on tubulin polymerization, also exhibited excellent EGFR 

inhibitory activity, with IC50 values of 0.71 M and 30 nM, respectively. In contrast, compound 6b, 

the most active compound as an EGFR inhibitor (IC50: 2.5 nM), was less potent as an inhibitor of 

tubulin polymerization (IC50: 18 M). As shown in Table 3, compounds 6d and 6e, showed moderate 
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EGFR inhibitory activities (IC50: 273 and 326 nM, respectively) and similar potent antitubulin 

potency (IC50: 3.3 and 2.5 M), while for compound 6h a good correlation was observed between 

both its EGFR and antitubulin activities. The SAR analysis derived from the antiproliferative 

activities of compounds 6d and 6e was more consistent with their tubulin inhibition activities, 

probably due to their potent inhibitory activities against tubulin polymerization but moderate 

activities against EGFR.  

Table 3. EGFR inhibitory activities by compounds 6a-b, 6e-h, sunitinib and erlotinib (2b) 

Compound 

Inhibition of EGFRwt 

kinasea 

IC50±SD (nM) 

6a 234 

6b 2.50.3 

6d 27335 

6e 32646 

6f 103 

6g 30±5 

6h 526 

Sunitinib (2e) 14019 

Erlotinib (2b) 1.52 

 
aValues are expressed as the mean ± SD from the dose-response curves of at least two independent experiments. 

Compound 6g induced inhibition of EGFR activation in HeLa cells. In order to test the inhibition 

on the phosphorylation of EGFR and the downstream signaling pathway, we evaluated by western 

blot analysis the inhibition of EGFR phosphorylation by 6g in HeLa cells. The cells were treated with 

different concentration of 6g (10-1000 nM) and then stimulated with epidermal growth factor (EGF) 

(50 ng/mL) for 15 min. The results (Figure 4) showed that 6g strongly inhibited the phosphorylation 

of EGFR in a concentration dependent manner starting at 50 nM. Erlotinib (1 µM) was taken as 

reference compound, and erlotinib showed similar inhibitory activity as compound 6g. These results 
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demonstrated that 6g, in addition to its antimitotic activity (see below), is also a potent EGFR 

inhibitor. 

 

Figure 4. Effects of 6g on EGFR signaling in HeLa cells. Cells were treated with the indicated 

concentrations of 6g for 6 h and then stimulated by EGF (30 ng/mL) for 15 min. Cells were harvested 

for Western blot analysis for both EGFR and its phosphorylation at Y1068. Erlotinib (Erl) was used 

as the reference compound. To confirm equal protein loading, each membrane was stripped and 

reprobed with anti--actin antibody. 

Molecular modeling. A series of docking simulations were conducted on the newly designed 4-

(3’,4’,5’-trimethoxyanilino)-6-substituted thieno[3,2-d]pyrimidines to evaluate their potential 

interaction with the colchicine site of tubulin.34 The results showed that the compounds are placed in 

the active site in a similar manner as the co-crystallized N-deacetyl-N-(2-mercaptoacetyl)-colchicine 

(DAMA-colchicine), and the binding mode is consistent with the one previously reported for a 

thieno[2,3-b]pyridine series,35 with the trimethoxyphenyl group in proximity of Cys241. The 

thieno[3,2-d]pyrimidine core overlapped with the central part of DAMA-colchicine, with the 

substituted phenyl ring placed in a small hydrophobic sub-pocket, potentially interacting with the 

surrounding amino acids βThr314, βVal181 and especially βMet259. This small sub-pocket can 

accommodate the different substituted phenyl rings, but only the para methyl derivative 6g has the 

correct combination of size/electronic properties to stably occupying and properly fit that area of the 

binding site (Figure 5C), suggesting a better inhibition of tubulin assembly. Replacement with a larger 
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methoxy group (6h) does not allow the efficient occupation of the sub-pocket, indicating a potential 

reduction of the inhibition of tubulin polymerization. A similar decrease in activity is seen when the 

methyl group is replaced by different electron withdrawing atoms (6d-f), but in this case the decrease 

in activity could be associated with the electronic properties of the substituent rather than its size, 

since they can occupy the sub-pocket very similarly to 6g (Figure 5B). Compounds where the para 

substituent has been removed (6a) or the phenyl ring has been replaced with a smaller 5-member 

thiophene ring, do not entirely fill the sub-pocket, potentially causing the 10-18 fold activity reduction 

found for these derivatives (Figure 5A).   

 

Figure 5. Proposed binding modes for compounds 6b (A), 6e (B) and 6g (C) in comparison with 

DAMA-colchicine in the colchicine site (PDB ID: 1SA0). Carbons of the co-crystallized DAMA-

colchicine are shown in green, of compound 6b in purple, of compound 6e in orange and of compound 

6g in turquoise. The residues from the -tubulin chain are shown in salmon, whereas residues from 

β-tubulin are colored in teal. The sub-pocket is highlighted with a red surface. 
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In an attempt to clarify the potential binding mode of the new derivatives in the EGFR kinase domain, 

docking of the new molecules was performed using the crystal structure of the EGFR kinase domain 

in complex with the inhibitor (R)-6-(4-((4-ethylpiperazin-1-yl)methyl)phenyl)-N-(1-phenylethyl)-

7H-pyrrolo[2,3-d]pyrimidin-4-amine (AEE788).36 The 6-phenyl-thieno[3,2-d]pyrimidine core of the 

molecules perfectly overlaps with the phenyl pyrrolo[2,3-d]pyrimidine core of the co-crystallized 

inhibitor, making the same interactions with Gln791, Met793 and Leu844 that seem to anchor the 

molecule to the binding site (Figure 6). The trimethoxyphenyl group is placed in the same area 

occupied by the methyl moiety of AEE788, in proximity of Asp855.  

 

Figure 6. Proposed binding modes for compounds 6b (A) and 6e (B) in comparison with the inhibitor 

AEE788 in the crystal structure of the EGFR kinase domain (PDB ID: 2J6M). The carbons of the co-

crystallized AEE788 are shown in green, of compound 6b in purple and of compound 6e in orange. 

The phenyl ring of 6e and the thiophene of 6b are not involved in any interaction with the surrounding 

residues. 
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Overall, the binding mode proposed for these compounds is very similar to that of the co-crystallized 

ligand and also to another previously published thienopyrimidine EGFR inhibitor.23 All the new 

compounds occupy the active site in an identical manner. However, from these results, it is not 

possible to fully rationalize the role of the substitution on the phenyl ring in the anti-EGFR activity, 

since that part of the molecule does not seem to be involved in any specific interactions with the 

binding pocket. 

Effects of compound 6g on the cell cycle. The effect of the most active compound (6g) on cell cycle 

progression was examined by flow cytometry in Hela and Jurkat cells (Figure 7). After a 24 h 

treatment, the compound induced a G2/M arrest in both cell lines cells even at 25 nM. A concomitant 

reduction of cells in both the S and G1 phases was also observed. In order to determine whether 6g 

was able to block cells at the mitotic phase (M), cells were stained with an immunofluorescent 

antibody to p-histone H3, a well-known mitotic marker,37 as well as propidium iodide (PI), and 

analyzed by flow cytometry. As shown in Figure 7 (Panel C), in which representative histograms are 

presented, HeLa cells arrested in M phase by treatment with 6g are readily distinguished from G2 

cells by the higher level of p-histone H3. In particular, treatment with 6g induced an increase in the 

percentage of mitotic cells from the about 1.5% observed in untreated cells to about 38% and 50 % 

with 50 and 100 nM concentrations, respectively, at 24 h (Figure 7, Panel C). 

Compound 6g induced apoptosis in different cell lines. To evaluate the mode of cell death induced 

by the test compounds, we performed a bi-parametric cytofluorimetric analysis using PI and annexin-

V-FITC, which stain DNA and phosphatidylserine (PS) residues, respectively. We used two cell lines, 

Hela and Jurkat, in which we evaluated the effects of compound 6g after both 24 and 48 h treatments. 

As shown in Figure 8, in both cell lines, the compound induced apoptosis in a time and concentration 

dependent manner. The apoptotic effect of 6g was evident at the lowest concentration examined (50 

nM), in good agreement with the cytotoxic potency shown in the (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) test (Table 1). 
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Figure 7. Percentage of cells in each phase of the cell cycle in HeLa (Panel A) and Jurkat cells (Panel 

B) treated with compound 6g at the indicated concentrations for 24 h. Cells were fixed and labeled 

with PI and analyzed by flow cytometry as described in the Experimental Section. Data are presented 

as mean±SEM of three independent experiments. Representative flow cytometric patterns of mitotic 

cells with phosphorylated histone-H3 (Panel C) and histograms showing quantitative comparisons 

(Panel D) after treatment with 6g at the indicated concentrations in HeLa cells. Data are presented as 

mean±SEM of two independent experiments. 
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Figure 8. Flow cytometric analysis of apoptotic cells after treatment of HeLa (Panels A and B) and 

Jurkat (Panels C and D) cells with 6g at the indicated concentrations after incubation for 24 (Panels A 

and C) or 48 h (Panels B and D). The cells were harvested and labeled with annexin-V-FITC and PI and 

analyzed by flow cytometry. 

Compound 6g induced mitochondrial depolarization and the production of reactive oxygen 

species (ROS). Mitochondria play an essential role in the propagation of apoptosis.38,39 In fact, it is 

well established that, at an early stage, apoptotic stimuli alter the mitochondrial transmembrane 

potential (mt). We therefore evaluated by flow cytometry, using the fluorescent dye 5,5’,6,6’-

tetrachloro-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine (JC-1), the variation in mt upon 

treatment of HeLa cells with compound 6g. As shown in Figure 9 (Panel A), cells treated with 

different concentration of 6g (50, 100 and 250 nM) showed a concentration- and a time-dependent 

increase in the percentage of cells with low mt. The depolarization of the mitochondrial membrane 

is already evident at early times of drug exposure (3-6 h), in good agreement with the concept that 

the dissipation of mt is an early event characteristic of apoptosis observed with many microtubule 

A B 

C D 
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stabilizing and destabilizing agents in different cell types.40-42 Since the mitochondrial membrane 

depolarization is associated with the mitochondrial production of ROS,43 we investigated whether 

ROS production increased after treatment with 6g. As shown in Figure 9 (Panel B) compound 6g 

induced significant production of ROS starting at 12-24 h of treatment at 50-250 nM, in good 

agreement with the mitochondrial depolarization described above. 
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Figure 9. Assessment of mitochondrial membrane potential (mt) (Panel A) and production of ROS 

(Panel B) after treatment of HeLa cells with compound 6g. Cells were treated with the indicated 

concentration of compound for 3, 6, 12 and 24 h and then stained with the fluorescent probe JC-1 for 

analysis of mitochondrial potential or with 2,7-dichlorodihydrofluorescein diacetate (H2-DCFDA) 
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for the evaluation of ROS levels. Cells were then analyzed by flow cytometry as described in the 

experimental section. 

Compound 6g induced PARP activation and caused a decrease in the expression of anti-

apoptotic proteins. To gain a better insight into the mechanism of action of 6g, we evaluated the 

cleavage of poly(ADP-ribose) polymerase (PARP) during the apoptotic process induced by this 

compound. As shown in Figure 10, compound 6g in HeLa cells caused a concentration and time-

dependent cleavage of PARP, confirming its pro-apoptotic activity. Moreover, the expression of two 

anti-apoptotic proteins, Bcl-2 and Mcl-1, was also studied.44,45 Immunoblot analysis, shown in Figure 

10, demonstrated that the expression of the anti-apoptotic protein Bcl-2 was decreased starting after 

a 24 h treatment at both 50 and 100 nM. The decrease in expression of Mcl-1 was even greater, both 

at the lowest concentration and after the 24 h treatment. 

 

Figure 10. Western blot analysis of PARP, Bcl-2 and Mcl-1 after treatment of HeLa cells with 6g at 

the indicated concentrations and for the indicated times. To confirm equal protein loading, each 

membrane was stripped and reprobed with anti--actin antibody. 
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Derivative 6g had antivascular effects in vitro. Recent antitumor strategies have included the use 

of chemotherapeutics with antiangiogenic or antivascular drugs to increase the efficacy of the 

treatment,4 and, in this context, many tubulin binding agents show antivascular effects against tumor 

endothelium,46-49 including CA-4. For that reason, we evaluated 6g for its effects on endothelial cells 

utilizing HUVECs as a model to study angiogenesis in vitro.  

To evaluate the antivascular activity of 6g, we analyzed the ability of the compound to disrupt the 

“tubule-like” structures formed by HUVECs seeded on Matrigel. Matrigel is an extracellular matrix 

rich in pro-angiogenic factors that stimulate single endothelial cells to assume an extended shape and 

produce a reticulum similar to a capillary network. Preliminary experiments carried out on these cells, 

with the aim to evaluate the cytotoxicity of the test compound, indicated that 6g has a GI50 of 56 nM, 

after a 48 h treatment. Thus to evaluate antivascular activity, we used a concentration of 6g that did 

not induce cellular death. 

As shown in Figure 11 (Panel A), just after a 1 h incubation, compound 6g at the the noncytotoxic 

concentration of 10 nM, as well as the cytotoxic concentration of 100 nM, clearly disrupted the 

network of HUVECs, as compared with the control. Image analysis49 was performed to obtain a 

quantitative measurement of the total length of the tubules, the area and the number of meshes, the 

percent of area covered by HUVECs, and the number of branching points after a 1 h treatment (Figure 

11, Panels B-G). The results showed for segment length and meshes area a statistically significant 

effect for the lowest concentration used, suggesting, the high potential vascular disrupting activity of 

6g. 
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Figure 11. Inhibition of endothelial cell capillary-like tubules formation by 6g. Tubules formation 

on Matrigel was carried out as described in Materials and Methods. Panel A. Representative pictures 

of preformed capillary-like tubules treated with 6g for 1 h at the concentrations of 10 nM and 100 

nM, (add comma) respectively.  Panels B-G. quantitative analysis of the effects of 6g on the 

dimensional and topological parameters of the preformed capillary-like tubules network. Data are 

represented as mean ± S.E.M. of three independent experiments. **p<0.01; ***p<0.001   
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6g induced tumor growth reduction in a mouse allograft tumor model. To evaluate its antitumor 

effect in vivo, 6g was administered by the intraperitoneal route every other day, starting at day 9, at 

two different doses (3.0 and 7.5 mg/kg) in an allograft tumor model developed in mice.50,51 As 

reference compound, CA-4P was used at 30 mg/kg. This model consists of the use of B16 murine 

melanoma cells that are injected in the flank of individual mice. This melanoma cell line was selected 

because it expresses high levels of EGFR.52 Moreover, in preliminary experiments, we also verified 

the effectiveness of 6g on this murine tumor line. The compound had an IC50 of 23.4 ± 3.8 nM 

measured by the MTT assay, indicating that its cytotoxic potency was similar to that found in the 

human tumor cell lines (see Table 1). 

 

Figure 12. Inhibition of mouse allograft growth in vivo by compound 6g. Male C57BL/6 mice were 

injected subcutaneously at their dorsal region with 2.5x105 BL6-B16 murine melanoma cells. Tumor-

bearing mice were administered the vehicle, as control, or 3 or 7.5 mg/kg of 6g or 30 mg/kg of CA-4P as 

reference compound. Injections were given intraperitoneally at the days indicated by the arrows. B) Body 

weight variation after treatment with compound 6g as described above. Data are presented as mean ± SEM of 

tumor volume at each time point for 5 animals per group. *p<0.05,  ***p<0.001 vs. control. 

As shown in Figure 12 (Panel A), after six days of treatment (doses administered on days 9, 11, 13 

and 15), 6g was able to significantly reduce tumor burden in a dose-dependent manner, even at the 

lowest dose tested (3.0 mg/kg). We observed reduction of tumor mass of 28.0, and 52.5% at the doses 

B A 
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of 3.0 and 7.5 mg/kg, respectively. The reference compound CA-4P at 30 mg/kg induced 34.9% 

reduction of tumor mass. Notably, the in vivo efficacy clearly indicates an increased antitumor 

efficacy of 6g as compared with CA-4P. Even at the highest dose, 6g did not show any sign of toxicity 

and did not cause a decrease in animal body weight (Figure 12, Panel B). 

Conclusions 

An effective strategy to develop anticancer agents is the discovery of synergistic multi-targeting 

properties of new molecules. The thiophene ring has been employed as an isostere for benzene-fused 

pyrimidines in the design of molecules that possess tyrosine kinase inhibitory activity. In this study 

we report the design and synthesis of a new series 4-(3’,4’,5’-trimethoxyanilino)-6-substituted 

thieno[3,2-d]pyrimidines, some of which possess both tubulin polymerization and EGFR kinase 

inhibitory properties. Structural optimization was conducted with variation in the electron-releasing 

or electron-withdrawing group on the phenyl at the C-6 position of the 4-(3’,4’,5’-trimethoxyanilino)-

thieno[3,2-d]pyrimidine system.  

The data shown in Table 1 indicated the importance of substituents on the phenyl at the C-6 position 

of 4-(3’,4’,5’-trimethoxyanilino)thieno[3,2-d]pyrimidine system for activity and selectivity against 

different cancer cell lines. Three of the 4-(3’,4’,5’-trimethoxyanilino)-6-substituted thieno[3,2-

d]pyrimidine derivatives, corresponding to p-Cl (6d), p-Me (6g) and p-OMe (6h) analogues were 

more active than the rest of the derivatives, with IC50 values of, respectively, 3-600, 1-20 nM and 4-

430 nM in the five cell lines. The 4-(3’,4’,5’-trimethoxyanilino)-6-(p-tolyl)thieno[3,2-d]pyrimidine 

derivative 6g was the most potent compound of the whole series, exhibiting an IC50 value of 19 nM 

against the NSCLC A549 cell line, which harbors EGFRWT and K-ras mutations. Comparing the p-

tolyl derivative 6g with the p-methoxy phenyl compound 6h, the latter was 2-170-fold less active 

than 6g, with the greatest differences in activity being 23- and 170-fold in A549 and Hela cells, 

respectively.  
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The corresponding thieno[2,3-d]pyrimidine isomers and the 2-anilino-7-(3’,4’,5’-

trimethoxyanilino)thiazolo[4,5-d]pyrimidine derivatives generally had little activity, with IC50 values 

usually greater than 10 M. There was a considerable difference in potency between 4-(3’,4’,5’-

trimethoxyanilino)-6-arylthieno[3,2-d]pyrimidine derivatives 6a, 6d (p-Cl), 6g (p-Me) and 6h (p-

OMe) and the regioisomeric 4-(3’,4’,5’-trimethoxyanilino)-6-arylthieno[2,3-d]pyrimidine analogues 

8d, 8f, 8i and 8k, respectively, with these latter being considerably less active than the former in all 

cancer cell lines examined.  

The inhibitory activity against EGFR and VEGFR-2 kinases of selected compounds 6a-b and 6d-h 

showed that these molecules were selective EGFR inhibitors. Compounds 6f-h inhibited both EGFR 

kinase and tubulin polymerization, while derivative 6b only inhibited EGFR kinase. Compounds 6a-

b and 6d-h showed lower potency than erlotinib, with derivative 6b having the greatest inhibitory 

activity against EGFR kinase, being only slightly less potent than erlotinib (IC50: 2.5 and 1.5 nM, 

respectively). Besides its potent antiproliferative activity and high competitive inhibitory activity on 

EGFR, compound 6g is also an inhibitor of tubulin polymerization through binding to the colchicine 

site of tubulin, combining EGFR inhibition with antitubulin activity. The IC50 of 0.7 M obtained 

with 6g in the tubulin banding assay was almost half that obtained in simultaneous experiments with 

CA-4 (IC50: 1.2 M)  

In our results with compounds 6f-h there was a high correlation between the in vitro antiproliferative 

activity against the cancer cell lines and inhibition of tubulin polymerization and EGFR kinase, which 

suggested that targeting both tubulin and EGFR kinase played major roles in the cancer cell growth 

inhibitory effects of these three molecules. 

Experimental Section 

1. Chemistry. 1.1. Materials and Methods. 1H and 13C NMR data were obtained with a Varian VXR 

200 spectrometer and a Varian Mercury Plus 400 spectrometer, respectively. Peak positions are given 

in parts per million () downfield, and J values are given in hertz. Mass spectra were recorded by an 
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ESI single quadrupole mass spectrometer Waters ZQ 2000 (Waters instruments UK), and the values 

are expressed as [M+1]+. Melting points (mp) were determined on a Buchi-Tottoli apparatus and are 

uncorrected. The purity of tested compounds was determined by combustion elemental analyses 

conducted by the Microanalytical Laboratory of the Department of Chemistry and Pharmaceutical 

Sciences of the University of Ferrara with a Yanagimoto MT-5 CHN recorder elemental analyzer. 

All tested compounds yielded data consistent with a purity of at least 95% as compared with the 

theoretical values. TLC was carried out using glass plates coated with silica gel 60 F254 by Merck, 

and compounds were visualized by UV detection or with aqueous KMnO4. Flash column 

chromatography was performed using 230-400 mesh silica gel and the indicated solvent system. 

Organic solutions were dried over anhydrous Na2SO4. Solvents and reagents that are commercially 

available were purchased from Aldrich (Sigma-Aldrich) or Alfa Aesar (Johnson Matthey Company) 

and were used without further purification unless otherwise noted. Compounds 12a and 12b are 

commercially available. General procedures and references related to the preparation of methyl 3-

aminothiophene-5-aryl/heteroaryl-2-carboxylate 9a-j, ethyl 5-amino-2-anilinothiazole-4-carboxylate 

9k-n and ethyl 2-aminothiophene-3-carboxylate derivatives 12c-l are reported in the Supporting 

Information section. Active compounds were not recognized as PAINS according to the Free ADME-

Tox Filtering Tool (FAF-Drugs4) program (http://fafdrugs4.mti.univ-paris-diderot.fr/). 

1.2. General procedure A for the preparation of compounds 10a-n and 13a-l. A mixture of the 

appropriate methyl 3-aminothiophene-5-aryl/heteroaryl-2-carboxylate 9a-j, ethyl 5-amino-2-

anilinothiazole-4-carboxylate 9k-n or ethyl 2-aminothiophene-3-carboxylate derivatives 12a-l (10 

mmol) and formamide (15 mL) was heated at 180 °C for 18 h. After cooling to room temperature, 

cooled water (15 mL) was added to the reaction mixture. The solid was removed by filtration, washed 

with water and dried under vacuum for 12 h. The crude residue was suspended in ethyl ether, stirred 

for 30 min and filtered. The solid was used for the next reaction without further purification. 
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6-Phenylthieno[3,2-d]pyrimidin-4(3H)-one (10a). Following general procedure A, compound 10a 

was obtained as a yellow solid. Yield: 71%, mp 294 °C. 1H-NMR (d6-DMSO) : 7.48 (m, 3H), 7.35 

(m, 3H), 8.17 (s, 1H), 12.6 (bs, 1H). MS (ESI): [M+1]+=229.3. 

6-(Thiophen-2-yl)thieno[3,2-d]pyrimidin-4(3H)-one (10b). Following general procedure A, 

compound 10b was obtained as a black solid. Yield: 95%, mp 170 °C. 1H-NMR (d6-DMSO) : 7.63 

(dd, J=2.6 and 1,6 Hz, 1H), 7.74 (dd, J=2.6 and 1,6 Hz, 1H), 8.01 (s, 1H), 8.10 (m, 1H), 8.15 (s, 1H), 

12.2 (bs, 1H). MS (ESI): [M+1]+=235.3. 

6-(4-Fluorophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10c). Following general procedure A, 

compound 10c was obtained as a brown solid. Yield: 81%, mp >300 °C. 1H-NMR (d6-DMSO) : 

7.34 (d, J=8.8 Hz, 2H), 7.83 (s, 1H), 7.93 (m, 2H), 8.17 (s, 1H), 12.6 (bs, 1H). MS (ESI): 

[M+1]+=247.3.  

6-(4-Chlorophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10d). Following general procedure A, 

compound 10d was obtained as a brown solid. Yield: 89%, mp >300 °C. 1H-NMR (d6-DMSO) : 

7.54 (d, J=8.8 Hz, 2H), 7.87 (m, 3H), 8.17 (s, 1H), 11.6 (bs, 1H). MS (ESI): [M+1]+=263.7. 

6-(4-Bromophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10e). Following general procedure A, 

compound 10e was obtained as a yellow solid. Yield: 78%, mp >300 °C.1H-NMR (d6-DMSO) : 7.67 

(d, J=8.6 Hz, 2H), 7.80 (d, J=8.6 Hz, 2H), 7.90 (s, 1H), 8.17 (s, 1H), 12.6 (bs, 1H). MS (ESI): 

[M+1]+=308.2.  

6-(4-Iodophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10f). Following general procedure A, 

compound 10f was obtained as a yellow solid. Yield: 95%, mp >300 °C. 1H-NMR (d6-DMSO) : 

7.63 (d, J=8.8 Hz, 2H), 7.87 (m, 3H), 8.17 (s, 1H), 11.4 (bs, 1H). MS (ESI): [M+1]+=279.7.  
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6-(4-Tolyl)thieno[3,2-d]pyrimidin-4(3H)-one (10g). Following general procedure A, compound 10g 

was obtained as a brown solid. Yield: 83%, mp >300 °C. 1H-NMR (d6-DMSO) : 2.36 (s, 3H), 7.29 

(d, J=7.8 Hz, 2H), 7.73 (m, 3H), 8.15 (s, 1H), 12.5 (bs, 1H). MS (ESI): [M+1]+=243.3.  

6-(4-Methoxyphenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10h). Following general procedure A, 

compound 10h was obtained as a brown solid. Yield: >95%, mp >300 °C. 1H-NMR (d6-DMSO) : 

3.82 (s, 3H), 7.03 (d, J=8.8 Hz, 2H), 7.71 (s, 1H), 7.78 (d, J=8.8 Hz, 2H), 8.14 (s, 1H), 11.8 (bs, 1H). 

MS (ESI): [M+1]+=259.3.  

6-(3-Methoxyphenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10i). Following general procedure A, 

compound 10i was obtained as a brown solid. Yield: >95%, mp 212 °C. 1H-NMR (d6-DMSO) : 3.84 

(s, 3H), 7.04 (m, 1H), 7.39 (m, 2H), 7.88 (s, 1H), 7.94 (d, J=8.6 Hz, 1H), 8.17 (s, 1H), 12.0 (bs, 1H). 

MS (ESI): [M+1]+=259.3. 

6-(4-Nitrophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10j). Following general procedure A, 

compound 10j was obtained as a brown solid. Yield: >95% yield, mp >300 °C. 1H-NMR (d6-DMSO) 

: 7.18 (d, J=8.8 Hz, 2H), 7.43 (d, J=8.8 Hz, 2H), 7.94 (s, 1H), 10.5 (bs, 1H), 11.4 (bs, 1H). MS (ESI): 

[M+1]+=274.3. 

1.3. General procedure B for the preparation of compounds 11a-n and 14a-l. A mixture of the 

appropriate thieno[3,2-d]pyrimidin-4(3H)-one 10a-j, thiazolo[4,5-d]pyrimidin-7(6H)-one 10k-n or 

thieno[2,3-d]pyrimidin-4(3H)-one 13a-l (5 mmol) and POCl3 (30 mL) with 2-3 drops of DMF was 

refluxed for 6 h. The mixture was cooled, POCl3 was removed under vacuum, the residue obtained 

was poured into a saturated solution of NaHCO3 and the suspension neutralized with solid NaHCO3. 

The mixture was extracted with dichloromethane, the organic phase washed with water, brine, dried 

over Na2SO4 and concentrated in vacuo. The crude product was stirred for 15 min with ethyl ether 

(15 mL), and the desired product was obtained after removal of the ether by filtration. 
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4-Chloro-6-phenylthieno[3,2-d]pyrimidine (11a). Following general procedure B, compound 11a 

was obtained as a brown solid. Yield: 71%, mp 152 °C. 1H-NMR (d6-DMSO) : 7.57 (m, 3H), 6.01 

(m, 2H), 8.25 (s, 1H), 9.03 (s, 1H). MS (ESI): [M+1]+=247.7.  

4-Chloro-6-(thiophen-2-yl)thieno[3,2-d]pyrimidine (11b). Following general procedure B, 

compound 11b was obtained as an orange solid. Yield: 60%, mp 176 °C. 1H-NMR (d6-DMSO) : 

7.79 (m, 2H), 8.11 (s, 1H), 8.36 (dd, J=2.6 and 1,6 Hz, 1H), 9.00 (s, 1H). MS (ESI): [M+1]+=252.7.  

4-Chloro-6-(4-fluorophenyl)thieno[3,2-d]pyrimidine (11c). Following general procedure B, 

compound 11c was obtained as a brown solid. Yield: 83%, mp >300 °C. 1H-NMR (CDCl3) : 7.37 

(d, J=8.8 Hz, 2H), 8.04 (m, 2H), 8.11 (s, 1H), 9.03 (s, 1H). MS (ESI): [M+1]+=265.7.  

4-Chloro-6-(4-chlorophenyl)thieno[3,2-d]pyrimidine (11d). Following general procedure B, 

compound 11d was obtained as a yellow solid. Yield: 68%, mp 188 °C.1H-NMR (CDCl3) : 7.47 (d, 

J=8.8 Hz, 2H), 7.69 (m, 3H), 8.96 (s, 1H). MS (ESI): [M+1]+=282.2.  

6-(4-Bromophenyl)-4-chlorothieno[3,2-d]pyrimidine (11e). Following general procedure B, 

compound 11e was obtained as a yellow solid. Yield: 55%, mp 201 °C. 1H-NMR (d6-DMSO) : 7.75 

(d, J=9.0 Hz, 2H), 7.93 (d, J=9.0 Hz, 2H), 8,29 (s, 1H), 9.04 (s, 1H). MS (ESI): [M+1]+=326.6. 

4-Chloro-6-(4-iodophenyl)thieno[3,2-d]pyrimidine (11f). Following general procedure B, compound 

11f was obtained as a yellow solid. Yield: 54%, mp >300 °C. 1H-NMR (CDCl3) : 7.81 (d, J=8.4 Hz, 

2H), 7.95 (d, J=8.4 Hz, 2H), 8.29 (s, 1H), 9.04 (s, 1H). MS (ESI): [M+1]+=373.6. 

4-Chloro-6-(p-tolyl)thieno[3,2-d]pyrimidine (11g). Following general procedure B, compound 11g 

was obtained as a brown solid. Yield: 84%, mp >300 °C. 1H-NMR (d6-DMSO) : 2.39 (s, 3H), 7.36 

(d, J=7.8 Hz, 2H), 7.87 (d, J=7.8 Hz, 2H), 8.18 (s, 1H), 9.01 (s, 1H). MS (ESI): [M+1]+=261.7.  
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4-Chloro-6-(4-methoxyphenyl)thieno[3,2-d]pyrimidine (11h). Following general procedure B, 

compound 11h was obtained as a yellow solid. Yield: 72%, mp 181 °C. 1H-NMR (CDCl3) : 3.89 (s, 

3H), 7.04 (d, J=8.8 Hz, 2H), 7.69 (s, 1H), 7.71 (d, J=8.8 Hz, 2H), 8.93 (s, 1H). MS (ESI): 

[M+1]+=277.7. 

4-Chloro-6-(3-methoxyphenyl)thieno[3,2-d]pyrimidine (11i). Following general procedure B, 

compound 11i was obtained as a brown solid. Yield: 61%, mp 153 °C. 1H-NMR (CDCl3) : 3.87 (s, 

3H), 7.14 (m, 1H), 7.76 (m, 3H), 8.29 (s, 1H), 9.04 (s, 1H). MS (ESI): [M+1]+=277.7.  

4-Chloro-6-(4-nitrophenyl)thieno[3,2-d]pyrimidine (11j). Following general procedure B, 

compound 11j was obtained as an orange solid. Yield: >95%, mp >300 °C. 1H-NMR (d6-DMSO) : 

8.32 (d, J=8.8 Hz, 2H), 8.36 (d, J=8.8 Hz, 2H), 8.51 (s, 1H), 9.10 (s, 1H). MS (ESI): [M+1]+=292.7.  

1.4. General procedure C for the synthesis of compounds 6a-j, 7a-d and 8a-l. A mixture of the 

appropriate 4-chlorothieno[3,2-d]pyrimidine 11a-j, 7-chlorothiazolo[4,5-d]pyrimidine 11k-n or 4-

chlorothieno[2,3-d]pyrimidine 14a-l (1 mmol) and 3,4,5-trimethoxyaniline (2 mmol, 366 mg, 2 

equiv.) in iso-propanol (5 mL) with a drop of concentrated HCl was refluxed for 18 h and then 

evaporated to dryness in vacuo. The residue was dissolved with dichloromethane, and the organic 

solution was washed with water, followed by brine, and dried over Na2SO4, and the solvent was 

evaporated. The crude residue was purified by column chromatography on silica gel to furnish the 

desired compound. 

6-Phenyl-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6a). Following general 

procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, 

to furnish 6a as a yellow solid. Yield: 80%, mp 176 °C. 1H-NMR (d6-DMSO) : 3.67 (s, 3H), 3.79 

(s, 6H), 7.22 (s, 2H), 7.51 (m, 3H), 7.85 (m, 2H), 7.90 (s, 1H), 8.59 (s, 1H), 9.64 (s, 1H). 13C-NMR 

(d6-DMSO) : 55.84 (2C), 60.16, 100.17 (2C), 114.74, 120.50, 126,26 (2C), 129.42 (2C), 129.73, 
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132.62, 133.91, 135.03, 149.41, 152,57 (2C), 154.46, 154.81, 161.03. MS (ESI): [M+1]+=394.5. 

Anal. (C21H19N3O3S) C, H, N. 

6-(Thiophen-2-yl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6b). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl 

acetate:petroleum ether 9:1 (v:v) as eluent, to furnish 6b as a yellow solid. Yield: 69%, mp 211 °C. 

1H-NMR (CDCl3) : 3.67 (s, 3H), 3.79 (s, 6H), 7.21 (s, 2H), 7.62 (dd, J=5.0 and 1.2 Hz, 1H), 7.76 

(m, 1H), 7.78 (s, 1H), 8.06 (dd, J=5.0 and 1.2 Hz, 1H), 8.57 (s, 1H), 9.59 (s, 1H). 13C-NMR (CDCl3) 

: 55.73 (2C), 60.06, 99.97 (2C), 113.98, 120.09, 123.76, 126.04, 128.28, 133.74, 134.07, 135.00, 

144.26, 152.47 (2C), 154.36, 154.67, 160.94. MS (ESI): [M+1]+=400.5. Anal. (C19H17N3O3S2) C, H, 

N. 

6-(4-Fluorophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6c). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as 

eluent, to furnish 6c as a brown solid. Yield: 68%, mp 192 °C. 1H-NMR (d6-DMSO) : 3.65 (s, 3H), 

3.77 (s, 6H), 7.19 (s, 2H), 7.37 (t, J=9.2 Hz, 2H), 7.86 (s, 1H), 7.88 (m, 2H), 8.57 (s, 1H), 9.63 (bs, 

1H). 13C-NMR (d6-DMSO) : 56.30 (2C), 60.62, 10.67 (2C), 115.18, 116.81, 117.03, 121.13, 128.95, 

129.04, 129.75, 134.38, 135.44, 148.68, 153.02, 154.97, 155.26, 161.54, 162.07, 164.53. MS (ESI): 

[M+1]+=412.4. Anal. (C21H18FN3O3S) C, H, N. 

6-(4-Chlorophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6d). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as 

eluent, to furnish 6d as a white solid. Yield: 65%, mp 215 °C. 1H-NMR (d6-DMSO) : 3.67 (s, 3H), 

3.79 (s, 6H), 7.20 (s, 2H), 7.58 (d, J=7.2 Hz, 2H), 7.86 (d, J=7.2 Hz, 2H), 7.93 (s, 1H), 8.59 (s, 1H), 

9.66 (s, 1H). 13C-NMR (d6-DMSO) : 55.74 (2C), 60.06, 100.14 (2C), 114.80, 121.08 (2C), 127.86 

(2C), 129.34 (2C), 131.43, 133.78, 134.18, 134.84, 147.80, 152.47, 154.44, 154.74, 160.87. MS 

(ESI): [M+1]+=428.9. Anal. (C21H18ClN3O3S) C, H, N. 
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6-(4-Bromophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6e). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as 

eluent, to furnish 6e as a yellow solid. Yield: 68%, mp 219 °C. 1H-NMR (d6-DMSO) : 3.67 (s, 3H), 

3.79 (s, 6H), 7.20 (s, 2H), 7.71 (d, J=7.8 Hz, 2H), 7.80 (d, J=7,8 Hz, 2H), 7.95 (s, 1H), 8.59 (s, 1H), 

9.66 (s, 1H). 13C-NMR (d6-DMSO) : 55.75 (2C), 60.06, 100.14 (2C), 114.81, 121.08, 122.86, 128.09 

(2C), 131.79, 132.25 (2C), 133.87, 134.86, 147.88, 152.47 (2C), 154.46, 154.75, 160.89. MS (ESI): 

[M+1]+=520.4. Anal. (C21H18BrN3O3S) C, H, N. 

6-(4-Iodophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6f). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl 

acetate:petroleum ether 8:2 (v:v) as eluent, to furnish 6f as a yellow solid. Yield: 61%, mp 199 °C. 

1H-NMR (d6-DMSO) : 3.67 (s, 3H), 3.79 (s, 6H), 7.20 (s, 2H), 7.84 (d, J=8.4 Hz, 2H), 7.88 (d, J=8.4 

Hz, 2H), 7.94 (s, 1H), 8.59 (s, 1H), 9.65 (s, 1H). 13C-NMR (d6-DMSO) : 55.73 (2C), 60.05, 100.11 

(2C), 114.72, 120.91 (2C), 126.14, 127.98 (2C), 129.33, 132.03, 133.84, 134.85, 138.07, 148.14, 

152.46, 154.43, 154.72, 160.87. MS (ESI): [M+1]+=520.4. Anal. (C21H18IN3O3S) C, H, N. 

6-(p-Tolyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6g). Following general 

procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, 

to furnish 6g as a yellow solid. Yield: 75%, mp 202 °C. 1H-NMR (d6-DMSO) : 2.37 (s, 3H), 3.67 

(s, 3H), 3.79 (s, 6H), 7.22 (s, 2H), 7.33 (d, J=8.0 Hz, 2H), 7.74 (d, J=8.0 Hz, 2H), 7.83 (s, 1H), 8.58 

(s, 1H), 9.60 (s, 1H). 13C-NMR (d6-DMSO) : 20.77, 55.73 (2C), 60.05, 99.99 (2C), 114.32, 119.63, 

126.04 (2C), 129.78, 129.97 (2C), 133.75, 134.99, 139.47, 149.51, 152.46 (2C), 154.30, 154.64, 

161.02. MS (ESI): [M+1]+=408.5. Anal. (C22H21N3O3S) C, H, N. 

6-(4-Methoxyphenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6h). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as 

eluent, to furnish 6h as a brown solid. Yield: 54%, mp 182 °C. 1H-NMR (d6-DMSO) : 3.67 (s, 3H), 
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3.79 (s, 6H), 3.83 (s, 3H), 7.07 (d, J=8.4 Hz, 2H), 7.21 (s, 2H), 7.76 (s, 1H), 7.83 (d, J=8.8 Hz, 2H), 

8.56 (s, 1H), 9.56 (s, 1H). 13C-NMR (d6-DMSO) : 55.31, 55.75 (2C), 60.08, 99.97 (2C), 105.88, 

109.63, 114.73 (2C), 118.87 (2C), 125.06, 127.64 (2C), 135.06, 149.46, 152.49, 154.30, 154.58, 

160.39, 161.22. MS (ESI): [M+1]+=424.5. Anal. (C22H21N3O4S) C, H, N. 

6-(3-Methoxyphenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6i). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as 

eluent, to furnish 6i as a yellow solid. Yield: 62%, mp 163 °C. 1H-NMR (d6-DMSO) : 3.67 (s, 3H), 

3.78 (s, 6H), 3.86 (s, 3H), 7.08 (m, 1H), 7.14 (s, 2H), 7.43 (m, 3H), 7.94 (s, 1H), 8.59 (s, 1H), 9.63 

(s, 1H). 13C-NMR (d6-DMSO) : 55.35, 55.85 (2C), 60.16, 100.05 (2C), 111.47, 114.77, 115.56, 

118.55, 120.85, 130.61, 133.86, 133.95, 135.08, 149.22, 152.57 (2C), 154.48, 154.78, 159.86, 160.95. 

MS (ESI): [M+1]+=424.5. Anal. (C22H21N3O4S) C, H, N. 

6-(4-Nitrophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6j). Following 

general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as 

eluent, to furnish 6j as a yellow solid. Yield: 79%, mp >300 °C. 1H-NMR (d6-DMSO) : 3.67 (s, 3H), 

3,80 (s, 6H), 7.21 (s, 3H), 8.12 (d, J=9.0 Hz, 2H), 8.17 (s, 1H), 8.35 (d, J=9.0 Hz, 2H), 8.63 (s, 1H), 

9.78 (s, 1H). 13C-NMR (CDCl3) : 55.77 (2C), 60.06, 78.53, 78.86, 79.19, 100.32 (2C), 123.48, 

124.54 (2C), 127.27 (2C), 134.67, 138.68, 147.53, 152.50 (2C), 154.68, 154.91, 160.63. MS (ESI): 

[M+1]+=439.4. Anal. (C21H18N4O5S) C, H, N. 

2. Biology. Materials and Methods. 

2.1 Antiproliferative assays. Human T-cell leukemia (Jurkat) and human B-cell leukemia (RS4;11) 

cells were grown in RPMI-1640 medium, (Gibco, Milano, Italy). human non-small cell lung 

carcinoma (A549), human cervix carcinoma (HeLa) and human colon adenocarcinoma (HT-29) cells 

were grown in DMEM medium (Gibco, Milano, Italy). Both media were supplemented with 115 

units/mL of penicillin G (Gibco, Milano, Italy), 115 g/mL of streptomycin (Invitrogen, Milano, 
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Italy) and 10% fetal bovine serum (Invitrogen, Milano, Italy). These cell lines were purchased from 

ATCC. Stock solutions (10 mM) of the different compounds were obtained by dissolving them in 

DMSO. Individual wells of a 96-well tissue culture microtiter plate were inoculated with 100 L of 

complete medium containing 8x103 cells. The plates were incubated at 37 °C in a humidified 5% CO2 

incubator for 18 h prior to the experiments. After medium removal, 100 L of fresh medium 

containing the test compound at different concentrations was added to each well and incubated at 37 

°C for 72 h. The percentage of DMSO in the medium never exceeded 0.25%. This was also the 

maximum DMSO concentration in all cell-based assays described below. Cell viability was assayed 

by the MTT test as previously described.35 The IC50 was defined as the compound concentration 

required to inhibit cell proliferation by 50%, in comparison with cells treated with the maximum 

amount of DMSO (0.25%) and considered as 100% viability. 

2.2. Effects on tubulin polymerization and on colchicine binding to tubulin. To evaluate the effect 

of the compounds on tubulin assembly in vitro,53a varying concentrations of compounds were 

preincubated with 10 M bovine brain tubulin in 0.8 M monosodium glutamate (pH adjusted to 6.6 

with HCl in a 2.0 M stock solution) at 30 ˚C and then cooled to 0 ˚C. After addition of 0.4 mM GTP, 

the mixtures were transferred to 0 C cuvettes in a recording spectrophotometer and warmed to 30 

°C. Tubulin assembly was followed turbidimetrically at 350 nm. The IC50 was defined as the 

compound concentration that inhibited the extent of assembly by 50% after a 20 min incubation. The 

capacity of the test compounds to inhibit colchicine binding to tubulin was measured as described,53b 

except that the reaction mixtures contained 1 M tubulin, 5 M [3H]colchicine and 1 or 5 M test 

compound. 

2.3. EGFR and VEGFR kinase activity assays. Kinase assays was performed using the 

bioluminescent ADP-GloTM kinase assay (Promega, Milano Italy), following the manufacturer’s 

instructions. Assay was performed with the test compounds at different scalar concentrations. The 
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IC50 values reported are based on the average of at least 2 titration curves. As reference compounds 

erlotinib (Sigma-Aldrich) and sunitinib (Selleckchem, USA) were used. 

2.4. Molecular modeling. All molecular docking studies were performed on a Viglen Genie 

Intel®CoreTM i7-3770 vPro CPU@ 3.40 GHz x 8 running Ubuntu 14.04. Molecular Operating 

Environment (MOE) 2015.10 and Maestro (Schrödinger Release 2017-1) were used as molecular 

modeling software.54,55 The tubulin structure and the EGFR kinase domain were downloaded from 

the PDB data bank (http://www.rcsb.org/; PDB codes 1SA0 and 2J6M, respectively). The two 

proteins were preprocessed using the Schrödinger Protein Preparation Wizard by assigning bond 

orders, adding hydrogens and performing a restrained energy minimization of the added hydrogens 

using the OPLS_2005 force field. Ligand structures were built with MOE and minimized using the 

MMFF94x force field. The ligands were then prepared using the Maestro LigPrep tool by energy 

minimizing the structures (OPLS_2005 force filed), generating possible ionization states at pH 7±2, 

generating tautomers and low-energy ring conformers. A 12 Å docking grid (inner-box 10 Å and 

outer-box 22 Å) was prepared using as centroid the co-crystallized DAMA-colchicine for the tubulin 

structure, and a 15 Å docking grid (inner-box 10 Å and outer-box 25 Å) was prepared using as 

centroid the co-crystallized AEE788 for the EGFR structure. Molecular docking was performed using 

Glide SP precision keeping the default parameters and setting 5 as the number of output poses per 

input ligand to include in the solution. The docking results were visually inspected on MOE for their 

ability to bind the active sites. 

2.5. Flow cytometric analysis of cell cycle distribution. 5 × 105 HeLa or Jurkat cells were treated 

with different concentrations of the test compounds for 24 h. After the incubation period, the cells 

were collected, centrifuged, and fixed with ice-cold ethanol (70%). The cells were then treated with 

lysis buffer containing RNase A and 0.1% Triton X-100 and then stained with PI. Samples were 

analyzed on a Cytomic FC500 flow cytometer (Beckman Coulter). DNA histograms were analyzed 

using MultiCycle for Windows (Phoenix Flow Systems). 

http://www.rcsb.org/
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2.6. Apoptosis assay. Cell death was determined by flow cytometry of cells double stained with 

annexin V/FITC and PI. The Coulter Cytomics FC500 (Beckman Coulter) was used to measure the 

surface exposure of PS on apoptotic cells according to the manufacturer’s instructions (Annexin-V 

Fluos, Roche Diagnostics). 

2.7. Western blot analysis. HeLa cells were incubated in the presence of 6g and, after different times, 

were collected, centrifuged, and washed two times with ice cold phosphate buffered saline (PBS). In 

some experiments Hela cells were treated with 6g or erlotinib (Sigma-Aldrich) and stimulated with 

EGF (R&D Systems, Minneapoli MN, USA) 50 ng/mL for 15 min. and then processed as described 

above. The pellet was then resuspended in lysis buffer. After the cells were lysed on ice for 30 min, 

lysates were centrifuged at 15000 x g at 4 °C for 10 min. The protein concentration in the supernatant 

was determined using the BCA Protein Assay (Pierce, Italy). Equal amounts of protein (10 μg) were 

resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Criterion 

Precast, BioRad, Italy) and transferred to a PVDF Hybond-P membrane (GE Healthcare). Membranes 

were blocked with a bovine serum albumin solution (5% in Tween PBS 1X), the membranes being 

gently rotated overnight at 4 °C. Membranes were then incubated with primary antibodies against, 

PARP, Mcl-1, Bcl-2, (all from Cell Signaling) or β-actin (Sigma-Aldrich) for 2 h at room temperature. 

Membranes were next incubated with peroxidase labeled secondary antibodies for 60 min. All 

membranes were visualized using ECL Select (GE Healthcare), and images were acquired using an 

Uvitec-Alliance imaging system (Uvitec, Cambridge, UK). To ensure equal protein loading, each 

membrane was stripped and reprobed with an anti-β-actin antibody. 

2.8. Evaluation of the antivascular activity in vitro. HUVECs were prepared from human umbilical 

cord veins, as previously described.46,49 The adherent cells were maintained in M200 medium 

supplemented with Low Serum Growth Supplement, containing fetal bovine serum, hydrocortisone, 

hEGF, bFGF, heparin, gentamycin/amphotericin (Life Technologies, Monza, Italy). Once confluent, 
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the cells were detached by trypsin–EDTA solution and used in experiments from the first to sixth 

passages. 

Matrigel matrix (Basement Membrane Matrix, BD Biosciences, Italy) was kept at 4 °C for 3 h, when 

230 µL of Matrigel solution was added to each well of a 24-well plate. After gelling at 37°C for 30 

min, gels were overlaid with 500 µL of medium containing 6 x 104 HUVECs. The cells were 

incubated over Matrigel for 6 h to allow capillary tubes to form. Different concentrations of test 

compound were added in the cultures and incubated for different times, and the disappearance of 

existing vasculature was monitored and photographed (five fields for each well: the four quadrants 

and the center) at a 10x magnification. Phase contrast images were recorded using a digital camera 

and saved as TIFF files. Image analysis was carried out using ImageJ image analysis software, and 

the following dimensional parameters (percent area covered by HUVECs and total length of 

HUVECs network per field) and topological parameters (number of meshes and branching points per 

field) were estimated.46,49  

2.9. In vivo animal studies. Procedures involving animals and their care conformed with institutional 

guidelines that comply with national and international laws and policies (EEC Council Directive 

86/609, OJ L 358, 12 December 1987) and with “ARRIVE” guidelines (Animals in Research 

Reporting In Vivo Experiments). Six week old C57BL/6 mice (Charles River, Calco) were injected 

subcutaneously into the dorsolateral flank with 2.5x105 BL6-B16 murine melanoma cells in 200 µL 

of PBS. When tumors were palpable, animals were treated intraperitoneally every other day with 

different doses of test compounds dissolved in 50 µL of DMSO. Tumors were measured in two 

dimensions, and tumor volume was calculated according to the formula V=(D x d2)/2, where D and 

d are the major and minor perpendicular tumor diameters, respectively. 

Supporting information available. The Supporting Information is available free of charge on the 

ACS Publications website. Antiproliferative activities of compounds 7a-d (Table 1s) and 8a-l (Table 

2s). General procedures and references related to the preparation of methyl 3-aminothiophene-5-
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aryl/heteroaryl-2-carboxylate 9a-j, ethyl 5-amino-2-anilinothiazole-4-carboxylate 9k-n and ethyl 2-

aminothiophene-3-carboxylate derivatives 12c-l. Spectral data for the newly synthesized compounds 

7a-d, 10k-n, 11k-n, 13a-l and 14a-l. 1H-NMR and 13C-NMR spectra of compounds 6a-j. Elemental 

microanalyses for compounds 6a-j, 7a-d and 8a-l.  

6b-6e-6g-docking-1SAO (pdb) 

6b-6e-docking-2J6M (pdb) 

Molecular formula strings (CSV). 
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