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Abstract 

The study of thermodynamics of topological defects is an important challenge to understand their 

underlying physics. Among them, magnetic skyrmions have a leading role for their physical 

properties and potential applications in storage and neuromorphic computing. In this paper, the 

thermodynamic statistics of magnetic skyrmions is derived. It is shown that the skyrmion free energy 

can be modelled via a parabolic function and the diameters statistics obeys the Maxwell-Boltzmann 

distribution. This allows for making an analogy between the behavior of the distribution of skyrmion 

diameters statistics and the diluted gas Maxwell-Boltzmann molecules distribution at 

thermodynamical equilibrium. The calculation of the skyrmion configurational entropy, due to 

thermally-induced changes of size and shape of the skyrmion, is essential for the determination of 

thermal fluctuations of the skyrmion energy around its average value. These results can be employed 

to advance the field of skyrmionics.   
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I. INTRODUCTION 

Magnetic skyrmions have been gaining an important role in studies of low-dimensional magnetic 

systems due to their suitable physical properties and potential applications [1–4]. Skyrmions can be 

considered as quasi-particles with topologically-protected magnetization texture, characterized by an 

integer skyrmion number [1,4]. Although skyrmions can be stabilized by the interplay between 

exchange and dipolar interactions (so called “bubble skyrmion” [1]), much of the interest is devoted 

to systems where the Dzyaloshinskii–Moriya interaction (DMI) plays a role in this stabilization  [5,6]. 

The DMI is a chiral exchange interaction due to lack or breaking of inversion symmetry in bulk 

crystalline lattices (bulk DMI) [7–9] or at the interfaces in magnetic multilayers (interfacial DMI 

(IDMI)) [10–13]. While other types of DMI can exist (for instance, in D2d structures) [14,15], in this 

work we focus on the IDMI. This because it promotes the formation of small Néel skyrmions [1,2,4], 

which are stable at room temperature as isolated skyrmions, and can be nucleated [16–18], 

manipulated [12,19–21] as well as detected [22–24] by electrical currents. Therefore, Néel skyrmions 

have become promising for technological applications [25–33]. Fundamentally, because of thermal 

fluctuations, Néel skyrmions are subject to (i) internal deformations [10,12,34,35], that are 

responsible for the loss of the circular symmetry; (ii) thermal drift [18,34,35], which leads to a random 

skyrmion motion throughout the film plane; (iii) thermal breathing modes [35,36] that can induce 

non-stationary expansion and shrinking of the skyrmion core, i.e. a time-evolution of the skyrmion 

size. Hence, the effect of thermal fluctuations should be considered for a proper design of skyrmion-

based devices and applications [32,35], especially at room temperature.  

In this work, we show that the thermal fluctuations promote the existence of a number of skyrmions 

characterized by the same energy, but having different shapes and diameters. This aspect allows us 

for the definition of a skyrmion configurational entropy by using a statistical thermodynamic analogy 

between the skyrmion diameter population and the non-interacting molecules of an ideal gas [37,38]. 

This approach is based on the analytical formulation previously developed [35] considering region of 

parameters where the two following hypotheses are verified: (i) the skyrmion energy can be well 

approximated by a square function of the skyrmion diameter near the minimum, and (ii) the skyrmion 

diameter distribution is well-described by a Maxwell-Boltzmann (MB) function. The validity of those 

two hypotheses is checked by taking advantage of full micromagnetic simulations for different 

combinations of temperature and external field. The skyrmion average diameter and its standard 

deviation, as well as the skyrmion entropy, can be analytically derived. In addition, the developed 

model can also be extended to the description of further magnetic textures, such as bubbles and 

vortices.  
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From a theoretical point of view, the knowledge of the skyrmion configurational entropy allows us 

to construct the proper thermodynamics for determining the fluctuations for many important 

quantities, such as the free energy. We show that a distribution of skyrmion diameters can be 

described in a canonical ensemble characterized by fluctuations of energy that are much smaller than 

the skyrmion average energy. 

Up to date, the skyrmion entropy has been estimated from the experimental data, and it has been used 

to characterize the type (first- or second-order) of magnetization phase-transition around the transition 

temperature in bulk B20 compounds [39,40], and as a corrective term to the Arrhenius law, to explain 

the discrepancy between experimental and theoretical calculations of the lifetime of a skyrmion 

lattice [41]. However, no direct dependence of the entropy on the physical parameters, temperature 

and geometrical characteristics of the skyrmion has been expressed. This work will fill this gap giving 

a simple analytical model to be used as a support for the experimental works at finite temperatures. 

    

II. NUMERICAL MODEL 

We start by performing micromagnetic simulations at finite temperature to generate the data to be 

analyzed. We consider a circular nanodot of diameter 2 dR =400 nm of a ferromagnetic material (we 

consider Cobalt here) with a thickness of 0.8 nm assumed to be coupled with a thin layer of heavy 

metal giving a sufficiently-large IDMI, i.e. Platinum. We perform systematic micromagnetic 

simulations to calculate the skyrmion sizes as a function of the out-of-plane external field 0Hext and 

temperature T, by integrating the Landau-Lifshitz-Gilbert equation for the reduced magnetization 

sM/Mm    [42–48] ( sM  is the saturation magnetization, see note 1 in the Supplemental Material). At 

T=0 K, we used the following material parameters: 
sM =600 kA/m [12], A =20 pJ/m [49], D =3.0 

mJ/m2 [50,51], 
uK =0.60 MJ/m3 [12,52], and Gilbert damping G =0.1 [53], while for T>0 and the 

analytical model, we used the parameters as calculated from the scaling relations [35] 

    1.50A m A m ,      
1.5

0D T D m T . and      
3.6

0u uK T K m T . 

For the micromagnetic simulations, the thermal effects are included in the LLG equation as a 

stochastic term  added to the deterministic effective magnetic field in each computational cell 

, with  being the Boltzmann constant, T temperature 

of the sample,  the vacuum permeability,  the gyromagnetic ratio, ΔV the volume of the 

computational cell, Δt the simulation time step, and  a three-dimensional white Gaussian noise with 

thh

   th 0 0/ 2 /S B sM K T V M t    h χ
BK

0 0

χ
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zero mean and unit variance [47,48]. The thermal fields, in each computational cell, are uncorrelated. 

The discretization cell size used is 2.5x2.5x0.8 nm3 [42] (see note 1 in the Supplemental Material for 

more details). 

The effective diameter is calculated by assuming that the area of the skyrmion core (here it is the 

region where the z-component of the magnetization is negative) is equivalent to a circle [54]. 

Figure 1(a) shows the time dependence of the total micromagnetic energy    E dV m m  of the 

ferromagnet (   m  is the energy density) as calculated by micromagnetic simulations from the spatial 

distribution of the magnetization m
 
:   

         
2 21 0.5 ,z z u z s m s extA D m m K m M M              m m m m m H m H      (1) 

where zm  is the magnetization z-component, 
mH  is the magnetostatic field, and 

extH  is the external 

magnetic field.  

It can be observed that there exist skyrmion configurations with different shape and size (Figs. 1(b)-

(e)), but characterized by the same energy (5.6 x 10-17 J in Fig. 1(a)). These results suggest that a 

skyrmion configurational entropy can be introduced as the number of different skyrmions having the 

same energy. 

 

Fig. 1: (a) Total micromagnetic energy as a function of time for one of the simulations (T=300 K, and 

0Hext=25 mT). The four green circles indicate an example of time instants at which different 

skyrmions have the same energy. (b)-(e) Snapshots of the skyrmion at the time instants indicated in 

(a). 
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III. ANALYTICAL MODEL 

A. Skyrmion energy 

The computation of the configurational entropy is based on the determination of the skyrmion energy.  

The skyrmion magnetization texture in cylindrical coordinates can be written in the form 

       0 0
ˆˆ ˆsin cos +sin sin +cosx,y z         m where    is the radially dependent 

magnetization distribution angle and 0 is an azimuthal angle. Setting 0 =0, we get the outwardly 

directed radial Néel skyrmion texture,      ˆ ˆsin +cosx,y z    m . In the present study, we have 

considered an outwardly radial Néel skyrmion with a negative core, that is characterized by a 

skyrmion number Q = 1, a cylindrical symmetry with respect to the out-of-plane direction (z-axis), 

and it is stabilized in a magnetic circular dot. The results derived for Néel skyrmion can indeed be 

generalized to other magnetic textures. 

The skyrmion energy E  is calculated as a volume integral of the skyrmion energy density 

     
/ 2 2

/ 2 0 0

, ,
dRt

sk sk sk

t

E r r r dV dz d r r d



    


     . For the Néel skyrmion, we use the following trial 

equilibrium magnetization distribution through the ansatz ( )
0 ( ) 2arctan[ ]skr rskr

r e
r

 
 , with rsk =Rsk/lexch 

the dimensionless skyrmion radius, 
2

exch 02 / sl A M is the exchange length, with A the material 

exchange stiffness, t the dot thickness and  = r/ lexch [35,55]. This skyrmion ansatz has been 

previously shown to have an excellent agreement with direct micromagnetic simulations [35,56]. The 

skyrmion energy density 
exch ani extIDMI         contains all the relevant contributions. In particular, 

 
2

exch A  m  is the exchange energy density,    IDMI z zD m m       m m  is IDMI energy 

density and D the DMI strength,  2 2 2
ani u 0

1
1

2
z s zK m M m     is the anisotropy energy density with 

Ku the uniaxial anisotropy constant, and ext = Ms B mz is the Zeeman energy density, with B =0 

Hext being the amplitude of the external bias B parallel to the z-axis. The magnetic parameters A, D 

and Ku at non-zero temperature are scaled from their zero temperature values, by using the scaling 

laws shown in the Section II. 

The first hypothesis of our analytical approach is that the skyrmion energy near the minimum can be 

described via a parabolic potential of the form  
2

sky sky 0 skyE a D D b  . In the parabolic potential, 
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the coefficient a [J/m2] is proportional to the parabola curvature, a = ½ d 2Esky/dDsky
2, skyD  is the 

generic skyrmion diameter ranging from 0 to 2 dR , 
0 skyD  is the equilibrium diameter corresponding to 

the energy minimum 
min

skyE  for every T, and b [J] is 
min

skyb E . The equilibrium skyrmion diameter 

depends on the temperature via the scaled values of the magnetic parameters, therefore, both a and b 

are temperature-dependent coefficients, a (T) and b(T). Figure 2(a) shows, in fact, how the coefficient 

a changes with temperature, for three values of the external field. The general trend is a linear 

dependence of a on the temperature and a decreases with increasing temperature marking a 

broadening of the potential well due to thermal effects. Moreover, at fixed temperature, a increases 

with increasing the external field amplitude indicating its narrowing effect on the potential well. 

Figure 2(b) and (c) show that the parabolic curve fits well the analytical skyrmion energy when 

0 200 KT   at zero external field, while, at T=300 K (Fig. 2(d)), the matching is less accurate. We 

ascribe this difference to the change of the  energetic stability of the skyrmion when it is becoming 

the ground state (see Fig. 3 in Ref.  [35]). In particular, for the parameters used in this study, the 

skyrmion is a metastable state when either 0 200 KT   for any external field, or 0 300 KT   for 

0Hext>5 mT, while it becomes stable outside these intervals. As was explained in Ref. [35] with 

details, during this transition the skyrmion radius is very sensitive to small variations of external 

parameters.  
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Fig. 2: (a) Fitting parameter a as a function of T for 0Hext= 0 mT, 25 mT, 50 mT. Profile of the 

skyrmion energy close to the energy minimum (black curve) together with the parabolic fit (red curve) 

for 0Hext= 0 mT and (b) T = 100 K, (c) T=200 K, and (d) T=300 K. 

 

B. Skyrmion diameter distribution 

The fact that the energy of the skyrmion is, as a first approximation, well-described by as a quadratic 

function of the skyrmion diameter leads us to suppose that the skyrmion diameter distribution can be 

treated as the particles of an ideal gas, at least from a statistical thermodynamics viewpoint. Therefore, 

the second step of our analytical approach is to check if the population of the skyrmion diameters 

follows a Maxwell-Boltzmann distribution function: 

 
2

sky 0 sky2

sky sky

sky

,
a D Ddn

C D e
dD

 
                                                   (2) 

where Csky is the normalization constant, and 
1

Bk T
   with kB = 1.38  10-23 J/K the Boltzmann 

constant  [42] (see note 2 in the Supplemental Material). Analogously to the ideal gas, the skyrmion 



9 
 

energy is comparable with the thermal energy in the range of temperatures 50 300 K, thus ensuring 

a displacement effect of the maximum of the distribution [37]. 

In order to prove this hypothesis, we compare the distribution of skyrmion diameter as computed 

from micromagnetic simulations with Eq. (2). Figure 3 shows such a comparison at T = 100, 200 and 

300 K, respectively, for an applied field 0Hext = 25 mT. The agreement between the analytical and 

the micromagnetic results is excellent. Similar good agreements are also obtained for the other 

temperature/external field combinations in the region of metastability.  

Since we have shown that the skyrmion energy can be considered as a quadratic function of the 

skyrmion diameter and that the skyrmion diameter population obeys to the MB distribution, we can 

make the analogy between the behavior of skyrmion diameter population and the one of non-

interacting molecules of an ideal gas. Let us examine in depth the point later in the text.  

 

 

Fig. 3: Skyrmion diameter distribution for (a) T = 100 K, (b) T = 200 K, and (c) T = 300 K when 0 

H = 25 mT. The histograms represent the results from micromagnetic simulations with thermal fields, 

while the blue curve is the analytical MB distribution as calculated from Eq. (2). In the analytical 

calculations, we used the scaled values of the magnetic parameters A, D, and Ku for each 
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temperature [35] and obtained the following parameters: at T = 100 K, a = 9.67  10-5 J/m2 and D0 sky 

= 26.83 nm, at T = 200 K, a = 7.33  10-5 J/m2 and D0 sky = 32.03 nm and at T = 300 K, a = 5.32  10-

5 J/m2 and D0 sky = 39.64 nm. (d) Standard deviation as a function of temperature, for three values of 

the external field. The continuous lines with symbols represent the analytical calculations by means 

of Eq. (3), while the dashed lines with symbols indicate the results from micromagnetic simulations 

with thermal stochastic fields.   

 

In Table 1, we strengthen this analogy considering a skyrmion diameter statistics and an ideal gas of 

N non-interacting molecules. Straightforwardly, the skyrmion diameter Dsky replaces the velocity v 

of the gas molecule, while the fitting parameter a, proportional to parabolic energy curvature, plays 

the same role as the constant ½ m depending on the mass m of the molecule in the gas. In this way, 

the MB distribution reproducing the statistical behavior of skyrmion diameters maps into the well-

known MB distribution of velocities in a diluted gas [37]. 

 

Table 1. Analogy between an ideal gas of molecules and a magnetic skyrmion diameter population 

with Cg = 4 N (m/(2 kB T) )3/2. 

                 Ideal gas                       Skyrmion diameters 

  

                        v 

 

                                Dsky 

                    ½ m                                    𝑎 

  

𝑑𝑛

𝑑v
= 𝐶g v2exp (−1/2 𝑚 v2/𝑘𝐵𝑇)                                

𝑑𝑛

 𝑑𝐷sky
= 𝐶sky 𝐷sky

2  exp (−𝑎 (𝐷sky − 𝐷0 sky)
2

/𝑘𝐵𝑇) 

 

C. Average skyrmion diameter 

Thanks to the aforementioned analogy, we can calculate the average skyrmion diameter 

 

 

 

2

sky 0 sky

2

sky 0 sky

3

sky sky
0

sky
2

sky sky
0

a D D

a D D

dD D e
D T

dD D e





  

  

 



at a given temperature, in the same way as the average 

particle velocity in an ideal dilute gas: 
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 
2

0 sky

sky 0 sky 2

0 sky

3 2
.

2

B

B

k T a D
D T D

k T a D


 


                                                       (3) 

 

D. Standard deviation of the skyrmion diameter distribution 

The skyrmion average diameter is crucial to compute: 1) the standard deviation 
skyD  of the 

diameter distribution and 2) the skyrmion configurational entropy S. First, we calculate 

 
2

2

2
2

sky sky
0

2

sky
0

sky sky

sky sky

sky
sky sky

sky

a

a

D D

D
D D

dD D D D e

dD D e







 
   

 

 
   

 

 

 
 

  





 with  sky skyD D T    as an integration over the MB 

distribution, obtaining:  

 
2

sky

2

sky
sky

3 2

2 2

BB

B

D

k T a Dk T
T

a k T a D
 

  

  
                                           (4) 

In Fig. 3(d), we compare the standard deviation as obtained from micromagnetic simulations and Eq. 

(4), observing that they match well in the region of energetic metastability.  

 

E. Configurational entropy 

We now outline the computation of the skyrmion configurational entropy that represents one of the 

key results of this study. We wish to remind that the source of this entropy is mainly due to the 

skyrmion internal deformations and thermal breathing mode [35,36]. We employ the definition of the 

Boltzmann order function H0 for a dilute ideal gas [38], that represents a measure of order and it is 

proportional to the MB distribution, that is the solution of the Boltzmann equation at thermodynamic 

equilibrium. Indeed, H0 is a quantity defined as the opposite of the entropy S at equilibrium, namely 

H0 = S/kB [38], with H0 < 0. S gives the direct connection between the canonical ensemble and 

thermodynamics. In the continuous case applied to our framework, where minor changes of the 

skyrmion size occur along the radial direction, H0 can be written as a functional integral representing 

the statistical average < ln f0 > over all spatial directions: 

2

0 sky sky 0 0

0

ln ,
2

H dD D f f




                                                    (5) 
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with 
 

2

sky sky

0 sky

a D D

f C e

 

   
   being the Gaussian distribution of the skyrmion diameters at 

thermodynamic equilibrium, that has the meaning of a probability density in statistical mechanics.  

The skyrmion configurational entropy turns out to be (S= kB H0): 

   
3 1

2 2
2 2

03 2

22

sky sky

sky

sky

2 3 21
ln ,

4 2

B B B

B

B

k T k T a D k T a D
S k S

k T a D
a D t

  
        

              

                        (6) 

with 
0

1
ln

2
BS k   a constant (see Appendix A for the details of the calculations leading to Eq. (6)). 

As expected, the configurational entropy has a geometric, thermal, and magnetic parameters 

dependence. S depends on the size of the skyrmion via skyD  , confirming the link with the 

thermal breathing mode (Fig. 1(b)-(e)), decreases with decreasing temperature, denoting the strict 

connection with temperature effects until a minimum temperature close to 1K (see the next section 

for more details), as well as depending on the magnetic parameters via the coefficient a. Note that 

Eq. (6) is a general result since it is independent of the chosen skyrmion distribution texture. Indeed, 

different skyrmion distribution texture would lead to energy profiles again reproducible in the 

neighborhood of the minimum by means of a parabolic dependence.   

However, as T0, we get, from Eq. (6), S   apparently contradicting Nernst’s theorem or third 

principle of thermodynamics according to which entropy of a crystalline body equals zero at absolute 

zero temperature. This result is not surprising and agrees with the well-known one of the Sackur-

Tetrode entropy equation for an ideal gas [37]. Indeed, in both cases the derivation is classical, 

resulting from the application of the classical MB statistics.  

Figure 4(a) shows the skyrmion configurational entropy, calculated according to Eq. (6), as a function 

of temperature for three different external fields (0, 25 and 50 mT). The entropy increases with 

increasing temperature and its increase is more remarkable in the absence of an external bias field. 

This behavior reflects the higher disorder due to the larger deformations and thermal breathing mode 

of the skyrmion at room temperature [35]. This disorder is partially reduced by the ordering effect of 

the external bias field.  

Figure 4(b) illustrates the trend of the configurational entropy as a function of the external field at 

fixed temperature (T = 300 K). It is evident the entropy decreases due to the external bias field that 

leads to a reduction of the disorder of the system.    
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FIG. 4. Configurational entropy as a function of (a) temperature for 0Hext = 0 mT, 25 mT and 50 mT, 

as indicated in the legend, and (b) the external field at T = 300 K.   

 

F. Behavior of <Dsky>, Dsky, and S at low temperature 

It is interesting to derive the low-temperature behavior of the average skyrmion diameter.  We 

assume, for the whole range of temperatures studied (0  300 K) a(T) =a0 – c T (see Fig. 2(d)) with 

a0 = a (T = 0 K) and c a coefficient expressed in J/m2 K, and, at low temperatures, 

   0 sky 0 sky 0 KD T D T d T   , with d a coefficient expressed in m/K. 

For T0 K, we get, from a numerical calculation, that    sky 0 sky0 K  0 KD T D T     . At low 

temperature, the expansion of Eq. (3) to first order, via    sky 0 sky0 K  0 KD T D T     ,  yields: 

                                      
 

sky 0 0 sky

0 0 sky

 0 ,
0

B
T

k
D T D T K d T

a D T K


 
      

  
                             (7) 

with  0 0a a T K  .                                         
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Eq. (7) expresses, in the regime of low temperatures, a linear dependence of the average skyrmion 

diameter on temperature, as it can be observed in Fig. 5(a) for different combinations of low 

temperature and external field.   

At low temperatures (T  0), via a series expansion to the first order and taking into account the 

abovementioned assumptions on a and 0 skyD , the standard deviation turns out to be: 

 0

0
sky 2

B

TD

k T

a


                                                       (8) 

 Hence, at low temperatures the standard deviation has a square root proportionality on temperature, 

as shown in Fig. 5(b).  

In the same way, the configurational entropy for, T  0, reads 

 

1

2

10 2

0 sky 0

2 3
ln

4 2

B B
BT

k T k c
S k T S

t a a D a


  
                     

                              (9) 

with 
1

1 1
ln

2 4
BS k 
 

  
 

. 

The first term on the second member has a logarithmic dependence on T, hence giving the divergence 

of S for T = 0 K. On the other hand, the second term expresses the linear dependence of S on T 

resulting from the expansion of both terms.  

Figure 5(c) shows S vs. T for 1 < T < 50 K. It is evident the deviation from the linear behavior is due 

to the logarithmic dependence on T of the first term. This trend is similar also in the presence of an 

external field and is also present at higher temperatures as shown in Fig. 4(a). 
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FIG. 5. Low-temperature behavior of (a) average skyrmion diameter, as obtained by Eq. (7), (b) 

standard deviation of the skyrmion diameter distribution, as obtained by Eq. (8), and (c) 

configurational entropy, as obtained by Eq. (9).  

 

G. Energy Fluctuations 

The skyrmion configurational entropy is crucial to determine: 1) the magnetization distribution as a 

function of temperature at fixed external field in the presence of skyrmions and 2) the skyrmion 

fluctuations of energy around the average energy <E>.  
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The evaluation of the mean square fluctuations of the skyrmion energy is based on the calculation of 

the partition function yielding 
2

2 3

2
2B

S S
E k T T

T T


  
   

  
 with 

2 2 2 E E E        and E   

being the average energy. The key result is that skyrmion mean fluctuations of energy have an 

entropic dependence. By using Eq. (6), we get  
2

2 1

2
BE k T  , namely a proportionality to the 

square of the temperature (see the Appendix B for the details). This result is general and does not 

depend on the external bias field. The factor ½ is consistent with the fact that, unlike the case of the 

ideal gas where particle velocity is a vector with three degrees of freedom, here there is one degree 

of freedom represented by the skyrmion.  

In Fig. 6, we display the mean square fluctuations of the energy of the skyrmion diameter distribution 

as a function of temperature. One notes that there is a quadratic increase of 2E   with temperature, 

thus showing a behavior similar to that of the mean square fluctuations of energy of gas particles in 

a canonical ensemble.  

To establish whether the skyrmion fluctuations of energy are relevant, we compare their order of 

magnitude with that of the average energy calculating the fractional mean square fluctuation of the 

energy:  
2

2 2 21

2
BE E k T E      . For the system studied and the range of temperatures 

considered, looking at Fig. 5 on average 2 41 210 JE   . As 2 34 210 JE     we get 
2

7

2
10

E

E

  

 

resulting in fluctuations of energy that are about three orders of magnitude smaller than the average 

energy, 
2E    << E  . In principle, the skyrmion diameters distribution is supposed in contact 

with a heat reservoir forming a canonical ensemble and the average energy is determined by the 

temperature of the heat reservoir itself. In a canonical ensemble, the total energy is not conserved 

and, therefore, for this special case, the skyrmion diameter population exhibits fluctuations of energy. 

However, due to the high number of degrees of freedom represented by the skyrmions population 

with different diameters, we can suppose that the fluctuations of energy are very small treating, in a 

first instance, the ensemble in the same way as a microcanonical ensemble. This hypothesis is 

confirmed by the calculation of the energy fluctuations that are very small if compared to the average 

energy as shown above.  

Analogously to what occurs to the number of non-interacting molecules of an ideal gas, that varies 

continuously as a function of velocity and possess only translational kinetic energy, also the skyrmion 

diameters, during thermal annealing, fluctuate independently along the radial direction, leading to 



17 
 

continuous and infinitesimal changes of skyrmion size. Another common property is represented by 

confinement. Like gas molecules obeying MB statistics are confined in a box, magnetic skyrmions 

of different diameters are formed in a confined magnetic system. 

 

Fig. 6: Mean square fluctuations of energy of the average skyrmion energy as a function of 

temperature. 

 

IV. CONCLUSIONS 

In summary, we have shown that it is possible to describe the statistical behavior of the skyrmion 

diameter in presence of thermal fluctuations by using a statistical thermodynamic analogy with the 

non-interacting molecules of an ideal diluted gas. This analogy is valid in the region of energetic 

metastability for the skyrmion where the following hypotheses are verified: (i) the skyrmion energy 

close to the minimum exhibits a parabolic profile and (ii) the skyrmion diameter population follows 

a MB statistical distribution. We confirmed those hypotheses with the results of micromagnetic 

simulations. Therefore, we have developed an analytical model able to describe the statistical 

behavior of the skyrmion diameter (average value, standard deviation, and distribution) as well as to 

calculate the configurational entropy of a skyrmion linked to the thermal breathing mode and internal 

deformations. In the low-temperature limit, the average skyrmion diameter has a linear dependence 

on T, while the configurational entropy shows a deviation from the linear behavior. From the 

calculation of the partition function, we have expressed fluctuations of energy as a function of entropy 

only. Those results can be used to study phase transitions involving skyrmions and their relaxation 

properties. 
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APPENDIX A: CALCULATION OF THE CONFIGURATIONAL ENTROPY 

We recall Eq. (5) of the main text: 

2

0 sky sky 0 0

0

ln .
2

H dD D f f




                                                      (A1) 

The computation of the integral yields:  

     

3

2
sky 2 2

0 sky sky sky

1
1 2 ln 3 2 ,

4 4

C
H a D C V a D

a


 



   
           

  
            (A2) 

where <V > = ¼  2

sky
D   t is the average skyrmion volume. We get the constant 

skyC  via a 

normalization condition 
 

2

sky

1

2

sky

0

sky

sky sky

2 a D D

C dD D e





     
 

 
 
 
 
  resulting in

3

2

sky 2

sky

4 .
2

B

B B

k Ta
C

k T k T a D

 
 

   
 We substitute skyC  into H0, via 

1

Bk T
  , getting  

 
3

2 2
2

sky sky sky

0 sky

2 3 21
ln .

4 4

B BB

B B

C k T a D k T a Dk T
H C V

a k T k T

           
                  

         (A3) 

The skyrmion entropy at the thermodynamic equilibrium is calculated as S= kB H0 after substituting 

C and <V >: 
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   
3 1

2 2
2 2

03 2
22

sky sky

sky
sky

2 3 21
ln ,

4 2

B B B

B

B

k T k T a D k T a D
S k S

k T a D
a D t

  
        

              

                (A4) 

with 
0

1
ln

2
BS k  . Eq. (A4) is Eq. (6) of the main text. 

 

APPENDIX B: CALCULATION OF THE MAGNETIZATION DISTRIBUTION AND OF THE 

ENERGY FLUCTUATIONS 

The skyrmion entropy is crucial to determine: 1) the magnetization distribution as a function of 

temperature at fixed external bias field and 2) the skyrmion fluctuations of energy around the average 

energy <E>. 

The calculation of the magnetization distribution is based on the hyperbolic law expressing the 

average skyrmion diameter as a function of B=0Hext at fixed T as observed by Romming for T = 4.2 

K et al. [57] and confirmed by our model at larger temperatures: 

 
sky

0
sky 0

0

,B

B
D B D

B B
   


                                                    (B1) 

with B expressed here in J (B0 Hext Ms V) and B0 a parameter also expressed in J that can be 

obtained from a fit to experimental data [57].  

First, we calculate the entropy dependence on the bias external field at fixed temperature. Substituting 

Eq.(B1) into Eq.(6) we get the skyrmion entropy dependence on B at fixed T:    

 

   
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2
23 1
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                                    
                              

0.S




     (B2) 

We immediately find, using Maxwell’s relation
T B

S M

B T

    
   

    
: 

    
  

2 2 2

0 0 sky =0 0
2 2

2
2 2 2

0 sky =0 0

3
2 ,

2

B B

s B

B
B B

B B k T B B a D BM
M k T

T k T B B a D B

  
         

           
  

          (B3) 
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with a = a (T). For B = 0 J (0Hext= 0 mT), the magnetization distribution as a function of temperature 

at different T is: 

 

2

sky =02

2
2

0 sky =0

3
2 .

2

B Bs
B

B
B B

k T a DMM
k T

T B k T a D

                
  

                          (B4) 

We immediately get the asymptotic behavior of the magnetization distribution for very high 

temperatures, 
0 0

lim 2 s
T B

B

MM
k

T B




  
  

  
. 

The integration over T in the interval [0, TR] with TR the reference temperature gives the magnetization 

at the temperature TR in the absence of an external bias field: 

 
0

2 2

sky =0 sky =02

=02 2

0 sky =0 sky =0

2
2 ln ,

2 2B

B R B B R Bs
R B R B

B R B B

k T a D k T a DM
M T k T a D

B k T a D a D

       
             

           (B5) 

The magnetization depends on two contributions and both of them are functions of the relevant 

parameters characterizing skyrmion energy, a and =0BD  . We now outline the calculation of 2), 

the skyrmion fluctuations of energy. Let us start from the thermodynamic relation linking the average 

energy with the partition function Z, ln Z
E




  


. This implies that

2

2 ln Z
E



 
    

 
. We now 

express the average of the square of the energy as a function of the partition function. We write the 

average of the square of the energy in the continuous limit as: 

   22 ,
E xC

E E x e dx
Z


                                              (B6) 

where C is a normalization constant and x is a generic variable. We cast Eq. (S19) in the form

  
2 22 2 2 2

2
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 . Hence, we get
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. The square fluctuations of energy take 

the general form: 

2
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ln
,

Z
E




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
                                                                  (B7) 

being 
2 2 2E E E      . 
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To get an explicit expression of the fluctuations of energy, we write down the partition function of 

the system that can be regarded as a controlling function able to determine the average energy of the 

system itself. In the continuum limit, we write the partition function as an integral over Boltzmann 

factors,  E x

NZ C e dx


  where E(x) is the energy depending on the general continuous variable x 

and CN is a normalization constant. As stated above, in principle the system under study represented 

by the ensemble of skyrmion diameters is a canonical ensemble with a very high number of degrees 

of freedom whose fluctuations of energy are thus very small. This allows assuming that E(x) is very 

close to the average energy <E>. This corresponds to treat the partition function of a canonical 

ensemble as that of a microcanonical one. Hence, without loss of generality, we express 
EZ W e   

where W is the statistical multiplicity of the energy level having value <E> and ln Z
E




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
. This 

allows for writing, via lnBS k W , the simple relation: 

ln .
B B

S E
Z

k k T

 
                                                          (B8) 

We now derive the mean square fluctuations of energy 2E  around the mean value <E> that, 

for a microcanonical ensemble, are very small if compared to the average energy. Taking into account 

Eq. (S15) and Eq.(S16) and expressing the mean square fluctuations of energy as a function of T 

yields: 

2 2
2 3 3 5 3 4 3 3

2 2
2 2 2 .B B B B

S S E E
E k T T k T k T k T E

T T T T

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       (B9) 

Simple considerations allow us to simplify Eq. (S17). Indeed, the average energy is linear in T so that 

its second derivative equals zero. Furthermore, the three terms proportional to 
3

Bk  proportional to the 

average energy and its first and second derivatives with respect to temperature are much smaller than 

the first term and can be safely neglected. Hence: 
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T T


  
   

  
                                             (B10) 

Mean fluctuations of energy around the mean energy of the skyrmion diameters population depend 

on entropy. By replacing the entropy expressed in Eq. (S8), we get: 
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The first term on the second member is much larger than the other terms so that: 

2 2 21
.

2
BE k T                                                        (B12) 
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Supplementary note 1 

The micromagnetic computations are performed by a state-of-the-art micromagnetic solver which 

numerically integrates the Landau-Lifshitz-Gilbert (LLG) equation by applying the time solver 

scheme Adams-Bashforth [1]: 

     21 G G

d

d
 


      

eff eff

m
m h m m h                              (S1) 

where  is the Gilbert damping,  is the normalized (reduced) magnetization, and 

 is the dimensionless time, with  being the gyromagnetic ratio, and  the saturation 

magnetization.  is the normalized effective magnetic field, which includes the exchange, 

magnetostatic, anisotropy and external fields, as well as the interfacial DMI and the thermal field. 

The interfacial DMI contribution  is obtained from the functional derivative of the DMI energy 

density  under the hypothesis of thin film  [2,3] as 

 ,                                           (S2) 

with D being the parameter taking into account the intensity of the DMI,  the out-of-plane 

component of the normalized magnetization,  the vacuum permeability, and  the unit vector 

along the out-of-plane direction. The DMI affects the boundary conditions of the ferromagnetic 

sample in the following way , where  is the unit vector normal to the edge, 

and A is the exchange constant.  
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Supplementary note 2 

In this section, we derive the most probable value of skyrmion diameter population at a given 

temperature skyD taking into account the analogy with the statistical behavior of an ideal gas that was 

discussed in the main text. For this latter, it is customary to define the most probable speed of a 

molecule by the value of speed v at which the Maxwell-Boltzmann (MB) distribution attains a 

maximum. According to our model the skyrmion energy is fitted via a parabola 

 
2

sky 0 skyE a D D b   with a = ½ d2E/dDsky
2 proportional to the energy curvature, D0 sky the 

equilibrium diameter at a given temperature,  0 sky 0 skyD D T , and  sky sky 0 skyb E D D   

corresponding to the energy minimum 
min

skyE at a given temperature. In our model, both a and b are 

temperature-dependent coefficients a (T) and b(T). 

Eq. (1) of the main text expressing the skyrmion diameter distribution reads: 

 
2

sky 0 sky2

sky sky

sky

,
a D Ddn

C D e
dD

 
                                              (S3) 

where C is the normalization constant, 
1

Bk T
  with kB = 1.38  10-23 J/K the Boltzmann constant 

and T the temperature.   

From the minimization of Eq. (S3), one gets the displacement law of the diameter with the 

temperature, namely: 
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where the superscript “mp” stands for “most probable” corresponding to the maximum of the 

distribution and  mp

skyD T  is the most probable value of the skyrmion diameter. This law expresses the 

displacement of the maximum of the distribution as a function of T. It can be noted that the diameter 

 mp

skyD T  depends on the equilibrium diameter  0 skyD T  at a given T and that, at low temperatures 

expanding to the first order,  mp

skyD T  has a linear dependence on T assuming  0 skyD T

   0 sky 0 sky 0 KD T D T d T   (both via an analytical and a micromagnetic check) with d a coefficient 

expressed in m/K. 



Straightforwardly, setting    mp

sky mpvD T T  (  mpv T  is the most probable speed), 0 sky 0D   and a = ½ m 

(m the mass of a gas molecule), we get the well-known result  mpv 2 /BT k T m .  

Note that
 
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1 1.1
D T

D T

 
   with  skyD T   a ratio depending weakly on temperature with 

 
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D T

D T

 
1 as T 0. This result is slightly different from that of gases where the ratio 
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=1.13

v

T

T
for each temperature with  <v >T  the average velocity.  
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