N

N

A micromechanical model of a hard interface with
micro-cracking damage

Maria Letizia Raffa, Frédéric Lebon, Raffaella Rizzoni

» To cite this version:

Maria Letizia Raffa, Frédéric Lebon, Raffaella Rizzoni. A micromechanical model of a hard interface
with micro-cracking damage. 2021. hal-03404654

HAL Id: hal-03404654
https://hal.archives-ouvertes.fr /hal-03404654

Preprint submitted on 26 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.archives-ouvertes.fr/hal-03404654
https://hal.archives-ouvertes.fr

A micromechanical model of a hard interface with
micro-cracking damage

Maria Letizia Raffa®* Frédéric Lebon®, Raffaella Rizzcu.

@ Laboratoire QUARTZ, FA 7393, ISAE-Supméca, 3 rue Fernand H “nauv’: 9,407
Saint-Ouen, France
b Aiz Marseille Univ, CNRS, Centrale Marseille, LMA, 4 impasse Viko. . Te.la 13453
Marseille Cedex 13, France
¢Department of Engineering, University of Ferrara, via Saragat ' 44122 Ferrara, Italy

Abstract

Bonding techniques are increasingly used . nc v industrial fields. Mod-
elling the under-load damaging behavior o.” aara structural adhesives is still
an open challenge. This work proposes a n. v hard interface analytical model
with evolutive micro-cracking damage. T'h. aodel is obtained within a rigor-
ous theoretical framework combining : “vn ptotic theory and micromechanical
homogenization. Main new featv.es are: (i) the adoption of two dual ho-
mogenization approaches; (ii) t! ~ for.aulation of a thermodynamically-based
damage evolution law for ~ ard . terfaces. The interface model is able to de-
scribe both ductile and bri’ .le « .mage behavior of hard structural adhesives.
Provided examples on t»~ s. uctural behavior, under several loads, suggest
the suitability of the p. noused interface model as a modelling strategy for

hard structural adhe ‘ve, with micro-cracking damage.
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1. Introduction

Bonding has become a very common practice to assembly m.. +ieis and
structural elements in many industrial fields, such as aeronuti , spatial,
automotive, nuclear, civil, mechanical and bio-engineering mainly because
structural adhesives offer low-cost techniques and a great design freedom
while preserving good mechanical performances. For sc... anplications, such
as assemblies of fiber-reinforced composites and impl int 1 xations, bonding is
the only viable assembly technology. To achievr be .. - rerformances avoiding
too large mismatch in terms of thermo-elastic nroper . es, structural adhesives
and adherents have, in some cases, an equiv 'ent stiffness. Some examples
can be cited: acrylic adhesives, whose Youw,' modulus (E) is around 2-3
GPa [1], are used in manufacture of plyv ond (E = 5 — 8 GPa); phenolic and
epoxy adhesives with £ = 3—5 GPa [] are used to bond structures of GFRP
(polyester-glass composites) with ™ = .5 — 28 GPa; orthodontic adhesives
with F = 18 — 22 GPa [3] a» us. "y used for cementation of brackets on
enamel (E ~ 65 GPa).

An adhesive equally sti®~+ t.an adherents is defined, from a mechani-
cal point of view, as a hu,.” iuterface, as opposed to the definition of soft
interface [4, 5]. A wide 'ite ature exists concerning models of soft material
interfaces, including . ~se undergoing material degradation. Analytical soft
interface model. ft/.n take into account the nonlinear evolution of the inter-

face properties by introducing at least one parameter (of damage, adhesion,
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etc.) whose variation depends macroscopically on kinematic variables [6HI5].
Numerical soft interface models, in the framework of the finite element the-
ory, generally use cohesive zone models (CZM) based on traction-seps ration
laws of various shapes, to describe cohesive and adhesive failure [16Hz4).

Recently, some analytical models of hard material interfaces havi. been
also developed [2329)] and it has been proved that interface mo iers leve.oped
for soft adhesives cannot be directly applied in the case of har . aauesives [25].
Moreover, the existing hard interface models do not consider v..c degradation
of the adhesive material properties.

This paper provides a novelty within this conte .t, . 7 proposing a hard
material interface model accounting for an evoluti- ~ micro-cracking damage.
In the last twenty years, the present authors estabi. “ed an original modelling
strategy to derive soft and hard imperfect inte. .ce models based on the
combination of asymptotic theory and mici. »erhanical homogenization [11],
14l 23H26] (see Fig. . This strategy hes iready been successfully used
to describe the mechanics of thin elastic layers in adhesive-like problems
and contact problems [13 15 B0, B1). - “oreover, it has been identified as a
sound alternative to the classical ~hesive zone models, principally because
imperfect interface models all~w . consider the physics of the adhesives in
terms of geometrical (thickness, arface roughness), mechanical (anisotropy,
non-linearity) and damag  ~ro erties.

This work is an ext:nsio 1 of the authors’ modelling strategy of hard im-
perfect interfaces. D - wing on Kachanov’s micromechanical homogenization
theory [32H37], ~nicr »-cracking damage is represented by a microcracks den-

sity parameter. Parti -ularly, the adoption of a generalized cracks density [3§]
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Micro-cracking
damage

Fig. 1: Schematic sketch of the imperfect itne ace 110delling strategy

allows to by-pass the geometrical definitio. ~f *he cracks, which is possible
only for circular and regular cracks [32], : nc «  a matter of fact it extends the
generality of the proposed interface model to any regular and irregular cracks
shape. It should also be noted that the _eneralized microcracks density can
be measured postmortem by X-1 - micro-tomography [I5]. The evolutive
character of the micro-crackir~ «. ~i1age is described by introducing a new
evolution law of the generalizea .acks density.

The paper is structure. ' as follows. The hard imperfect interface law is
derived via the asympfotic >xpansions method in Section 2. In Section 3,
the microcracked-me “>rial-interface properties are derived through two dual
approaches of r icrc mechanical homogenization, stress [32, [33] and strain-

based [39, [40]. The c amage evolution law is derived from a thermodynamic



o approach and then included in the hard interface model via the asymptotic
s1 expansions method. In Section 4, the behavior of the proposed interface
s model under various loading type is discussed via some academic exe nples.
&3 Moreover, the influence of damage parameters is investigated. Coilciuo.ons

e« and perspectives are drawn at the end of the paper.

s 2. Derivation of the hard imperfect interface model

s 2.1. Notation and problem statement

67 The herein adopted matched asymptotic expansion 1.. ~ry builds on the
s tradition of using asymptotic analysis to derive me “han cal laws governing
e imperfect interface conditions [41H48)].

70 In what follows, a thin material layer of « ~astai¢ thickness ¢ embedded
7 between at least two solids is referred as inic. ~hnse. Being L a representa-
22 tive length scale of the geometry, the non-du..cnsional interphase thickness
7z € = t/L can be defined and taken as a sn a'l parameter for the asymptotic
72 expansions of the elastic problem. ™ hen ¢ < 1, the thin layer can be sub-
7 stituted by a surface separating t} . ~dherents called interface across which
76 certain conditions on the disp_acemc s and tractions prevail [4].

7 The interphase occupies » domain B® with cross-section S, § being an
7 open bounded set in R? wi*.  smnooth boundary. The adherents occupy the
7o reference configurations O, - R3. Let S84 be taken to denote the plane
g0 interfaces between inte, h-se and adherents and let ¢ = QL US4 U B°
s1 denote the whole ~~1ap “te system. It is assumed that the displacement and
&2 stress vector fiel.. - re continuous across S¢.4.

8 An orthonormal Cartesian basis (O, iy, i3, i3) is introduced and let (z1, 9, 3)



sa  be taken to denote the three coordinates of a particle. The origin of the basis

85

belongs to S. The aforementioned system is sketched in Fig. 2.

) \\ /8
5y \‘\/%/r

g

23,2,

1/’2\' (c)

-1/2 \X J,g/ +
Nl \

Fig. 2: The three steps of the matched asymptotic e.. ~nsion method: (a) Refer-
ence configuration (interphase); (b) Rescaled config.. .ion (asymptotic expansion

phase); (c¢) Limit configuration (interface).

The materials of the composite s¥stem are assumed to be homogeneous
and linearly elastic and let AL, B® he vne fourth-rank elasticity tensors of
adherents and of interphase, resp. “ively. Tensors Ai, B® have the usual
symmetry properties, with th. mu or and major symmetries, and are posi-
tive definite. Note that an- ~ssi.mption on the anisotropy of adhesive and
adherents materials is necac ' ‘or the proposed development. As a matter of
fact, it extends the ger ~-ali.y of the proposed asymptotic approach to any
anisotropic material

Adherents 2. <t pjected to a body force density f* : Q¢4 — R? and to a
surface force density g* : TS +— R* on T C (09 \ S5)U(9Q°_\ 8). Body
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forces in the interphase are neglected.
On I, = (097 \S7)U(09° _\S2)\I';, homogeneous boundary conditions
are prescribed:

u"=0 onl%, 1)

where u® : Q° +— R3 is the displacement field defined on Qf. L -wdaries

I';, I, are assumed to be located sufficiently far from the inter ~has > and the

external boundaries of the interphase B° (0S x (=3, 5)) a2 assumed to be
stress-free. The external forces field is endowed with sufficient regularity to
ensure the existence of an equilibrium configuration [2o).

The following notation is adopted:

e [f] == f(2Za,3)—f(2Za, —3) = jump in the re. ~aleq configuration (Fig.);

1
o (f):= [ f(2a,z23)dz3 = average in tI rescaled configuration;
2

o [[f]] :== f(Xa,0")—f(Xq,07) = jumr, "~ the limit configuration (Fig. [2);
o ((f)) ==32(f(Xa,0") 4 f(Xa,07") = average in the limit configuration;
where f is a generic function, z, == (.. 22) and x, = (21, T2).

2.2. The one-order asymptotic. the. .y

This section details the ~in steps of the asymptotic analysis leading to
the hard interface law at onc > der. Full formulation is reported in Appendix
and more details cou ~ b- found in [23-26].

Generally, the elus "~i*y tensor B¢ of a hard interphase does not depend
on ¢ [23] 25]:

B° =B (2)
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In the rescaled configuration (Fig. 2p) and considering Eqs. (A.7) and
(A.14h)), the stress-strain equation (A.31b)) reads as:

6" +eo' =B e + & +cel) +o(e) (3)
Equation is true Ve, thus the following conditions are derived:

0=B(e" (4a)

¢’ =B(e") (4b)

By considering Eq. and the positive definiteness of t .e tensor B, Eq.

gives:

uy,=0=[u"]=0 (5)
Moreover, substituting Eq. (A.9)) written for £ = ~ into Eq. it gives:
¢’i; = KVa' + K¥a? - Kval (6)
with 7 = 1,2,3 and K’! being the two-or_  tensors such that K,]Ci = Bijn.
Next, integrating Eq. @ with respect tc¢ .3 (for j = 3) and considering
Eq. (A.17) it results:
@' = (K> ' (v%; - K**0Y,) (7)
Then, by replacing Eq. @ (7 =1,2) in the equilibrium equation (A.18]) one

obtains:
(6'i3) 3 = (0 i) - —(K"0" + K0 + K*d}) , (8)

Next, by integrating "a. (8) with respect to z3 between —1/2 and 1/2 and
by using Eq. it s obtained:

6] = ( KPal, - KRS (6% KM ()

)

8
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where Greek indexes (o, 8 = 1,2) are related to the in-plane (xy, z2) quan-
tities. Note that in Eq. @D higher order effects, related to in-plane deriva-
tives, appear. These terms, usually neglected in standard zero-order t! eories
[23, 25], are related to the curvature of the deformed interface (seconu-o.der
derivatives).

Finally, the transition from the rescaled configuration to the nn. 5 co ifigu-
ration is obtained by introducing the matching conditions FW.—

and the interface laws at both zero-order and one-order are uoiived:

e Zero-order interface law:

[w] =0 (10)
[[o” i3] = " (11)

e One-order interface law:
[u)] = (K*)™" (6% — K*®u, |, — ((u})) (12)

o ia]) = (= Kl - K (0% - KPu) )
— {{e%is,, (13)

Equations — are the sv.. Jard perfect interface condition, character-
ized by the continuity in t ~ms of displacements and stresses at the interface
[4]. Equations - are the rdisplacements and stresses jumps at the inter-
face in the one-order .iIsymptotic theory. They depend on the displacements
and the stresses tiel 's av the zero-order and on their first and second-order

derivatives.
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The hard interface law in the reference configuration (Fig) is derived by
considering asymptotic expansions (A.14al) and (A.5a)) combined with Egs.
(0)-(13) 23):

) ~ = ((K)7 ((fo%is)) — KH(u,))) = ((us)) (9
[o° i3] ~ a( ( — K ((u)) — K*(K®) ™! (((0%15)) — KP /7y, ) )’a

(0% is))) (15)

3. Introduction of the micro-cracking damage

In this section, it is shown how to include micro crac :ing damage in the
hard interface law above obtained. The closed-fc.. of the effective elastic
tensors K7 in Egs. — is specialized © us.. g micromechanical ho-
mogenization in the case of two microcracke ' macerial models: Kachanov-
Sevostianov (KS) and Welemane-Goidescu (v ") models. The evolution law
of the generalized microcracks density is d>rived from a thermodynamic ap-
proach and then included in the bard interface model via the asymptotic

expansions method.

3.1. Micromechanical homogen.. *i0n approaches

The Kachanov-Sevostianov . ~Jdel [32],37] is a stress-based approach based
on the non-interacting mi ocr icks approximation [35, 36]. The Welemane-
Goidescu model [40} 49, [£J] is e strain-based approach, based on the dilute
limit hypothesis [39] For both models, it is assumed that the material in-
terphase compri.es « n o1thotropic matrix embedding a family of microcracks

parallel to i;. For v .e sake of simplicity, the formulations are reduced to

10
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the two-dimensional case on the plane (i, i3) with reference to the problem

geometry in Fig2]

3.1.1. Kachanov-Sevostianov model
Following the theory proposed by Kachanov and coworkers [32 [,.] ba: »d
on the Eshelby’s approach [51], and the above assumptions on mic. ~racks

and matrix, the interface stiffness can be derived as follows:

(E)? 2R B, EY +1)
E) — EY (v)5)?+ 2R B, EY EY
EY B3 vy
EY—ES(v)3)2+2R B, " EY
EY By ,
33 _ 2GYy

11
Kll -

13 31
K31 - K13 -

(16)

33 __
K33 -

where EY, EY, G%, 1% and 1, are the in-pla. :lastic orthotropic moduli of
the matrix; B, and By are elastic parai «cte s depending on the matrix and
microcracks characteristics [32 [33].

Note that the engineering modr'* cawu be also easily derived. The effective
Young’s modulus in normal d*~ecei ~ /13), used in the examples below, reads

as:
N Ey
 1+2RB,, EY

™

(17)

3.1.2. Welemane-Goidesc 1 mo
In [40, 49, 50, 521 Weiemane and coworkers extended the energy-based
homogenization ap; "oaca originally proposed in [39] for isotropic materials

to the case of an or.. Htropic matrix.

11
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By following the Welemane-Goidescu model [49], the expressions of the

interface stiffness read as:

EO
Kll — 1 EO - R
11 ES(10500, — 1)2 ( 5(1— visvs) \/ 9 (V1) X
13 31 EYvg, 0 0 /
K3 = Ki3 = (0,0, — 1)2 ((1 — vi3tsy) — R/ Egm X>

Vi3V31

EO
K33 = (00—3_1)2 ((1 — V305)) — Ry/Egm X)

Vigl3y

. e
K% = o, (1 ) x)
NG

3
where y = <GL?3 — 2”15 + \/_E) ,and EY EY Ci;, 45 and 1) are the

(18)

in-plane elastic orthotroplc moduli of the matrix.

Also in this case, the engineering moduli can ™ = derived. The effective
Young’s modulus in normal direction (i3), adopte ~ for next examples below,
reads as:

Es=E)(1—-2Ruw ,EY) (19)

with H,, an elastic parameter depeading on the matrix and microcracks

characteristics [49] (analogous to th» pa.ameter B, of the KS model).

3.2. Damage evolution law

The proposed hard interfi. ~ law expressed by Egs. (12)-(13)) in the limit
configuration (Fig. 2c), or by Zgs. (14)-(17) in the reference configuration
(Fig. ), depends on th. Jene. lized microcracks density R via the effective
stiffness tensors exprc .sew. oy Egs. and Eqgs. for the KS and WG
model, respectivi.y.

A possible evolu "~alaw of R in the interphase B° (of thickness ¢) is herein

derived following a thermodynamic approach [6l [7]. A pseudo-potential of

12
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dissipation ® given by the sum of a quadratic term and a positively 1-
homogeneous functional is considered [7]. The dissipative character of the

evolution of damage is given by the rate-dependent form of the poter ial:
: 1 € P2 : 2
(I)<R) = 577 R+ ][0,+oo[(R)7 ( )>

where 7)° is a positive viscosity parameter; I 4 denotes the indi :ate function
of the set A, i.e. I4(x) =0if z € A and I4(z) = 400 otherwise; R is the
increment of microcracks density compared to its initial lever, indicated in
what follows as Ry. The term ][o,+oo[(R) forces R to . “swme non-negative
values and it gives the irreversible character of the d gra 'ation process for a
non-regenerative microcracked material (R > Ry)

The free energy associated with the constiti:itiv. :quation of the microc-

racked material is chosen as follows:

W (e(u), R) = 3B (R) (e(u) : 0 ) W R+ Tigyeoi(R)  (21)
where B°(R) is the effective stiffness tensor of the material (obtained via the
KS or WG model); u is the displace~enu deld; e(u) is the strain tensor under
the small perturbation hypot*esis, < 1s a strictly negative parameter. Note
that the irreversible character . da aage, already imposed in Eq. , allows
to neglect the term Ijg, 1o’ ™) 1. Eq. (21)).

By deriving Eqgs. a. ! \ with respect R and R respectively, then
by replacing them intc “he movement equations in B¢ (for further details
refer to [6 53]), the .. "owing damage evolution law for R in the volume B¢

is obtained:

wl= (w - %BfR(R) (e(u)  e(w)) ) (22)

13
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where (), denotes the positive part of the function and B(R) indicates
the component-wise derivative of the stiffness tensor with respect to the

generalized microcracks density R.

3.2.1. Asymptotic theory
In this section, the asymptotic behavior of the volumetric damag,. ~volu-
tion law (Eq. (22))) is studied. It is prescribed that 7° and w® « » volumetric

densities and thus they are inversely proportional to the ~on dimensional

1 1

interphase thickness €: n°* = ne " and w® = we ", wit’ n > 0 and w < 0.
Subsequently, for the sake of simplicity, we will further ass .me that w and n
do not depend on the direction orthogonal to the inte “cr surface x3 (respec-
tively z3, in the rescaled configuration). In the " low. 1g, also R is supposed
to be independent of x5 (respectively z3).

1
Let focus on the term: 5 BR(R) (e(u) : e(u " in Eq. . This term can

~

be developed at 0-order as 3 B (R) (€” <™ and the constitutive equation
1
leads to 518%?3(]%) [(B*)~'(R) 6 : &°]. Note that:
&' = Sym(i @ ., -y ® iy + Uy © i) (23)

where Sym gives the symmetrir ..+ of the enclosed tensor. This term is inte-
1 1
grated along z3 and gives 5 B ™ [(BY)'(R) 67 : (€°)] or 3 BR(R) (e”: (&%)).

1
Next, by integrating agair. lorg zs, it gives §BfR(R) ((éo) : (éo)), where
~0\ _ > ~0 . ~0 . ~1 .
(e”) »Lu,n(u71®zl+u72®22+[u]®23) (24)
Finally, by ador “ing the following approximation:
S AN . . . 1 .
Sym(45 @iy +10% Qi+ [4'] ®i3) = Sym(i5, @iy +15 Qi+ z [U°]®i3) (25)

14
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the (internal) damage evolution equation reads:

| u£1> <@81>
i = qw =5 KR(R) | (i5) | - | (a3) (26)
@] )\ [@]

where
e Kll c K12 K13
K¢ = €K12 5}(22 K23
K13 K23 1 K33
€
By introducing the matching conditions of the hard ir* ~rta e law (Egs. —
(15)) and neglecting the second-order terms, the finc” - rm of the proposed

damage evolution law for a hard interface mouc. ~ead.:

h=qw-SKa®) | (@ () (27)

_l’_
3.3. Connection of the generalized -racks density with normalized damage

parameters

In the classical continuum d: mage theory at least one normalized damage
variable is adopted to describ non-localized damage [0, 53], [54]. The simplest
relationship to describe mi.ce. 1l properties degradation is £ = E°(1 — D),
where EY is the Young’= woa. s of the undamaged material and D is the
damage variable going 1. . 0 in undamaged conditions to 1 in fully damaged
conditions. This .. nag. description is generally used in commercial software
for finite element . =lysis (FEA). Connection relationships between D and

the generalized cracks density R can be obtained for both KS and WG model

15
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by using Eq. and Eq., respectively, and they read as:

2R B,, E°
- il KS model
T+2RB,, g0 JorfHmode (28)

D=2RH,, E° for WG model

Equations show that in undamaged conditions D = R = ) fo both
damaged-material models. Instead, in fully damaged conditi .. (L = 1),
R — +oo for the KS model and it is bounded by the value ™~ ./2 H,,,, E°
for the WG model. Note that to have a upper bound for ~, in the WG
model, is consistent with the dilute limit theory, on wbi:h the WG model is
based [40], meaning that the model is valid for smal. . nsity values. These
connection relationships have a twofold advanu..e: (i) they allow a
microstructural interpretation of the damage vai.. “le D, by making explicit
its dependency on material and microcracks prop. “.es; (ii) they are expected
to simplify the implementation of the propo ~d ir verface model in commercial

FEA-software for future validation with atv. ~rical simulation.

4. Numerical examples

Hereafter, two academic exar., 'es are used to illustrate the constitutive
and structural behavior of th p. Josed hard interface model with micro-
cracking damage. All the nun. .ical computations have been carried out

using the commercial soft. ‘re Mathematica [55].

4.1. 0-D example: TF ~ ¢ _stitutive behavior

In this sectio,, 0-L example is developed to illustrate the constitutive
behavior of the intc. e model. Different points are discussed: the compari-

son between damaged material models KS and WG; the influence of damage

16
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282

parameters 1 and w on the interface law; and finally, the influence of the

loading rate and of cyclic loads on the interface behavior.

4.1.1. Effects of the damage evolution law

The mechanical properties of the damaged material (Young’. .. hdu'1s
E4(E,, R)) in the case of KS (Eq. (17)) and WG (Eq. (19)) mo-els, ~»d as
follows:

By
EfS(Eu, R) == H—TR fO’I" KS model (29>

EVY(E, R)=E,(1-27R) for WC' model

where By, = Hy,, = 7. By deriving with respect R onc obtains:

2 E
AT B . KS model
(I+2rRpe o 72 moee (30)

(B p=—-27E, for WG . odel

(Ef®)r=—

The damage evolution laws in the 0-D case, "~ both KS and WG models,
are obtained substituting Eqgs. into T, [27)):

KSY .
<w — %M rn]%) for KS model
<w — —a— M [u]i) for WG model
2 £ n

Equations have been nu . ~rically solved with an imposed displacement

jump equal to [u], = [u],, — 7ith [u]

c

the time unit (s) is only  alite "ve and the proposed model does not depend

mae = 0.1 mm and £y = 5s. Note that
on it because the intc .fac. model is developed in a quasi-static framework.
Moreover, let E, - 70 < 10> MPa and ¢ = 2 mm. The chosen reference
values for damage , ~ameters are n = 30 MJ.s/mm? and w = —2 MJ/mm?.

Initial damage was imposed to vanish (Rq = 0). To investigate the effects

17



260 of parameters 1 and w on the interface model, a one-factor-a-time (OFAT)
25 study on both 7 and w has been made on ranges n = (0.3, 3,30,300) and
86 W = (—0.2, —2, —20, —200)

> T Fen) T

B a0l |- =03 P 7 0000 T 203 | /!

B >7 |- p=s v & s000- |- 7=3 .

T 250 |- 7=30 = - © ) \

B o |m =30 yd B 4000 |~ =300 /]

5 1'5 5 3000 -/

E 10 P — N 2000 #

g 05 = - g 1000 /l_//

g voee———" J g o

0 1 2 3 4 5 0 1 B 3 4 5

Time .
(a) (1)

>

P / 60 P, N /

D 14— w=-02 2] - w=—u.

iz "o, o Ew /

X X

% 10— w=-200 / % 40 C ==

5 08 Z 5 20 / /

Bos = B /

N P N 20F

= 04 = /  /

g o2 e g ///

8 00l | k & ~

0 1 2 3 4 5 0 1 2 3 4 5

Time Time

Fig. 3: Evolution of the ge ~era. .ed microcracks density R. Fig. [3(a)
effect of varying n in the KS 1. )del. Fig. : effect of varying n in the
WG model. Fig. : eff_." of varying w in the KS model. Fig. effect
o var'ing w in the WG model.

287 Figures Ba-d o w t:.e evolution of the generalized microcracks density
s R as a function o. “: time and of damage parameters n and w, for both

20 KS and WG models. At the beginning, both models present an horizontal
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290

291

292

293

294

296

297

298

299

300

301

302

plateau at zero (because of the imposed initial damage Ry = 0); then, after
damage initiation, a linear increasing behavior is found for the KS model and
a cubic increasing behavior for the WG model. An inverse proportir nality
between R and 7 is found in both models (see Fig. and Fig. , Jhis
highlights that 1 has the physical meaning of a damage viscosity ~flu mcing
the velocity (slope of (R,t) curves) of the damage evolution. 11 ' resalt is
also emphasized in Fig. [ where the degradation of the Y_ang s modulus
of both damaged materials KS and WG is shown. The slopc of (E;/Eu,t)
curves, for both KS and WG models, increases as 1 der ~ases, meaning that

material get damaged "faster" for smaller values of ;.

=03 -KS
n=3-KS
n=30 - KS
=300 — KS
n=03-WG
n=3-WG
n=30 - WG
n=300 - WG

Fig. 4: Evolution in time of t" 2 1. ang’s modulus of the damaged materials:
parametric study on 7. Kachano. 3evostianov (KS, solid lines) and Welemane-

Goidescu (WG, dashed line = dariaged material models are represented.

The parameter - 1. * che physical meaning of a threshold energy beyond
which damage a.. "< te. in analogy with Dupré’s energy for adhesion [53]. In

fact, the damage-initiation time, i.e., when R begins to increase, is more

19



53 influenced by w than by n for both damaged materials, as highlighted in

304

305

306

307

308

309

310

311

312

313

314

315

Figs. , and .

1.0 \ - w=—02-KS }
08 ! - w=—2-KS
| \\ w=-20-KS |
u7 0.6 ‘|| - w=—200-Kos

= 1
m 0.4ﬁ

0.2 E !
0.0k —l

0 1 2 3 4 5
Time

~_ - w=-02-‘ul |

- w=—2-W\5
w=_20 # V\I ~—
— - w==20"-WG

/

.-.}[.

Fig. 5: Evolution in time of the Young’s modulus of t~ dauaged materials: para-
metric study on w. Kachanov-Sevostianov model (k. ~old lines) and Welemane-

Goidescu model (WG, dashed lines).

Moreover, Figs. 4] and |5 show that t .c complete damage (i.e., when Ey
tends to zero) occurs earlier for the V'G model than for the KS model inde-
pendently of w and 7. Note that i~ the case of KS model, E,; tends to zero
asymptotically (data not shov=). . i different behavior of the two models is
consistent with the two differe .t hy potheses on which the models are based.
Particularly, WG model is I~ ~=d . the dilute limit hypothesis, meaning that
it is valid for small density ~laes (less than 20% according to [39]). This is
also in agreement with te fict that the generalized cracks density R has an
upper bound in the ¢ ~e of WG model (see Section 3.3). The KS model is
based on the n_ irceracting microcracks approximation and it is valid for

greater microcracks uensities (until 80% according to [36], 37]). For further

20



316

317

318

319

320

321

322

323

324

325

326

details regarding the difference between these microstructural hypotheses the

reader can refer to [37].

The interface model in 0-D can be expressed as:

Equation has been solved for both KS and WG models, repia ‘ng 44 by
EXS and EVC, respectively (see Egs. ), in which R he. becn obtained
by Egs. .

800 ; ‘

] — — 1. -KS

."/ — 1=3-.S

600 4 n ™ KS
E /\ — ~=300-KS

of Ay

\ . ;- 3-WG

=, 400 ) - w=3-WG
b: \‘ S 1 =30-WG
200/ 4= ) 1| n=300 - WG

Undamaged material

002 004 006 008 O
[uln [mm]

Fig. 6: Interface law: parametric stuc - on 1. Kachanov-Sevostianov (KS, solid
lines) and Welemane-Goidescu (WG .. ~had lines) damaged material models are

represented. The linear-elastic i chavio. of the undamaged material is represented

with a red dotted line.

Figures[6] and [7]show .".e in. .face model for both damaged materials as a

function of  and w. [Tuwn.crical curves are obtained by solving the damaged

interface model (i, . , , and ) in displacement-controlled mode.
Both figures sugges. ~ brittle damage behavior in the case of WG model and
a ductile damage behavior for the KS model. Figure [6] highlights that the
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327

328

329

330

331

332

333

334

335

336

337

338

— w=-02-KS
o — w=-2-KS
__1500 A w=-20-KS
5 / | — w=-200-KS
! -- w=-02-WG
=, 1000 /o - w=-2-WG
5: : w=-20-WG |
500 /[ ! -- w=-200-WG
/. 1 ) === Undamaged materi 4 |
ey | _

000 002 004 006 008 010
[u]n [mm]

Fig. 7: Interface law: parametric study on w. Kachanov-Sevostianov (KS, solid
lines) and Welemane-Goidescu (WG, dashed lines) damag: material models are
represented. The linear-elastic behavior of the undamag :a .. ‘terial is represented

with a red dotted line.

elastic limit increases with 1 and this result . ~firms the role of the damage
viscosity 7 as the velocity of the damage evolu. .. Figure[6]shows also that 7
influences the nonlinear transition betwe_r the linear elastic domain and the
damaged domain (this is more evident in KS model than in WG model); thus
for a small damage viscosity 7 this * ~nsicion tends to vanish (i.e., suggesting
that the material gets damag °d m. ~~diately after the initiation). Figure
emphasizes the role of paramder ¢, as a damage initiation threshold: thus

the higher is w, the later @ ~age initiates (see Fig. [5) and the higher the

elastic limit.

4.1.2. Effects of the l,ading rate

The influencr. ot he loading rate and of the loading shape on the interface

model has been inve cigated. In particular, two displacement jumps have
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339

340

341

342

343

344

345

346

347

348

349

350

351

been separately imposed to solve Egs. , , and : a ramp function
[u], = vt and a quadratic function [u], = 1/2v*t*+1/2vt. Four values of the
loading rate v = [u]

fixed [u]

/ty have been simulated (0.1,0.2,2,20) mm/s vith a

max

mae = 1 mm and by varying the duration ¢y between (0.05, 6.0, ., *0)
s. The damage parameters have been taken equal to their refer nce values
n = 30 MJ.s/mm? and w = —2 MJ/mm?. The other pareme rs 7, =

70 x 10® MPa, ¢ = 2 mm and R, = 0, are taken as in the p. vious study.

4000 —
: — v=20- nS
f — v=2. ©
30001/ ooz
T / ="K
o 4 — v=01- S
b’: F - ’:Z—WG
10001 f; v= 2-WG
I‘l ‘ I I I I ‘ - -.0.1-WG
0 ﬁ‘l \ ‘ ‘ ‘ ‘ 1 === Undamaged material
0.0 0.2 04 0.6 0.8 1"

[uln [mm]

Fig. 8: Interface law for a ramp displace. icat jump: parametric study on the
loading rate v. Kachanov-Sevostianov (KS, solid lines) and Welemane-Goidescu
(WG, dashed lines) damaged material mo. cls are represented. The linear-elastic

behavior of the undamaged materiz. "< represented with a red dotted line.

Figure |8 shows the int .. -e law in the case of the ramp displacement
jump. In analogy with the pi. “ous section, a ductile damage behavior of the
interface is obtained in >~ case of KS model and a brittle damage behavior
for WG model.

Figure[9show. “he interface law in the case of the quadratic displacement

jump. The imposed quadratic displacement jump produces an hardening-like
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353

354
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357

358

359

360

361

362

363

364

— v=20-KS
e — y=2-KS

—_ v=0.2-KS
& ; — v=0.1-KS
= 2000[ -- v=20-WG
c

S

-=- v=2-WG

1000 ] v=0.2-WG
- | ‘ -- v=0.1-WG

v ‘ ‘ L ---- Undamaged materi

0.0 0.2 0.4 0.6 0.8 1.0

[uln [mm]

Fig. 9: Interface law for a quadratic displacement-jump: parameuv..c study on the
loading rate v. Kachanov-Sevostianov (KS, solid lines) ar - Welemane-Goidescu
(WG, dashed lines) damaged material models are reprecc.. . The linear-elastic

behavior of the undamaged material is represented with . .d dotted line.

effect in the damaged part of the interface cor “titu.ive behavior (i.e., beyond
the elastic limit) and the slope increases w... *' e loading rate v.

Both Figs. highlight that for higl rav_s (v =2, 20 mm/s) the elastic
limit (tensile) is higher than in the auasi-static configurations (v = 0.1, 0.2
mm/s) for both KS and WG models. nh.cently, authors provide a validation
of the proposed hard interface mo.. " iv [31], by comparing simulated response
curves with data from tensile >xp. 1mental tests available in the literature
[56] in both quasi-static and hig. -rate loading conditions. They found that
the loading-rate depender.. of the hard interface model makes it suitable to

describe the experimen 2. b havior observed in [56].

4.1.8. Effects of ., Tic v ading
The influence 0. ~clic loading on the hard interface model has also been

investigated. A strictly positive sinusoidal displacement jump has been im-
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365

366

367

368

369

370

371

372

373

374

375

376

posed: [u], = [u],,,, |sin(ft/tf)|, with [u], . = 1mm, f=7/2 t; =5s

and 5 cycles have been considered. Both KS and WG damage models have
been considered and the damage parameters have been taken equal t : their
reference values n = 30 MJ.s/mm? and w = —2 MJ/mm?. E, = (v ~ '0?

MPa, ¢ = 2 mm and Ry = 0, as in the previous study.

— Kachanov-Sevostianov

- Welemane-Goidescu

-= Undamaged material

1000 —
Ll B
800r —
& 600 v
E [ o T =]
400 — >
bc [ Zﬁ
L — h ]
2007 ‘ ]

0

00 02 04 06 N8 10
[uln [mn)

Fig. 10: Interface law for a cyclic load for KS und WG model. The linear-elastic

behavior of the undamaged material is . ~resented with a red dotted line.

As shown in Fig. the t 7o « .nage models give very different results
under the same loading and nai. neter conditions. KS model, together with
the proposed damage evo!.. ‘or law, is able to reproduce an elastic-damaged
material behavior with v stecesis, as illustrated in Fig.[I0] Generally, the en-
ergy dissipated via i * ro-cracking damage is higher at the initiation and first
accumulation of mic ocracks. This is consistent with the resulting hysteresis

loop of the first cycle that is larger than the others; after the first cycle, the
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378

379

380

381

382

383

384

385

386

387

388

389

390

391

hysteresis decreases with the number of cycles until the damage evolution
is completed. Moreover, the damage evolution produces a decreasing of the
interface stiffness (see Fig. . The stiffness of the undamaged mat rial is
equal to 35000 N/mm? and after the first cycle it reduces to 515 iv;w..n®.
After the first reloading (2nd cycle), the stiffness slightly decreas < umn il the
damage evolution is completed, and at the end of the fifth cyc'e v. » sti.fness

is equal to 318 N/mm3. This result is physically plausible.

3000

l I 2000 A I R
~ -=n=3 [ ~w=-0.2
2500[ |15 H
i’ \ --n=30 1500 H--‘ -2 ]
T 2000 I ] 1#=300 E T ] w=—20
: --3=3000 i JJ-- w=-200
1
=, 1500 l ] -- Undamaged material || =,1000( 11 . Undamaged material | ]
£ 10001 S ; \
I | soofft - ——
500 i i
ohii 3 0 \
00 02 04 06 08 10 00 °~2 04 06 08 10
[u]n [mm] [u]n [mm]
(a) (b)

Fig. 11: Interface law for a cyclic load for WG model. Fig. [11(a)

Fig. study on w.

study on 7.

On the contrary, WG dama_~ model is not able to reproduce a damage
behavior under cyclic loads. T ~ure[10|shows an abrupt reduction in stiffness
to zero already during the fi1. ‘5 loading curve, meaning that the damaged
material behavior is bri. e, 1. agreement with the previous results. Note
that this behavior dc _s ..ot depend on the chosen values of the damaged
parameters 1 ans. « as .Jlustrated in Fig. [I1]

Finally, Fig. [1z.” ~ws the evolution in time of the normal stress o,, in the

case of KS model, highlighting the decrease of the maximum normal stress

26



32 with the number of cycles (note a decrease of the 60% at the last cycle).

1000 -

g8 8
-

o, [MPa]
S
_—

N \V/’\ AN A

0 10 20 30 40 50
Time

——

Fig. 12: Interface law for a cyclic load: normal stress as a 1. ction of the time for

the Kachanov-Sevostianov damage model.

3 4.2. 1-D example: The structural behavior

304 In this section, a simple 1-D example ic «. veloped to illustrate the struc-

505 tural behavior of the proposed hard interface model. A composite bar under

306 traction was considered. The bar, of sec “on A, comprised two parts of length

57 £, made of an undamaged materie -vith. Young’s modulus F,, and an embed-

23 ded part of length ¢, made of a « -aageable material (glue-like interphase)

N

30 with Young’s modulus Ey(FE.,, .

The damageable material in the inter-

wo Pphase is supposed to have * th: beginning the same Young’s modulus of the

a1 adherents, then it degrices as .he microcracks density R evolves. The bar

w2 was fixed at one enc and a quasi-static traction force was F'(t) applied on

w3 the other end, e ' illi strated in Fig.
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Glue

a
) / £
F(?)
Z —>
E,A E4 A E,A
n

b)

L lre/2 | lre/2 |

D 7] T F(2)
4 | -

E,A E,A
‘—'

n

Fig. 13: 1-D example: bar under traction, a) glue interphase, b, = .erface model

The displacement field can be easily derived ana’ytic lly as:

(

F 0<n</t
A" <n<
FoooFc(1 ¢ Y.,
wm) =4 A"t A \E g S = ' ° (33)
F Fe (1 1 fe<n<o+
24" 2 \z & t+e<n< £
Thus, the displacement jump along n is >t ta.aed as [u], = u(l + ) — u(f):
Fe
o, = (34

Note that, being % = 0, the staida. | spring-like interface law in 1-D ap-
proximation can be derived (in ~alcgy with Eq. (32)).

The Young’s modulus of t. - damaged material F;(FE,, R) was specialized
to the case of KS and W& 1. odel following Egs. as in the previous
example. The expressic... of v. - evolution of damage Egs. taking into
account the displacen cny jump Eq. is derived in this 1-D case as:

2
l- /w + 7 n . for KS model
o \ E, ),
- |lwt+r—e———— for WG model
n k E, (I1-2rR)?/,
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where o, = ¢ with ¢ = % €10, 1], ty =5s and & = 400 MPa. Moreover,
reference values are taken as previously: FE, = 70 x 10®> MPa, ¢ = 2 mm,
n =30 MJ.s/mm? and w = —2 MJ/mm?.

The structural response of the proposed hard interface model, 11 vc.ms
of tensile stress as a function of the macroscopic displacement " mp is il-
lustrated in Fig. where we find again a brittle behavior for v .' me cerial

and a ductile behavior for KS material.

400 T T T . T T T T T T e
L 'n / 4
I H //
300 — ]
T i
o [ ———
E 2007 # ~ —
bc / —K achanov—?evoiov
100; == Welemane - ~nid scu
/ === Undame ~ mauerial
ol
0.00 0.01 0.02 0o 0.04 0.05
[uln [

Fig. 14: Interface law in the 1-D case Kachanov-Sevostianov model (KS, solid
line), Welemane-Goidescu model (V.u, Jashed line), undamaged material (red

dotted line).

5. Conclusions

This work proposc. ~v original model of hard imperfect interface account-
ing for micro-c¢v. g and damage evolution. Preliminary numerical results

based on simple academic examples, in terms of both constitutive and struc-
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440
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446

tural behavior, are promising. They suggest that the model could repre-
sent a suitable strategy for a macroscopic description of hard adhesives with
micro-cracking damage, regardless of whether they have a ductile or Hrittle
behavior. In fact, the analytical interface model could be included ia a ....ite
element context via user-defined interface finite elements. Moreor *r. ¢ mnec-
tion relationships between the generalized cracks density and tu. stadard
normalized damage variable, derived at Section 3.3, are exp_.teu to simplify
the implementation in commercial FEA-software for future widation with
numerical simulation.

The main perspective to enhance the proposed mo =l is to establish a
combined experimental /modelling identification p~-*tocol for the damage pa-
rameters of the evolution law, the damage viscosity - and the damage thresh-
old w. A design of experience will be set up ir ora.. to catch the interactions
between damage parameters n and w that v . ~or.1d only glimpse through the
OFAT approach. To this aim, authors nave specialized the proposed hard
interface model to the case of tubular-butt joints under combined tensile-
torsion loads [31]. This is a standara .perimental design used to charac-
terize structural adhesives and i’ ~llows future validations of the proposed

interface model with experime~ta. “:sts.

A. Matched asymptot’ - ex ansions method

A.1. Rescaling phase

The rescaling ~has. ~* the asymptotic process represents a mathematical
construct [46], ac - physically-based configuration, and it is used in order to

eliminate the dependency of the integration domains on the small parameter
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459

460

€. This construct can also be seen as a change of spatial variables in the

interphase domain [45, [46] p := (21, 29, x3) — (21, 22, 23):

€3
a=T,  B=Ty = - 1)

resulting

9, 0 0 0 0 0
= = — = A2
821 81’1 ’ 822 81727 823 681‘3 ( )

as well as in the adherents p := (1, 22, x3) — (21, 22, 23):

1
21 = X1, Z9 = T9g, Z3 :I3i§(1 -) (AS)

where the plus (minus) sign applies whenever x € Q. ‘. € Q°_), with

0 _9 o0 o
Dz, Ox; Oz  Oxe A2 Ous

(A4)

After the change of variables and , Jhe interphase occupies the
domain B = {(z1,22,23) € R* : (21,2) ¢ € |z3] < 3} and the adherents
occupy the domains Q4 = Q¢ + %(1 — &)1, as shown in Fig. . The sets
St = {(21,22,23) € R® : (21,29) € " ~; = £1} are taken to denote the
interfaces between B and (24 and )= 2, UQ_UBUS, US_ is the rescaled
configuration of the composite . dv. I', and I'y indicate the images of I,
and T after the change of vei. hles, and ff.=ftop land gt :=gfop!

the rescaled external force .

A.2. Kinematic equatic <

Following the  »ro. n proposed in 23, 25], let us focus on the kinemat-

1

ics of the elastic . ‘blem. After taking G° = u*opltand u* = uop~! to
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462

464

465

466

467

denote the displacement fields from the rescaled adhesive and adherents, re-

spectively, the asymptotic expansions of the displacement fields with respect

to ¢ are:
u® (71, 19, 23) = u’ + eu' + %u® + o(e?) TA.F2)
U (21, 29, 23) = 0’ + et +20° + o(e?) ‘A.5Db)
U (21, 29, 23) = W + e’ +£20® + o(e?) (A.5¢)

Interphase. The gradient of the displacement field G° reads:

0 ﬁO aO ﬁl ~1 ~2 )
~ -1 a,3 o, a,3 a v,3 2
V() =¢ IS ol IO T +0(e) (A.6)
0 Us 3 Ug g Uszs Ua g w33

where «, f = 1,2, so that the strain tensor is:

1
e(t) = 5 |V () +V (ﬁE)T] —cle s Dl 1O (AT)
with:
~—1 0 5/&8’3 —‘ ~ () .
e =11, A = Sym(a; ®i3) (A.8)
§ua,3 "oy |
N T R AT
et = 2 = Sym(t" @i, +0%®i+04 " ®i,)

L. X .
S raky)
(A.9)
where Sym/(-) gives the - vr metric part of the enclosed tensor and k = 0,1,

and ® is the dyadic  voduct between vectors such as: (a ® b);; = a;b;.

a

Moreover, the f.."~v ing notation for derivatives is adopted: f; denoting the

partial derivative of ;* with respect to z;.
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Adherents. The gradient of the displacement field u® reads:

0 -0 1 1
i i i i
_ a, a,3 a, a,3
V(0°) = p +¢e p
—0

+ O(?) A.10)
ag,ﬁ U3 3 ﬂé,ﬁ ﬂ?lj,:’,

so that the strain tensor is:

V(@) + V@) | =ctet+&’ +c&' +0(c) (A.11)

e!l=0 (A.12)

_ L, _
Sym(ih ) (@ + k)

ek = 1( i i ) i = Sym k®11+ﬁ{€2®i2+l—15€3®13>
—(Ug , + U U
o \U3.a @3 3,3
(A.13)
and £ =0, 1.

A.8. Equilibrium equations

The stress fields in the rescaled «.“ sive and adherents, 6° = o o p~!

1

and 6° = g o p~ ' respectively, ca be epresented as asymptotic expansions

[23, 25):
="+ et + O(?) (A.14a)
o6 P 4eet +0(?) (A.14Db)
g ="+ o' + O(e?) (A.14c)

Interphase. As ~d forces are neglected, the equilibrium equation is:
dive® =0 (A.15)
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Substituting Eq. (A.14bf) in Eq. (A.15)) and using Eq. (A.2), it becomes:

_ aeg —1lae
0 = Oiaa T € 033

_ —1.0 ~0 1 A1 /
= € 033+ Ojpgt0iz3+E0,,+0(e) A 16)

where o = 1,2. Eq. (A.16]) has to be satisfied for any value of €, .. diag to:

6%y = 0 (A.17)
‘3?1,1"“3?2,2"‘61‘13,3 =0 (A'18>

where 1 =1, 2, 3.
Eq. (A.17) shows that 6% is not dependent on - ir the adhesive, and

thus it can be written:
[6?3] = 0 (A.19)

where [] denotes the jump between z3 = % .ad 23 = —%. In view of

Eq. (A.19), Eq. (A.18), for i = 3, can be 1« ~itten in the integrated form
[‘3;3] = ‘//'(1)3,1 - &33,2 (A.20)
Adherents. The equilibrium equa *on 1.1 the adherents is:
dive*+f =10 (A.21)

Substituting Eq. (A.14c) . Ea (A.21) that has to be satisfied for any value

of €, leads to:

dive’ +f =0 (A.22)

dive' =0 (A.23)
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A.J. Matching phase
The imposed continuity conditions at 87 for the fields u® and o° lead to
matching relationships between external and internal expansions [23], £5]. In

terms of displacements the following relationship have to be satisfiea:

1 1
W (Xa, i—%) = 0% (Z0, 5) = € (20, £5) (A.24)

where x, := (21, %2), 24 1= (21,22) € S. Expanding the displa. -ent in the
adherents u®, in Taylor series along the z3—direction and ta: = .nto account
Eq. (A.ba)), it results:
uS(Xa7 i§> - us(xau Oi) + gui@(Xaa Oi) + -
= u(xa, 0F) + e (%0, 0F) = S (x0, 0F) + - - (A.25)
y
Substituting Eqgs. (A.5b) and (A.5¢) together -ith kq. (A.25)) in Eq. (A.24]),

it holds true:

u’(x,,0%) +
1 1
+eu' (x4, 0%) £ gu%(xa, 05+ = u(za, iﬁ) + ! (2a, ié) 4
1 1
= 1"(Za, i§) + eti! (zq, i§) +

1
1%, 0%) = ﬁo(za,ii):ﬁo(za,ii) (A.27)
1 1
ul(x,,0%) £ 1%/x,,0%) = W' (20, £5) = (20, £5)  (A28)
Z

By identification . ~ces. , analogous results are obtained in terms of stresses
[23, 25]:

. 1 _ 1
035(Xa, 0F) = 633(2a, 15) = 0?3(Za»3|3§) (A.29)
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504

505

506

507

508

509

510

511

1., 1

1
‘71’13(Xaa Oi) + 50?3,3()(% Oi) = ‘A7i13<za7 i§)

= 5i3(za’ +-

= (A.30)

for i = 1,2,3.

A.5. Constitutive equations

The constitutive laws in linear elasticity for the adherents anu the .nter-

phase are considered:

6° = AL (e(n%)) (A.31a)
o° =B (e(w)) (A.31b)

where A, B® are the elasticity tensor of adher~ts . 1 of interphase, respec-

tively.
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