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Abstract: Salt marsh evolution is strongly affected by tidal processes and ecology, which regulate
sediment accretion and erosional rates. A balance between marsh erosion and deposition in a restored
tidal wetland is crucial for analyzing restoration strategies to adopt in a natural context. Here, we
present an integrated approach monitoring salt marsh seasonal changes over several months in
a microtidal restored salt marsh of the Paul S. Sarbanes Ecosystem Restoration Project at Poplar
Island (MD, USA). The project is undertaken at a restoration site where sediment dredged from the
shipping channels in the upper Chesapeake Bay is being used to restore a tidal marsh habitat in
mid-Chesapeake Bay. We flew an Unmanned Aerial Vehicle (UAV) with an RGB and a multispectral
camera to obtain a high-resolution map of the planimetric position of vegetation and to monitor the
health of the marsh vegetation in diverse seasons. Due to its extension of 400 m by 400 m, a total of
four flight plans were necessary to cover the entire marsh flying at a 40 m altitude obtaining a 2 cm
Ground Sample Distance (GSD). This technique provides reliable results at a very low cost, enabling
an accurate assessment of the marsh platforms to be conducted over time, due to both the very high
spatial resolution and the precise georeferencing of the images for the comparisons. Our results show
seasonal variability in the two dominant species colonizing the low marsh, Spartina alterniflora, and
high marsh, Sporobolus pumilus. While the lower marshes showed a higher variability along seasons,
the up-land vegetation showed persistent green foliage during cold seasons. Detecting salt marsh
evolution and seasonality coupled with field measurements can help to improve the accuracy of
hydrodynamic and sediment transport models. Understanding the drivers of salt marsh evolution
is vital for informing restoration practices and designs, in order to improve coastal resilience, and
develop and coastal management strategies.

Keywords: salt marsh restoration; vegetation monitoring; NDVI; Unmanned Aerial Vehicle (UAV);
aerial photogrammetry; coastal morphodynamics; ecogeomorphology

1. Introduction

Coastal regions are affected by a multitude of phenomena that significantly modify the
dynamics of sediment transportation, such as storm surges, tidal processes and sea level
rise [1–4]. Tidal wetland ecosystems, which are an integral part of many coastal systems,
can also impact sediment dynamics, as well as promote biodiversity, enhance water quality,
buffer coastal communities against sea level changes and storms, promote recreation and
tourism and are recognized as an important blue carbon sink globally [5,6].

Chesapeake Bay, where extensive tidal wetlands are located, experiences sea level rise
(SLR) at rates three to four times higher than the global average, presenting a challenge
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to the resilience of coastal habitats [7]. The loss of hundreds of low-lying islands in the
Chesapeake Bay (Maryland) are attributed to the action of inundation, wave erosion and
historic SLR, and thousands more acres of coastal wetlands are projected to be eroded
in the coming decades as SLR accelerates [8,9]. Some communities on Chesapeake Bay
islands have been completely abandoned, while others have persevered by armoring
island coastlines to limit shoreline erosion. In recent decades, creating and restoring tidal
wetlands has been undertaken to replace important habitat associated with these lost
islands, but understanding the complex dynamics in tidal wetlands will be important to
insure resilience.

The combined effect of changing coastal hydrodynamics, sediment dynamics and
ecological change (e.g., loss of submersed aquatic vegetation) within a coastal region could
lead to increasing rates of erosion of the shoreline in certain areas. Therefore it is crucial to
better understand the drivers of this process and to adopt efficient countermeasures for the
successful restoration of the natural protection offered by well-vegetated systems along
the coast [4,10]. Recent modeling efforts and field studies have been dedicated to better
understanding the processes driving tidal marsh development [11].

Biological and geomorphic dynamics that lead to tidal wetland development under
different local conditions have been explored [3,12–15]. These studies mostly reveal an
inverse correlation between water fluxes and marsh density and examine the effects of
marsh canopy on the turbulence [16]. Tidal vegetation slows water velocities, changes
water fluxes and dissipates wave energy, especially along the marsh edges [2,4,17]. Plant
morphology, such as leaf and stem dimensions, can also impact wave attenuation and
sediment dynamics [18]. The interactions between vegetation and hydrodynamic processes
are the main drivers of tidal system morphodynamics [15].

Quantitative models of marsh evolution are crucial to predict the fate of these vul-
nerable coastal systems. One of the key difficulties in our capability to estimate tidal
marsh development is the lack of spatially relevant data showing the complexity of these
important coastal systems. Aerial photogrammetry might potentially play an important
role in future studies regarding tidal marsh evolution, enhancing the current level of
information available.

Remote sensing images (Landsat, Sentinel2, MODIS), with resolutions of several me-
ters, cannot detect small geomorphic features on the scale of a few centimeters. Yet, many
previous studies have relied on passive remote sensing data from traditional satellites
to map coastal salt marshes [19,20], or tropical zones characterized mainly by mangrove
forest [21]. While traditional satellite data cannot provide the fine spatial resolution re-
quired to detect the complexity of marshes and wetlands, the development of Unmanned
Aerial Vehicles (UAVs), combined with new sensors, in the last decade has revolutionized
ecological and environmental monitoring [22]. UAVs can be used to survey limited areas
frequently with high spatial resolution, which means this new tool has potential applica-
tions in diverse fields, including precision agriculture and ecological restoration [23].

Recently, monitoring of restored tidal marshes has been a focal point for many restora-
tion projects around the US [3,24]. The combination of UAVs to acquire very high resolution
aerial imagery of restoration sites combined with more traditional Global Navigation Satel-
lite System (GNSS) geodetic receivers in Real Time Kinematic (RTK) mode to survey the
position of vegetative species allows improved accuracy for mapping the marsh vegetation
community [25,26].

Previous work in coastal management and habitat restoration have confirmed the
effective application of UAVs as a tool for high resolution mapping. For instance, UAV
imagery has been applied to monitor creek-marsh interactions and creek evolution in a
tidal marsh [22], and to assess habitat diversity and ecosystem productivity [27]. Addi-
tionally, UAVs have been used successfully to detect multiple invasive species [28]. Other
applications used multispectral cameras to map vegetation communities, and to quantify
and monitor the production of biomass by coastal and upland vegetation [29,30]. These
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studies mainly aim to predict plant spatial distribution, species change and biomass using
the spectral characteristics of the vegetation.

The current use of in situ ground surveys, including standard plot-based marsh
survey methods, in combination with UAV-based analyses is enhancing monitoring of
forests and wetlands. The application of this new integrated approach for restored tidal
marsh monitoring is expected to add new knowledge for wetland restoration and man-
agement [31,32]. Our study proposes a new methodology to include UAVs for detecting
changes in vegetation distribution and characterization, and ecosystem functioning in
a restored coastal marsh, opening a new window of opportunity for real-time coastal
monitoring and management.

The ultimate goal of the work presented here is to assess seasonal change in a restored
salt marsh. We applied in-situ field measurements of vegetation and marsh platform
elevation to inform a remote sensing investigation into the factors that influence marsh
evolution and impacts on sediment transport in a created marsh in mid-Chesapeake
Bay (Figure 1). We monitored the two dominant plant species, Spartina alterniflora (syn.
Sporobolus alterniflorus), in the low marsh and the high marsh species, Sporobolus pumilus
(syn. Spartina patens), in different seasons.

A comparison with the initial as-built survey of the marsh in 2013 was used to detect
changes from the original planting design, which had occurred by the date of our survey
in 2019. The precision of the technique presented was sufficient to detect the magnitude of
ecological and geomorphological changes in the study site during a year-long monitoring
study. Our immediate objective was to identify the most appropriate time of year for
obtaining imagery to differentiate the two Spartina species, with the broader goals of
distinguishing high and low marsh zones, and tracking the geomorphological evolution of
the marsh.
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Figure 1. Poplar Island in the upper part of Chesapeake Bay (Maryland, US East Coast). The study site is on Poplar Island
is the Cell 1B (highlighted in yellow color in the zoomed plot), in the northern part of the island (images courtesy of
Google Earth and U.S. Army Corps of Engineers). Box culverts location shows the tidal inlet connecting the marsh with the
Chesapeake Bay.
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2. Materials and Methods
2.1. Study Site

The Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (Poplar Island) is
an ecosystem restoration site constructed of sediment that is dredged from the navigation
channels approaching Baltimore Harbor, intended to restore remote island habitat in the
Chesapeake Bay. Currently spanning 5.6 km by 0.8 km, Poplar Island was once represen-
tative of numerous islands throughout the region (Figure 1) that have been subjected to
severe erosion and inundation by rising sea levels. It is a beneficial use of dredged material
project sponsored by the U.S. Army Corps of Engineers (USACE) and the Maryland De-
partment of Transportation Maryland Port Administration (MDOT MPA) with the aim of
restoring the earliest mapped extent of Poplar Island (1847). From the year 2000, the supply
of dredged material resulting from the maintenance dredging of the shipping channels
approaching Baltimore Harbor has enabled the recovery of a significant part of the initial
island’s surface (Figure 1).

The island is subdivided into diked units referred to as containment cells, which were
created to confine the dredged material slurry during placement (Figure 1, Cell 1B high-
lighted in yellow color in the zoomed plot). When the project is complete, approximately
half the area will be tidal marsh and half upland habitat. By 16 May 2017, 24.47 Million
Cubic Meters (MCM) of fine-grained (median sand <10%, [33]) dredged materials have
been placed on Poplar Island. When complete, approximately 694 ha of upland, wetland
and embayment habitat will be restored [34]. Our measurements come from a single tidal
marsh, Cell 1B, with neighboring marshes connected by two channels, one to the North
(NE) and one to the South (SE), and two adjacent 1.8 m2 box culverts that connect the
marsh to the Chesapeake Bay (Figure 1). Cell 1B was graded and opened to tidal exchange
in 2011 and planted with nursery grown S. alterniflora (low marsh) and S. pumilus (high
marsh) in 2012.

The mean great diurnal tide range (difference between mean higher high water
(MHHW) and mean lower low water (MLLW)) at this site is 0.468 m [35]. Target ele-
vations were: high marsh 0.75 m above MLLW, low marsh 0.57 m above MLLW, with
flooding typically occurring twice per day in the low marsh and once per day in the high
marsh. Preliminary surveys and hydrodynamic modelling in, and around, Poplar Island
have provided a useful, but incomplete picture of the environmental forces sculpting the
marsh complex. At present, the ecology, the hydro-dynamics and the sediment transporta-
tion of the Poplar Island salt marshes are extensively investigated by scientists in support
of an adaptive management program. The marshes have been developed sequentially and
represent a unique environment where various restoration interventions have been utilized
and are currently being assessed.

2.2. Field Survey

For comparison with imagery obtained by UAV, marsh vegetation in the two zones
populated by S. alterniflora and S. pumilus was characterized on 10 dates from April 2019
to November 2019 in different seasons to capture temporal variation and tidal variability
(Figure 2).

Vegetation sampling points were established in areas with the two main marsh species
(Figures 3 and 4). Measurements of stem density, canopy height, and stem diameters were
recorded at variable intervals using 0.01 m2 quadrats (Figure 2b,c). Stem densities were
determined by counting each stem inside the quadrat. Canopy height was determined by
averaging the heights of the five tallest individual stems within each quadrat. Mean stem
diameter was calculated from measurements taken on ten stems per quadrat at a height
of 15 cm from the soil surface using a Vernier caliper. Measured vegetative characteristics
were used to calculate vegetation volume, to validate UAV imagery.
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Figure 2. (A) GNSS ground survey in RTK mode on November 2019; (B) measurement of stem height;
(C) measurement of stem density with a quadrat.
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Figure 3. Flow chart of the field and photogrammetry analysis and validation.

To compare different runs with multiple vegetation species, we define a vegetation
volume, Vv, as:

Vv = n hv (1)

where n = m D is the vegetation density, hv is the stem height, m is the number of stems per
unit area, and D is the stem’s diameter.

Marsh elevation and Ground Control Point (GCP) positions were measured within
the marsh complex using a geodetic GNSS (GPS + GLONASS) receiver Topcon Hiper V
in RTK mode. The RTK georeferenced tidal marsh points in NAVD88 datum, allowing
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us to empirically determine vegetation sample stations (Figure 2a). The base station was
placed on known coordinates (Poplar Island benchmark CM 2: https://www.ngs.noaa.
gov/NGSDataExplorer/, accessed on 2 July 2021) located on the western side of Cell 1B
(Figure 4). Within the tidal marsh area, we used a rover receiver mounted on an extendable
pole to survey position and elevation (Figure 2a).
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Figure 4. (A) Scheme of the planned flight missions (Pix4D Capture). (B) Position of GCPs for the
UAV survey in November 2019. (C) Images of Cell 1B from September 2013 on the left and September
2014 on the right. Black arrows point to marsh areas affected by vegetation dieback, which are
represented by brown senescent plants of S. alterniflora.

2.3. UAV Surveys and Data Analysis

A photogrammetric technique was adopted for the detection of the topography of Cell
1B in Figure 1 [36–39]. Due to the recent availability of lightweight and compact digital
cameras and the continuous development of algorithms in the computer vision, a Structure
from Motion (SfM) approach was followed [40–42].

The SfM process is an advanced method able to exploit a set of images. It enables
a 3D geometry (the so-called structure) reconstruction from a set of 2D images of the
scene (the so-called motion). The detection of the tie points by image-matching algorithms
that look for features between multiple images, and recognition of the same feature at
different image scales, represents the first step. The reconstruction of the geometry does
not need any a-priori assumption, such as a set of GCPs (Figure 4) and the traditional
collinearity equations can be solved in an arbitrary scale. SfM additionally estimates the
interior orientation of the camera, as well as the exterior orientation of each imagery at the
end of a bundle adjustment [43]. This implies that the method can be used for uncalibrated
commercial cameras, since the SfM process will self-calibrate it (Figure 3).

The use of UAV acquired images is particularly beneficial when combined with SfM
techniques and provides high spatial resolution at a low cost [44,45]. For the above reasons,
a DJI Phantom 3 Professional (DJI-P3P) was used for the aerial survey of the site. Four

https://www.ngs.noaa.gov/NGSDataExplorer/
https://www.ngs.noaa.gov/NGSDataExplorer/
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different flight missions (Figure 4) were necessary to complete the data acquisition due
to the cell’s extent of about 400 m by 400 m. A proper overlap between border strips of a
flight plan with the previous and the following ones ensured the lack of any uncaptured
area. The main parameters set for the flight plans were as follows: Longitudinal overlap
80%, side overlap 60% and flight altitude 40 m.

The DJI-P3P drone was also equipped with a MicaSense RedEdge-M multispectral
camera. This camera allows one to collect information in the near infrared wavelengths
(NIR), in particular the NIR band captured by the MicaSense RedEdge-M has a central
value of 840 nm and a Full-Width Half-Maximum (FWHM) of 40 nm. The number of flight
missions mentioned above took into account the presence of an additional camera payload
that reduced the actual flight autonomy of the aircraft.

The Ground Sample Distance (GSD), that represents the pixel size on the ground, can
be computed as:

GSD = ps ∗ H
c

(2)

where ps = pixel size on the sensor array (m); H = flight altitude (m); and c = focal length of
the camera (m). Due to the camera specifications reported in Table 1, the resulting GSD of
both cameras is respectively of ≈1.8 cm for the DJIFC300 and ≈2.8 cm for the Micasense
RedEdge-M. Pix4D Capture app was used for mission planning.

Table 1. Aircraft and camera specifications.

Aircraft Specifications

Type DJI Phantom 3 Professional

Take off weight 1280 g
Max flight speed 16 m/s
Max flight time * 18–20 min

Hovering accuracy Horizontal ±0.3–1.5 m
Vertical ±0.1–0.5 m

Camera Specification

Name DJI FC300X MicaSense RedEdge-M

Type RGB Multispectral with Global Shutter

Focal length 3.6 mm 5.5 mm
35 mm equiv. focal length 20 mm 39.7 mm

Image resolution 4000 × 3000 1280 × 960
Field of view 84◦ 48.8◦

GSD at 40 m altitude ≈1.8 cm ≈2.8 cm
* the actual flight time was reduced when using the MicaSense RedEdge-M.

The reconstruction of the photogrammetric model was performed using Agisoft
PhotoScan/Metashape Professional. To georeference the model, GCPs were introduced.
An additional set of check points (CPs) was also surveyed to assess the achieved accuracy
of the overall model. Residuals of the GCPs and residuals computed on CPs are shown in
Table 1. All the values confirm the centimeter-level accuracy of the 3D alignment. Moreover,
a dense point cloud was generated and a classification of both ground and non-ground
points was performed [46]. Finally, we generated an orthomosaic of Cell 1B (Figure 4). The
georeferencing of the surveys within the same horizontal datum NAD 83 (2011) ensured a
consistent comparison of the vegetated area boundaries with respect to each channel axis.

The brightening effect of clouds and the darkening effect of cloud shadows are widely
known to affect remote sensing analyses, leading to inaccurate atmospheric corrections,
biased estimations of spectral indices values, errors in land cover classification and false
detection of land cover change. To prevent those issues that are present using multispectral
UAV imageries, we captured a picture of a reflectance calibration panel immediately before,
and immediately after, each flight mission, and a Downwelling Light Sensor (DLS) was
also used to record lighting conditions at the time of each UAV image capture [47]. Data
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processing in Agisoft Metashape took this information into account to compute a final
calibrated spectral index value.

2.4. Multispectral Analysis

The two Spartina species were detected using the multispectral camera and computing
the Normalized Difference Vegetation Index (NDVI).

Healthy plants mainly absorb light in the red bands (0.63–0.69 µm), while their cell
walls strongly reflect light in the Near Infrared (NIR) band (0.7–1.1 µm), increasing the
NDVI. NDVI detects changes in vegetation cover in the growing season and can be used to
identify areas of vegetation stress.

In our study, we used the multispectral images retrieved during our field surveys in
April 2019, May 2019, August 2019, October 2019 and November 2019. We, thus, computed
NDVI and extracted the corresponding values for all the sampling points in the high and
low elevation marsh area.

3. Results
3.1. Orthophoto

The high-resolution orthomosaic generated by the UAV-acquired images allowed
mapping of both ecological zones represented by S. alterniflora and S. pumilus (Figure 5).
The two vegetated areas were compared with the corresponding 2012 planting plan and
elevations provided by the USACE. Comparisons of vegetation condition were made over
about one year using the UAV surveys, and changes in vegetation distributions were
compared over a seven-year time frame, from 2012 to 2019, using the UAV imagery and
as-built map (Figure 5).
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into the high marsh zone of Cell 1B, reflected as a dark green.
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The results of the RGB imagery processing are shown in Figure 6 for the seasonal marsh
variation in Cell 1B. Spring and summer months display “greener” colors for the vegetation
portion of the tidal wetland, while images from the fall season show a predominant brown
color, with fewer zones still green. Figure 6 highlights visible differences between the two
marsh species in response to colder temperatures.
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3.2. Vegetation Characterization by NDVI

The NDVI index for Cell 1B changed over the 5 considered months, reflecting vegeta-
tion growth and senescence, and it was found that the differences between the two Spartina
species were most evident in the fall (Figure 7). April and May show the emergence of the
marsh vegetation from dormancy, passing from NDVI values around 0.25 as growth begins
in April, and 0.4–0.5 in May as growth continues, before reaching the peak in August, near
the maximum biomass in the region and the onset of flower production [48,49], with values
up to 0.7. In the fall (October and November) the different phenology of the two species
becomes evident. Spartina alterniflora senesces earlier than S. pumilus. While the dead stems
and leaves of S. alterniflora tend to decay during the winter, S. pumilus maintains green
leaves throughout the winter [50], resulting in NDVI values in the high marsh close to 0.7
in November.
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3.3. Field Measurements of Marsh Characteristics

Seasonal marsh surveys showed increased vegetation volume from spring to fall
(Figure 8a), a distinct difference in volume between the two species (Figure 8a,b), and
a strong relationship between NDVI and vegetation volume for both species. Spartina
alterniflora vegetation volume ranged from near 0 mm3 in spring, prior to the emergence of
new shoots, to >450,000 mm3 in summer, as the vegetation matured, and remained high
into the fall even as the plants senesced. In contrast, S. pumilus volume was much lower,
ranging from approximately 0–85,000 mm3.
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Spartina alterniflora NDVI followed a similar pattern from spring to summer (increasing
NDVI), but decreased in the fall following senescence. There was a significant seasonal
correlation between NDVI and volume for S. alterniflora (Spring: R2 = 0.71, p < 0.05; Summer:
R2 = 0.92, p < 0.05; Fall: R2 = 0.53, p < 0.05) (Figure 8a). Sporobolus pumilus NDVI did not
show strong seasonal variation due to the persistence of green leaves throughout the year,
but there was a moderately strong correlation between NDVI and vegetation volume
(R2 = 0.64, p < 0.05) (Figure 8b), with the peak NDVI occurring in the summer (Figure 9).
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3.4. Marsh Seasonality

Marsh seasonality has been investigated through NDVI seasonal variation of the two
dominant vegetation species. We defined eight specific plots (2 m × 2 m) (Figure 9a), from
which NDVI values were extracted for the 5 observed months (Table 2). The standard
deviation quantifies the amount of variation with respect to the mean NDVI value in the
studied plot. The reported NDVI values are the average value of each area. The results
showed low NDVI values in April for both species. NDVI increased slightly more rapidly
in the S. alterniflora plots than in the S. pumilus plots, but by August NDVI was higher in the
S. pumilus plots compared with S. alterniflora. In the fall, NDVI decreased as S. alterniflora
entered senescence, but remained high for S. pumilus, with values around 0.3–0.4 and
0.6–0.7, respectively (Figure 9).

Table 2. Monthly NDVI values in the high marsh (S. pumilus) and low marsh (S. alterniflora) zones.

April May August October November

S. pumilus

Area A

0.28 0.45 0.73 0.71 0.70

Area B

0.26 0.37 0.76 0.77 0.74

Area C

0.29 0.39 0.68 0.66 0.63

Area D

0.27 0.39 0.76 0.66 0.62

S. alterniflora

Area E

0.23 0.36 0.67 0.43 0.33

Area F

0.23 0.41 0.64 0.43 0.35

Area G

0.26 0.50 0.55 0.30 0.32

Area H

0.26 0.49 0.60 0.33 0.31

3.5. Example of Marsh Encroachment Monitoring

To detect vegetation development across the mudflat zones (Figure 10), we compared
the initial vegetation extension obtained from Google Earth (October 2013), and the bound-
ary of S. alterniflora on the mudflat detected by UAVs surveys between April 2019 and
November 2019 (Table 3).

Table 3. UAV flights date over the Cell 1B in the five months surveyed.

Month Identification Date (Day/Month/Year)

April 2019 3 April 2019

May 2019 2 May 2019

August 2019 29 August 2019

October 2019 3 October 2019

November 2019 14 November 2019
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Figure 10 depicts the initial situation as reported from Google Earth imagery in October
2013, being the time of vegetation planting. The subsequent survey of the vegetation
boundary, performed between April 2019 and November 2019, is shown in Figure 10. The
colonization and migration of S. alterniflora toward the channel bank and the central part
of the mudflat is well noticeable from the RGB orthomosaic map. The latter represents
a quick method to detect the marsh evolution and colonization of Spartina species. The
precise assessment of vegetation monitoring can be implemented through a year-by-year
survey focused on the vegetation patch expansion. A seasonal analysis may be conducted
to explore the most suitable period for marsh colonization or plantation.
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4. Discussion
4.1. Coastal Wetlands Monitoring by UAVs

The results of this study demonstrate that vegetation mapping, obtained from high-
resolution multispectral UAV observations for a 400 by 400-m wetland, are in good agree-
ment with direct observations and field measurements. Indeed, UAVs combined with field
measurements, provide very high-resolution vegetation maps of vegetation in restored
and engineered marshes, allowing for the identification of wetland vegetation dynamics,
almost in real-time. Seasonality and vegetation species migration are recognizable from the
maps produced from MSI analysis using high resolution UAV imagery, thereby introducing
this new methodology for monitoring spatial and temporal changes at high resolution for
coastal wetland management. Based on the ability to conduct UAV surveys frequently and
on short notice, UAV monitoring may be implemented ahead of extreme events, such as
severe storms or hurricanes to monitor and quantify their impacts on coastal wetlands.

4.2. Vegetation Species Characterization

Our study showed how high-resolution data can help to identify and to estimate the
vegetation density of the two dominant marsh vegetation species, S. alterniflora and S.
pumilus. Such results have also been obtained by Doughty and Cavanaugh (2019) [31] who
mapped the biomass in coastal wetlands using high-resolution multispectral UAV imagery.
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In the present study, the high-resolution multispectral images have allowed us to monitor
the annual growth and development of two species: S. alterniflora and S. pumilus.

Additionally, this study demonstrates that the NDVI values from the multispectral
camera can be applied to assess and monitor the growth stage of vegetation, as already
observed by other studies [25,51,52]. Indeed, the results show a good correlation between
the NDVI (a commonly used proxy for vegetation health and productivity) and the mea-
sured vegetation characteristics in the field (allowing us to assess the growth stage of
the vegetation). Before new growth begins in early spring, standing dead vegetation has
lower levels of chlorophyll, which absorbs light in the blue and red wavelengths and
has a reflectance peak in the green. The result is lower NDVI in late fall through early
spring, and peak NDVI in summer when the vegetation matures. The results were also
confirmed by the RGB aero-photos showing that marshes, still in the dormancy phase,
with an “autumn-winter” coloration. A “red” coloration was observed due to the absence
of chlorophyll. Similar results were observed by Doughty and Cavanaugh (2019) [30]
who found that in the California coastal marshes, a pronounced seasonal variability was
observed in vegetation health and biomass, characterized by a green-up of vegetation in
spring with a biomass peak at the end of summer.

Importantly, our study shows that NDVI also reveals the different growth patterns
for the two marsh species. In particular, S. alterniflora has slightly faster spring growth
compared to S. pumilus, but senesces in fall before entering dormancy in the mid-Atlantic
region. During the summer (in August), S. pumilus has a higher NDVI. This may be due to
higher tissue chlorophyll a concentration, allowing the absorption of more ultraviolet, blue
and red rays and reflection of more green and infrared rays, compared to S. alterniflora. It
may also reflect the differing morphology of the two species. Spartina alterniflora has stiff
stems and leaves oriented vertically, while S. pumilus has thin stems and leaves that are
often decumbent.

During the autumn, the NDVI index captures the decay of S. alterniflora aboveground
biomass and the persistent green shoots of S. pumilus, in agreement with the species
growth pattern, and again related to the marsh stem morphology and structure [53,54].
The differences in morphology and growth patterns between these two dominant marsh
species allows for the potential to differentiate between them in high resolution imagery
using MSI analysis. This study indicates that the optimal time of year for mapping aerial
coverage of each species, and distinguishing between high marsh and low marsh, is after S.
alterniflora senescence in the fall, followed by winter until new growth begins in the spring.
Summer is the least advantageous time to acquire imagery to differentiate the two species.

Through an examination of time series high resolution imagery and MSI analysis, it
may be possible to estimate rates of marsh transgression. While rates of erosion at the
marsh edge and marsh transgression into the uplands have been estimated from aerial
imagery [55], the more subtle migration of low marsh vegetation into the high marsh has
been more difficult to detect. The methodology presented here may be used to identify
these areas of internal marsh transgression, where S. alterniflora is migrating from the low
marsh into areas that were formerly high marsh occupied by S. pumilus, a process driven
by especially high rates of sea level rise in the mid-Atlantic region [56].

The differences in vegetation characteristics during the fall season depend on different
factors such as: the action of waves, the turbidity, the deposition of fine sediment and
the sea level, which is generally higher during the fall. The higher frequency of flooding
is also related to increased phenomena of nuisance flooding and sea level rise registered
in the Chesapeake Bay. In fact, the Chesapeake Bay is the Nation’s largest estuary, and
its natural resources are intimately connected to the history, culture, and local economies
of the counties and towns lining its shores. Sea Level Rise (SLR) is especially rapid in
Chesapeake Bay; impacts of rising sea levels are pronounced along its Eastern Shore of
Maryland, due to low elevations and gentle gradients.

Parts of the Eastern Shore lie within the boundaries of the Miles River and Choptank
River and represent some of Maryland’s most climate vulnerable coasts. Local SLR predic-
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tions are 2.1 feet and 5.7 feet by 2050 and 2100 [57,58], respectively, which will result in a
loss of tens of thousands of acres of wetlands habitat. Consequently, there is a growing
call for Natural Nature-Based Features (NNBF: marshes, oyster reefs, mangroves) to be not
only the basis of shoreline armoring projects in the future but also to modify and improve
the performance of existing shoreline infrastructure [59,60].

Another important application of RGB and multispectral imagery is the opportunity of
identifying the marsh scarp or marsh boundaries since salt marsh vegetation usually ends
at a drop in elevation which might be a channel or a shoreline edge as indicated by Farris
et al. (2019) [61]. Indeed, as reported by Klemas (2015) [62], digital surface models (DSMs)
and the digital mapping of topography provide powerful databases used to understand,
model, and analyze terrestrial environments and landscapes.

The results of this study have also demonstrated the importance of the UAV images
for enhancing our knowledge and understanding of saltmarsh processes and vegetation
development. Indeed, the study has demonstrated the advantages and flexibility of UAV
imagery to obtain multi-temporal and multispectral images useful for monitoring inac-
cessible areas of saltmarsh compared to traditional approaches and to develop temporal
datasets that may be useful for modeling purposes. Such advantages are similar to those
obtained from other remotely sensed elevation imagery such as LIDAR data [4,63]. In
addition, the use of UAV techniques is less time-consuming compared to traditional survey,
which represents an advantage for such inaccessible environments.

4.3. Methodological Limitations and Future Advances

A key limitation for UAV use is the limited spatial scale that can be covered, due to
battery limitations, compared with satellite imagery. While satellite imagery can cover
several square kilometers with a pixel size that varies from 0.5 to 10 m resolution [64], UAV
surveys can cover hectares to a few square kilometers, but with a pixel resolution of a
few centimeters.

In our study, marshes are characterized as vegetation volume, which allows modelers
to include marsh characteristics in numerical models. However, a more useful charac-
terization for ecological studies and restoration monitoring might include indicators of
the eco-physiological processes to assess vegetation health, as well as the overall health
of salt-marsh communities facing eutrophication, sea level rise and seaward erosion [65].
Additionally, single plant characteristics such as leaf area and orientation may significantly
impact NDVI values. Future combined field and remote sensing studies will address these
ecological components to enhance marsh characterization.

The methodology needs multiple improvements to enhance vegetation characteriza-
tion and classification, including: (1) Accounting for environmental conditions, such as
water level and soil moisture, which are dominant issues in tidal systems that may affect
the reflectance in the near-infrared and consequently affect the assessment of the vegetation
state (NDVI); and (2) automatic classification or semi-automatic classification, calibration
of the UAV images, which will be essential to avoid misclassification and reduce lens distor-
tion, as indicated by Myers et al. (2018) [66]. Therefore, further research is needed to define
algorithms and rules for the UAVs images classification. However, coastal management,
ecological monitoring and marsh restoration strategies depend on the developments of
new technologies and methodologies for high-resolution temporal and spatial scale.

5. Conclusions

This work highlights how an integrated approach combining vegetation characteriza-
tion surveying and the acquisition of aerial imageries by UAV can be successfully applied
in the field of coastal monitoring and restoration interventions. The very high spatial
resolution of the final orthomosaic and NDVI maps, especially if further combined with a
high temporal resolution in terms of small-time lapse between survey repetitions, can lead
to efficient and reliable results. Moreover, the vegetation characteristics data are practically
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continuous due to the very small pixel size of the final NDVI products, if compared to a
traditional and time-consuming vegetation survey.

Further survey repetitions by UAV in the future will provide more data to accurately
assess the behavior of the Cell 1B system and allow managers better tools to assess eco-
logical characterization in marsh restoration projects. Accessibility of inexpensive UAVs
will allow us to increase the temporal and spatial resolution of aerial photogrammetry and
datasets. High frequency data will allow scientists to quantify significant coastal processes
affecting wetlands, which are presently analyzed primarily through field-based monitoring.
Numerical models of wetland morphodynamics must integrate these new high resolution
remote sensing products.
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64. Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36.
[CrossRef]

65. Collin, A.; Long, B.; Archambault, P. Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength
LiDAR. Remote Sens. Environ. 2010, 114, 520–530. [CrossRef]

66. Myers, D.J.; Schweik, C.M.; Wicks, R.; Bowlick, F.; Carullo, M. Developing a land cover classification of salt marshes using uas
time-series imagery and an open source workflow. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 155–162.
[CrossRef]

http://doi.org/10.3390/jmse8050364
http://doi.org/10.1016/j.isprsjprs.2015.10.004
http://doi.org/10.1016/j.rse.2009.10.011
http://doi.org/10.5194/isprs-archives-XLII-4-W8-155-2018

	Introduction 
	Materials and Methods 
	Study Site 
	Field Survey 
	UAV Surveys and Data Analysis 
	Multispectral Analysis 

	Results 
	Orthophoto 
	Vegetation Characterization by NDVI 
	Field Measurements of Marsh Characteristics 
	Marsh Seasonality 
	Example of Marsh Encroachment Monitoring 

	Discussion 
	Coastal Wetlands Monitoring by UAVs 
	Vegetation Species Characterization 
	Methodological Limitations and Future Advances 

	Conclusions 
	References

