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If active neutrinos undergo non-standard (“secret”) interactions (NSνI) the cosmological evolution
of the neutrino fluid might be altered, leaving an imprint in cosmological observables. We use
the latest publicly available CMB data from Planck to constrain NSνI inducing ν − ν scattering,
under the assumption that the mediator φ of the secret interaction is very light. We find that
the effective coupling constant of the interaction, g4

eff ≡ 〈σv〉T 2
ν , is constrained at < 2.35 × 10−27

(95% Credible Interval, C.I.), which strengthens to g4
eff < 1.64 × 10−27 when Planck non-baseline

small-scale polarization is considered. Our findings imply that after decoupling at T ' 1 MeV,
cosmic neutrinos are free streaming at redshifts z > 3800, or z > 2300 if small-scale polarization is
included. These bounds are only marginally improved when data from geometrical expansion probes
are included in the analysis to complement Planck. We also find that the tensions between CMB
and low-redshift measurements of the expansion rate H0 and the amplitude of matter fluctuations
σ8 are not significantly reduced. Our results are independent on the underlying particle physics
model as long as φ is very light. Considering a model with Majorana neutrinos and a pseudoscalar
mediator we find that the coupling constant g of the secret interaction is constrained at . 7× 10−7.
By further assuming that the pseudoscalar interaction comes from a dynamical realization of the
see-saw mechanism, as in Majoron models, we can bound the scale of lepton number breaking vσ as
& (1.4× 106)mν .

I. INTRODUCTION

The existence of a cosmic background of thermal relic
neutrinos is one of the predictions of the standard cosmo-
logical model. In the early Universe, this cosmic neutrino
background (CνB) is kept in equilibrium with the cos-
mological plasma by weak interactions. Later, when the
temperature of the Universe drops below ∼ 1 MeV, the
interaction probability per Hubble time becomes negligi-
bly small and neutrinos enter the so-called free-streaming
regime, in which they essentially move along geodesics
and are coupled to the other species only through the
gravitational potentials. This picture is strongly sup-
ported by observations; in particular, the prediction for
the neutrino density at different times of the cosmic his-
tory (most notably at the time of Big Bang nucleosynthe-
sis and of hydrogen recombination), as parameterized by
the effective number of degrees of freedom Neff , is well in
agreement with the value inferred from the abundances
of light elements and from observations of the cosmic mi-
crowave background (CMB). However, the value of Neff

by itself only gives partial information about the free-
streaming nature of neutrinos. In fact, some of the effects
related to additional relativistic species (e.g. the shift in
matter-radiation equality) do not depend on the colli-
sional properties of the fluid. On the other hand, more
subtle effects might be sensitive to that, like the phase
shift in the photon-baryon acoustic oscillations caused
by the “pull” of free-streaming species [1–3]. Nowadays
cosmological data, in particular cosmic microwave back-
ground (CMB) observations from the Planck satellite,
provide a unique channel to study extensions of the stan-
dard ΛCDM, possibly grounded in some new physics be-
yond the standard model (SM) of particles. In some of
these extensions, the collisionless behaviour of neutrinos

at T < 1 MeV is modified, due to some hidden interac-
tion in the neutrino sector. Such non-standard (“secret”)
neutrino interactions (NSνI) could also be related to the
mechanism giving origin to the small neutrino masses,
like in Majoron models [4–7]. Probes of NSνI include Z-
boson decays [8–10], coherent neutrino-nucleus scatter-
ing [11–16], supernova cooling [17–22], neutrinoless dou-
ble β decay [23–25], detection of ultra-high energy cosmic
neutrinos in neutrino telescopes [26–30], Big-Bang nucle-
osynthesis [31, 32], and, last but not least, CMB, the
focus of this work [33–45].

In this work we consider the possibility that the three
active neutrinos of the SM have secret self-interactions,
and derive constraints on the interaction strength from
the Planck 2015 observations of the CMB temperature
and polarization anisotropies, complemented by exter-
nal data. We focus on the case in which the new in-
teraction is mediated by a very light, possibly massless,
particle. Constraints on this scenario were recently ob-
tained in Refs. [40, 46], using Planck 2013 data. In
particular, in Ref. [40], we obtained constraints on the
neutrino self-interaction rate by explicitly introducing a
collision term in the Boltzmann equation for neutrinos,
while other works relied on an effective description of the
collisional properties of the fluid.

In terms of the effective coupling constant geff used in
this paper (see next section for the definition), we found
geff < 2.7×10−7 (95% credible interval). Here we update
our previous analysis using the latest publicly available
data from Planck, that include observations of the CMB
polarization on a wide range of angular scales. We also
consider a specific particle physics model in which secret
neutrino interactions might arise, showing the connection
between the Lagrangian of the model and the cosmolog-
ical collision rate of neutrinos.
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The case of neutrino interactions mediated by a heavy
particle (so that one effectively deals with a four-point in-
teraction) has been instead considered in Refs. [37, 43],
as well as in Ref. [46]. Recently, four-point interactions
between active neutrinos have been considered as a pos-
sible way to solve the tensions between different mea-
surements of H0 and σ8 [44]. Non-standard interactions
among sterile neutrinos in a cosmological setting have in-
stead been studied in Refs. [41, 47–51] as a possible way
to reconcile short-baseline neutrino oscillation anomalies
with cosmological data. In this paper we will only con-
sider interactions among active neutrinos.

This paper is organized as follows. In Sec. II we briefly
explain how secret interactions are implemented in a cos-
mological framework. Sec. III describes the datasets used
in our analysis, while in Sec. IV we present the results of
our analysis. We discuss the implication of our findings
for a specific particle physics model in Sec. V, and we
finally draw our conclusions in Sec. VI.

II. NEUTRINO SECRET INTERACTIONS IN
COSMOLOGY

We consider NSνI between active neutrinos mediated
by a very light particle φ. Such interactions might arise
in extensions of the SM of particle physics, and are pos-
sibly related to the origin of neutrino masses [4–7]. How-
ever, in order to cover a wide class of models, we will
for the moment avoid specifying the details of the un-
derlying particle physics theory and just focus on some
general features of the new interactions that impact the
cosmological phenomenology. We will anyway interpret
our results in the framework of a specific particle physics
model in Sec. V.

Denoting with g the dimensionless coupling between
neutrinos and the φ boson, the cross section σ for φ-
mediated neutrino-neutrino scattering, ν + ν → ν + ν,
will be of the form σ ≈ g4/E2, where E is some relevant
energy scale (for example, the energy in the center-of-
mass frame). The thermally-averaged cross section times
velocity 〈σv〉 will then be, for relativistic neutrinos at
temperature Tν :

〈σv〉 = ξ
g4

T 2
ν

, (1)

where ξ is a numerical factor, whose precise value de-
pends on the underlying particle physics model. The
scattering rate Γ ≡ nν〈σv〉 is thus

Γ = 0.183× ξ g4Tν , (2)

where we have taken into account that nν = (3/2) ×
(ζ(3)/π2)×T 3

ν ' 0.183×T 3
ν for a single neutrino family.

This motivates the following phenomenological descrip-
tion of the neutrino scattering rate:

Γ = 0.183× g4
effTν . (3)
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Figure 1. Neutrino collision rate Γ in units of the expan-
sion rate H. The solid lines are drawn considering the total
collision rate, i.e. for both weak processes and φ-mediated
interactions, and correspond to g = {1, 2, 3} × 10−7 from
bottom to top. We also show the usual weak collision rate
(purple long dashed line) and the φ-mediated collision rate
for g = 1 × 10−7 (red short dashed line). The gray band
shows the region in which the collision rate is larger than the
Hubble rate.

With this definition 1, geff ≡ ξ1/4g is an effective cou-
pling constant that encloses such details as the precise
structure of the underlying theory, the effect of thermal
averaging, etc. Given a definite form of the Lagrangian of
the theory, this can be remapped, to a good approxima-
tion, to a collision rate of the form (3), for the purposes
of its effect on the evolution of cosmological neutrino per-
turbations. Seen in another way, the quantity that we are
actually constraining is the (temperature-independent in
the high-energy limit) combination 〈σv〉T 2

ν .
Given that the expansion rate of the Universe de-

creases faster than T (since H ∝ T 2 and T 3/2 during
the radiation- and matter-dominated eras, respectively),
it follows that, in presence of a hidden interaction me-
diated by a light particle, neutrinos, after having decou-
pled from the primordial fluid at T ∼ 1 MeV, become
collisional again. The redshift zνrec, at which this recou-
pling2 happens, depends on the strength of the secret
interaction, and can be derived by means of the relation
Γ(zνrec) ' H(zνrec). To illustrate this, in Fig. 1 we show
the ratio between the scattering rate Γ (also including the
contribution from weak processes at high temperatures)
and H; at early times (z > 1010) the weak interaction
dominates, while later (z . 105 ÷ 103, for the values
considered in the figure), the collisional rate due to the

1 Note that in our previous work [40] we used a slightly different
parameterization, namely Γ = γ4Tν . In order to compare with
results obtained here, values of γ4 in [40] should then be divided
by a factor 0.183.

2 This is actually a misnomer, since neutrinos are still decoupled
from the rest of the cosmological plasma. What really happens
is that they become collisional again.
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hidden interactions becomes larger than the Hubble ex-
pansion rate leading to neutrino recoupling.

Boltzmann codes like CAMB start integrating cosmologi-
cal perturbations well after weak decoupling, so that neu-
trinos are effectively collisionless at all times of interest
in the ΛCDM model, as well as in many of its more pop-
ular extensions. In the scenario considered here, how-
ever, once neutrino collisions become relevant again at
z . zνrec, their effect on the evolution of perturbations in
the neutrino fluid, and consequently on the cosmological
observables, should be taken into account by inserting a
suitable collision term in the right-hand side of the Boltz-
mann equation for the neutrino distribution function fν .
The exact form of the Boltzmann hierarchy for interact-
ing neutrinos has been derived in Ref. [52]. Here, as in
our previous work [40], we use the relaxation time ap-

proximation and model the collision term Ĉ[fν ] as being
proportional, through the collision rate Γ, to the nega-
tive of the deviation δfν of the distribution function from
equilibrium, i.e. Ĉ[fν ] = −Γδfν .

We choose for simplicity to neglect the effect of non-
zero neutrino masses on the cosmological evolution, so
that we can approximate neutrinos as massless in CAMB
and work with the momentum-integrated version of their
Boltzmann hierarchy (see Ref. [53]). Given the precision
of the data considered in our analysis (see Sec. III), this
is basically equivalent to fix the sum of neutrino masses
Mν to 0.06 eV, the minimum value allowed by flavour os-
cillation experiments. Thus we expect that our limits on
geff should not significantly change if we were to consider
massive neutrinos with Mν = 0.06 eV.

For massless neutrinos, the presence of ν − ν scatter-
ings amounts, in the relaxation time approximation, to
modifying the Boltzmann hierarchy as follows:

(` = 0) δ̇ν = −4

3
θν −

2

3
ḣ , (4a)

(` = 1) θ̇ν = k2

(
1

4
δν − σν

)
, (4b)

(` = 2) σ̇ν =
4

15
θν −

3

10
kF3 +

2

15
ḣ+

4

5
η̇ − aΓσν , (4c)

(` ≥ 3) Ḟν` =
k

2`+ 1

[
`Fν`−1 − (`+ 1)Fν`+1

]
− aΓFν` . (4d)

where we use the same notation as Ma & Bertschinger
[53], and the monopole and dipole (` = 0, 1) of the colli-
sion term are set to zero, as it follows from the conserva-
tion of particle number and momentum. The 2↔ 2 col-
lisions lead a suppression of the quadrupole (` = 2), i.e.
the anisotropic stress σν , and of all the highest moments
of the distribution function, and to a corresponding en-
hancement of the monopole and dipole (` = 0, 1), i.e.
the density and velocity perturbations δν and θν . These
changes propagate to the photon distribution, and thus
to the CMB spectrum, through the gravitational poten-
tials. In Figs 2 and 3, we show the effect of neutrino secret
interactions on angular power spectrum (APS) of CMB
temperature and polarization fluctuations, compared to
the standard cosmological model.

Let us now briefly recall how changing the free-
streaming nature of neutrinos affects the photon pertur-
bations, that were first clearly established in Ref. [1].
First of all, since neutrinos and photons are only coupled
through the gravitational potentials, decaying rapidly
once a perturbation enters the horizon, the effects of neu-
trino free streaming (or of its absence) on photon pertur-
bations are only relevant at the time of horizon crossing.
The impact of neutrino free streaming is twofold. On
the one hand, the fast decay of neutrino inhomogeneities

after they enter the horizon, and of the associated gravi-
tational potential, damps the photon perturbations. This
suppresses the CMB acoustic peaks. On the other hand,
the fact that the neutrino velocity exceeds the speed of
sound in the baryon-photon fluid generates a distinctive
phase shift in the CMB acoustic oscillations. In par-
ticular, this “neutrino pull” shifts the power spectrum
towards larger scales. Both effects are proportional to
the fraction of the total energy density provided by free-
streaming neutrinos, so they are only relevant for pertur-
bation modes entering the horizon during the radiation
dominated era. Altering the collisionless nature of neu-
trinos by introducing new interactions undoes the effects
described above, and will thus appear, at the affected
scales, as the combination of a boost and a shift towards
larger `’s (smaller scales) relative to the ΛCDM case.
Since in the model considered here neutrino become non-
collisional at T ' 1 MeV to become collisional again at
a later time, we expect to see an impact at scales larger
than the horizon at neutrino recoupling (but smaller than
the horizon at the time of equality). In Fig. 2, we show
`2D` ≡ `3(`+1)C`/2π for temperature and for the cross-
correlation between temperature and E polarization, for
varying values of geff , compared with the best-fit to the
Planck 2015 data. The behaviour expected on the ground
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Figure 2. Theoretical temperature APS for the ΛCDM+geff

model. Note that we are plotting `2D` = `3(` + 1)C`/2π to
highlight changes at the high multipoles. In the upper panel
we show the APS for three different values of the coupling
constant, geff = {2, 3, 4} × 10−7 (red dashed, cyan dotted,
orange dotted curves, respectively). The blue points with
error bars are the 2015 Planck data, and the black solid line is

the ΛCDM best-fit D(0)
` to the same data. In the middle panel

we plot the differences with respect to ΛCDM, ∆(`2D`) =

`2(D`−D(0)
` ). The bottom panel shows the relative difference

∆D`/D(0)
` .

of the above considerations is indeed observed, especially
looking at the lower part of the plots, showing the differ-
ence between the NSνI models and ΛCDM.

In the discussion so far, we have implicitly assumed
that there exists a suitable base of neutrino states in
which the interaction is diagonal, and that the φ cou-
ples in the same way to all the interaction eigenstates.
In other words, if gij is the matrix of couplings, we take
gij = gδij . This allows to write a single hierarchy for
neutrinos like the one in Eqs. 4, as opposed to three dis-
tinct hierarchies with different Γ’s on the right-hand side.
We expect however that, even if the elements of the cou-
pling matrix are not identical, the limits that we derive
can also be regarded as order-of-magnitude constraints
for the largest of them.

We also ignore the possibility that the new interac-
tion induces neutrino decay. This amounts to requiring
that the off-diagonal elements of gij vanish in the basis
of mass eigenstates. Finally, once neutrinos recouple, a
population of φ’s is quickly created by neutrino annihi-
lations, ν + ν → φ + φ. Shortly after, the φ creation
is balanced by the inverse reaction φ + φ → ν + ν and
chemical equilibrium is established. Similarly, ν−φ scat-
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Figure 3. Same as Fig. 2, but for the cross correlation between
temperature and E-polarization. Note that in this case we
do not show relative differences, since these diverge in some
points due to the reference spectrum crossing zero.

terings drive the system to kinetic equibrium as well. As
noted in Refs. [46, 54], in the limit in which both neutri-
nos and the new bosons are massless, this makes Eqs. (4)
also describe the coupled ν − φ fluid. The situation is
different for massive neutrinos, since once they become
nonrelativistic, the inverse reaction φ+φ→ ν+ν is sup-
pressed and the neutrino population is rapidly depleted,
leading to a so-called neutrinoless Universe [33].

III. METHOD

We compare the predictions of the model to the CMB
observations of the Planck satellite and to additional
measurements that constrain the expansion history of
the Universe, like baryon acoustic oscillations (BAO). In
particular, we use the CMB temperature and polariza-
tion data publicly released by the Planck collaboration
in 2015, also including the information coming for the
lensing reconstruction [55–57]. The baseline dataset con-
sists of the TT APS across the whole range of scales
measured by Planck (2 ≤ ` ≤ 2500), denoted Planck15TT
following the conventions of the Planck collaboration pa-
pers, together with the low-` (2 ≤ ` ≤ 29) polarization
(lowP). For the sake of conciseness, in the following we
shall omit to mention the presence of the low-` polar-
ization data, but their presence should be always under-
stood, in any dataset combination. Thus we will refer
to the baseline dataset as simply Planck15TT instead of
Planck15TT + lowP. The enlarged dataset that also in-
cludes the high-` (` ≥ 30) polarization data is similarly
denoted as Planck15TTTEEE.

We also consider geometrical information coming vari-
ous sources: i) measurements of the BAO scale, in partic-
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ular the BAO results from the 6dF Galaxy Survey [58],
from the BOSS DR11 LOWZ and CMASS samples [59],
and from the Main Galaxy Sample of the Sloan Digi-
tal Sky Survey [60]; ii) the Joint Lightcurve Analysis
(JLA) supernova sample [61], which is constructed from
the SNLS and SDSS SNe data, joined with several sam-
ples of low redshift SNe; iii) the Hubble space telescope
data, as reanalysed in ref. [62]. The combination of the
JLA, BAO and HST dataset will be denoted as “ext”.

We compute theoretical CMB power spectra using a
version of the CAMB code [63], modified as explained
in Sec. II. We derive constraints on the parameters of
the model using the Monte Carlo Markov Chain code
CosmoMC interfaced with our modified version of CAMB.
The constraints are expressed in terms of Bayesian cred-
ible intervals (C.I.). The likelihood function associated
to the Planck data is computed using the code publicly
released by the Planck collaboration3. We study first a
one-parameter extension of the ΛCDM model in which
we add the effective coupling geff to the six parameters
of ΛCDM. As explained in Sec. II, we always consider
massless neutrinos. We take a flat prior on g4

eff , and
not on geff , since the former is the parameter that enters
directly the perturbation equations (4). We also con-
sider two-parameter extensions of ΛCDM, in which we
also vary one among the effective number of relativistic
species Neff , the tensor-to-scalar ratio r and the primor-
dial helium abundance YHe.

IV. RESULTS AND DISCUSSION

In this section we present our results. We first re-
port constraints on the model parameters, and in par-
ticular on the strength of non-standard neutrino inter-
actions (Sec. IV A); then we discuss degeneracies among
cosmological parameters (Sec. IV B).

A. Parameter constraints

Let us start by considering the minimal extension of
the ΛCDM model, in which we add the secret interaction
strength to the parameter space of the ΛCDM model,
through the effective coupling constant geff (ΛCDM+geff)
defined in Eq. (3). We first show results obtained with
the Planck15TT baseline dataset, and then proceed to add
the other datasets described in the previous section. For
the Planck15TT dataset, results are shown in Tab I. We
find that the coupling constant is constrained to be g4

eff <
2.9 × 10−27. This limit is noticeably tighter, by nearly
a factor of 2, with respect to the one obtained in our
previous paper [40] using the 2013 Planck results, that

3 We acknowledge the use of the products available at the Planck
Legacy Archive (http://www.cosmos.esa.int/web/planck/pla).

reads g4
eff < 4.6× 10−27 in terms of the parameterization

used in this paper.
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Figure 4. One-dimensional posterior probability for the effec-
tive parameter g4

eff that characterizes the strength of neutrino-
neutrino coupling, in the ΛCDM + geff model. The blue (red)
curves are obtained using Planck15TT (Planck15TTTEEE)
as the baseline CMB dataset. In the top panel these
are the only data considered; in the two lower pan-
els we also add information from external astrophysical
datsets [Planck15TT(TTTEEE)+ext, middle panel] or lens-
ing estimates from the CMB 4-point correlation function
[Planck15TT(TTTEEE)+lensing, bottom panel]. See text for
a more detailed description of the datasets. The shaded areas
show 68% credible intervals.

When we also consider, in addition to Planck15TT,
the astrophysical datasets or the lensing reconstruc-
tion, we find (95% credible intervals) g4

eff < 2.8 ×
10−27 (Planck15TT+ext) and g4

eff < 2.4 × 10−27

(Planck15TT+lensing). In both cases results are con-

http://www.cosmos.esa.int/web/planck/pla
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Figure 5. One-dimensional marginalized posterior distribu-
tions of the base ΛCDM parameters from Planck15TT, for the
ΛCDM (black) and ΛCDM+geff (red) models.

sistent with respect to those obtained with the base-
line dataset. The posterior distributions for g4

eff
derived using the Planck15TT, Planck15TT+ext and
Planck15TT+lensing datasets are shown as the blue
curves in Fig. 4. In terms of the recoupling redshift zνrec,
these limits correspond to zνrec < 5050 (Planck15TT), <
4750 (Planck15TT+ext), < 3800 (Planck15TT+lensing).

The bounds become even tighter when considering the
latest public Planck likelihood which includes temper-
ature and polarization data. Results for this case are
summarized in Tab. II, and the corresponding posteri-
ors for g4

eff are shown as the red curves in Fig. 4. We
find a mild (roughly at the 1.5σ level) preference for a
non-zero value of the effective coupling constant, that is
very stable with respect to the dataset considered. We
find g4

eff = (0.82+0.33
−0.60)× 10−27 for Planck15TTTEEE, and

nearly identical values when either external astrophysi-
cal datasets or lensing is considered. The central value of
the g4

eff posterior corresponds to a redshift of neutrino-
neutrino recoupling zνrec ' 800, with a 68% credible
interval 70 < zνrec < 1370. The 95% credible interval
for Planck15TTTEEE is g4

eff < 1.7× 10−27, corresponding
to zνrec < 2500. The improvement observed when the
small-scale polarization data is also considered is likely
related to the breaking of a degeneracy between Ωmh

2

and geff (see next subsection) and on the sharpeness of
the polarization peaks that allows to better constrain the
phase shift due to non-standard ν interactions. The re-
sults obtained using high-` Planck polarization should
however not be overinterpreted, since it is possible that a
low-level residual systematics is still present in the data
[56].

Then, we enlarge the parameter space adding individ-
ually three more parameters: the effective number of
extra relativistic degrees of freedom ΛCDM+geff+Neff ,
the primordial helium abundance ΛCDM+geff+YHe and
the tensor-to-scalar ratio ΛCDM+geff+r. Results are re-
ported in Tab. III, and are very similar to what we found
in the ΛCDM+geff model. Using the Planck15TT likeli-
hood, we find g4

eff < 3.1×10−27 (ΛCDM+geff+Neff), 3.0×
10−27 (ΛCDM+geff+r), 3.4× 10−27 (ΛCDM+geff+YHe),
indicating that the constraints on geff are quite robust
in the models considered. When using Planck15TTTEEE
data, we still find a ∼ 1σ preference for non-zero values
of the effective coupling constant at g4

eff ' 0.82× 10−27.
The estimates of the additional parameters are also
quite stable with respect to the presence of geff : us-
ing Planck15TTTEEE data we obtain Neff = 3.09+0.43

−0.41,

YHe = 0.247+0.027
−0.029 and r < 0.12 (95% credible inter-

vals). These constraints are very close and only slightly
degraded with respect to the ones that can be obtained
in the corresponding one parameter extensions of ΛCDM
[64].

B. Parameter degeneracies

In this section we discuss degeneracies among param-
eters in the model under consideration, together with
shifts in parameter estimates with respect to the stan-
dard ΛCDM model. To this purpose, we compare our
results with those of control runs with geff = 0 4. Let us
start from the Planck15TT dataset. The one-dimensional
posteriors for the base parameters in the two models are
shown in Fig. 5. We observe shifts between ∼ 0.5 and
1.1 σ in Ase

−2τ , θs, ns, and Ωch
2 (in order of decreasing

magnitude of the shift), and a smaller change (0.25σ) in
Ωbh

2. In particular, we find

∆
{

Ωbh
2, Ωch

2, θs, Ase
−2τ , ns

}
=

= {0.26, 0.55, 0.85, −1.14, 0.64} (Planck15TT), (5)

where the deviation ∆ for a parameter is computed as
the difference between the mean value in ΛCDM and

4 Note that this is different from the usual base ΛCDM i.e. the
minimal model analyzed in the Planck parameters paper [64],
since we are neglecting neutrino masses. In any case, if we use as
reference values those reported in Ref. [64] for base ΛCDM our
conclusions do not change significantly, indicating that neutrino
masses are only a subleading effect for what concerns parameter
shifts.
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Figure 6. One-dimensional posteriors and two-dimensional 68%, 95% and 99% credible regions for a subset of parameters in the
ΛCDM+geff (red) and ΛCDM (blue) models obtained using Planck15TTTEEE dataset. We consider the following parameters:
g4

eff , ns, H0, θs and Ase
−2τ .

the one in ΛCDM+geff , in units of the ΛCDM uncer-
tainty. Note that we report the shift in Ase

−2τ , in-
stead than in terms of ln

[
1010As

]
and τ separately,

since these are misleadingly small (∼ 0.1σ) due to the
larger uncertainty associated to the two individual pa-
rameters. In contrast, the combination Ase

−2τ is much
more precisely constrained. We also look at the shift

in Ωmh
3.4, that is known to be a proxy for the angular

size of the sound horizon at recombination [65], finding
∆(Ωmh

3.4) = 0.51. For what concerns parameter correla-
tions, we find that geff is strongly (correlation coefficient
& 0.5) correlated with Ωmh

3.4 (+0.70), Ase
−2τ (−0.57)

and θs (+0.48), and mildly (0.25 . correlation coeffi-
cient . 0.5) correlated with Ωmh

2 (+0.38), Ωch
2 (+0.34),
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Table I. Bayesian credible intervals for the parameters of the ΛCDM + geff model obtained using the Planck15TT (second
column), Planck15TT+ext (third column) and Planck15TT+lensing (fourth column) dataset combinations. Unless otherwise
noted, we quote 68% credible intervals.

ΛCDM + geff

Parameter Planck15TT Planck15TT Planck15TT

+ ext + lensing

1027 g4
eff [95% C.I.] < 2.90 < 2.78 < 2.35

Ωbh
2 0.02232± 0.00024 0.02237± 0.00021 0.02232± 0.00023

Ωch
2 0.1207± 0.0023 0.1200± 0.0013 0.1190± 0.0020

100θMC 1.04134± 0.00055 1.04142+0.00050
−0.00055 1.04143+0.00051

−0.00056

τrei 0.079± 0.020 0.082± 0.018 0.062± 0.016

ns 0.9701± 0.0066 0.9717± 0.0054 0.9719± 0.0063

ln(1010As) 3.083± 0.037 3.088± 0.035 3.047± 0.030

107 geff [95% C.I.] < 2.33 < 2.30 < 2.20

zrec [95% C.I.] < 5050 < 4750 < 3800

H0 [km/s/Mpc] 67.71+0.97
−1.10 68.05± 0.56 68.35± 0.93

σ8 0.845± 0.015 0.845± 0.015 0.825± 0.009

Table II. Bayesian credible intervals for the parameters of the ΛCDM + geff model obtained using the Planck15TTTEEE (second
column), Planck15TTTEEE+ext (third column) and Planck15TTTEEE+lensing (fourth column) dataset combinations. Unless
otherwise noted, we quote 68% credible intervals.

ΛCDM + geff

Parameter Planck15TTTEEE Planck15TTTEEE Planck15TTTEEE

+ ext + lensing

1027 g4
eff [95% C.I.] < 1.69 < 1.64 < 1.64

1027 g4
eff [68% C.I.] 0.82+0.33

−0.60 0.82+0.29
−0.58 0.82+0.29

−0.54

Ωbh
2 0.02230± 0.00016 0.02230± 0.00014 0.02230± 0.00016

Ωch
2 0.1194± 0.0015 0.1194± 0.0010 0.1188± 0.0014

100θMC 1.04127± 0.00041 1.04127+0.00037
−0.00038 1.04137+0.00039

−0.00042

τrei 0.082± 0.018 0.083± 0.017 0.064± 0.014

ns 0.9704± 0.0057 0.9705± 0.0047 0.9714± 0.0054

ln(1010As) 3.091± 0.034 3.091+0.033
−0.032 3.052± 0.025

107 geff [95% C.I.] < 2.03 < 2.01 < 2.01

zrec [95% C.I.] < 2500 < 2300 < 2300

H0 [km s−1 Mpc−1] 68.12± 0.69 68.13± 0.48 68.38± 0.67

σ8 0.844± 0.013 0.845± 0.014 0.8262± 0.0090

ns (+0.29) and Ωbh
2 (+0.23). These correlations nicely

reflect the magnitude of the shifts reported above.

Our interpretation of the parameter shifts and cor-
relations in the ΛCDM+geff model is as follows. The
large positive shift in θs is related to the absence, in
the ΛCDM+geff model, of the phase shift induced by

neutrino free-streaming, as described in the previous sec-
tion: starting from a good ΛCDM fit to the data, NSI
move the spectrum towards smaller scales, and a larger
value of θs is required to move it back close to the orig-
inal model. The shifts in ns, Ωch

2 and Ase
−2τ are in-

stead related to the boost in the angular power spectrum
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Table III. Bayesian credible intervals for the parameters of the ΛCDM + geff + Neff and ΛCDM + geff + r models from the
analysis of the Planck15TT and Planck15TTTEEE datasets. We quote 68% credible intervals, except for upper bounds, which
are 95%.

ΛCDM + geff +Neff ΛCDM + geff + r ΛCDM + geff + YHe

Parameter Planck15TT Planck15TTTEEE Planck15TT Planck15TTTEEE Planck15TT Planck15TTTEEE

1027 g4
eff [95% C.I.] < 3.10 < 1.70 < 2.95 < 1.70 < 3.44 < 1.70

1027 g4
eff [68% C.I.] / 0.82+0.33

−0.60 / 0.82+0.30
−0.60 / 0.82+0.33

−0.60

Ωbh
2 0.02236+0.00036

−0.00040 0.02234± 0.00026 0.02233± 0.00023 0.02230± 0.00016 0.02228+0.00030
−0.00034 0.02232± 0.00022

Ωch
2 0.1212± 0.0040 0.1200± 0.0032 0.1206± 0.0023 0.1193± 0.0015 0.1211± 0.0027 0.1194± 0.0015

100θMC 1.04132+0.00062
−0.00069 1.04125± 0.00049 1.04140+0.00054

−0.00059 1.04132± 0.00042 1.04122+0.00082
−0.00094 1.04134± 0.00064

τrei 0.081+0.021
−0.024 0.084± 0.019 0.078± 0.019 0.081± 0.018 0.078+0.020

−0.022 0.083± 0.019

ns 0.972± 0.016 0.972± 0.011 0.972± 0.007 0.972± 0.006 0.968+0.010
−0.013 0.9713± 0.0084

ln(1010As) 3.088+0.047
−0.051 3.095+0.039

−0.040 3.080± 0.037 3.088± 0.034 3.079+0.041
−0.045 3.093± 0.037

Neff [95% C.I.] 3.09+0.64
−0.59 3.09+0.43

−0.41 / / / /

r [95% C.I.] / / < 0.13 < 0.12 / /

YHe [95% C.I.] / / / / 0.24+0.036
−0.04 0.247+0.027

−0.029

107 geff [95% C.I.] < 2.35 < 2.05 2.33 < 2.05 < 2.42 2.03

zrec [95% C.I.] < 5300 < 2400 < 5000 < 2400 6000 2400

H0 [km/s/Mpc] 68.1+2.7
−3.0 68.5± 1.8 67.80± 0.98 68.20± 0.69 67.5+1.2

−1.4 68.19± 0.79

σ8 [95% C.I.] 0.848+0.035
−0.031 0.847± 0.03 0.844± 0.032 0.843± 0.03 0.844± 0.032 0.845± 0.03

provided by neutrino scatterings. This can be canceled
around the first peak by decreasing the primordial am-
plitude of scalar fluctuations and/or increasing the total
matter density. However, since this boost is smaller at
high multipoles as seen in Fig. 2, these will end up be-
ing suppressed and can be moved back by increasing the
spectral index. We have verified that this sequence of
parameter shifts still leaves a small phase shift in the
damping tail at ` & 1000, that is eliminated by an up-
ward shift in Ωbh

2.
When we instead use the Planck15TTTEEE dataset, we

find that the shifts in θs, Ase
−2τ , ns are increased:

∆
{

Ωbh
2, Ωch

2, θs, Ase
−2τ , ns

}
=

= {0.31, −0.27, 1.5, −1.3, 1.2}(Planck15TTTEEE), (6)

while for Ωmh
3.4 we find ∆(Ωmh

3.4) = 0.89. We note
that the upward shift in the angle subtended by the sound
horizon at recombination reaches the 1.5σ level. We have
also computed parameter correlations, and found strong
correlation between geff and Ωmh

3.4 (+0.66), θs (+0.60),
Ase

−2τ (−0.57), ns (+0.49). On the other hand, we find
that the correlations of geff with Ωch

2, Ωbh
2 and Ωmh

2

basically disappear, all becoming ∼ −0.1. We interpret
this latter fact in terms of the different effect of a change
in the total matter density Ωmh

2 on the temperature
and polarization anisotropies, as discussed in Ref. [66].

In fact, while temperature anisotropies are affected both
by the decay of gravitational potentials before matter-
equality, and by the early-integrated Sachs-Wolfe effect,
only the former impacts on polarization anisotropies.
This allows to break degeneracies involving Ωmh

2 (e.g.
the Ωmh

2 − ns degeneracy in standard ΛCDM) through
the inclusion of polarization data. We argue that this is
what breaks the Ωmh

2−geff degeneracy in the model un-
der consideration. Given that changing the matter den-
sity is not an option anymore to cancel the effect of geff on
the height of the peaks, the correlation with Ase

−2τ and
ns is increased. The larger shift in θs is instead mostly
due to the smaller uncertainty in its determination, as-
sociated to the increased sharpness of the polarization
peaks [66].

We conclude this section by discussing the shifts in
the Hubble constant H0 and in the amplitude of mat-
ter fluctuations σ8. Note that our reference values are
obtained in a ΛCDM model with massless neutrinos, so
they differ from the values quoted in the Planck 2015
parameters paper [64]; for example, with Planck15TT we
find H0 = (67.9±1) km s−1Mpc−1 and σ8 = 0.841±0.015
for ΛCDM. Using Planck15TT, we thus find shifts of
−0.20σ (H0) and +0.27σ (σ8), while the correlation co-
efficients with geff are −0.14 (H0) and 0.18 (σ8). Using
instead Planck15TTTEEE, we find shifts of +0.46σ (H0)
and +0.14σ (σ8), while the correlation coefficients with
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geff are +0.23 (H0) and 0.08 (σ8). In this case, the H0

shift is in the right direction to alleviate the tension be-
tween the cosmological and astrophysical measurements
of this parameter [67], but the magnitude of the shift is
too small to reduce the tension significantly. The shift in
σ8, on the other hand, is in the “wrong” direction (for
both datasets), in the sense that it goes towards exacer-
bating the tension between high- and low-redshift probes
of the clustering amplitude. Even in this case, however,
the shift is marginal.

The shifts in H0 can be understood by recalling
that CMB observations independently constraint Ωmh

2

(through the redshift of matter-radiation equality) and
Ωmh

3.4 (through the angular size of the sound horizon at
recombination [65]). It is straightforward to write the rel-
ative change in h induced by varying Ωmh

2 and Ωmh
3.4:

δH0

H0
=

1

1.4

[
δ
(
Ωmh

3.4
)

Ωmh3.4
−
δ
(
Ωmh

2
)

Ωmh2

]
. (7)

When analyzing the Planck15TT dataset, we have found
that both Ωmh

2 and Ωmh
3.4 shift to larger values in

ΛCDM+geff , so that it is not evident, a priori, in which
direction H0 should move. However, we find that the rel-
ative shift in Ωmh

2 is larger, and this results in a negative,
albeit small, shift in H0. On the other hand, including
also the polarization data, the shift in Ωmh

2 changes sign,
as reported above, and both Ωmh

2 and Ωmh
3.4 drive H0

to a larger value. For what concerns σ8, it is positively
correlated to As, ns and Ωmh

2. We have verified that
the shifts in these parameters roughly compensate, lead-
ing for both datasets to a small upward shift in σ8.

In Fig. 6 we present the 1D and 2D posteriors for some
of the parameters that show the largest shifts between
the standard ΛCDM and the ΛCDM+geff model when
the Planck15TTTEEE dataset is used.

V. SECRET NEUTRINO INTERACTIONS IN
MAJORON MODELS

The idea at the basis of Majoron models is that lep-
ton number L, which is necessarily violated if neutrinos
are Majorana particles, is spontaneously broken globally
[4, 6]. The Majoron is the massless Goldstone boson
that appears in the theory once the L symmetry is bro-
ken. In this framework, a dynamical realization of the
see-saw mechanism is achieved, since the vacuum expec-
tation value (vev) vσ of the parent field σ of the Ma-
joron generates the “large” Majorana term in the neu-
trino mass matrix. Once the mass matrix is diagonalized,
two massive Majorana neutrinos emerge (per each gen-
eration), with masses mlight ≈ v2

Φ/vσ and mheavy ≈ vσ,
where vΦ � vσ is the vev of the Standard Model Higgs
doublet. Diagonalization of the mass matrix also yields
Majoron-neutrino Yukawa interactions, which might be
responsible for neutrino-neutrino scatterings like those
considered in this work.

In more detail, in Majoron models n right-handed
neutrinos νR are added to the particle content of the
SM, together with a complex singlet5 Higgs field σ, the
parent field of the Majoron. This alllows to write the
SU(2)L × U(1) invariant Lagrangian (for n = 1):

L = −yΦL̄LΦ̃νR − yσ ν̄cRσνR + h.c. , (8)

where LL = (νL, `
−
L )T is the left-handed lepton doublet,

Φ = (Φ+, Φ0)T is the standard model Higgs doublet, Φ̃ =
iσ2Φ∗, and c stands for the charge conjugate partner, i.e.
νcR = Cν̄TR , with C being the charge conjugation matrix.
In the unitary gauge, we can write the neutrino-Higgs
Yukawa lagrangian as

LνΦ = − yΦ√
2

(vΦ +H) (ν̄LνR + ν̄RνL) , (9)

where vΦ is the vev of the Higgs doublet. Similarly, writ-
ing σ = (vσ + ρ + iJ)/

√
2, yields the neutrino-singlet

Yukawa lagrangian:

Lνσ = − yσ√
2

(vσ + ρ+ iJ) ν̄cRνR + h.c. . (10)

The imaginary part of σ is the Majoron J . The part
containing the vevs of the scalar fields generates mass
terms for neutrinos:

Lmass = −yΦvΦ√
2

(ν̄LνR + ν̄RνL)− yσvσ√
2

(ν̄cRνR + ν̄Rν
c
R) .

(11)
In particular, this is a Dirac-Majorana mass term with
Dirac mass mD ≡ yΦvΦ/

√
2 and Majorana mass for the

right-handend neutrinos mR/2 ≡ yσvσ/
√

2. Diagonaliza-
tion of the mass matrix in the see-saw limit mR � mD

(i.e., vσ � vΦ) yields two eigenstates with definite masses

m1 '
m2
D

mR
, (12)

m2 ' mR +
m2
D

mR
, (13)

with m2 � m1. The corresponding left-handed mass
eigenstates ν1L and ν2L, expressed in terms of νL and
νcR, are readily found to be

ν1L = −iνL + i
mD

mR
νcR , (14)

ν2L = νcR +
mD

mR
νL . (15)

From this last expression it is clear that νL and νcR mix
to form a “light” and a “heavy” eigenstate. The small
mixing angle θ is given by tan 2θ = 2mD/mR � 1. One

5 See Ref. [5] for a model in which the Majoron is instead a Higgs
triplet.
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can build the two Majorana fields νi ≡ νiL+νciL (i = 1, 2)
that clearly satisfy the condition νi = νci .

Now let us turn our attention to the part of the la-
grangian responsible for the neutrino-Majoron interac-

tions. From Eq. 10, we get:

Lνσ ⊃ LνJ = −i yσ√
2
J (ν̄cRνR − ν̄RνcR) . (16)

Inverting Eqs. (15) to express νcR in terms of the mass
eigenstates, and using the Dirac matrix γ5 to express
ν1L and ν2L as the left-handed projections of ν1 and ν2

finally yields:

LνJ = −i yσ√
2
J

[
ν̄2γ5ν2 − i

mD

mR
(ν̄1ν2 + ν̄2ν1)− m2

D

m2
R

ν̄1γ5ν1

]
(17)

If we now concentrate on the last term in Eq. (17),
this corresponds to an interaction term of the form6

L =
ig

2
J ν̄1γ

5ν1 , (18)

coupling a Majoron and two light Majorana neutrinos,
with a coupling constant g ≡

√
2yσm

2
Dm

−2
R = m1/vσ.

The presence of this vertex allows light neutrino scatter-
ing ν1ν1 → ν1ν1 mediated by a Majoron. The tree-level
amplitude for this process can be computed following the
Feynman rules for Majorana particles7, and yields, in the
limit of very small ν1 and J masses, an unpolarized total
cross section:

σ(ν1ν1 → ν1ν1) =
g4

4πs
, (19)

where s is the square of the center-of-mass energy. The
cross section enters in the Boltzmann evolution of the
cosmological neutrino gas in the form of the thermally-
averaged cross section times velocity 〈σv〉 [70]; this can
be readily computed to give

〈σv〉 =
π3

2592 ζ(3)2
× g4

T 2
, (20)

which has exactly the same form as Eq. (1), with ξ =
π3/2592 ζ(3)2 ' 8.3 × 10−3. Here ζ(3) is the Riemann
Zeta function of 3. In order to connect with the results
shown in the previous sections, it is enough to note that
geff ≡ ξ1/4g ' 0.3g for the class of models considered
here. Then, if the neutrino interaction Lagrangian is ex-
tended by adding a term of the form (18), the limits
reported in Tabs. I and II imply:

g . 7× 10−7 (95% C.I.). (21)

6 The 1/2 in Eq (18) is introduced in the case of Majorana particles
so that the corresponding Feynman rules will weight each Jν1ν1

vertex with g instead than 2g.
7 Feyman rules for Majorana particles are summarized e.g. in Refs.

[7, 68, 69].

If we further assume that the interaction Lagrangian (18)
stems from (8), i.e. from a dynamical realization of the
see-saw mechanism, as illustrated at the beginning of this
section, the following bound can be derived from (21):

vσ & (1.4× 106)mν , (22)

where we have used g = m1/vσ, and mν ≡ m1.
This picture is still qualitatively valid if one consid-

ers its extension to the case of n > 1 neutrino families.
In that case, the mass spectrum will still split into n
light and n heavy neutrinos. A perturbative expansion
of the coupling matrix between the Majoron and light
neutrinos belonging to mass eigenstates i and j yields [6]
gij = (mi/vσ)δij ∼ ε2δij to leading order in the small
quantity ε ≡ mD/mR. In other words, at leading order
couplings in the mass basis are diagonal, and, as in the
n = 1 case, directly proportional to the neutrino masses.
Off-diagonal couplings gij (i 6= j), that might generate
neutrino decays, are suppressed like ε4.

In our treatment of the collisional Boltzmann equation,
outlined in Sec. II, we have implicitly assumed that the
couplings are diagonal and do not depend on the par-
ticular mass eigenstate, i.e. that the coupling matrix is
proportional to the identity matrix. In the framework
discussed in this section, this amounts to the assumption
that neutrino masses are nearly degenerate. However we
expect our results to still hold qualitatively even if neu-
trino masses are hierarchical.

VI. CONCLUSIONS

Cosmological observations are in excellent agreement
with the standard picture of neutrino decoupling at T '
1 MeV and being free-streaming afterwards. However,
non-standard neutrino interactions might change this
picture, leaving a distinct imprint on the CMB anisotropy
pattern. We have analysed the most recent publicly avail-
able Planck data in a framework in which neutrinos have
secret self-interactions, with the complementary goals of
i) testing the free-streaming nature of the cosmic neutri-
nos, and ii) constraining the strength of the self inter-
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action, parametrised in the form of an effective coupling
constant geff . We have considered the case of a very light
mediator φ for the new interaction, and thus an interac-
tion rate for νν → νν scaling as Γ ∝ g4

effT , corresponding
to a thermally-averaged cross section 〈σv〉 = g4

eff/T
2. In

this framework, cosmic neutrinos, after electroweak de-
coupling, become collisional again at some later time.
This leaves a distinct signature in the CMB power spec-
trum, in the form of an amplitude boost and a phase shift
at the scales that enter the horizon while neutrinos are
collisional, as shown in Sec. II.

Note that it is possible to consider other classes of
models than those considered here. For instance, an-
other well-studied scenario is the one in which the se-
cret mediator is very heavy, so that the self-interaction
reduces to a Fermi-like four-point interaction, and the
scattering rate Γ ∝ G2

XT
5 in this case. This has been re-

cently proposed by Kreisch et al. [44] as an alternative to
the standard ΛCDM model solving the tensions between
CMB and low-redshift measurements of H0 and σ8. We
have instead focused on the complementary limiting case
of a very light mediator. Given the results of Ref. [44],
where two regions of high probability are found in the
parameter space of the model, corresponding to “moder-
ately” and “strongly” interacting neutrinos respectively,
it is worth considering why our analysis finds that the
probability distribution is unimodal, with geff compati-
ble with 0 in most cases. The interest in this behaviour
is further justified by the fact that the “strongly inter-
acting” region of Kreisch et al. provides a good fit of
both high- and low-redshift cosmological data, alleviat-
ing the H0 and σ8 tension. We argue that the reason for
this difference lies on the different scales that are affected
by neutrino collisions in the case of a heavy, as opposed
to a light, mediator. In the former case, the interac-
tion affects small scales, since neutrinos were collisional
at early times; this is one of the key aspects that allows
to fit the cosmological data in an enlarged model. In the
latter case, instead, larger scales are affected, because
neutrinos become collisional again, after electroweak de-
coupling, at late times. This is evident by comparing the
plots of the residuals in Fig 2 of this paper with Fig. 1 of
Ref. [44]. In addition to this, there are other differences
in the two analyses, that might also play a minor role,
like the fact that Kreisch et al. consider massive neutri-
nos: this helps in alleviating the H0 tension. Finally, as
already noted, the algorithm that we employ to explore
the parameter space is not specifically designed to find
maxima of multimodal distributions. We note however
that using a logarithmic prior on geff , that should allow
to span several orders of magnitude in the parameter,
did not show any hint for the presence of a maximum at
larger values of geff . In any case we plan to perform a
dedicated analysis in a future work.

Throughout our analysis, we have approximated neu-
trinos as being massless when calculating both the scat-
tering cross sections, and their effect on the evolution of
cosmological perturbations. Although this might seem

as a strong assumption at first, note that most of the
constraining power of the CMB to secret interactions
comes from redshifts where neutrino masses are negli-
gible. Moreover, given the sensitivity of current exper-
iments, our assumption basically amounts to fixing the
sum of neutrino masses to the minimum value allowed
by oscillation experiments,

∑
mν = 0.06 eV. On the

other hand, this approximation is presumably not ac-
curate enough for future data, given the sensitivity of
next-generation experiments.

We have found a 95% credible interval for the effec-
tive coupling constant g4

eff < 2.35 × 10−27 from a base-
line dataset consisting of the Planck 2015 temperature,
large-scale polarization and lensing data. This bound be-
comes g4

eff < 1.64 × 10−27 when Planck 2015 small-scale
polarization is also included, and represents an improve-
ment of more than a factor 3 with respect to the limits
that we previously derived using the Planck 2013 data
[40]. We have found no significant improvement in these
bounds when also considering geometrical information
in the form of measurements of the BAO scale, astro-
physical determinations of the Hubble parameter, and
observations of type IA supernovae. From the point of
view of the cosmological evolution, our results are more
easily interpreted by remembering that geff ≡ 〈σv〉T 2.
The bounds can also be easily rephrased in terms of the
redshift zνrec at which neutrinos cease to free-stream:
zνrec < 3800 for the baseline dataset, and zνrec < 2300
when small-scale polarization is added (95% credible in-
tervals). Thus we find that neutrinos are free-streaming
at least until close to the time of matter-radiation equal-
ity. Finally, we find that tensions between CMB and
low-redshift measurements of the expansion rate and of
the amplitude of matter fluctuations are not alleviated
when NSνI of this kind are considered. We caution, how-
ever, that we have not employed techniques specifically
targeted to the search of multiple peaks in the joint pos-
terior distribution of the model parameters. The results
summarized up to this point, reported in Sec. IV, do not
depend on the underlying particle physics model, as long
as the assumption that the mediator φ is very light holds.

On the other hand, from the point of view of particle
physics, the quantity geff can be seen as a proxy for the
actual coupling constant g appearing in the interaction
Lagrangian of neutrinos, in the sense that geff ∼ g up to a
numerical factor, typically of order unity. We can reason-
ably expect that, barring cancellations, our results give
an order-of-magnitude constraint for interaction terms
(sketchily) of the form gν̄ΓAφAν, where A is some com-
bination of Lorentz indices and ΓA is some combination
of Dirac γ matrices, and the mediator φA is very light.
The upper limit for g lies somewhere in the ballpark of
(few ×10−7), where a more precise value can be obtained
once the form of the Lagrangian is specified. Even with-
out picking up a specific model, this constraint is anyway
better than those that can be obtained with other probes
(e.g. neutrinoless double β decay). We have explicitly
shown in Sec. V that if we consider a pseudoscalar inter-
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action between Majorana neutrinos, i.e. an interaction
Lagrangian of the form Lint = 1

2g φν̄(iγ5)ν, our limits on

〈σv〉T 2 imply g < 7×10−7. By further assuming that the
pseudoscalar interaction originates as a consequence of
the (lepton-number-breaking) mechanism that generates
small neutrino masses, as in Majoron models, we have
been able to put the following loose constraint on the
scale vσ of lepton number breaking: vσ > (1.4×106)mν .
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