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Abstract
For the maintenance of the safety and security of people traveling on the road, renovation of the reinforced concrete is 
necessary, especially for bridge or viaduct slabs. Being able to quantify the degradation of slabs and propose methodolo-
gies for its retrofit or maintenance is crucial not only in the mineralogical-engineering field but also for socio-economic 
implications. In this study, samples of deck slabs of a viaduct from the highway E45 near the locality of Bagno di Romagna 
(Emilia Romagna, north of Italy) were subjected to a testing program to evaluate mechanical and mineralogical param-
eters through thermographic analyses, compression, and Ultrasonic Pulse Velocity tests and morphological observation. 
The analyses allow to better recognize the damage of the reinforced concrete samples and they have shown that the 
cause of the detachment of the asphalt has mainly a natural origin, due to temperature variations and precipitation, with 
a secondary cause in the anthropogenic impact. The work aims to understand the relationships between the structure 
of the aggregates and the characteristics of concrete to understand the development of degradation. This knowledge 
could be used to prevent future damages to the highways.

Article Highlights 

•	 Concrete slabs analysed provided information about 
the relation between damage level, mechanical behav-
iour, size and distribution of aggregates.

•	 Thermographic analyses were useful to understand 
how deep the damage was in the slabs and to detect 
any detachment of the asphalt.

•	 Compressive tests, through the failure load value, 
shown that the ultimate strength level decreased due 
to formation of microcracks.
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1  Introduction

Since the discovery of reinforced concrete (RC), it has 
proven to be a material suitable for new needs and new 
construction forms [1, 2]. In the beginning, it was used 
only to build large buildings, then it was used to build 
works of artistic, monumental, and historical importance 
[3, 4] and large structures such as bridges and motorway 
viaducts [5–7]. The decisive turning point for the suc-
cess of this modern material came when it was realized 
that by providing concrete with a grid of steel bars, the 
strength characteristics of the concrete were amplified. 
This discovery was spread out thanks to designers like 
Coiget, Lambot, Monier, Perret, Le Corbusier, Wright, 
Maillart, Torroja, Tange, Aalto [3–8].

At the beginning of the new millennium, concrete was 
the most used construction material; in Italy, more than 
19 million tons were produced per year [9]. Nowadays, 
the reputation of this revolutionary construction mate-
rial is weakened due to the awareness that reinforced 
concrete is not an eternal material but undergoes attacks 
of different nature which alters its resistance characteris-
tics [10–12]. Over the past thirty years, many reinforced 
concrete bridges all around the world have suffered 
structural damage; this is the cause of the drop in the 
consideration of concrete as the leading bridge mate-
rial. Corrosion of steel reinforcement, alkali-silica reac-
tion, freeze–thaw damage, and sulphate attack are some 
of the age-related degradation mechanisms for the RC 
structures, and corrosion of steel has been identified as 
being the most widespread and predominant mecha-
nism responsible for the deterioration of the RC struc-
tures [13, 14]. Bond behaviour of corroded reinforcement 
has been experimentally studied by many researchers 
in the past [15, 16]. However, it must be considered that 
many factors contribute to the degradation of reinforced 
concrete, including the neglect of designers, builders, 
and companies that can lead to the production of mate-
rial of not excellent quality; but the greatest danger is 
the exposure of concrete to aggressive environments 
[17, 18].

In the 1950s and 1960s, Italy underwent a construc-
tion boom like few other countries in Europe. As the 
nation’s industry grew, so did the country’s infrastruc-
ture network, as highway bridges and viaducts [19, 20]. 
Reinforced concrete became the elixir of construction 
companies, but the material used was not always suit-
able for the characteristics of durability and mechanical 
resistance that these constructions needed, and this, 
together with the corrosion of steel reinforcement, raises 
questions about the durability of Italy’s more than one 
million bridges built out of reinforced concrete [21, 22]. 

Italian highway viaducts are generally made up of lon-
gitudinal RC beams resting on pillars on which RC slabs 
are placed in the transverse direction. The RC slabs are 
provided with internal steel grids, inserted into form-
works filled with concrete. At both the base and the roof 
of the formwork there are 5 cm concrete layers free of 
steel rebar, which prevent the steel reinforcement from 
being in direct contact with the air and with atmospheric 
agents. This could lead to oxidation and degradation of 
the internal steel structure and therefore to the weaken-
ing of the slab. Being able to quantify the degradation 
of RC slabs and propose methodologies for its retrofit 
[21] or maintenance is very important not only in the 
mineralogical-engineering field but also for socio-eco-
nomic implications. Thousands of kilometres of viaducts 
and bridges are in poor conditions and it would be very 
advantageous to find a solution that would cut the costs 
of replacing the RC slabs [23, 24].

This work aims to define the relationships between 
the mechanical characteristics and the mineralogical 
composition of the viaduct’s RC slabs [25, 26] in order to 
better recognize the degradation of the reinforced con-
crete. Samples of RC deck slabs were collected in a via-
duct of the E45 highway, at the Verghereto junction, near 
the resort of Bagno di Romagna (Emilia Romagna region, 
north of Italy), which is located in a mountainous area on 
the Tuscan-Romagna Apennines. The problems related to 
viaducts are mainly those connected to the degradation of 
reinforced concrete for different causes: chemical attacks 
(chlorides, sulphides, salts) [27–29], atmospheric agents 
(rain, freeze–thaw cycle) [30, 31], and intensive use [32]. 
In this work, thermographic analyses were carried out on 
the RC slabs sampled to determine the most degraded 
areas and the depth of the degradation [33, 34]. The sam-
ples, brought to the laboratories of the University of Fer-
rara in the form of cylindrical specimens, were subjected 
to compressive strength tests to analyse the resistance of 
the material and to perform the microscopy analysis for 
mineralogical characterization [35].

This study also represents a case study providing mate-
rial to support both research and education through the 
transferability of this experience and highlighting the 
essence and core findings of the research.

2 � Materials and methods

2.1 � Site and sampling description

Samples of RC deck slabs were collected in a viaduct of the 
E45 highway, at the Verghereto junction, near the resort 
of Bagno di Romagna (Emilia Romagna region, north of 
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Italy), which is located in a mountainous area on the Tus-
can-Romagna Apennines.

The viaduct called Fornello 1 was built around 1960, 
and since the bridge was built, maintenance has been 
carried out only on the road surface, without in-depth 
investigations.

The viaduct is made up of four longitudinal RC beams 
(coloured in red in Fig. 1) which support the RC slabs under 
investigation [36]. The longitudinal beams are connected 
by orthogonal beams (coloured in green in Fig. 1). The via-
duct deck is constituted by a 20 cm thick RC slab with a 
transversal principal direction (demolished in Fig. 1). The 
investigated slabs of size 180 × 50 cm2 were removed from 
the deck by cutting them in a transversal direction.

A layer of waterproofing material (inside the yellow cir-
cle) is applied above the slabs and a layer of asphalt (inside 
the blue circle) is applied above it. The deterioration of the 
steel reinforcement required the complete replacement 
of the slabs, and therefore it was an extremely onerous 
retrofit work.

Two sequences of slabs were extracted from the via-
duct: the first consisting of 12 slabs, the second of 9 ones. 
Both sequences were taken from the viaduct in the direc-
tion of Orte to Ravenna.

2.2 � Structural characterization

This work is the result of an integrated study and an inter-
disciplinary approach between the Department of Physics 
and Earth Sciences and the Engineering Department of 
the University of Ferrara. The first dealt with the mineral-
ogical and petrographic characterization of the collected 
samples to identify the presence of fractures due to a 
possible difference in heterogeneous clasts; the second 

dealt with the engineering characterization of the material 
through thermographic and compressive tests.

Thermographic analyses, compressive mechanical tests, 
and study of some samples in thin section observed with 
the transmission optical microscope were carried out on 
the collected samples.

Thermographic tests were carried out on four slabs 
(called L1—Fig.  2a, L2—Fig.  2c, L3—Fig.  2e, and L4—
Fig. 2g) in the Structural and Geotechnical Engineering 
Laboratory (LISG) of the University of Bologna. Two 650 W 
lamps were used for heating the specimens from various 
distances (Fig. 3). The air temperature and the relative 
humidity value during these tests are very important phys-
ical variables and must be considered in the data analysis 
phase. During the tests performed on the samples, the air 
temperature was between 20.5 and 22.4 °C, while the rela-
tive humidity had a value between 45 and 47%. An infra-
red thermal imaging camera (AVIO TVS700 model, Tokyo, 
Japan) equipped with an uncooled micro-bolometric focal 
plane array sensor was used to record the images during 
the heating and cooling phases of the asphalted surfaces 
of the RC slabs. The cameras were connected directly to a 
computer. The spectral range of this thermal imaging cam-
era was 8–14 microns; the thermal resolution was 0.08 °C; 
the infrared optic was 35 mm with a field of view of 26.0° 
(H) × 19.0° (V) and a geometric resolution of 1.4 mrad. 
The elaborated images allowed the reconstruction of a 
continuous sequence that allows verifying the different 
responses to the thermal excursions of the samples. The 
processing of thermographic images produced sequences 
relating to the heating and cooling cycles. Table 1 shown 
all the steps carried out in the two phases of heating and 
cooling for all 4 samples analysed.

Concerning the mechanical characterization, cylindri-
cal cores were drilled from the slabs to be subjected to 

Fig. 1   Photo imaging of the viaduct in which different slabs were 
collected. Coloured in red the four longitudinal beams; coloured in 
green the orthogonal beams; coloured in yellow the clear layer of 

waterproofing materials; coloured in blue the dark asphalt layer; on 
the right pane the internal steel reinforcement
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Fig. 2   Photo and thermographic images of the analysed samples: 
a and b sample L1; c and d sample L2; e and f sample L3; g and h 
sample L4. Images a, c, e and g represent the analysed samples at 

ambient temperature (a real photo of the sample collected); b, d, 
f and h the images of the analysed samples at different tempera-
tures during heating cycles
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compressive strength tests at the Structural Engineering 
Laboratory of the University of Ferrara. Three different 
kinds of samples were drilled through the entire thickness 
of the slab and shaped to make them suitable for the test.

The press used has a maximum loading capacity of 
3000 kN, and the distance between press plates is about 
330 mm, the piston stroke being about 60 mm. The two 
compressive plates of the testing machine have a diameter 
of about 290 mm and they allow to test concrete cubes 
with a side of about 100–150 and 200 mm and concrete 
cylinder samples with a diameter of up to 160 mm and 
a height of approximately 320 mm. The hydraulic unit, 
motorized and self-ventilated, is made up of a pump, fil-
ters, and safety valves to comply with current safety stand-
ards. The load actuator’s data are digitally recorded so that 
the load peak value can be detected.

Compressive tests were performed on the samples col-
lected. The samples were subjected to loading and unload-
ing cycles by the following steps: a first load cycle up to 1/3 
of the expected failure load, a second load cycle at 2/3 of 
the expected failure load, and a third load ramp-up to the 
expected failure load. Before starting to load the samples, 
each sample was placed perfectly in the centre of the press 
plate to allow a uniform stress distribution.

In addition to the compressive tests, Ultrasonic Pulse 
Velocity (UPV) tests were also carried out on the samples 
to determine the propagation velocity within the material, 

which is dependent on the structure and the density of 
the material, as micro-cracks and voids slow down the 
elastic wave velocity. The UPV measurements were car-
ried out in different directions: parallel and perpendicular 
to the direction of the steel bars placed inside the sample 
to define how the bars can be related to the formation 
of fractures. UPV were measured during the loading and 
unloading steps of the compressive tests in order to bet-
ter understand how this velocity is related to the damage 
level and fractures induced by the test. The vertical defor-
mations undergone by the sample during the compressive 
phase were measured as well.

2.3 � Chemical characterization

Observation on the thin section of the samples was con-
ducted using a transmitted light polarized microscopy 
(BX51 Olympus, Tokyo, Japan). The optical transmitted 
light microscopy (OTLM) is one of the fundamental and 
widely used techniques for the study of minerals and rocks. 
In this specific work, OTLM provides information about the 
presence of fractures, discontinuity in the binder, litho-
logical composition of aggregates, and their chemical and 
physical alteration [37]. Through these observations, it was 
possible to study the nature of the aggregates used for 
the production of concrete and to understand how suit-
able these materials are to give concrete durability and the 

Fig. 3   Photo imaging of the 
thermographic investigation 
during the test analyses: a bet-
ter explain the position of the 
two lamps (in the yellow circle) 
used to illuminate the sample 
(indicated by a blue arrow) and 
the operator with the thermo-
graphic instrument used; b 
photo imaging of the analysis; 
c photo imaging of the imme-
diate results on the infrared 
thermal imaging camera

Table 1   Different steps 
of carrying out the 
thermographic analysis during 
heating and cooling phases

Sample name Heating Cooling

Distance from 
the lamp (m)

Image recording Duration time after the 
lamps were turned off (m)

Image recording

L1 1.20 30 s for half an hour 20 Every 30 s
L2 0.90 60 s for an hour 20 Every 60 s
L3 0.40 60 s for 35 min 20 Every 30 s
L4 0.60 60 s for 40 min 20 Every 60 s
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proper mechanical characteristics. The thin sections were 
obtained from a slice cut in the lower part and in the upper 
part of different cylindrical samples.

3 � Results and discussions

An attempt was made to understand the relationships 
between the mechanical characteristics of concrete, in 
terms of durability, and the nature of cement paste and 
aggregates.

3.1 � Mechanical characterization of the samples

Thermographic analyses were useful to understand how 
deep the damage was in the slabs and to detect any 
detachment of the asphalt [38], and of the underlying 
waterproofing binder, from them. These investigations 
were useful to detect the areas where to sample and they 
can support the general framework of a retrofitting inter-
vention [39]. The causes of the detachment of the asphalt 
could be natural, such as temperature variations and pre-
cipitation [40–42], or anthropogenic caused by humans 
[43]. The thermal excursions involved continuous heating 
and cooling of the conglomerate, which made it more 
elastic and deformable in hot weather and more rigid and 
brittle in cold weather [44]. Over time, these processes 
promoted the formation of cracks. Both snow and rain 
precipitations lead to a further worsening of the concrete 
slabs as the water creeps into the cracks widening them 
[45, 46]. The water, due to the continuous passage of vehi-
cles, increased structural failure and therefore favoured 
the formation of holes [47]. The anthropogenic causes, on 
the other hand, concerned the use of poor materials and/
or incorrect application techniques, for example laying 
the road surface on an existing surface without having it 
adequately removed or worse still directly on the ground.

Besides, thermographic results allowed to better under-
stand the important relationship between deterioration 
and temperatures, which is an important problem. The 
cyclic variations of the temperature, for example from win-
ter to summer, cause granulometric disintegration of the 
concrete (thermal stress) [48, 49]. Zhai et al. [50] showed 
that chemical and physical changes take place in both the 
cement paste and the aggregates and that the changes 
are different at different levels of temperature [51, 52]. The 
deterioration of the concrete slabs is a very important phe-
nomenon to be monitored because it requires cortical res-
toration interventions to reconstruct the damaged parts, 
eliminate cracks and protect the underlying structures 
from the penetration of substances capable of corroding 
the reinforcing rods [53, 54].

The processing of thermographic images produced 
sequences relating to the heating and cooling cycles. From 
these sequences, horizontal heterogeneities emerge due 
to the different adhesion of the asphalt on the surface of 
the slabs and to local conditions of degradation of the rein-
forcement. The pictures of Fig. 2 show different images for 
each analysed sample at different temperatures (Fig. 2b, d, 
f and h). In these images, you can see the areas where the 
heat is most accumulated and emitted to a greater extent 
(warmer areas); these correspond to the areas where the 
asphalt layer has been completely removed due to degra-
dation, which can be caused by different factors: atmos-
pheric conditions [55, 56]; chemical and physical attacks 
[57, 58]; friction due to the movement of cars [59]. Related 
to the physical deterioration, the effects of temperature on 
the structural quality of the concrete slabs (micro-cracking 
and micro-cracking) were also observed [60, 61], because 
the cyclic variation of the temperature causes granulomet-
ric disintegration of the concrete [62].

The performed compressive tests provided the load 
value of the samples at failure. The expected failure load 
value was experimentally estimated. The results showed 
a good strength level unless the concrete undergoes sev-
eral load cycles. By processing the deformation data and 
relating them to the applied load, binary graphs were 
obtained in which the loading and unloading cycles and 
the failure load are highlighted. The occurrence of failure is 
evidenced by a sudden drop in compression load. In order 
to point out the effects of load cycles, the samples were 
drilled from portions of deck slab taken in zones with dif-
ferent levels of damage induced by vehicle traffic.

The graph of Fig. 4a shows that in the sample subjected 
to a low number of cycles, failure is not attained even for 
a load value equal to 300 KN. When increasing the num-
ber of load cycles, a smaller failure load (about 160 KN) is 
recorded as shown in Fig. 4b. Finally, Fig. 4c shows that 
for a high number of load cycles, the failure load breaks 
down to 120 KN circa. By applying loading cycles on the 
concrete sample, it is noted that the load–displacement 
curve slope varies its inclination during the loading and 
unloading phases due to the arising of microcracks. This 
behaviour becomes more evident as the number of cycles 
increases.

The UPV method was generally used as a non-destruc-
tive test in the ASTM standard [63] for the evaluation of 
the quality of the concrete slab [64, 65]. Ultrasonic pulse 
velocity (UPV) tests could be indicative of the level of dam-
age in the concrete slabs [66, 67]. The measurements on 
the samples have shown interesting results, reported in 
Table 2. The UPV were measured in the longitudinal direc-
tion, along with the height of the specimen, and in the 
transversal direction at the top, central and bottom posi-
tions of each specimen. From the obtained data, it can be 
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noticed that except for sample A4-6 in which the values 
are similar in all measurement directions, in the samples 
B4-1 and C4-7 the UPV values are significantly higher in the 
lower part of the specimen, proving that concrete damage 
is generally localized in the upper part of the slab.

The measurements obtained on the samples analysed 
confirmed the processes of microcracks formation [68, 

69], which was more evident on the deck slab areas most 
affected by degradation, due to atmospheric and chemical 
attacks, besides intensity and frequency of vehicle traffic.

3.2 � Mineralogical characterization of the samples

The macroscopic analysis of cylindrical cores highlighted 
heterogeneity in the distribution, size, and shape of the 
aggregates used to produce the concrete. Figure 5a shows 
the presence of different sizes of clasts (coloured in red), 
while Fig. 5b shows that most of the clasts have sharp 
edges (coloured in red).

The microscopy observations on thin sections obtained 
from the samples were useful for determining the nature 
of the aggregates present in the concrete and for deter-
mining the possible relationships between the cement 
matrix and the aggregates themselves.

In the thin sections obtained from the upper part of 
the cylindrical samples analysed there are clasts of micritic 

Fig. 4   Compressive tests of 
samples subjected to loading 
and unloading cycles: a low 
number of cycles; b medium 
number of cycles; c high num-
ber of cycles

Table 2   UPV measured for the concrete slab samples (m/s) on the 
top, central and on the bottom of the section analysed for each 
samples

Sample Along 
the 
height

Top section Central section Bottom section

A 4–6 3900 3100 2100 2100
B 4–1 4400 2000 2900 4000
B 4–2 3800 2500 3500 –
C 4–7 2000 2200 2200 3000

Fig. 5   Macroscopic characterization of the samples collected: a clasts of different size; b clasts of different shape
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limestone with very large bioclasts (example in Figs. 6a). 
Immersed in a silicate cement paste there are fragments of 
metamorphic rocks, probably marble. The edges between 
the larger aggregates and the matrix appear well defined. 
In some portions, minerals of alteration of the ophycalcites 
are found (an example is shown in Fig. 6c); other elongated 
portions of spatic calcite are observed.

Figure 6b shows an example of a thin section image 
obtained from the lower part of the cylindrical samples 
analysed. There are clasts of microclastic limestone with 
bioclasts and minerals of altered ophycalcite. There are 
smaller portions where fragments of quartz sand and frag-
ments of metamorphic rocks are found. Small-sized por-
tions of a metamorphic nature (marble and ophycalcite) 
and quartzarenite are recognized. There is a calcareous 
matrix with the presence of microfossils; small aggregates 
of micritic limestone have veins of spatic calcite. In some 
thin sections, the presence of garnets surrounded by alter-
ation of ophycalcite in phyllosilicates is evidence of the use 
of metamorphic rocks for the aggregates of this concrete.

The study with transmitted light microscopy allowed 
to better recognize the lithology present in the collected 
samples. From the analysis results, it is possible to assume 
that the aggregates do not come from the area where the 
viaduct is located: they are composed of heterogeneous 
materials with very different hardness and there is a limited 

presence of fragments of metamorphic rocks (an example 
is shown in Fig. 6d). To determine the area of origin, we 
must research an area in which ophiolites emerge. Among 
the possible closer regions, we can make the hypothesis 
of the Futa pass (a pass of the Tuscan-Emilian Apennines 
in the province of Florence, in the Tuscany region), not 
far from the position of the considered viaduct. There are 
gaps between the ophthalmic and limestone aggregates 
and cement, which denote the tendency of these aggre-
gates to detach, even if the physical–mechanical tests 
carried out in the central part of the less degraded cylin-
drical samples showed a good rheological behaviour [70, 
71]. The presence of larger aggregates in the upper part 
of the cores is a negative detail, in fact, under the load-
ings to which a viaduct is subjected (traffic, etc.) the matrix 
detaches itself from the pebbles and pulverizes.

4 � Discussion

Among the most important distresses of asphaltic 
pavements there is moisture sensitivity of an asphalt 
mixture. Although the effect of moisture on asphalt 
mixtures, unlike the traffic loading and thermal stress, 
is not considered as a major solicitation, penetration of 
moisture through the asphalt mixtures can increase the 

Fig. 6   Microscopic characterization of the different type of samples 
analysed by transmitted light polarized microscopy: a thin section 
obtained in the upper part; b thin section obtained in the lower 

part; c ophycalcites observed at crossed nicols; d metamorphic 
minerals observed at crossed nicols
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pavements’ vulnerability to the other two solicitations 
[72]. Apart from the definition of moisture damage and 
the mechanisms of its formation in asphalt concrete, 
there are some factors related to the constitutive parts 
of the mixture and to the prevailing environmental con-
ditions that can have a profound effect on expediting or 
impedance of moisture damage that will be discussed 
throughout the section [73].

Thermographic analyses have shown that the cause 
of the detachment of the asphalt has mainly a natural 
origin, due to temperature variations and precipitation, 
with a secondary cause in the anthropogenic impact [74]. 
The thermal excursions, with alternate heating and cool-
ing, made the asphalt more elastic and deformable in hot 
weather and more rigid and brittle in cold weather [75–77]. 
Over time, these processes promoted the formation of 
cracks [78, 79] and both snow and rain precipitations lead 
to a further worsening of the concrete slabs. The water, 
due to the continuous passage of vehicles, increased struc-
tural failure favouring the formation of holes. On the other 
hand, the use of poor materials and/or incorrect applica-
tion techniques, worsening the situation.

Rocha and Povoas [74] underlying that thermographic 
test is as a real alternative for the detection of defects in 
the reinforced concrete, being more effective the more 
superficial these anomalies, but depending on the work 
to be done, it is necessary to contemplate some consid-
erations to obtain better results, so we add mechanical 
tests which shown a good quality concrete in terms of 
strength but, when subjected to cyclic loading, the ulti-
mate strength level tends to decrease considerably due 
to the progressive formation of microcracks [80]. The UPV 
method was influenced by the concrete mixture character-
istics, which could lead to ambiguous interpretation of the 
results. The measurements obtained on the samples ana-
lysed confirmed the processes of microcracks formation, 
more evident on the deck slab areas affected by atmos-
pheric and chemical attack degradation, besides intensity 
and frequency of vehicle traffic [81, 82]. The localization of 
materials’ micro-cracking could precede the catastrophic 
failure of the concrete slabs engineering structures; there-
fore, the characterization of the damage is of essential 
importance for structural instability monitoring.

The deterioration of the reinforced concrete could be 
done to different causes as described in the Introduction: 
chemical attacks, atmospheric agents, or intensive use of 
vehicles. It is impossible to define a single cause, but the 
deterioration is due to a set of causes. Corrosion of rein-
forcing steel is one of the main causes of deterioration of 
reinforced concrete, structures and affects both ultimate 
and serviceability conditions. Its effects include cracking 
and spalling of the concrete cover, reduction and loss of 
bond between concrete and corroding reinforcement, 

and reduction of the cross-sectional area of the reinforc-
ing steel [83].

Numerous experimental studies have investigated the 
effects of corrosion of materials such as on steel bars [84] 
and steel–concrete bond [85]. There have also been stud-
ies at a structural level, relative for example to the flexural 
behaviour of beams [86] and columns [87].

Also, the mineralogical and petrographic composition 
of which the material is made is very important, because if 
of good quality it guarantees the contrast towards degra-
dation, while if of heterogeneous quality or very variable 
between them, it can lead to an increase in fractures or 
micro-cracking if subject to the causes of explained above.

5 � Conclusion

The slab analysed in this study has been mixed around the 
1960 and the life of the structure is overpassed the service 
life design and the history of loads is very important for its 
evolution. For this reason, this work has provided informa-
tion about the relation between concrete damage level 
and mechanical behaviour. It also highlighted the impor-
tance of nature, size, and distribution of the aggregates, 
since the durability characteristics of concrete depend on 
its composition.

This work is the result of an integrated study and an 
interdisciplinary approach between the Department of 
Physics and Earth Sciences and the Engineering Depart-
ment of the University of Ferrara, in which not only engi-
neering analyses were used but also mineralogical and 
petrographic characterization of the material to better 
explain the microcracking phenomena that could be one 
of the principal causes of the damage of the reinforced 
concrete. It is now well-established that the multidiscipli-
nary approach is necessary for the study of cultural herit-
age degradation, but it is also important in the study of 
the degradation of large public works, such as viaducts 
and highway pavements.

This paper would be an example of an integrated study 
approach between engineering techniques and mineral-
ogical-petrographic methodologies, usually applied to 
the study of natural stone, for better understanding the 
deterioration mechanism of concrete in order to improve 
an integrated model for the inventions.
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