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Recent technological advances show the feasibility of offline decoding speech from neuronal signals,
paving the way to the development of chronically implanted speech brain computer interfaces (sBCI).
Two key steps that still need to be addressed for the online deployment of sBCI are, on the one hand,
the definition of relevant design parameters of the recording arrays, on the other hand, the identification
of robust physiological markers of the patient’s intention to speak, which can be used to online trigger
the decoding process. To address these issues, we acutely recorded speech-related signals from the frontal
cortex of two human patients undergoing awake neurosurgery for brain tumors using three different
micro-electrocorticographic (WECoG) devices. First, we observed that, at the smallest investigated pitch
(600 pm), neighboring channels are highly correlated, suggesting that more closely spaced electrodes
would provide some redundant information. Second, we trained a classifier to recognize speech-related
motor preparation from high-gamma oscillations (70-150 Hz), demonstrating that these neuronal signals
can be used to reliably predict speech onset. Notably, our model generalized both across subjects and
recording devices showing the robustness of its performance. These findings provide crucial information

for the design of future online sBCI.

Keywords: pECoG; Broca; speech arrest; spatial resolution; speech preparation; BCI.

1. Introduction

Recent advances in neuroprosthetics demonstrated
that intelligible speech can be offline synthesized
from cortical activity™ While this represents an
important stepping stone, it still leaves open crucial
problems that need to be solved to develop speech
brain computer interfaces (sBCI) which can be effec-
tively implanted in patients and work continuously
online ™ Here, we addressed two of them.

The first problem is the need of developing
devices that can chronically record brain signals
in a reliable manner. Several techniques have been
presented in the literature, which differ in their
degree of invasiveness and spatiotemporal resolution.
Starting from one of the least invasive methodolo-
gies, electroencephalography (EEG) probes electri-
cal potential variations by using scalp electrodes.
Neural oscillations are collected from large regions
of the brain, making it an appropriate method for
investigating communication within the brain dur-
ing speech-related tasks® and a powerful clinical tool
to recognize, among several others, speech and audi-
tory deficits® Nevertheless, when dealing with sBCI
applications, electrocorticography (ECoG) — per-
formed by placing grids of electrodes directly above
the cortical surface — can be considered an excel-
lent trade-off between several requirements. Indeed,
this technique offers the advantage of recording neu-
ral activity from distributed brain areas with a spa-
tiotemporal resolution inaccessible to non-invasive
methodologies (e.g. EEG) and reduced invasiveness
when compared to intracortical devices 2212 T the
case of chronic recordings, as is the case for BCIs, the
use of ultra-flexible micro-ECoG (uECoG) arrays,

rather than traditional ECoG grids, has the further
advantage of lowering the foreign body reaction, and
thus improving long-term performances, as largely
demonstrated in animal models ™20 Indeed, thin
#ECoG do conformably adhere to the brain surface
with a curvature of a human brain without adding
pressure to it.'3 Therefore, good signal-to-noise ratio
of recorded signals occur. Not only low frequencies
can be detected but even spike-like activity can be
recorded with these arrays and electrode site diame-
ters in the hundreds of micrometer range™

Nonetheless, while pECoG arrays represent a
promising strategy, several of their design parame-
ters still need to be determined, of which, a cru-
cial one, is the pitch distance between electrodes.
Indeed, signal redundancy between neighboring elec-
trodes increases as the electrode pitch decreases 2122
Thus, below a given threshold distance, signals would
become highly correlated and the negligible addi-
tional information that they provide would not jus-
tify their additional design and manufacturing costs.
Such threshold is presently unknown, and it needs to
be estimated from experimental data, also consider-
ing the purpose of the BCI22

The second problem we addressed here is
that presently available speech-decoding devices are
designed for an offline use. That is, they synthe-
size words and sentences from brain signals that are
known to be collected during speech-related task 2
On the contrary, in a prospective real-life online
scenario, BCIs would be constantly exposed to the
flow of neuronal activations with no additional infor-
mation as to whether these signals are related to
speech production or not, similarly to inner speech
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settings 2328 Under these circumstances, the device
would continuously attempt to convert patterns of
neuronal activity into words, with conceivably high
computational cost T2

In recent years, substantial efforts went into
developing new strategies to both get closer to a
natural speech scenario and optimize the decod-
ing process2¥B3I Among the explored options, one
includes the identification of speech-preparatory neu-
ral signals to reliably detect the speech onset. Previ-
ous studies reported that the most accurate speech
onset/offset neuronal signals are typically found
in the temporal cortex?Z28 raising the issue that
they might be related to the auditory feedback of
the subject’s own voice. Unfortunately, such sig-
nals, while indeed highly correlated with speech
onset /offset 2728531 would not be available for a real-
life sBCI deployment which implies the decoding of
speech from patients that can no longer produce it.

Aiming to complement previous attempts in the
field, one should investigate neuronal markers with
two crucial characteristics: (1) ability of predicting
the speech onset, and thus being able to provide suf-
ficient time to trigger the decoding process, and (2)
high correlation with speech preparation processes,
and thus being available irrespective of the actual
emission of speech. Similar to how a vocal cue is
employed to start commonly used virtual assistants
(e.g. Google Assistant, Alexa or Siri), such “neuronal
cue” would serve the purpose of precisely identifying
speech intentions and consequently trigger the initi-
ation of the decoding process in time.

One suitable candidate region of the human cor-
tex where to find physiological signals related to
speech preparation is the speech arrest in Broca’s
area. Indeed, experimental evidence shows that
direct electrical stimulation®234 during speech pro-
duction induces the so-called speech arrest phe-
nomenon, i.e. the complete interruption of ongo-
ing speec®d in absence of oro-facial movements
and vocalizations 28 This reversible functional arrest
identifies Broca’s area, which is known to be active
prior to articulation rather than during spoken
responses 37 Specifically, results showed an increase
of the high-gamma activity immediately before the
speech onset or the peak of verbal response 2758

In this study, we recorded neural activity from
Broca’s area using innovative dense pECoG grids
(pitch distances =600, 750 and 2500 pum) acutely

Prediction of Speech Onset by Micro-Electrocorticography

implanted in two patients performing speech produc-
tion tasks. We used signals recorded from the speech
arrest area to provide a quantitative estimate of the
correlation between electrodes, as a function of their
distance. If there would be high correlations between
adjacent electrodes this would be a sign for redun-
dancy. If not, signals are independent and only one
electrode was selected. This estimate, together with
our time-frequency analysis, allowed us to identify
the most appropriate frequency band in terms of spa-
tial confinement and strict anticipatory nature with
the respect to the speech onset, and thus to select the
most robust physiological marker of speech prepara-
tion periods.

2. Materials and Methods
2.1. Subjects

Data were collected from two patients undergoing
awake neurosurgery for tumor resection (low-grade
glioma). The patients gave their informed consent,
and the protocol was approved by the Ethics Com-
mittee of Azienda Ospedaliera Universitaria Santa
Maria della Misericordia (Udine, Italy) after verifi-
cation of the Italian Ministry of Health.

2.2. Recordings

Device specifications and recording setup were
described in previous publications T334 Briefly,
three different epicortical arrays were used for the
recordings (Fig. [I): the first array (hereinafter Epi)
consisted of 64 channels arranged in an 8 x 8 square
grid layout, with a pitch of 600 um between contacts
and a contact diameter of 140 um; the second array
(Multi Species Array; hereinafter MuSA) consisted
of 16 channels arranged in a 4 x 4 square grid layout,
with a pitch of 750 um between contacts and a con-
tact diameter of 100 pm; the third array (hereinafter
EpiBig) consisted of 64 channels arranged in a rect-
angular grid, with a pitch of 2500 um between con-
tacts and a contact diameter of 200 ym. As required
by the surgical procedures, the devices were sterilized
before use.

The reference electrodes on the arrays were dis-
connected. Recordings were performed in a single-
ended configuration by shorting the reference and
ground contact and connecting them to the dura
mater.
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Subject 1
Task
Antenna | Antenna
Ananas | Pineapple
Elefante | Elephant
Pecora Sheep
Stivale | Boot
Coltello Knife
Bottiga | Bottle
Fungo | Mushroom
Elicottero | Helicopter
Pavone | Peacock
Subject 2
Task
fa /fal
fi /fil
na /na/
ni /ni/

Fig. 1. (Color online) pECoG arrays layout and position over the cortex of subjectl (top) and subject2 (bottom). The
top-left panel shows pictures of the Epi and the MuSA pECoG array. The top right panel shows and horizontal and
coronal section of the patient’s MRI scan. The center of each array (red dot in the left panel) was positioned over the
speech arrest area (red dot in the right panel). The bottom-left panel shows a picture of the EpiBig uECoG array. The red
dot localizes upper-right corner of the array superimposed to the MRI scan of the patient (horizontal plane and coronal
plane). For both subjects, the speech production tasks are reported on the rightmost side of the panels.

The position of the pECoG arrays on the cor-
tex was determined based on pre-surgical analyses
and intra-operative procedures. Pre-surgical analyses
included a functional Magnetic Resonance Imaging
(fMRI) session while performing different speech pro-
duction tasks. Intraoperative procedures consisted
in identifying the position of the speech arrest area
by means of electrical stimulation (IES). Briefly,
using a neuronavigation system (Brainlab) and an
IES probe, it was possible to map eloquent areas of
the brain and visualize them superimposed to the
fMRI scan of the patient. This procedure is typically
conducted to identify the exact position of specific

regions, such as the speech arrest, and evaluate their
relative distance from the tumor. We used the same
approach to collect the coordinates of the speech
arrest area and of the position of the array once in
place, which allowed us to align the MuSA and the
Epi devices.

Neural signals were collected before the surgi-
cal procedure at a sampling frequency of 3051.8 Hz,
while the voices were recorded at 24 kHz. The voice
and the neural signals were recorded using the
same data acquisition equipment; thus, they were
automatically synchronized. Delays were therefore
constant and identical in all trials with respect to
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the technical equipment. The onset for each trial
was identified manually from the spectrogram of
the audio signals computed with the free software
Audacity®.

2.3. Tasks

The first subject (53-year-old male, Italian native
speaker, hereinafter subjectl) performed two ses-
sions of a naming task, the same conducted during
the presurgical fMRI to identify eloquent areas. The
task consisted in naming different images shown on
a screen. Each session consisted of three blocks dur-
ing which 10 pictures representing Italian nouns were
presented. The order of the stimuli is shown in Fig.[I]
and was not randomized across blocks because of
limitations of the equipment available in the surgery
room. During the first session, neuronal signals were
recorded using the Epi array (Epi dataset, 30 trials)
and during the second session data were collected
using the MuSA array (MuSA dataset, 30 trials).

The second subject (41-year-old female, Italian
native speaker, hereinafter referred as subject2) per-
formed a phoneme production task (see Fig. [).
The task consisted in listening to different phonemes
and in repeating them. In this task, differently from
the naming one, the stimuli were randomized across
blocks and neuronal signals were recorded with the
EpiBig device (EpiBig dataset, 84 trials).

2.4. Characterization of the signal
redundancy across electrodes

Data were analyzed in Matlab (version 9.5, Math-
works, Inc., Natick, MA) with the aim of character-
izing the spatiotemporal dynamic of neural activity
related to speech preparation. Ground-truth speech
onset times were determined based on the sub-
jects’ voices recorded during the experiment. We
focused our analysis on three frequency bands: beta
(15-30Hz), low-gamma (30-60 Hz), and high-gamma
(70-150 Hz) 22 Signals were filtered in these three
bands, by applying the Matlab function filtfilt to
minimize phase distortion (8th order Butterworth).
We also removed line noise by applying a notch fil-
ter at 50 Hz and its harmonics up to 200 Hz. Finally,
the filtered data were segmented into trials, spanning
from 500 ms before to 500 ms after speech onset, and
analyzed as follows.

Prediction of Speech Onset by Micro-Electrocorticography

2.4.1.  Spatial correlation analysis

We used a correlation analysis to quantify signal
redundancy across electrodes. To this end, we com-
puted the correlation coefficient of the filtered and
segmented signals for each pairwise combination of
electrodes and averaged it across trials. Then, we
averaged the results across electrodes sharing the
same distance. The correlation decay was computed
from data recorded with the Epi matrix, as this probe
possesses the smallest distance between electrodes
(600 pm) and thus the highest spatial resolution.

2.4.2.  Spectrograms

Spectrograms were computed using the Matlab func-
tion spectrogram setting a temporal window of 100
ms for low and high gamma, and 150 ms for the beta
band. The overlap between windows was set to 90%.
The frequency resolution was set to 1 Hz for low and
high gamma bands, and to 0.5 Hz for the beta band.
Power spectra were then averaged across trials.

2.5. Prediction of speech onset

To identify speech-preparation activities, we first
segmented each recording session into N non-
overlapping intervals, where N represents the
number of words or phonemes (hereinafter vocaliza-
tion), according to the task performed. Each inter-
val ranged from 500 ms before an instance of speech
onset to 500ms before the subsequent one. It thus
contained only one vocalization. For each interval,
we extracted vectors of features from neuronal sig-
nals and labeled them either as preparation or non-
preparation. Specifically, we labelled as “prepara-
tion” features extracted in the 500 ms preceding a
speech onset event and “non-preparation” features
extracted in all other time intervals (Fig.[2]). For each
channel, we then trained a support vector machine
(SVM) to classify feature vectors based on their
assigned labels. Figure [ reports a diagram of the
prediction procedure.

2.5.1. Feature extraction

Features for the SVM were extracted from the high-
gamma range spectrograms. To this end, we first
averaged spectrograms across frequency thus obtain-
ing a single time-varying profile of the power spec-
tral density (hereinafter Mean Power Profile, MPP)
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Z-score
Mean Power Profile

Voice

-500 0 650
Time [ms]

Fig. 2. (Color online) Graphical representation of the feature extraction and labeling procedure. Each consecutive and
non-overlapping window (w) of the z-score Mean Power Profile (MPP, (blue line) was considered as an observation.
Observations were labeled as preparation within 500 ms before the speech onset (vertical red line) were labeled as prepa-
ration (class 0, in green). Observations belonging to the vocalization interval and the following silence were labeled as
non-preparation (class 1, in red).

Within-subject validation

10 iterations

Step2

Step3 ) Step4

] Step1 > dows:anr:?:mg of Leave-One interval-Out Evaluate average
Dataicﬂ Data Splitting majority class cross-validation | performances

A

Validation | Best
hyperparameters

{channel and w)

Rand dStepE ling of Stepé
andom downsampling o . <
majority class Train a new model |

Dataset2

Step9
Evaluate final
performances

Cross-subject Test

(o st |
Dataset3 Test

Fig. 3. (Color online) Training procedure of our classifier. (Top) Within-subject validation. (Step 1) Each recording
session was segmented into N intervals, where N represents the number of vocalizations. Data where then split into
train and validation set. (Step 2) Random down-sampling of the more represented class (i.e. “non-preparation”) to train
our classifier with balanced classes. (Step 3) Training of the classifier with all intervals except one. The left-out interval
was used for validation. To test the robustness against the random downsampling, this procedure was iterated 10 times
and performances were then averaged. This procedure yielded the optimal hyperparameters for our model. (Step 6)
The classifier with the optimal hyperparameters was trained using the whole dataset and (Steps 7-8) tested using a
cross-subject approach.
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for each channel. Since the MPP is the average of
the power spectrum values for each bin computed,
the time resolution of the MPP is the same of the
high-gamma spectrograms. Then, we segmented the
data into intervals containing only one vocalization.
Z-score normalization was applied to compare data
recorded from different devices and subjects. Each
feature vector consisted of w consecutive samples of
the z-score MPP, with no overlap between consec-
utive vectors (see Fig. ). Thus, w is the parame-
ter that determines how many features are included
in each observation. We tested for each dataset and
channel independently different window lengths (w),
specifically: 36, 60, 84, 108, 132, 156 milliseconds.

2.5.2.  Classification approach

Considering each channel separately, we used a
support-vector machine (SVM), which is a super-
vised learning method typically used for the classifi-
cation of observations that cannot be linearly sepa-
rable in their space. SVMs have been widely used in
biomedical research to decode speech or its related
features directly from neural signals 2527292043
Here, we trained a set of SVM models to classify
observations as preparation or not-preparation using
the Matlab function fitcsvm for a two-class (binary)
problem. This function supports mapping the pre-
dictor data using kernel functions.

We used a Gaussian kernel (or Radial Basis Func-
tion, RBF), already employed for speech detection
from ECoG signals 2728 with a fine kernel scale. The
software divides all elements of the predictor matrix
by the value of Kernel Scale and applies a Box Con-
straint that controls the maximum penalty imposed
on margin-violating observations, which helps to pre-
vent overfitting (regularization). Both values were set
to 1 as default value.

In our experiments, speech periods were sep-
arated by longer intervals in which the patients
remained silent. Our dataset contained thus a sig-
nificantly greater number of “non-preparation” than
“preparation” feature vectors. To reduce the skew-
ness in our data and properly train our classifiers
we randomly down-sampled them in order to get
balanced classes (Fig. Bl Steps 2-5). Then we used
a Leave-One interval-Out validation to select the
optimal combination of window length w and most
informative channel. Our classifier was trained using

Prediction of Speech Onset by Micro-Electrocorticography

feature vectors belonging to all the intervals except
one (Fig. Bl Step 3) and tested using all feature vec-
tors belonging to the left-out interval. Since the non-
preparation class was randomly down-sampled for
the training, this procedure was repeated ten times
for each left-out interval. Validation performances
were obtained by averaging across the 10 random-
izations (Fig. Bl Step 4).

2.5.3.  Performance evaluation

To find the optimal value of the window length w,
we assessed the performance of each model by means
of F-score index. This index is defined as the har-
monic mean of Precision and Recall and is specif-
ically designed to deal with imbalanced datasets
in which one label (i.e. non-preparation) is signifi-
cantly more represented than the other (i.e. prepa-
ration) ##45 To estimate an empirical chance level
for the F-score, we used a Monte Carlo approach in
which we trained our classifier on a data set with
shuffled feature labels. The empirical chance level
was defined as the average F-score across 10 shuf-
fling (Fig. B Steps 4-9). For each dataset, we identi-
fied the best combination of window length w, and
channel number cho as that yielding the highest and
above chance F-score.

2.5.4. Cross-dataset model testing

For the purpose of cross-dataset model testing, we
first trained a new model on channel cho using win-
dow length w, (Fig. Bl Step 6). We then tested this
model on all channels of the other datasets. This pro-
cedure was repeated for all pairwise combinations of
datasets (Fig. Bl Steps 7-8). The number of observa-
tions divided by class, for each dataset, before and
after the dowsampling of the majority class (“non-
preparation”) are reported in Table Il

Table 1. Number of observations divided by
class, for each dataset, before (BDs) and after
(ADs) dowsampling.

Epi EpiBig MuSA

Preparation 150 320 441
Non-Preparation BDs 613 2494 1884
Non-Preparation ADs 150 320 441

Training set dimension 300 640 882
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3. Results

3.1. Characterization of the signal
redundancy across electrodes

As a first step, we studied the degree of signal redun-
dancy between electrodes. Figures H(a){dlc) show
the mean correlation coefficients computed from the
signals recorded from the Epi array for the three
frequency bands (beta: 15-30Hz; low-gamma: 30—
60Hz; high-gamma: 70-150Hz). We selected this
probe as it has the narrowest pitch (0.6mm). As

(a) (b)
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expected, there was a clear trend in the spatial
extent of the correlations. Specifically, the high-
gamma band (Fig. H(c)) exhibited correlations at
a narrower spatial scale than the low-gamma band
(Fig.@(b)), whose spatial correlations were narrower
than those in the beta band (Fig. [(a)). To quan-
titatively study this trend, we computed the aver-
age correlation coefficients as a function of the dis-
tance between electrodes. Results in Fig. @(d) show
that (1) the correlation coefficient decreases with
the increasing distance between electrodes and (2)

(©)
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Fig. 4.

(Color online) Characterization of the signal redundancy across electrodes performed on the Epi dataset. (a—c)

Mean correlation maps of signals in the beta (15-30 Hz, panel (a)), low-gamma (30-60 Hz, panel (b)), and high-gamma
(70-150 Hz, panel (c)) frequency bands obtained averaging across trials. Each square of the plot represents the correlation
coefficients computed for the electrode in that position against all the others. (d) Correlation profiles (mean 4+ SE) obtained
averaging the correlation coefficients of electrodes sharing the same distance for all the tested frequency bands (light blue
for beta, grey for low-gamma, and dark blue for high-gamma).
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higher frequencies consistently yield lower correla-
tion coefficients. Notably, at the smallest considered
pitch distance of 0.6 mm, signals were highly corre-
lated, and thus redundant, in all three considered
frequency bands (correlation coefficient > 0.8). This
result suggests a lower bound for the pitch distance,
as it shows that values smaller than 0.6 mm would
provide low gain in the amount of information pro-
vided by nearby recorded signals.

3.2. Prediction of speech onset

We next performed a time-frequency analysis of
the recorded signals. Figures Bla)-Blb) show the

(a)

) o

(b)
) EE e

150
& M 70
-0.5 0 0.5

Time [s]
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average across trials of the high-gamma spectro-
grams, aligned to the speech onset event. Results
were computed from signals recorded from the Epi
and MuSA probes implanted in the same patient
(Subject 1). Panels A and B show a clear, time-
localized increase in power few hundreds of mil-
liseconds before the speech onset event in a subset
of neighboring electrodes (channels enclosed in the
rectangular frame). Interestingly, the spatial loca-
tions of electrodes in the Epi and MuSA arrays
exhibiting such anticipatory activity were overlap-
ping (Fig. Blc)). The increase in power observed in
the low-gamma and beta bands was not as equally
precise in both time and space (Fig. [).
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Fig. 5. (Color online) Mean spectrogram maps for the Epi (a) and the MuSA (b) arrays. Data are filtered in the high-
gamma band (70-150 Hz) and averaged over trials. (c¢) Relative orientation on the cortex of the MuSA (light brown) and
the Epi (red) devices. Blue rectangles refer to the electrodes highlighted on the spectrogram’s plots (dashed line, Epi

array; solid line, MuSA array).
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Fig. 6. (Color online) Mean spectrogram maps of the Epi array in the beta (15-30 Hz, panel (a)) and low-gamma
(30-60 Hz, panel (b)) frequency bands. Data are averaged over trials aligned to the speech onset (vertical red line).

In this context, time-frequency and correlation
analysis have been used to inform the feature selec-
tion process. Indeed, spectrograms were used to visu-
alize the time alignment of the band-power increase,
while the correlation maps provided a quantitative
estimate of the spatial confinement of the signals
in the different frequency bands. Results in Figs. @
show that the high-gamma modulations were the
only ones temporally confined prior to the speech
onset and with high spatial specificity.

Consequently, we sought to investigate whether
such increase in power was a reliable predictor of
speech onset on a trial-by-trial basis. To this end,
we trained a support vector machine (SVM) to clas-
sify a given time bin as belonging to a “prepara-
tion” or “non preparation” interval based on the
spectral features of the signals. Model’s hyperparam-
eters were set by a leave-one-out approach and the
classifier’s performance was assessed by means of an
F-score index (see Figs. [l B and Sec. for further
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Fig. 8. (a) Average F-score maps obtained during cross-dataset model testing of each pairwise combination. Each training
was performed considering for each dataset the best channel (cho) and window (wo) obtained during the hyperparameters
optimization. Empirical chance level of the best channel is reported in italic. (b) Average F-scores of the best channels
compared to the empirical chance level (gray bars). All the within-dataset models were significantly better than the ran-
domized ones (diagonal terms, two-sided t-test, P < 0.001). All cross-dataset tests show significantly higher performances
than the randomization test (off-diagonal terms, two-sided ¢-test, P < 0.001). Data are reported as mean £ SD.
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details). To provide a quantitative comparison for
our model’s performance, we used a shuffling proce-
dure to computationally estimate the chance level
F-score (henceforth empirical chance level). The
spatial distribution of the F-scores obtained when
we trained and tested our classifier on the Epi
dataset (Fig.[M(a)-left). Consistently with the results
of Fig. Bl(a), channels exhibiting a clear anticipa-
tory increase in power in the high-gamma band
also yielded classification performance significantly
higher than the empirical chance level. This means
that spectral features in the high-gamma band can
reliably predict speech onset on a trial-by-trial basis
as further demonstrated by the temporal predic-
tion profile shown in Fig. [(b). Here, the voice is
aligned to segments detected as preparation by the
best-channel classifier (in light green), as well as the
ground-truth (in red).

Neuronal responses can be recorded with a vari-
ety of probes and in different subjects. Are the iden-
tified spectral features robust with respect to these
factors? We investigated this issue by means of a
cross-training approach in which we trained and
tested our model on all pairwise combinations of
datasets, respectively. Figure [(c) shows the results
obtained when our classifier was tested on the Epi
dataset and trained on the EpiBig (left panel) and
Musa (right panel) datasets (see Fig. Bl for all other
combinations). Comparison of Figures[f(a) and [7(c)
shows that, irrespective of the training dataset, our
model yielded higher than the empirical chance level
classification performance on electrodes at the same
locations of the Epi probe (see Figs. [[(a)0(c)).
This result is particularly notable as the EpiBig and
MuSA datasets used for training were recorded from
two subjects and with two different types of probes.
Taken together, the results of Fig. [[]show that activ-
ity in the high-gamma band is a reliable marker
of speech onset that is robust across subjects and
recording devices.

4. Discussion

In this study, we used dense uECoG arrays to record
the epicortical signals from awake patients under-
going brain surgery. We first investigated the spa-
tiotemporal specificity of the neural activity dur-
ing speech production. Results in Fig. [ show that,
with an electrode pitch of 600 um, the correlation

Prediction of Speech Onset by Micro-Electrocorticography

between neighboring electrodes is greater than 0.8
in all investigated frequency bands. We next used
a machine-learning based approach to show that
high-gamma frequency signals (70-150 Hz) recorded
from the speech arrest area are a reliable pre-
dictor of speech onset. These results are impor-
tant in view of transitioning from offline to online
speech brain computer interfaces (BCIs). A previous
study reported the correlation profiles in epicortical
recordings between electrode pairs with a pitch of
4mm. The correlation trends showed increases with
decreasing distance and that, at the minimum inves-
tigated electrode pitch, signals in the low-gamma
and high-gamma bands are still largely uncorre-
lated, although differences and similarities might be
affected by local anatomy, electrodes impedance, as
well as the physical properties of the measured elec-
tric field 22 These results suggested that arrays with
electrode pitch smaller than 4 mm were promising
solutions for increasing signal resolution at high fre-
quencies. While valuable, this study provided how-
ever no lower bound for the electrode pitch. Here, we
leveraged recent advances in array design™=33H4I ¢
experimentally assess, for the first time, the redun-
dancy between the activities of submillimeter spaced
electrodes in the beta, low-gamma, and high-gamma
frequency bands. Results in Fig. @ show that at a
pitch distance of 600 um the correlation coefficient
between neighboring electrodes is greater than 0.8
in all investigated frequency bands. This result is
of fundamental relevance for the design of future
probes. Indeed, it suggests that this distance should
be considered a lower bound for the pitch between
electrodes as more densely spaced electrodes would
accrue low additional information at the cost, how-
ever, of higher design, manufacturing and computa-
tional costs. In addition to being spatially confined,
high-gamma neural modulations in Broca’s area are
known to be specifically elicited by language produc-
tion 351381

Results in Fig. [f] show that these modulations
have a clear anticipatory nature, as they consis-
tently increase few hundreds of milliseconds before
speech onset. To deploy an effective online speech
BCI, the detection of the speech onset is of cru-
cial importance. Indeed, without such knowledge,
an online speech BCI would constantly attempt to
convert neuronal activations into words, even dur-
ing periods of silence, with consequently higher error
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rates than in a controlled task that would render the
BCI practically useless. A reliable detector of speech
preparation would allow instead to trigger the decod-
ing procedure in advance, and only when neuronal
signals are effectively related to speech encoding,
and bypassing the auditory feedback 272831 Tndeed,
our findings provide neuronal markers that are pre-
dictive of speech onset, and highly correlated with
speech preparation processes, thus present irrespec-
tive of the actual emission of speech. This predictive
biomarker could play a key role in view of a real-time
sBCI since it would allow to trigger the decoding
process. Recent studies confirmed that speech can
be offline synthesized starting from ECoG signals’2
but the deployment of analogous online models in
clinical application has not been achieved yet.

Here, aiming to support the transition from
offline to online speech BClIs, we trained a support-
vector machine classifier to recognize speech-related
motor preparation on a per-channel basis. The per-
formances obtained during validation confirmed that
the high-gamma activity was indeed well-suited
(Figs. [0 and [). More importantly, especially for
translational applications, the spatial maps of the
averaged F-scores were highly consistent when the
classifier was tested on data recorded from differ-
ent patients with different devices, executing dif-
ferent experimental tasks (Figs. [0 and [E]). Indeed,
the best-performing channels obtained during cross-
dataset model testing were spatially coherent with
those found during the within-dataset validation.
This result demonstrates that the model was able to
generalize both across different probes and patients.
This is of critical relevance if we imagine that in
real-life settings, patients would be using a chron-
ically implanted BCI when they already have lost
speech production abilities (i.e. no labeled training
data would be available) 23

In this study, we aimed to demonstrate the fea-
sibility of speech onset detection in a clinical con-
text. That is in a condition where few trials are
typically available, preventing thus the use of com-
plex models. Nevertheless, improvement and better
tuning of the decoding algorithms are crucial points
that should be continuously pursued. While signif-
icantly higher-than-chance performances have been
already obtained with our per-channel paradigm, in
the future it would be worth exploring the possi-
bility of pooling single channel classifiers by means

of “mixture of experts” approach. Indeed, although
our correlation analysis indicates that most of the
information is shared between neighboring chan-
nels (correlation coefficient is higher than 0.8 for
the high-gamma band), a multi-channel paradigm
could significantly improve the decoding perfor-
mances. Future studies will also have to include
more subjects and optimize the algorithm selection,
potentially exploring more powerful machine learn-
ing approaches?®®50 and methods which are able to
better deal with imbalanced datasets5!

5. Conclusion

To the best of our knowledge, this study is the first
one using acutely implanted pECoG grids to inves-
tigate speech onset in Broca’s area.

Some methodological advancements allowed us to
find two novel and, in our view, important results.
First, electrodes separated by shorter distances than
600 um would likely provide, at least when data is
analyzed in the frequency domain, a lot of redun-
dant information so as not to justify their design
and manufacturing costs. To establish whether 600
pm represents a lower bound for the electrode pitch
or whether a multi-electrode approach would lead to
better results, further investigations are necessary.
Second, high-gamma oscillations represent a reliable
signature of speech onset that is robust across both
recording devices and subjects. These results provide
critical information for the design of future real-time
speech BCI that are suitable for chronic long-term
implant.
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