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Mechanism of wetting

I. INTRODUCTION

Wetting of chemically and topographically heterogeneous surfaces gives rise to a rich phe-

nomenology and a corresponding wealth of theoretical challenges.1,2 A remarkable example is

that a careful combination of surface roughness and chemistry yields highly liquid-repellent

and self-cleaning surfaces under given environmental conditions: this class of properties is

often referred to as superhydrophobicity. Superhydrophobicity is related to the trapping of

gaseous pockets (air and/or vapor) inside surface roughness.3 We will loosely refer to this

scenario as the Cassie state. The superhydrophobic Cassie state also favors the emergence

of liquid slippage under flow conditions.4,5 However, superhydrophobicity breaks down as

soon as the surface roughness becomes wet in the so-called Wenzel state. As a consequence

of the very different properties of the Cassie and Wenzel states, there is a growing interest in

designing surfaces that are capable of stabilizing the superhydrophobic Cassie state. In order

for such engineering effort to be effective, a thorough knowledge of the Cassie-Wenzel tran-

sition is required. With this objective, we analyze here the mechanism of the Cassie-Wenzel

transition with the string method applied to molecular dynamics simulations.

The phase transition between the Cassie and the Wenzel states is, in most cases, char-

acterized by large free-energy barriers.6–10 The superhydrophobic Cassie state on the same

surface can be stable, metastable11, or unstable depending on the environmental conditions.

Therefore it is not correct to speak about superhydrophobic surfaces, but rather about su-

perhydrophobic states.3 The problem of designing surfaces with superhydrophobic properties

is therefore one of maximizing the range of temperatures, pressures, and characteristics of

the liquids/vapor phases in contact for which the Cassie state is stable. In the conditions

where the Cassie state is not thermodynamically stable, it is nonetheless possible to exploit

metastabilities to obtain long-living superhydrophobicity: this is the case, e.g., of omnipho-

bic surfaces that present a metastable Cassie state even with “wetting” liquids thanks to

a special reentrant geometry.12 Indeed, free-energy barriers must be much larger than the

thermal energy kBT in order for the metastable Cassie state to survive for times that are

significant for experiments and applications. Knowledge of how the Cassie-Wenzel transition

starts and evolves –the transition path or wetting mechanism– may yield new insights for

the design of engineered surfaces.

According to the transition state theory, the rate of the Cassie-Wenzel transition depends
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FIG. 1. Mechanism of the Cassie-Wenzel transition on rectangular grooves as computed with the

continuum rare events method9 (top): the path is parameterized in terms of the volume of liquid

filling the cavity, Vl. Free-energy profile of the Cassie-Wenzel transition as computed from the path

above at coexistence (bottom).

exponentially on the free-energy barrier between these two states. Thus, designing surfaces

with the desired Cassie-Wenzel free-energy barrier is an effective tool for controlling the

rate of the process. For instance it has recently been suggested13 that the Cassie state

is generally metastable underwater. This statement, which is based on experiments on

a small number of surfaces, could be made more precise if the way in which free-energy

barriers depend on the geometry of the surface roughness was known. The crucial point for

applications is not whether the desired state is metastable or stable but whether it will last

longer than the experiment/application. The first step in engineering surfaces is, therefore,

the characterization of the wetting mechanism and of its dependence on the topography and

chemistry of the surface, as well as on the thermodynamic conditions.

Previous works typically considered the mechanism of the Cassie-Wenzel transition on

drops, see e.g. Ref. 14 and 15, but there is a growing interest in submerged surfaces where

the external pressure plays a key role in the stability of the superhydrophobic state. We

focus here on the latter case by studying a model system that is simple enough to allow

comparison of different approaches and yet shows a surprisingly rich phenomenology (see

Fig. 1).

In previous works9,16,17 we characterized the free-energy barriers of the Cassie-Wenzel
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transition occurring in isolated hydrophobic roughness elements under different conditions of

pressure and temperature. The systems considered spanned from few nanometers (explored

via molecular dynamics simulations16) to macroscopic dimensions, for which the Continuum

Rare Events Methods, or CREaM, was developed.9,17 Over this broad range of systems,

at coexistence –when the Cassie and Wenzel state have the same free-energy–, free-energy

barriers are much larger than kBT accounting for strong metastabilities.

For all previous approaches, the wetting path was characterized following the changes

in the (coarse-grained) density field of the fluid, ρ(x). This, in turn, was considered a

parametric function of the filling of the surface corrugation (or liquid volume inside it),

ρ(x;Vl). The resulting path of the transition is the sequence {ρ(x;Vl,i)}i=1,N of density fields

minimizing the free-energy at a given Vl,i. Under suitable conditions, explained in Sec. IV,

this represent a realistic description of the wetting path. However, when this description

was applied in combination with a macroscopic, sharp-interface macroscopic model,9 we

obtained a discontinuous wetting path (see Fig. 1). The discontinuity corresponds to an

instantaneous switching from a symmetric liquid/vapor meniscus to an asymmetric bubble

in one of the corners of the corrugation (morphological transition). This discontinuity occurs

at the “transition state” and results in a non-differentiability of the free energy profile at

this point. This sharp point may have two distinct origins,

• an algorithmic one, related to the parameterization of the wetting path with the volume

of liquid in the groove used in CREaM

• a modeling one, that is, it could arise as a genuine feature of the sharp-interface model,

which was used in combination with CREaM.9,17

The goal of this paper is therefore to address the question about the sharp point of the

free-energy profile and, more generally, to lay on solid statistical grounds the discussion

about the wetting mechanism on rough surfaces. In order to achieve this goal, we compute

the minimum free-energy path (MFEP) using the string method in collective variables.18

We employ atomistic simulations with the aim of making minimal assumptions on the liq-

uid/vapor interface and the interactions with the walls. The collective variable that char-

acterizes the microscopic configuration implemented is the coarse-grained density field. We

compare atomistic with continuum, sharp-interface model paths and free-energy profiles.

The continuum path is obtained with the string and CREaM methods. Qualitatively, the
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atomistic and continuum wetting are consistent. Surprisingly, atomistic string free-energy

profile shows a better agreement with continuum CREaM. This is due to an “error cancel-

lation”, with CREaM compensating intrinsic limitations in the sharp-interface model with

respect to the atomistic case.

The second goal of this work is to elucidate the effect of the shape of the surface cor-

rugation and its size on the mechanism of the Cassie-Wenzel transition and on the related

free-energy barrier. Anticipating our results, the concept of transition path itself may break

down if the corrugations are sufficiently small.

The paper is organized as follows: in Sections II, III, and IV the methods employed here,

the atomistic string, the interface string, and the continuum rare events method (CREaM)

are introduced and compared. This first part contains the main methodological findings. In

Section V the atomistic and continuum results are presented and discussed, concentrating

on the physics of the Cassie-Wenzel transition. The last section summarized all conclusions.

II. MOLECULAR DYNAMICS SIMULATIONS

The mechanism of the Cassie-Wenzel transition was investigated with the string method

in collective variables applied to molecular dynamics simulations18. Molecular dynamics

simulations were performed with the LAMMPS engine19 equipped for the string calculations

with the PLUMED20 plugin as explained below. The isothermal/isobaric ensemble (NPT)

was used for all simulations by using the algorithm of Martyna et al.21,22. The standard

Lennard Jones (LJ) potential was used for the fluid-fluid interactions; fluid-solid interactions

were also of LJ type, with the attractive term that was tuned through the factor c:

ΦLJ(rij) = ε

[(
σ

rij

)12

− c
(
σ

rij

)6
]

, (1)

where rij is the distance between the atoms i and j, while ε and σ set the scales of energy

and length, respectively. In order to obtain a hydrophobic solid, we set c = 0.6, which

corresponds to a contact angle of θY ' 110◦. Periodic boundary conditions are applied in

the three directions. The lower wall featured a rectangular groove (or trench) extending

through the y direction. Two kinds of grooves were considered, the first having a width of

11σ and square aspect ratio and the second having a width of 22σ and a rectangular aspect

ratio, see Fig. 2.
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FIG. 2. Cells used in the definition of the coarse-grained density collective variable for the square

(a) and the rectangular groove (b). The axes and relevant dimensions used in the text are also

defined.

A. Coarse grained density field

The collective variable used to describe the intrusion of liquid inside of the groove was

the coarse-grained density field. This quantity was computed from the atomic positions as

the number of atoms inside the cells sketched in Fig. 2. We used a mollified version of the

characteristic function of the cells based on the Fermi functions in order to prevent impulsive

forces on atoms crossing the cell boundaries (see Sec. II B). The cells occupied the whole

y dimension of the groove thus being effectively two-dimensional: for the square groove a

total of N = 66 cells were used, while for the rectangular groove N = 120, as sketched in

Fig. 2.

The Landau free-energy of the system as a function of the realization, z, of the (vector)

collective variable θ(r) is defined as:

F (z) = −kBT lnP (z) = −kBT ln

(∫
dr m(r)

N∏
i=1

δ(θi(r)− zi)
)

, (2)

where kB is the Boltzmann constant, T is the system temperature, P (z) is the probability

to find the system at state z, and r is the 3Np dimensional vector of particles positions,

with Np the number of particles in the system. The probability P (z) is expressed in the

second equality of Eq. (2) as the integral over the 3Np-dimensional configurational space of

the probability density m(r) of the relevant ensemble (the Boltzmann factor) times Dirac

deltas centered at value zi of the N components of the collective variable. The collective

variable is assumed to depend only on the 3Np configurational degrees of freedom.
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B. Implementation of the string method

For the general derivation of the string method in collective variables we refer the reader

to the original work of Maragliano et al.18 Briefly, this method allows one to identify the

minimum free-energy path (MFEP), that is, the path of maximum likelihood. The MFEP

is the continuous curve in the space of collective variables –in this case the coarse-grained

density field– satisfying the equation

dzi(α)

dα

∣∣∣∣∣∣∣∣ N∑
j=1

Mij(z(α))
∂F (z(α))

∂zj
, (3)

where α is a parameterization of the MFEP, ‖ means “parallel to”, the indices i and j run

over the N collective variables (which in vector notation are indicated as z), F (z) is the

free-energy defined in Eq. (2), and Mij(z) is a metric matrix due to projection of the phase

space onto the collective variable space, and defined as18

Mij(z) = 〈∇rθi ·∇rθj〉z

≡
∫

d r ∇rθi ·∇rθj e−βU(r)
∏N

k=1 δ(θk(r)− zk)∫
d r e−βU(r)

∏N
k=1 δ(θk(r)− zk)

, (4)

where β−1 = kBT and U(r) is the potential energy of the system. Loosely speaking, when

the metric matrix is unitary, Eq. (3) prescribes that the MFEP joins two minima of the free-

energy landscape passing through the bottom of the valleys and the saddle point connecting

them (the transition state).

The string method is an algorithm that allows one to identify the MFEP. The string

itself is a discretization of the path connecting two metastable states, that is, two minima in

the free-energy landscape. The string is parameterized according to its relative arc-length,

α =
∫ zα
za
|dz|/

∫ zb
za
|dz|, with a and b beginning and end of the string. The discrete points

along the string are called images and are labeled with their position on the string αl, where

l is the index of the images. We use here the version of the string method by E et al.23,

which consists of three steps:

1. Calculation of the free-energy gradient and of the metric matrix, see RHS of Eq. (3),

at the current position of the images;

2. Evolution of one timestep of the images according to the (time-discretized) pseudo-

7
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dynamics

∂zi(αl, t)

∂t
= −

N∑
j=1

Mij(z(αl, t))
∂F (z(αl, t))

∂zj
; (5)

3. Parameterization of the string to enforce equal arc-length parameterization among

contiguous images.

For sufficiently large t, the algorithm guarantees that z(αl, t) converges to the MFEP of

Eq. (3).18,23

Steps 2 and 3 of the string algorithm above can be written also as18

dz(αl, t)

dt
= −M̂(z(αl, t))∇F (z(αl, t)) (1− τ (z(αl, t))⊗ τ (z(αl, t))) , (6)

where the term 1−τ (z(αl, t))⊗τ (z(αl, t)) projects out the component of−M̂(z(αl, t))∇F (z(αl, t))

along the string. his projector, indeed, implements the constraint α = const. in the dy-

namics of z(αl, t) (see Eq. 2 of Ref.23). Summarizing, the string method is a first order

dynamics with the constraint of constant value of the parameter αl following the generalized

force −M̂(z(αl, t))∇F (z(αl, t)). In other words, the string method is a constrained (local)

minimization of the system at a set of states at fixed αl in a space equipped with the metric

M̂ .

In order to compute the free-energy gradient and the metric matrix required to evolve the

string via Eq. (5) (point 1. of the algorithm) we used restrained molecular dynamics (RMD,

see Ref. 18). In practice, a restraining potential was added to the Hamiltonian of the system

in the form κ/2(θi(r) − zi)2, where θi(r) is the current value of the i-th component of the

collective variable vector and zi is its target value. For sufficiently large κ, the dynamics

driven by the restrained Hamiltonian samples the conditional ensemble at θ(r) = z, and

allows one to compute the relevant quantities at a given position of the string18.

C. Transition state ensemble

Once the string method has converged, it is possible to explore local approximations

to the isocommittor surfaces, which are the hyperplanes orthogonal (via the metric M̂)

to the string. In particular, we considered here the hyperplane intersecting the string at

the transition state; this plane bears the relevant information about the transition region,

that is, the region where the probability to fall into the products’ side is the same as in the

8



Mechanism of wetting

reactants’18. The transition ensemble is a collection of microscopic states with the constraint

that the system lies on this plane.

The transition state ensemble just discussed was computed via restrained molecular dy-

namics implementing the prescription

N∑
i,j=1

τi(αTS)Mij (z(αTS)) (zj − zj(αTS)) = 0 , (7)

where τ (αTS) is the tangent to the string at the transition state (TS). The configurations

extracted from the transition state ensemble are discussed in Sec. V.

III. THE INTERFACE STRING

Rather than describing the configuration of the system by the coarse-grained density field,

ρ(x, z), one can characterize the configuration of the liquid inside the cavity by the position,

hi, of the liquid-vapor interface. Conceptually, one can obtain the corresponding Landau

free-energy, Ω[hi], by Eq. (2) using the collective variable, h = θ(r). This strategy requires

a definition of the interface position, h, in terms of the microscopic degrees of freedom, {r},
which can be achieved via the coarse-grained density field.

In the following, however, we do not compute the Landau free-energy from the particle

simulations but, instead, we use the mean-field, sharp-interface approximation to estimate

Ω. This grand potential takes the form9

Ω = −plVl − pvVv + γlvAlv + γsvAsv + γslAsl (8)

where Vtot, Vl, and Vv denote the total volume and the volumes occupied by the liquid and

the vapor, respectively. γlv, γsl, and γsv characterize the liquid-vapor interface tension, and

the surface tension of the confining solid with the liquid and the vapor. Alv, Asl, and Asv

are the contact areas of the three coexisting phases.

Additionally, like in capillary-wave Hamiltonians or solid-on-solid models, we assume

that the interface position, z = hi(x), is a single-valued function, i.e., configurations with

overhangs and bubbles are ignored. Using a completely filled cavity as reference state,

Ω0 = −plVtot + γslly(2h+ l) with h being the height of the cavity and l its widths, we obtain

9
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for the excess grand potential ∆Ω = Ω− Ω0

∆Ω = (pl − pv)Vv + γlvAlv + (γsv − γsl)Asv (9)

∆Ω

Vtot∆pmax

= ∆p̃
Vv
Vtot
− lAlv

2Vtot cos θY
− lAsv

2Vtot
(10)

with the abbreviations ∆pmax = −2γlv cos θY /l, ∆p̃ = pl−pv
∆pmax

, and Young’s equation

γlv cos θY = γsv − γsl.
Next, we express the vapor volume, Vv, the interface area, Alv, and the solid-vapor contact

area, Asv, through the interface position, hi(x)

Vv
Vtot

=
1

lh

∫ l

0

dx hi(x) (11)

lAlv
Vtot

=
1

h

∫ l

0

dx

√
1 +

(
dhi
dx

)2

(12)

lAsv
Vtot

=
hi(0) + hi(l) + l

h
(13)

The expressions will be appropriate, if the liquid-vapor interface is above the bottom of the

cavity, i.e., h > 0. If the liquid-vapor interface touches the bottom of the cavity, however,

the liquid will be in contact with the solid, γsl, rather than two separate liquid-vapor and

vapor-solid interfaces. We account for this effect by the correction term

δΩ[hi] = (γsl − [γlv + γsv])A
bottom
sl (14)

δΩ[hi]

Vtot
=

1

lh

∫ l

0

dx g(hi(x)) (15)

with the interface potential g(hi) = −γlv(1 + cos θY )f(hi/δ). This introduces an additional

length scale, δ, which characterizes the interaction range between the liquid-vapor interface

and the bottom of the cavity. In the absence of long-range forces, this length scale is

set by the width of the liquid-vapor interface, and we use a value that is smaller than all

other length scales of our macroscopic model. In the numerical calculations we employ the

following shape of the interface potential

f(x) =

 (1− x2)
2

for 0 ≤ x ≤ 1

0 otherwise
(16)

which smoothly interpolates between 0 and 1.
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Thus, the excess grand potential is given by the following functional of the interface

position, hi(x)

∆Ω[hi]

Vtot∆pmax

= ∆p̃
1

lh

∫ l

0

dx hi(x)− 1

2h cos θY

∫ l

0

dx

√
1 +

(
dhi
dx

)2

−hi(0) + hi(l) + l

2h
+

1 + cos θY
2h cos θY

∫ l

0

dx f(hi(x)) (17)

Rescaling the spatial coordinate by the width of the cavity, x̃ = x/l, and the position of the

interface by the height of the cavity, h̃(x) = hi(x)/h, we arrive at the final expression

∆Ω[h̃]

Vtot∆pmax

= ∆p̃

∫ 1

0

dx̃ h̃(x)− 1

2 cos θY

∫ 1

0

dx̃

√√√√α2 +

(
dh̃

dx̃

)2

− h̃(0) + h̃(1) + α

2
+
α(1 + cos θY )

2 cos θY

∫ 1

0

dx̃ f(h̃(x̃)) (18)

with α = l/h, and δ is also measured in units of h.

In the numerical calculations, the function h̃(x) approximated by N values, h̃k = h̃( k
N−1

)

for k = 0, · · · , N−1. Thus, the excess grand potential becomes a function of the N rescaled

interface positions, h̃k

∆Ω({h̃k})
Vtot∆pmax

=
∆p̃

N − 1

(
h̃0

2
+

N−2∑
k=1

h̃k +
h̃N−1

2

)
− 1

2 cos θY

N−2∑
k=0

√(
α

N − 1

)2

+
(
h̃k − h̃k−1

)2

− h̃0 + h̃N−1 + α

2
+

α(1 + cos θY )

2(N − 1) cos θY

(
f(h̃0)

2
+

N−2∑
k=1

f(h̃k) +
f(h̃N−1)

2

)
(19)

Using this explicit expression, we compute the chemical potential µ̃k ≡ 1
Vtot∆pmax

∂∆Ω
∂h̃k

µ̃k =
∆p̃

N − 1
− 1

2 cos θY

 h̃k − h̃k−1√(
α

N−1

)2
+
(
h̃k − h̃k−1

)2
+

h̃k − h̃k+1√(
α

N−1

)2
+
(
h̃k − h̃k+1

)2


+

α(1 + cos θY )

2(N − 1) cos θY

df

dh̃k
for 1 ≤ k ≤ N − 2 (20)

µ̃0 =
∆p̃

2(N − 1)
− 1

2 cos θY

h̃0 − h̃1√(
α

N−1

)2
+
(
h̃0 − h̃1

)2
− 1

2
+

α(1 + cos θY )

4(N − 1) cos θY

df

dh̃0

(21)

and a similar expression holds for µ̃N−1.

We use these expressions to calculate the minimum free-energy path that is a string of

interface positions h̃ defined by the condition that the chemical potential perpendicular to
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FIG. 3. (a) Transition path computed via the interface string. (Multimedia view). (b) Rescaled

excess free-energy along the interface string for ∆p̃ = 0, α = 1, δ/h = 0.0001, θY = 110◦, and

N = 140 (in green). The profile is compared to the atomistic and CREaM results at the same

conditions. On the abscissa the parametric variable of the CREaM method Vl/Vtot is reported;

for the interface string Vl/Vtot is computed from the path in the top panel, while for the atomistic

string Vl/Vtot = (Z − Zcassie)/(Zwenzel − Zcassie), where Z is the total number of particles inside

the coarse-graining cells. The saddle point corresponds to a configuration where the liquid-vapor

interface touches the bottom of the capillary (between image 3 and 4 of the path above). (c)

Behavior of the saddle point at different δ/h.

the path vanishes. Unlike Eq. (3), we do not include the Jacobian, M , of the transformation

from the microscopic degrees of freedom, {r}, of the particle model to the collective variables,

{h̃k} because we did not explicitly specify the transformation between the microscopic and

collective variables. We note, however, that (i) the free-energy maximum of the string

without M corresponds to the saddle point of the free-energy landscape and (ii) that the

string corresponds to a continuous evolution of the liquid-vapor interface and, in particular,

mimics a locally conserved dynamics of the coarse-grained density.

IV. COMPARISON BETWEEN CREAM AND THE INTERFACE STRING

Here we discuss the relation between the wetting path identified by the continuum rare

events method (CREaM) previously introduced in Giacomello et al.9 and the interface

12
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“string”. We start by introducing the committor function and isocommittor surfaces. The

committor is the probability that a trajectory passing by a state, an atomistic or a macro-

scopic configuration, will reach next the product state, say Wenzel, rather than the reactant

state. An isocommittor surface is the (hyper)surface in the state space of constant commit-

tor function value. Thus, for example, the isocommittor 0.5 is the surface of states having

50 % of probability to reach first the products and 50 % to reach first the reactants. This

surface is, by definition, the transition state.

Consider an isocommittor surface, S which intersects the MFEP at a point z(α). Let us

denote by nα the normal to S at z(α), and by τ (zα) the tangent to the MFEP at the same

point. In Ref. 18 it is shown that:

τ (zα) ‖ M̂nα. (22)

If we compare Eq. (22) with Eq (3), we conclude that the MFEP is the path connecting

constrained minima of the free-energy on the isocommittor surfaces Sα foliating the space.

Similar to the string method, CREaM aims at identifying a wetting path. However, at

variance with the string method, in CREaM this path is not parametrized with its arc-length

but with an observable of relevance for the problem at hand. This very general framework

can be applied to different models, ranging from the micro- to the macroscale; for the

macroscopic scale, in the sharp-interface model that was originally used to describe the

Cassie-Wenzel transition, the wetting path is parametrized with the volume of liquid in the

groove, Vl. Like in the case of the string method, in CREaM the free-energy is minimized

subject to the constraint that the variable parametrizing the path is constant. In other

words, the path obtained by CREaM connects the constrained minima of the free-energy on

the constant volume surfaces SVα .

Comparing this formulation of the CREaM path with the formulation of the string path

in terms of constrained minimization of the free-energy in the isocommittor surface, we

conclude that the two paths coincide if and only if SVα ≡ Sα, at least locally to the path.

In Fig. 3b we compare the CREaM and interface string free energy profiles along the

respective paths. We remark that the profiles coincide for most of the path, departing

from each other only in a relatively small region around the transition state. This is not

surprising because, at variance with the string, CREaM does not impose the continuity of

the path. Thus, in the case of the Cassie-Wentzel transition, which takes place through
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FIG. 4. String (A) vs CREaM (B) paths. In this sketch one of the axis represents the volume

of liquid in the cavity Vl while the other represents the complementary degrees of freedom. The

dashed line in panel (A) is the hyperplane (1− τ (z(αl, t))⊗ τ (z(αl, t)))v, where v is a generic

vector. This is the plane on which M̂∇F is zero. The dashed line in panel (B), instead, represents

the hypersurface V = Vl, i.e. one of the infinite hypersurfaces on which the minimum of the free

energy is sought in the CREaM method. The string path follows the valley of the reactants and

then moves smoothly to the valley of the products. When the reactants and products valleys

become parallel, the CREaM path moves abruptly from one to the other, following the minimum

of the free-energy corresponding to a given level of progress of the reaction. This is shown on the

panel (B): the yellow line denotes the two branches of the CREaM path, and the gray double arrow

highlights its discontinuity.

a morphological transition (see Ref. 9 and Sec. V), CREaM does not map the continuous

path, along which the symmetric meniscus configuration goes into the gas-bubble-in-a-corner

one (see Fig. 4). In Fig. 3b we report also the free-energy profile obtained from atomistic

simulations. The agreement seems to be better between atomistic and CREaM results

than with interface string. The reason for this is discussed more in detail in the results

section; here we remark that this better agreement is due to “errors cancellation”, with the

underestimation of the barrier in CREaM compensating for an overestimation intrinsic to

the sharp-interface models.

Summarizing, the paths obtained from CREaM and the string method are not identical

but give the same qualitative description of the process. While the string method gives a
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detailed and continuous description of the most likely wetting path all along the process,

CREaM represents the segment around the transition state as a sharp morphological transi-

tion (Fig. 4). Indeed, CREaM and the string can be used as complementary tools. CREaM

allows to efficiently compute all the possible “reactive” channels. The string method can

then be used to further refine the CREaM paths. When the system is relatively simple, like

the case of wetting of a square groove,9 it is possible to obtain the analytical solution of the

CREaM equations. Thanks to CREaM it was possible to derive an extended version of the

Laplace equation, which relates the liquid/gas meniscus curvature to the surface tension.

This relation, that was introduced for the first time in Ref. 9, is valid along most of the

wetting path, apart in the region connecting the symmetric meniscus and gas-bubble-in-a-

corner morphologies. Finally, CREaM has a high parallel efficiency, even higher than the

string method as it does not require any exchange of data among images, and can be run

on non connected heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the “physical” results obtained via the atomistic string and

the sharp-interface calculations (string and CREaM) introduced in the previous sections.

We focus on the transition path for the Cassie-Wenzel transition and on the related free-

energy profiles. The length scales covered range from few particle diameters ∼ 11σ of the

smallest atomistic system simulated to macroscopic scales, which are described in terms of

sharp-interface models.

A. The atomistic string

a. The mechanism of the Cassie-Wenzel transition We computed the transition path of

the Cassie-Wenzel transition on two geometries, a square and a rectangular groove (Fig. 2).

A total of 32 images was used to discretize the string: the images and graphs that follow

are labeled with the image number. The pressure of the NPT simulations was chosen to be

close to the coexistence between the Cassie and the Wenzel states. The strings were initial-

ized from configurations extracted from RMD simulations with a single collective variable,

number of particles in the groove, analogous, apart for the ensemble (here NPT), to those
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FIG. 5. Metric matrix computed from Eq. (4) at image 31 (Wenzel state). The matrix elements

are normalized with the maximum value. On the x and y axes is reported the cell number. Values

lower than one are observed on the diagonal where the density is lower than the bulk liquid one

(at the wall corners, see Fig. 6).

presented and discussed in Ref. 16. We ensure that all initial images in the string have the

same symmetry, that is, all menisci lie in the same corner, the left one.

A general result of the atomistic string calculations is the form of the metric matrix along

the string. A representative one is reported in Fig. 5, showing that the most significant

elements are those on the main diagonal. This result supports the assumption of a unitary

metric matrix as is usually done in macroscopic, sharp-interface models. However, there

are other very small but non-zero elements related to the surrounding coarse-graining cells

as reflected by the multi-diagonal character of the metric matrix. These fine details could

be encompassed in macroscopic models once the metric matrix is known from atomistic

simulations. The detailed analysis of the effect of the metric matrix is deferred to a future

study.

The square groove measures around 11σ × 11σ. The thermodynamic conditions were

T = 0.8 and P = 0.001 in LJ units, where P is the global pressure observable computed

for all atoms. Around 30 steps of evolution of the string (for each of which the mean forces

were computed via RMD simulations, see Sec. II B) were required to ensure convergence.

In Fig. 6a we show the transition path for the square groove, i.e., the sequence of average

density fields forming the string at convergence. The meniscus is initially flat close to the
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FIG. 6. MFEP computed with the atomistic string method for grooves having square (a) and

rectangular aspect ratios (b). The actual width of the rectangular groove is double the square one.

Blue identifies high density, close to the liquid bulk one, while red low density (vapor). The image

number is indicated in the corresponding density field. (Multimedia view).

Cassie state. As the transition proceeds, the meniscus descends into the groove with constant

curvature (images 7-21) until close to the bottom a liquid finger is formed on the right side

of the groove (images 22-24). Eventually the liquid wets one corner of the groove forming

a circular bubble that gradually shrinks (images 25-29) until it is completely absorbed and

the Wenzel state is reached (images 30-32).

The initial and final parts of the path (the initial pinning, the symmetric meniscus, and

the final bubble in the corner) are in fair agreement with previous restrained molecular

dynamics simulations16 and the macroscopic CREaM results9 (see Fig. 1). However, close

to the transition state the liquid-vapor interface forms a finger thus departing from the

constant curvature menisci prescribed by CREaM. This discrepancy is explained by the

interface string path which, close to the transition state, exhibits a point of the meniscus

with high curvature (similar to the atomistic finger) that eventually touches the bottom wall

creating a small and a large bubble (see Fig. 3a). The fine details of the process, however, are

not easy to compare, because the diffuse nature of the atomistic interface tends to smear out

sharp points and small vapor domains; to this must be added that computational constraints

limit the number of images and coarse-graining cells in the atomistic string.

The rectangular groove measures around 22σ× 11σ and is therefore twice as wide as the

square one. The thermodynamic conditions of the NPT simulations were T = 0.8 and P = 0

for this case. More than 30 steps of string evolution were required for convergence.

The MFEP for the rectangular groove is shown in Fig. 6b. It is seen that before the

Cassie minimum the meniscus curvature is allowed to vary while the triple line is pinned

at the top corners of the groove (images 1-5), as is expected from the macroscopic Gibbs’
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criterion24. This is an evidence that pinning happens also at the nanoscale, even though

in a particle description of the system the continuum concept of “geometrical singularity”

(corners at the top of the groove, in the present case) has no meaning. However, the string

resolution (number of images) does not allow us to quantify the range of contact angles

for which pinning occurs. The intrusion into the groove happens when a sufficiently large

meniscus curvature is reached, around image 5. The meniscus bends towards one corner at

images 14-17, earlier in the progress of the transition than in the case of the square groove.

This observation can be made more quantitative by considering the length of the string up

to the transition state and normalizing it with the total length of the string concerned with

the activated event, that is, αTS = (iTS− icassie−1)/(iwenzel− icassie−1), where i is the image

number; for the rectangular groove αTS = 14/26, while for the square one αTS = 19/26.

The contact line touches the bottom wall (on the right hand side) and recedes “rapidly”

towards the opposite corner while the contact line at the vertical wall on the left does not

move. As a consequence, during the shrinking process the bubble at the corner starts with

a slightly flattened shape and then tends to a circular one. This mechanism seems a generic

one for the contact with the wall, since the interface string path for the square groove also

shows that the left contact line behaves as if it were “pinned” at the vertical wall – although

there is no defect – while the right contact line slides on the bottom wall (see Fig. 3a).

The free-energy profiles related to the MFEPs just presented are shown in Fig. 7. We

remind that the profiles are at slightly different pressures. In both cases, the free-energy

barriers connected to the Cassie-Wenzel transition are large as compared to the thermal

energy kBT , a fact that corroborates the presence of strong metastabilities on nano-rough

hydrophobic surfaces. The free-energy barrier for the square groove is 34.3 kBT , while for

the rectangular one is 44.3 kBT , around 30% larger, suggesting that both the size and the

aspect ratio of the groove have an effect on the kinetics of the Cassie-Wenzel transition.

b. Validity of the concept of transition path In Fig. 8 we show atomistic configurations

extracted from the transition state ensemble of the square groove; these microstates were

computed via RMD as detailed in Sec. II C. It is apparent that the microscopic configurations

correspond to several macroscopic states: bubble on the right corner, on the left one, and

in the center. For the larger rectangular groove, instead, the transition state ensemble is

connected with a well defined configuration featuring a bubble in the left corner, similar to

that shown in Fig. 6b (see also the related movie25).
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FIG. 7. Free-energy profiles related to the MFEPs shown in Fig. 6 in kBT units. The square

groove is at P = 0.001 and the rectangular groove at P = 0. The image count for the rectangular

groove is shifted by +2 in order to make the two Wenzel states coincide. The reference free-energy

is taken to be that relative to the Wenzel state, ΩW ≡ 0.

We ascribe this behavior to the flat free-energy landscape along the hyperplane orthog-

onal to the transition state. When the barrier separating the symmetry-related wetting

paths (bubble-on-the-left and bubble-on-the-right corners) is ≤ kBT the system can easily

jump from one to the other. In this case, the wetting path identified by the string (and

CREaM) method has little statistical significance. In other words, the transition tubes18,26

around the two specular paths, i.e., the region of state space in which most of the transi-

tion trajectories pass through, overlap. Thus, we cannot describe the wetting trajectories

as “fluctuations” around the MFEP. In these conditions, other methods, such as the finite

temperature string27, would be needed to capture information about the transition.

These results suggest that the macroscopic models of capillary systems have a lower

length scale below which they break down: the free-energy landscape becomes too flat to

identify a single macroscopic state. In the language of transition path theory, for sufficiently

small grooves the transition tube becomes large and the single transition path found in the

zero temperature limit has no statistical significance.

19



Mechanism of wetting

FIG. 8. Atomistic configurations extracted from the transition state ensemble for the square nano-

groove. (Multimedia view).
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FIG. 9. Contributions to the excess free-energy ∆Ω rescaled by Vtot∆pmax. The energetic costs

of forming liquid-vapor or solid-vapor interfaces and of wetting the bottom wall are defined in

Eqs. (9) and (14), respectively. The results are computed via the interface string with ∆p̃ = 0,

α = 1, δ/h = 0.0001, θY = 110◦, and N = 140.

B. The transition state

The interface string calculations were performed for the square groove in the region of

the transition state (the maximum of the profile), which is critical both for evaluating the

free-energy barriers and for testing the CREaM results. As shown by the free-energy profiles

in Fig. 3b at low filling levels (Vl/Vtot < 0.75) and high ones (Vl/Vtot > 0.9) the interface

string coincides with CREaM. Around the transition state, instead, the interface string

significantly departs from CREaM. The transition state itself coincides with a cusp in the

free-energy profile, while in CREaM it is a non-differentiable point (see Fig. 1). Ironically,

the jump discontinuity in the derivative at the transition state found with CREaM induced
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us to further investigate the phenomenon, which is actually more severe in the full-fledged

string which shows an infinite discontinuity of the derivative (in the sharp-interface limit

δ → 0). The interface string however guarantees the continuity of the transition path, which

is consistent with a continuous dynamics. The cusp arises because in touching the bottom

wall the radius of curvature of the meniscus has to change sign from positive (symmetric

meniscus) to negative (asymmetric bubble). This is realized with a single point of zero

radius of curvature (and infinite curvature) developing on a side of the liquid-vapor interface

just before the contact with the bottom wall (see Fig. 3a). A different point of view is

that the area of the liquid-vapor interface significantly increases during the formation of the

liquid “finger” while Vl remains almost constant, thus giving rise to the sharp increase of

the free-energy at the transition state as clearly shown by the energy balance in Fig. 9. The

thermodynamic force µ corresponding to the finger becomes infinite at the transition state.

This divergence of µ is integrable, thus giving rise to the cusp in the free-energy profile of

Fig. 3b.

In all cases analyzed – atomistic, interface string, and CREaM – the transition state is

connected with the contact of the liquid domain with the bottom wall of the groove (com-

pare the paths in Figs. 6, 3a, and 1 with the free free-energy profiles in Figs. 3b): while the

meniscus descends symmetrically in the groove, the free-energy grows steadily because of the

substitution of vapor-solid interface with liquid-solid one which is unfavorable for hydropho-

bic materials (see Fig. 9); when contact of the meniscus with the bottom wall eventually

occurs, new liquid-solid interface replaces the liquid-vapor and solid-vapor interfaces at the

bottom, resulting in an overall reduction of the free-energy (the negative term δΩ in Fig. 9).

In the atomistic string, the transition state is found around one-half of the string for the

rectangular groove while it is towards the end of it for the square one (see Fig. 7). The

location of the transition thus depends on the aspect ratio of the groove; this fact is easily

explained by the balance of the energy contributions above: for a taller groove the (growing)

branch of the free-energy connected with the meniscus sliding on the vertical walls of the

groove is longer, while the descending branch due to the shrinking bubble is steeper.

The atomistic free-energy profiles reported in Fig. 7 are smooth at the transition state,

differently from those obtained via the interface string and via CREaM (see Fig. 3b). In

the atomistic case, indeed, thermal fluctuations tend to smear out the extreme events seen

in the sharp-interface models. In particular, the formation of a point in the meniscus with
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very high curvature is impossible in an atomistic picture. In order to account for this effect,

we repeat the interface string calculations at increasing values of δ, which correspond to

wider liquid-vapor interfaces, see Fig. 3c. The case δ/h = 0.1 roughly corresponds to the

atomistic one, where the ratio of the interface thickness and the groove width is also ∼ 0.1.

Figure 3c demonstrates that in the case of diffuse interfaces the transition state is smooth

and the height of the free-energy barrier tends to decrease.

VI. CONCLUSIONS

The atomistic string method in the density field collective variable was applied for the first

time to the Cassie-Wenzel transition to determine rigorously the mechanism of the transition.

The results of this work are both methodological and physical. From the methodological

point of view, we demonstrated the relationship between approximate macroscopic methods9

and the full-fledged interface string. The former methods are algorithmically simple and

computationally convenient but fail where more parallel valleys are present in the free-energy

landscape.

The string simulations also offered physical insight into the mechanism of the Cassie-

Wenzel transition from the nanoscale to the macroscale. A morphological transition was

observed during the rare event with the meniscus changing from a symmetric to an asym-

metric configuration. The contact of the meniscus with the bottom wall determines the

position and shape of the transition state; at the nanoscale the transition state is smooth,

while in macroscopic models it shows a cusp-like behavior. The free-energy barriers are large

compared to kBT even in nanoscale grooves; the depth of the groove and its aspect ratio

are the critical parameters to determine the kinetics of the Cassie-Wenzel transition. It was

also shown that for very small grooves (width ∼ 11σ) the concept of transition path breaks

down and it is not possible to identify a unique sequence of macroscopic configurations that

describe the Cassie-Wenzel transition.
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