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We investigate the phenomenon of resonant radiation
emitted by Peregrine solitons. We show that, unlike
bright or dark solitons of the nonlinear Schrödinger
equation, the radiation process is affected by the intrin-
sic local longitudinal variation of the soliton wavenum-
ber. We give a phase-matching condition that allows to
predict the multiple spectral peaks of the resonant radi-
ation. © 2019 Optical Society of America

http://dx.doi.org/10.1364/XX.XX.XXXXXX

It is well known that fiber solitons supported by the interplay
between anomalous group-velocity dispersion and Kerr focus-
ing nonlinearity emit resonant radiation (RR) [1, 2], sometimes
termed as Cherenkov radiation [3]. Such RR is constituted by a
linear dispersive wave spontaneously growing at a frequency
detuning from soliton peak frequency such that phase-matching
is achieved owing to the presence of higher-order dispersion.
Such radiation plays a key role in supercontinuum generation
occurring in gas-filled photonic crystal fibers, being the mecha-
nism that allows for broadening towards the blue-shifted side of
the spectrum [4], whereas in other structures such as semicon-
ductor line defect waveguides the RR appears to be red-shifted
[5, 6]. The recently renewed interest in such phenomenon has
allowed to assess the role of RR in four-wave mixing phenom-
ena [7–9], and, more importantly, the role of wave-breaking and
subsequent dispersive shock wave formation as a source of RR
when pumping in the normal dispersion regime [10–12], where
RR can otherwise be generated by dark solitons (see [13] and
references therein). Further investigations have also shown that
RR can be enhanced either in microresonator passive cavities by
affecting the spectral shape of soliton frequency combs [14–18],
or in system exhibiting periodicity [16, 19, 20], which allows for
multiple peaks of the emitted RR.

In this letter, we further extend the study of this phenomenon
by addressing the radiation emitted by solitons on finite back-
ground described by the rational solutions of the focusing non-
linear Schrödinger equation (NLSE). In particular, we focus our
attention on the most basic and important of such solutions,
namely the fundamental Peregrine soliton (PS) [21], which has
been first observed in nonlinear optics [22], although its interest
spreads from plasma physics [23] to water waves [24]. Indeed
in optics PSs play a key role in phenomena ranging from mod-
ulational instability (MI) in fibers [22] to interaction of random

waves in integrable turbulence [25] and propagation in quadratic
media [26, 27]. The universal nature of PSs stands on the fact
that they appear as the local waveshape in the vicinity of the
focusing catastrophe point (i.e. wave-breaking occurring in the
anomalous dispersion regime for overwhelming nonlinearities),
regardless of the shape of the input [28].

Concerning MI, RR was shown to have impact on the spec-
tral shape of spatially recurrent, so-called Fermi-Pasta-Ulam-
Tsingou, evolutions [8]. The link of PS to such evolutions arises
from the fact that PS is the limit of vanishing modulation fre-
quency of so-called Akhmediev breathers, which separate quali-
tative different types of recursive behaviors [29]. Nevertheless,
the specific mechanism of radiation was not investigated for PS.
Here, we show that the emission of radiation from PS can be
a highly dynamical process, where, at variance with RR from
solitons, the local contribution to the wavenumber arising from
the nontrivial phase evolution can bring about new resonance
phenomena. Furthermore, our phase-matching argument allows
to predict the frequency detuning of the emitted RR accurately,
as confirmed by numerical simulations.

We start from the following normalized NLSE, written in the
usual notation valid for fiber optics

iψz −
β2
2

ψtt − i
β3
6

ψttt + |ψ|2ψ = 0, (1)

where t = (T − Z/Vg)/T0, z = Z/Znl = ZγP, T and Z be-
ing physical time and distance in lab frame, T0 = (|k′′|Znl)

1/2

and Znl = (γP)−1 (nonlinear length) are scales associated with
power P of the background. Here Vg is the group velocity at
carrier frequency ω0 of the electric field E(T, Z) =

√
Pψ(t, z),

while β2 = k′′/|k′′| = −1 and β3 = k′′′/|k′′|T0 accounts for
second- and third-order dispersion (TOD), respectively. Equa-
tion (1) admits, in the limit β3 = 0, the rational PS solution over
unit background in the form

ψ(z, t) =
[

1− 4(1 + 2iz)
1 + 4z2 + 4t2

]
exp(ikbz) (2)

where the exponential term represents the nonlinear Kerr shift
of the background. While, due to the adopted normalization, the
background nonlinear wavenumber is kb = 1, (corresponding
to kbZ−1

nl = γP in real-world units), in the following we stick to
the notation kb to trace its contribution.

As shown in Fig. 1(a) the PS solution (2) represents an ini-
tially weak pulse over a finite background which undergoes a
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Fig. 1. Unperturbed PS: (a) False color plot of spatio-temporal
evolution; (b) Evolution of the Fourier spectrum; (c) ampli-
tude |ψ(t, z = 0)| (solid blue) and phase φ(t, z = 0)/π (solid
black) profile at the point of maximum compression (z = 0);
(d) Longitudinal profiles of amplitude |ψ(0, z)| (solid blue),
phase φ(0, z)/π (solid black), and wavenumber kPS from Eq.
(4) (solid red), all evaluated at t = 0.

single cycle of compression and growth followed by broadening
and decay. The compression in time domain is accompanied by
a strong spectral broadening of the PS, as displayed in Fig. 1(b).
Such broadening works as an efficient mechanism of seeding the
RR at frequencies that are naturally phase-matched through the
contribution of higher-order dispersion. It is well appreciated
that, at the maximum compression point z = 0, the temporal
power profile exhibits a peak three times as high as the back-
ground and a pair of zeros across which the phase undergoes a
jump of π [see Fig. 1(c)], while is less often recognized that the
PS exhibits a local (in z) nonlinear deviation of the longitudinal
phase, say φloc(t, z), from the background phase shift kbz [24].
Such deviation, which can be regarded as a phase anomaly of non-
linear origin (comparing with a continuous wave in the same
medium), is intrinsically associated with the localized pulse
which lives on top of the background. The overall phase of the
PS turns out to be the sum of the background contribution and
such local contribution, and reads explicitly as follows

φPS(t, z) = kbz + φloc(t, z) = kbz− tan−1
(

8z
4z2 + 4t2 − 3

)
.

(3)
The maximum phase anomaly is obtained at the pulse temporal
peak t = 0, and exhibits the longitudinal profile shown in Fig.
1(d). Clearly the z-derivative of such peak phase in Eq. (3)
represents the peak nonlinear wavenumber of the PS, which
reads

kPS(z) = kb + kloc(z) = kb +
4(8z2 + 6)

(4z2 + 1)(4z2 + 9)
, (4)

which is made by the constant term kb of the background, suit-
ably modified by a local contribution (the second term on the
RHS). As shown in Fig. 1(d), the wavenumber kPS asymptot-
ically tends to kb at z = ±∞, whereas the local contribution
becomes strong around z = 0. In particular, as shown in Fig.
1(d), the longitudinal variation of kPS follows that of the peak
intensity, presenting a peak at z = 0. We anticipate that such

local variation can play a relevant role for understanding the
features of the RR which are unique to the PSs.

A simple, yet sufficiently accurate, estimate of the radiated
frequencies can be obtained by imposing the phase matching
condition kRR(ω) = kPS, where kRR is the wavenumber of the
linear dispersive waves which constitute the RR at frequency
detuning ω from the soliton frequency. Importantly, kRR must
be evaluated in the frame where the PS is stationary, that is,
in the frame moving with the velocity v = dt/dz of the PS
which is induced by the effect of TOD (the unperturbed PS in
Eq. (2) has obviously v = 0). Looking for linear waves in the
form exp(ikRRz− iωτ), where τ = t− vz is a retarded time, we
find from Eq. (1) that the linear part of the wavenumber kRR

obeys the dispersion relationship kRR(ω) =
β3
6 ω3 +

β2
2 ω2 −

vω. However, one needs to add to this linear expression the
nonlinear correction kNL

RR = 2kb (equivalent to 2kbZ−1
nl = 2γP in

real-world unit) arising from cross-phase modulation induced
by the intense background, on which the linear waves are first
generated and then freely propagate [9]. By equating the full
(linear and nonlinear) expression kRR to kPS in Eq. (4), we obtain
the phase-matching equation

β3
6

ω3 +
β2
2

ω2 − vω = ∆knl (5)

whose roots ω = ωRR yield the RR frequency, corresponding
in real-world units to ΩRR = ωRR/T0 = ωRR(|k′′|Znl)

−1/2. In
Eq. (5) the term ∆knl = kPS(z) − 2kb = kloc(z) − kb groups
all the effective nonlinear contributions. Note that, only in the
limit where v and ∆knl become indeed negligible, one obtains
the first-order approximation ωRR ' ω̃RR = −3β2/β3, or the
corresponding physical frequency ΩRR = 3|k′′|/k′′′, which has
been employed as a rough estimate of the radiation frequency
emitted from either solitons or wave-breaking [1, 10, 11]. Except
for this limit, Eq. (5) entails that, in general, the phase-matched
RR from PSs is affected by the local wavenumber kloc(z), at
variance with RR from both bright and dark solitons. Moreover,
notice that the nonlinear contribution kb appears in Eq. (5) with
opposite sign compared with bright solitons [3], due to the fact
that the RR is emitted over the strong background, similarly to
the case of RR from shock waves [9].

The typical phenomenon of RR from a PS in the presence of
non-vanishing β3 is illustrated in Fig. 2, where we report the
result of the numerical integration of Eq. (1), with β3 = −0.2,
β2 = −1. We launch the exact solution (2) taken at z = −2 and
clearly observe the radiation from the PS in the spatio-temporal
evolution shown in Fig. 2(a). One can also notice that TOD
induces the radiating PS to drift at a nearly constant velocity
v 6= 0, contrary to the unperturbed case where v = 0. A good
estimate for such velocity is v = β3 A2/6 where A is the peak
amplitude reached by the PS (A ∼ 3 for a unit background).
However, in order to predict more accurately the RR frequency,
we estimate the velocity v numerically by a linear fit of the tra-
jectory of the PS peak in the (t, z) plane, around the maximum
compression point. The result is shown by the dashed white line
in Fig. 2(a) (v = −0.25). The radiated linear wave can be clearly
seen to depart from the PS, traveling at its own natural velocity
vRR = dkRR/dω|ωRR = β3ω2

RR/2 + β2ωRR − v. The evolution
of the spectrum shown in Fig. 2(b) clearly shows that the RR lies
in the normal dispersion regime and starts to be emitted when
the spectrum of the PS is broad enough to efficiently seed the
phase-matched frequency ωRR. Such frequency can be estimated
as the only real root of the cubic phase-matching Eq. (5). Since its
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Fig. 2. Propagation of a perturbed radiating PS with β3 =
−0.2: (a) False color plot of spatio-temporal evolution; dashed
white line refers to PS velocity, dashed black line to RR veloc-
ity. (b) Corresponding evolution of the Fourier spectrum (log
scale); (c) Graphical solution of Eq. (5): ωRR is given by the
cross of the blue horizontal line standing for ∆kNL evaluated
locally at z = 0, with the black solid curve signifying the cubic
dispersion relation; Inset: PS peak wavenumber kPS evaluated
numerically (solid red; blue star is the value at z = 0 used
to compute ∆kNL) and background contribution kb (dashed
red). Dashed vertical orange line refers to zero GVD condition,
delimiting the anomalous (A) and normal (N) dispersion re-
gions. (d) Output spectrum in log scale (solid blue) at z = 2
compared with input spectrum (dashed blue). Dashed vertical
black lines in (b,d) stands for ωRR calculated from (c) at z = 0.

closed form expression is cumbersome (root of a cubic polyno-
mial), we resort here to graphically evaluate ωRR, as illustrated
in Fig. 2(c), by determining the intersection between the linear
dispersive part represented by a cubic polynomial [LHS in Eq.
(5)] and the nonlinear contribution [RHS in Eq. (5)] evaluated
locally at the onset of the RR (z = 0), which corresponds to the
horizontal line in Fig. 2(c). The value ωRR = −15.8 determined
in this way turns out to be in very good agreement with the
RR frequency observed in the numerics, as shown both in Fig.
2(b) and the output spectrum at z = 2 reported in Fig. 2(d).
Such spectra also clearly show that, once the phase-matched fre-
quency ωRR is sufficiently amplified, also the image frequency
ω0 −ΩRR is spontaneously generated via the four-photon mix-
ing process ω0−ΩRR = 2ω0− (ω0 +ΩRR) [30]. Note, however,
that such additional frequency remains much weaker (nearly -50
dB) than the phase-matched peak.

For the case shown in Fig. 2, the radiated frequency is well
approximated by the first-order expression ω̃RR, the relative
error being only |ωRR − ω̃RR|/ωRR ' 5%. Indeed, in this case,
the determination of ωRR turns out to be weakly affected by
the value of velocity v as well as by the nonlinear contribution
∆kNL (baseline in Fig. 2(c)), due to the locally large slope of
the dispersion curve. An important consequence of this is that
one has a single real root of Eq. (5), and hence a single radiated
frequency, even if one evaluates ∆kNL at any different distance
z. In other words the baseline ∆kNL in Fig. 2(c) crosses the
dispersion curve only once, regardless of the z at which kNL is
calculated.

When the absolute TOD increases, however, the scenario
changes, as illustrated in the example reported in Fig. 3 for
β3 = −0.4. The spatio-temporal evolution in Fig. 3(a) clearly
shows that the RR becomes much stronger, and its emission
induces a strong break-up of the PS. In this case the perturbed
PS acquires a larger velocity v (v = −0.7), which in turn does
affect the dispersion curve and hence the value of ωRR. The spec-
trum in Fig. 3(b) shows a primary RR at lower (compared with
previous case) frequency ωRR1, which is emitted again around
the maximum compression point z ∼ 0. Besides the primary
peak, one notices in the evolving spectrum the harmonic 2ωRR1
of the primary peak as well as the image frequency −ωRR1. The
primary frequency ωRR1 observed in the simulation is in very
good agreement with the graphic solution of Eq. (5) displayed
in Fig. 3(c), i.e. the intersection between the dispersion curve
and the horizontal blue line corresponding to ∆kNL evaluated at
z = 0.

Fig. 3. As in Fig. 2 for β3 = −0.4. In (c) the horizontal lines
delimiting the pale-blue region, stand for the extremes of
∆kNL(z): maximum value ∆kNL(z = 0) (blue line), minimum
∆kNL(z = 1.2) (cyan line). In the inset the blue and cyan stars
on the red solid curve indicate the values of kPS used to com-
pute the blue and cyan horizontal lines, respectively. In (b) the
black dashed curves stand for the evolution of ωRR1, ωRR2 and
ωRR3 with z. In (c), (d) the green dashed vertical line stands
for the approximation ω̃RR to ωRR1. In (d) the black dashed
vertical lines stand for ωRR1, ωRR2, ωRR3 evaluated at z = 1.2.

However, in this case, as the propagation proceeds, the local
contribution kloc(z) decreases (see inset in Fig. 3(c)), until the
relative ∆kNL = kloc(z)− kb is low enough that three real roots
appear, corresponding to three different phase-matched frequen-
cies. The latter situation is exemplified by the cyan horizontal
line which corresponds to the minimum value ∆kNL ' −kb, ob-
tained at z = 1.2. Here, indeed kloc tends to vanish and kPS → kb
as shown in the inset in Fig. 3(c). The relative horizontal line
intersects the dispersion curve in Fig. 3(c) in three points, deter-
mining a slight shift of the leftmost intersection corresponding
to the primary frequency ωRR1, and, more importantly, two new
roots of opposite sign. These correspond to new RR frequen-
cies ωRR2 (positive) and ωRR3 (negative), which lie close to the
pump or PS central frequency (ω = 0), thereby remaining con-
fined in the spectral region of anomalous dispersion, contrary
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to ωRR1. At the onset, these two new frequencies are expected
to be degenerate (ωRR2 = ωRR3) arising from a doubly degen-
erate root obtained around z ' 0.4, where the horizontal line
that represents ∆kNL(z) becomes tangent to the maximum of
the cubic dispersion curve in Fig. 3(c). Beyond such distance
the two frequencies tend to separate as indicated by the dashed
parabolic-like curve reported in the spectral evolution of Fig.
3(b) for z > 0.4, which stand for the evolution of ωRR2, ωRR3
with z, obtained from the graphical solution with a variable
∆kNL(z). Clearly, in Fig. 3(b), the large spectral content of the PS
around ω = 0 hides such frequencies at their onset. However,
they start to become visible at larger propagation distances as
they becomes sufficiently separated. They are finally clearly visi-
ble in the output spectrum at z = 1.2 in Fig. 3(d). This spectrum
also shows that the primary frequency ωRR1 cannot be approxi-
mated by ω̃RR in this regime of relatively high TOD. The case
illustrated in Fig. 3 represents, to the best of our knowledge, the
first example of RR with dynamic onset ruled by a local contri-
bution to the wavenumber that in turn reflects the existence of
an intrinsic phase anomaly of nonlinear origin.

In order to show how the properties of the RR depend on
the effective value β3 of TOD, we have summarized in Fig. 4
the frequencies of the resonance peaks, namely ωRR1, ωRR2 and
ωRR3, extracted from numerical simulations corresponding to
different values of β3. As shown the primary branch ωRR1 exists
for any value of β3. As the third-order dispersion grows larger,
the absolute frequency decreases, or in other words, the radiated
peak in the spectrum moves closer to the pump frequency. At the
same time the discrepancy with the first-order approximation
ω̃RR becomes more and more pronounced, thus requiring to
evaluate the radiated frequency from the full phase-matching
relation in Eq. (5). Conversely, the low frequency components
ωRR2 and ωRR3 start to appear only above a critical absolute
value of dispersion |β3c| ' 0.25. Beyond such value, i.e. for
|β3| > |β3c|, the radiated frequency remains nearly unaffected
by the value of dispersion. Finally notice that, while we have
considered β3 < 0, RR emerges also for β3 > 0. In this case,
the scenarios are identical except for a change of sign of the RR
frequencies, which implies that the main peak ωRR1 remains
located in the normal dispersion region.

Fig. 4. Global impact of third-order dispersion: frequency
ωRR1, ωRR2 and ωRR3 vs. normalized coefficient β3. Blue dots:
data from numerical simulations; Dashed black curves: the-
oretical approximation obtained from Eq. (5) with the con-
struction of Fig. 3(c). Green dashed curve: approximation
ω̃RR = −3β2/β3 to ωRR1.

In summary, we have shown that PSs, like bright or dark soli-
tons, or shock waves produced by wave-breaking, radiate linear

waves at resonant frequencies in the presence of TOD. How-
ever, at variance with the other cases, the radiated frequency
can be practically affected, for sufficiently strong TOD, by the
local contribution to the wavenumber, which is intrinsic to PS.
It is important to emphasize that such local contribution is not
unique to the PS, since it is common also to other important
solutions, namely Akhmediev and Kuznetsov-Ma breathers, of
which PS constitutes a proper limit. We envisage that modifica-
tions of the resonant spectra due to the local contribution to the
wavenumber could occur as well for those type of breathers, or
more generally for recurrent nonlinear evolutions of MI that are
sufficiently close to the Akhmediev breather [8, 29].
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