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Abstract 

 
We report an example of a research approach aimed at gathering quantitative pieces of evidence of solid findings in 

mathematics education.  The main goal of this project is to provide an additional perspective on solid findings in 

education, to be used by teachers and by researchers in their work. As a case study, we present a situation of “loss of 

meaning” in algebra, exploring it with data coming from a large-scale assessment interpreted by means of theoretical 

lenses. We are able to give information about the extent of the phenomenon and to highlight how the phenomenon is 

relevant also for high-level students. This approach can provide a link between large-scale assessment results, 

educational research, and teachers’ practices, and suggests further research issues. 
 

Introduction and Overview 

 
Overview of the problem 

Mathematics education has its solid findings. As defined by European Mathematical Society 

(EMS, 2011), solid findings are findings that: 

• result from trustworthy, disciplined inquiry, thus being sound and convincing in 

shedding light on the question(s) they set out to answer. 

• are generally recognised as important contributions that have significantly influenced 

and/or may significantly influence the research field. 

• can be applied to circumstances and/or domains beyond those involved in this particular 

research. 

• can be summarised in a brief and comprehensible way to an interested but critical 

audience of non-specialists (especially mathematicians and mathematics teachers). 

 

A first list of proposed “solid findings” was presented in a series of issues of the European 

Mathematical Society Newsletter: included, among others, Didactic Contract (EMS, 2012), 

Sociomathematical Norms (EMS, 2013), Linearity (EMS, 2015) and, on a topic which has 

intersections with our case study, Models and Modelling (Niss, 2012). An updating of the 

discussion on what should be considered a “solid finding” in mathematics education research is 

contained in Bosch, Dreyfus, Primi, and Shiel (2017) and Dreyfus (2019). Different perspectives 

are possible. Looking to quantitative data, a psychometric point of view on the “robustness” of a 

finding is proposed in a particular case by Primi (2017).  
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Results in mathematics education are obtained and validated through shared research paradigms 

and methodologies, with a prevalence of a qualitative approach (Hart, Smith, Swartz, and Smith, 

2009). For many didactic phenomena, there are detailed descriptions and general theoretical 

frameworks, and these descriptions and frameworks are also useful tools for the teachers when 

they face what happens in a classroom and when they try to interpret their students’ behaviour. 

What is sometimes missing is a quantification of the magnitude of the phenomenon, which might 

help both teachers in understanding their specific teaching-learning situations and researchers in 

highlighting the articulation and the extension of the phenomenon. Having results related to the 

magnitude and the spread of a phenomenon in a specific systemic context might be a tool for 

linking the findings of the research to the on-the-field practice of teachers.  

 

This paper is the first step of a general research project, aimed at collecting robust quantitative 

pieces of evidence about didactic phenomena about which there are solid findings. Our sources 

of data are the results obtained from large-scale assessments. The debate on how a psychometric 

approach may help in defining the robustness of a solid finding in mathematics education is open 

and lively (Primi, 2017; for general discussions on the use of large-scale assessment data in 

research in mathematics education see Meinck, Neuschmidt & Taneva, 2017 and De Lange, 

2007). Our approach is different from the ones outlined there and it works as follows: we start 

with a topic on which there are acknowledged solid findings, and we examine released items and 

results from large-scale libraries and datasets, searching for situations where there are pieces of 

evidence of these findings. Of course, the quantifications that we find are strictly dependent on 

the specific context where the data come from (as for every research result). Nevertheless, such 

collections of data in their whole, when interpreted with suitable theoretical lenses and integrated 

with information on the context, may give an articulated representation of the magnitude of the 

phenomenon observed, and possibly of local and related-to-context diversifications of it. 

Moreover, they can be used in mixed-method researches intended to deepen the understanding of 

the phenomena.  

 

It must be underlined that having information on the extent of a problem is neither an 

explanation of the origin of the problem nor a solution to it. Nevertheless, we think that this kind 

of results may be useful both for teachers and for researchers. With a maybe naïf analogy, we 

might say that having epidemiological information on the diffusion of a disease is not directly 

related to the diagnosis or the treatment. Nevertheless, they are fundamental for driving the 

action of on-the-field physicians and for suggesting issues to medical researchers. In the same 

way, this kind of data may increase the awareness of teachers and help them in using the results 

of theoretical and empirical research in mathematics education. As it has been pointed out by 

Baccaglini-Frank and Di Martino (2017), a critical approach to large-scale assessment results 

may have a deep impact on teachers’ practices and their professional development. “Critical” 

means also, in our view, “theoretically-driven”. Moreover, we will show how new research 

issues may arise from them. 

 

The case  

The case that we present in this paper as the first example of this project is related to the loss of 

meaning in the use of algebraic symbols. The construction of algebraic language, and its 

relationship with the achievement of symbolic and formal thinking, is one of the fundamental 

shared keystones of mathematics curricula in all education systems worldwide- this has been 
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called the dominance of the curriculum by algebra (Greer, 2008).  In Italy (the context of our 

case), in particular, this takes up much of the teaching time for mathematics teachers in Grade 9 

and 10. The various steps towards mastering this construction, and the relative difficulties 

encountered, constitute a classic topic in mathematics education research and have been studied 

with the use of different theoretical and methodological lenses, mainly in qualitative terms, 

getting to a shared point which may be considered a solid finding: the use of symbols in algebra 

risks to become a manipulative activity on signs (letters and operational symbols), with no regard 

to what the letter and the symbols may stand for. The load of symbols is increasing along with 

the maths curriculum with heavy consequences (Bardini & Pierce, 2015), with deep 

discontinuities between school segments- typically, between primary and secondary schools, and 

between secondary and tertiary. In our context, this discontinuity happens mainly between Grade 

8 and 9. This topic may also be considered a classical research topic in relationship with 

teachers’ Mathematical Content Knowledge (Begle, 1972; Eisenberg, 1977; Strand & Mills, 

2014).  

 

Hence, this loss of meaning of the symbols used in algebra is a good situation for presenting the 

first example of our approach.  

 

Framework and design of the study 
 

A solid finding in mathematics education: loss of meaning in the use of algebraic symbols 

As in many other countries worldwide, the first two years of second level-secondary schools in 

Italy (Grade 9 and Grade10) in all existing curricula include an incontestable key topic: algebra. 

The practice of algebra is one of the areas that demand the most time and attention of both 

teachers and students. 

 

From a mathematical point of view, this topic poses many problems. The mathematical “objects” 

which are included, such as “literal expressions”, “monomials” and “polynomials” (whatever the 

umbrella term “mathematical object” may include) are difficult, if not impossible, to define in a 

mathematical “rigorous” way at this scholastic level – for a more detailed analysis of this 

problem see Bolondi, Ferretti, and Maffia (2020). Pupils’ learning, and above all their 

understanding of the meaning, refers to classroom practices regarding these objects, rather than 

to theoretical “definitions”. Letters are used as symbols, and letters are designed as 

“indeterminate”, “unknowns”, parameters”, “variables”, and this refers to practices and contexts 

of use but the overall activity of students is the manipulation of symbols (see f.i. for researches 

focused on the context of this study Arzarello, Bazzini, & Chiappini, 1995; Chiarugi et al., 1995, 

or Bolondi et al., 2020 for a presentation of Italian textbooks approach to literal calculation). It 

must also be considered that the Italian cultural tradition based on the idealist philosophy 

(Bolondi, 2016) translates into classroom practices such that Italian high school students are 

asked mainly to learn theory and perform heavy algebraic calculations with the application of 

“rules”, basically treatment transformation in the sense of Duval (1995): just to give an example, 

one of the most popular textbooks in Italy offers, in the literal calculation module alone, over 

2000 exercises. Problem-solving and the use of mathematics to model real situations, even if 

recommended in National Guidelines, seems to be considered in many textbooks a secondary 

activity.  
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What is more, the international literature in mathematics education has highlighted in general 

how one of the main problems is the relationship that students create between symbols and their 

meaning (Kieran, 1992; Sfard, 1995; Bardini, Radford, & Sabena, 2005; Bardini, 2004) and the 

inadequacy of this relationship can often be linked to educational practices that insist on 

meaningless manipulations (Arzarello et al., 1995). Nevertheless, the use of letters for expressing 

relationships and for modelling begins very early in the school curriculum and is a classical 

research topic (see f.i. Doerr & Tripp, 1999; Dunne, 1998). As it has been pointed out, scholars 

generally agree that many students do not master the meaning of those symbols that they have 

learned to manage formally: classical references are Arcavi (1994, 2005), MacGregor and Stacey 

(1993) and Capraro and Joffrion (2006), and this has also been stated as a “solid” finding in 

Handbooks and Encyclopedias (Kieran, 1992, 2007, 2014).  

 

The learning of algebra requires different cognitive components and interfaces the mathematical 

content, the use of language and semiotic representations, different forms of reasoning, meaning-

making processes, and interpretations. Hence the loss of meaning of symbols in algebra can be 

interpreted and analysed with well-established theoretical lenses, such as Sfard’s reification 

theory, Radford’s objectification theory, and Duval’s structural/functional approach. A 

theoretical approach coordinating these theories for interpreting the duality objects/processes is 

discussed in Santi, (2011a, 2011b). 

 

A key step is the introduction of symbols and letters in the transition from arithmetic to algebra 

and in the use of “general” models of situations, but “it is little value using algebraic symbols in 

an answer when the person who posed the question may have little or no knowledge of their 

meaning” (Phillips, 2015). Arzarello et al. (2001), Linchevsky and Sfard (1992) and Sfard and 

Linchevsky (1994) highlight a continuity between the domain of arithmetic and the domain of 

algebra, where arithmetic provides operations and meanings that sustain algebraic thinking. 

Within the Reification Theory, arithmetical processes are reified in algebraic objects. There is a 

dialectic between the two domains that cannot be disregarded. On the one hand, without a leap 

into the algebraic mindset, algebra is a disguised form of arithmetic, which does not fully justify 

the introduction of symbolic language.  On the other hand, without the link to arithmetical 

processes, algebra is perceived as meaningless by students and confined to manipulation of 

symbols that serve as empty signifiers. 

 

The point is that algebraic symbols do not speak for themselves, therefore the algebraic 

competence may be identified with the ability to interpret the situation and act accordingly with 

versatility and adaptability in blending processes and objects appropriately. The difficulty with 

reification does not consist merely in the passage from process to object but from process to the 

process-object duality. If the signs are meaningless and the treatments of the expressions are 

performed mechanically, and the operational rules are meaningless operation, the students are 

unable to activate the necessary interpretations.  

 

Mathematical thinking, mathematical concepts, meanings, and semiotics are distinguishable but 

inseparable within the mediated reflexive activity that intertwines them. Understanding the 

purpose of the system of algebraic signs (and more generally the symbolic language of maths), is 

one of the most difficult didactic problems of mathematics teaching/learning, linked in the 
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specific case of algebra to the role of model generalisation in the training of symbolic-

mathematic thought processes (Radford, 2003). 

 

As a synthesis, we may conclude as follows: if algebra is a language, then it should be analysed 

in its semantic as well as syntactic properties. The use of letters, and more generally of literal 

expressions that can then be manipulated, arose mainly from the need to generalise (for example, 

arithmetical properties of numbers) and that of modelling. In this sense, specifically for the age 

group considered, algebra plays an important role in the Framework of the OECD-Pisa survey 

(OECD, 2013). The semantic aspects are constructed early in the curriculum- for instance, when 

learning geometric formulas such as A=bxh. The role of letters in modelling processes is a 

crucial element of the curriculum before the learning of the rules for the treatment of expressions 

containing letters. There is a “meaning” of letters that is overshadowed by the overwhelming 

practices of manipulation of symbols. More generally, loss of meaning may occur when objects 

manipulated by the learners (in mathematics but also in Physics and other disciplines) are 

decontextualized (Brousseau, 1992; Johnston, Crawford & Fletcher, 1998). The loss of meaning 

of the letters for students all over the world- and in particular in Italy, the context of this study- 

can be considered a solid finding in mathematics education. There are powerful and well-

established theoretical frameworks that can be used for describing the genesis and the outputs of 

this phenomenon, studies that make networking these theories, pieces of evidence from case 

studies all over the world, qualitative researches highlighting situations that can be considered 

exemplar models. What we want to add to this frame is an example of quantification at a 

systemic level of the phenomenon. This theoretically-driven analysis of quantitative data will 

also bring out particular features of the phenomenon itself that were not evident before. For 

instance, we will point out the spreading of the phenomenon all along the ability scale (we refer 

here to the latent trait measured by the large-scale assessment), thus showing how this approach 

may suggest new research issues. 

 

Data for quantification: the context of INVALSI assessment tests and macro-level issues of 

learning 

In this paper, we study the answers given by two cohorts of Italian students to two items in large-

scale national assessment tests (the “INVALSI tests”). We have selected these items since, in an 

a-priori analysis of the library of INVALSI items, they seemed suitable for revealing and 

quantifying the loss of attribution of meaning to algebraic language, in the transition from middle 

school to high school. We remark that this is a cross-sectional study, i.e. two different cohorts 

of students at different points in their studies are assessed in the same year. Since our data comes 

from large-scale assessments of the whole population, we assume that the year-to-year variations 

are negligible. 

 

The INVALSI tests are designed to gather and give back to pupils, teachers, and schools 

information and data about learning of mathematics at different steps- namely at Grades 2, 5, 8, 

10, and 13. They highlight macro phenomena, sometimes extremely significant from a 

quantitative and statistical point of view. The released results moreover allow (particularly in the 

closed-ended question sections) the analysis of wrong choices, in order to better understand 

students’ difficulties and their degree of diffusion in specific sub-categories of students (Bolondi, 

Ferretti & Giberti, 2018; Ferretti, Giberti & Lemmo, 2018). The items considered in this paper 

are taken from the tests administered in 2011 to students of Grades 8 and 10. The data considered 
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consist of the answers given by random samples of students of Grades 8 and 10 from across the 

country, involving 28,361 students in 1,312 classes representative of 586,790 students, and 

50,838 students in 2,302 classes representative of 527,318 students respectively. The sample 

chosen for Grade 10 is larger since the architecture of the Italian school system is based on a 

unique path for all students till Grade 8, whilst from Grade 9 on there is a differentiation. The 

samples are representative with respect to geographical distribution, socioeconomic context, 

gender, typology of school (for Grade 10), and other variables (for a complete technical 

description of the INVALSI, 2011). The statistical analysis was carried out using the Rasch 

model (Rasch, 1960). This model belongs to the Item Response Theory (IRT) family. It is based 

on the assumption that the answer of a student to an item depends on his/her relative ability, i.e. 

the student’s intrinsic ability as compared with the intrinsic difficulty of the item. The model 

scales both subjects and items along with the same latent trait, which in our case can be 

identified with mathematics ability, as defined in the mathematics framework which is the 

background of the INVALSI assessment. 

 

All data, graphs, and tables provided here are taken from the freely accessible database Gestinv 

(www.gestinv.it). The complete original datasets of students’ answers can be retrieved from the 

statistical servers of the INVALSI. Gestinv is a research tool widely used in Italian mathematics 

education researches (i.e. Ferretti, Gambini, & Santi, 2020; Ferretti & Bolondi, 2019). 

 

The Items of the Spring: a-priori analysis 

The case study that we present is a comparison of tasks where the question intent is focused on 

the meaning of an expression using letters, in a modelling situation. We point out that the 

physical situation is related to Hooke’s law, but Italian students at these stages of their 

curriculum, generally, do not know an explicit formulation of Hooke’s law. Hence the items can 

be considered as pure modelling tasks, where algebraic symbols are used in order to describe a 

situation expressed in words.  

 

Using symbols (the letters L, L0, K, P) for expressing physical quantities and symbols (the signs 

=, +, x) for expressing the relations between these quantities, is an example of using algebraic 

equality with reference to its “meaning”. For instance, “multiplication by a constant” means 

“proportionality of the dilatation”. This allows manipulating algebraically the expression in order 

to describe or derive physical properties, or to push further the algebraic symbolism, for instance 

by means of the tensor language. Entering the realm of algebra opens powerful perspectives, but 

this depends on maintaining a link to the meaning. 

 

The first item was administered to Grade 8 students. 

 

Item 17 

The formula L = L0 + KxP expresses the length L of a spring according to the weight 

P applied. L0 represents the length in centimetres of the “relaxed” spring; K 

represents how much the spring extends in centimetres when a unit of weight is 

applied. 
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Which of the following formulae best suits the following description: 

“It is a very short and very hard spring (i.e. highly resistant to traction)”? 

 

A. L = 10 + 0.5 x P 

B. L = 10 + 7 x P 

C. L = 80 + 0.5 x P 

D. L = 80 + 7 x P 

 

 
 

Figure 1: Item D17, INVALSI mathematics test for Grade 8, 2011, original formulation 

 

The item is coherent with the Goals for skills acquirement and Learning Objectives as set out in 

the Italian National Guidelines (MIUR, 2012). The stimulus presents the general formula to 

express the length of a spring according to the weight applied and specifies the meaning of the 

symbols used. This is a simple literal expression (to use the common Italian textbook 

terminology) modelling mathematically the situation.  To answer correctly, it is necessary to 

precisely interpret a statement in natural language and to understand the meaning of the symbols 

in the literal expression that translates the statement into mathematical language. The student 

must therefore carry out a typical conversion transformation (D’Amore 2006; Duval, 2008). 

This, then, is an item that in the conceptual framework of OCSE-Pisa is questioning on the 

linking processes between real and mathematical problems (Formulating and Interpreting; OECD 

2013). 

 

The second item was administered to Grade 10 students, and it is very similar to the previous 

one. 

 

Item 24 

The formula l = l0 + k x P expresses the length l of a spring according to the weight 

P applied. l0 represents the length in centimetres of the “relaxed” spring; k represents 

how much the spring extends in centimetres when a unit of weight is applied. 

Which of the following formulae best suits the following description: 
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“It is a very long and very hard spring (i.e. highly resistant to traction)”? 

 

A. l = 15 + 0.5 x P 

B. l = 75 + 7 x P 

C. l = 70 + 0.01 x P 

D. l = 60 + 6 x P 

 

 
  

Figure 2: Item D24, INVALSI mathematics test for Grade 10, 2011, original formulation. 

 

The numeric values of the options change as compared with the Grade 8 item but the basic 

substance does not change, nor do the question intent or the meaning of the different options. 

 

Results 
 

Figure 3 shows the percentage of students’ choices, while Figure 4 shows the main statistical 

data. 

 

 
 

Figure 3: Percentage of choices, Item D17, INVALSI mathematics test of Grade 08,  2011 
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Figure 4: Statistical data, Item D17, INVALSI mathematics test of Grade 8, 2011 

 

Overall, the psychometric performance of this item was very good, in particular the fitting with 

the model. The Item delta level is -0.42 (on a scale centered in 0), so the item can be qualified of 

medium-easy difficulty. As we can see from the graphics in Figure 3, the correct response was 

supplied by 58.3% of students. One of the most interesting facts that emerge from the data is that 

25.4% of the total (almost 70% of students who made a mistake) chose option B. Thus, they 

correctly interpreted the fact that the spring is very short but made a mistake in evaluating the 

role and the meaning of coefficient K. 

 

The distractor plots are very useful tools for examining more deeply these outputs. In the plot in 

Figure 5, the x-axis shows the students’ level of ability, measured overall by the test. The 

continuous line is the curve of answers as elicited by the model, while the dotted lines are the 

empirical data (percentages of answers collected). 

 

 
  

Figure 5: Distractor Plot of Item D17, INVALSI mathematics test of Grade 8, 2011 
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This distractor plot shows how the students who identified the first parameter and not the second 

(option B answer, labelled as Item 23.2 line) are mainly low-performance students; the frequency 

of this choice rapidly decreases as the ability level rises. 

 

The results of the item of Grade 10 are shown below; Figures 6 and 7 show the percentage of 

answers and some statistical data. 

 

 
 

Figure 6: Percentage of answers, Item D24, INVALSI mathematics test for Grade 10, 2011 

 

 

 
 

Figure 7: Statistical data, Item D24, INVALSI mathematics test for Grade 10, 2011 

 

In this case, too, the measurement parameters are valid: the Item delta level, however, is 0.53 so 

the item positions itself in the medium-difficult range, within the context of the test. Only 38.1% 

of the students supplied the correct answer, while the number of missing answers is 7% higher 

than that of the previous question. We remark that 11,7% of missing and invalid answers is a 

very high percentage for a closed-ended item. The most chosen option was option B, where the 
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coefficient of dilatation is obviously wrong. Analysis of the Distractor Plot (Figure 8) also 

reveals that students of medium and medium-high academic level opted for this option. 

  

 
  

Figure 8: Distractor plot, Item D24, INVALSI mathematics test for Grade 10, 2011 

 

Discussion 
 

The analysis of the two items administered in Grade 8 and Grade 10 respectively, shows that 

semantic control of literal expressions (used as a tool of generalisation and modelling) decreases 

significantly between the two educational levels: the number of correct answers supplied 

decreased from 58.3% to 38.1%. This is not, of course, a longitudinal or even pseudo-

longitudinal result (Baltagi, 2011); nevertheless, it describes the behaviour of representative 

samples of two cohorts of students in the same national context. From the statistical point of 

view, this increase of difficulty is visible through the value of the Item delta inside the tests, 

which jumps from -0.42 to 0.53. Both items have good psychometric features, they discriminate 

between students and fit with the model. The analysis of the items shows that the question intent 

is the same, and the verbal formulation is substantially the same. The different options have 

similar features.  

 

In the first item, two options (the correct one, A, and option B) describe correctly at least the 

length of the spring, and these options collect globally 83.7% of the students’ answers. Two 

grades later, three options describe correctly the length of the spring; nevertheless, even with 

three possibilities, only 80.2% of students choose them. 

 

Despite two school years more, devoted mainly (in Italian schools) to the development of 

algebraic manipulation, there is a surprising difference in the percentage of correct answers: 

Grade 10 students provided 20% fewer correct answers than Grade 8’s. “Missing” students are 

students of all levels of ability, even high. The distractor plots allow the drafting of an initial 

analysis regarding which students knew how to respond correctly to the item and to identify sub-

groups of students who chose a distractor answer with significant frequency. For instance, in the 

eighth decile, the percentage of correct answers slumps from 80% to 50%; the percentage of 

correct answers in the ninth decile decreases from 85% to approximately 60%. Symmetrically, in 

Grade 8 starting from the fourth decile, more than 50% of the population gives the correct 
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answer; in Grade 10 this happens starting from the eighth decile. The most chosen wrong option 

is the preferred one, in Grade 10, for the first 5 deciles, hence for half of the population. Missing 

answers (which usually are very few in a multiple-choice test with no penalties for wrong 

answers, as in this case) jump from 4% to 11%: this too can be interpreted as difficulty in giving 

a meaning to the elements of the task. 

 

Conclusion and further issues 
 

We started from the “loss of meaning” in algebra as an exemplary case of “solid finding” in 

mathematics education, in the sense of EMS (2011). The theoretically-driven use of large-scale 

assessment data-sets allowed quantification of this effect of loss of meaning of algebraic symbols 

(which is a well-documented and explored phenomenon in the literature) in the Italian context, 

and to identify which categories of students this phenomenon affects in particular. Our approach 

moreover highlighted the fact that this phenomenon impacts also medium- and high-level 

students: as we have seen, there is a dramatic decrease of the percentage of correct answers for 

students graded in the top deciles (with respect to the overall ability measured by the test). 

Previous qualitative researches and epistemological discussions showed that this phenomenon 

can be related to deeply rooted didactic habits which put in the centre of students’ activity the 

manipulation of symbols, disregarding what a symbol stands for. The combination of qualitative 

results, quantitative evidence, and theoretical discussions suggests further issues, both for 

researchers and for teachers to adopt in their teaching practices. In general, following Brousseau 

(1992), our case confirms with quantitative evidence that loss of meaning may occur when 

learning is decontextualised and, for algebra, syntactic treatments take over semantic attentions. 

Restoring a sense to algebra (apart from its role as a didactic tool) confirms to represent a key 

challenge, both for researchers and teachers. Teachers should be aware that this phenomenon is 

quantitatively significant. The same challenge may occur in other disciplines, especially when 

the “mathematization” of the discipline is relevant.  

 

This paper is a specific case study to exemplify how the results of large-scale assessment 

projects can contribute, possibly within a mixed-method research approach (Hart et al., 2009, 

Johnson & Onwuegbuzie, 2004) and integrated with solid findings of education research  

(Kieran, 2014), to a better understanding of a didactic phenomenon. The possibility of analysing 

huge quantities of data, gathered through large-scale assessment activities and stored in digital 

databases, allows a more detailed and quantitative description (and possibly new directions of 

investigation) of results obtained through classical research methods, and to verify previous 

theoretical descriptions. 
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