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Abstract: The polyphenol trans-ε-viniferin (viniferin) is a dimer of resveratrol, reported to hold
antioxidant and anti-inflammatory properties. The aims of our study were to evaluate the neu-
roprotective potential of viniferin in the nerve growth factor (NGF)-differentiated PC12 cells, a
dopaminergic cellular model of Parkinson’s disease (PD) and assess its anti-inflammatory properties
in a N9 microglia–neuronal PC12 cell co-culture system. The neuronal cells were pre-treated with
viniferin, resveratrol or their mixture before the administration of 6-hydroxydopamine (6-OHDA),
recognized to induce parkinsonism in rats. Furthermore, N9 microglia cells, in a co-culture sys-
tem with neuronal PC12, were pre-treated with viniferin, resveratrol or their mixture to investigate
whether these polyphenols could reduce lipopolysaccharide (LPS)-induced inflammation. Our results
show that viniferin as well as a mixture of viniferin and resveratrol protects neuronal dopaminergic
cells from 6-OHDA-induced cytotoxicity and apoptosis. Furthermore, when viniferin, resveratrol or
their mixture was used to pre-treat microglia cells in our co-culture system, they reduced neuronal
cytotoxicity induced by glial activation. Altogether, our data highlight a novel role for viniferin as a
neuroprotective and anti-inflammatory molecule in a dopaminergic cellular model, paving the way
for nutraceutical therapeutic avenues in the complementary treatments of PD.

Keywords: trans-ε-viniferin; resveratrol; neuroprotection; oxidative stress; dopamine; apotosis;
neuroinflammation; Parkinson’s disease

1. Introduction

The incidence of neurodegenerative diseases is increasing worldwide, with Alzheimer’s
disease (AD) and Parkinson’s disease (PD) being the most prevalent. Neurodegenerative
diseases are characterized by neuronal loss, which in PD affects the dopaminergic neurons
of the substantia nigra pars compacta (SNpc) [1]. Currently, apoptosis triggered by oxida-
tive stress and neuroinflammation appears to be the main driver of dopaminergic neuron
loss in PD [2].

Mitochondria are the principal source of reactive oxygen species (ROS), the mandatory
bioproducts of oxidative metabolism. Mitochondrial dysfunction, a pivotal pathogenetic
feature of PD, exacerbates oxidative stress by fostering ROS production which, in turn, via
a feed-forward mechanism worsens mitochondrial dysfunction resulting in the activation
of signaling cascades leading to apoptosis [3,4].

Due to their intrinsic low antioxidant activity and to the characteristic dopamine
metabolism that generates pro-oxidant byproducts [5], dopaminergic neurons are particu-
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larly vulnerable to oxidative stress, which may explain their susceptibility to degeneration
typically found in PD.

Besides oxidative stress, neuroinflammation represents another key mechanism re-
sponsible for neurodegeneration in PD [6]. In support of this, post mortem investigation
in the brain of parkinsonian patients demonstrated elevated levels of activated microglia,
and pro-inflammatory cytokines in the substantia nigra and in the striatum [7,8]. However,
whether neuroinflammation is a cause or a consequence of neurodegeneration it remains
a matter of debate. Nonetheless, in vitro cell co-culture models [9,10], have provided
evidence that eliciting a pro-inflammatory phenotype in microglial cells using lipopolysac-
charide (LPS), a well know pro-inflammatory molecule, promoted microglia-induced
neuronal cell damage [9,11]. To the same extent, stereotaxic LPS injection into the brain of
rodents can recapitulate neuroinflammation and promote dopaminergic neuron degenera-
tion [12]. Thus, independently of whether neuroinflammation is involved in the etiology of
PD or is the result of nigrostriatal pathway injury, sustained microglia pro-inflammatory
activation can contribute to dopaminergic neuron loss.

Nowadays, strategies aimed at tackling oxidative stress and neuroinflammation may
represent positive avenues to prevent neurodegeneration. In this regard, bioactive molecules
derived from plants have emerged for their neuroprotective potential by countering oxida-
tive stress, inflammation or both. Of these, resveratrol in light of its antioxidant [13] anti-
inflammatory [11], and synergistic effects with other polyphenols such as quercetin [11,14,15],
is considered one of the most promising. Nonetheless, resveratrol containing foods also
present oligomeric forms of stilbenes whose biological effects remain to be fully elucidated,
especially with regard to the central nervous system. Of these, ε-viniferin (viniferin), a
naturally occurring resveratrol dimer with higher activity and stability, may contribute to
the total amount of stilbenes consumed with foods [16]. This molecule shares several health
promoting effects with resveratrol, including neuroprotective properties, as demonstrated
in animal models of Huntington’s disease [17] and AD [18,19]. However, the effect of
viniferin on oxidative stress and inflammation-induced injury in dopaminergic neurons
remains to be elucidated.

Thus, the aim of this study was to determine whether viniferin was able to prevent
6-hydroxydopamine (6-OHDA)-induced cytotoxicity and apoptosis in a cellular model
of PD, PC12 dopaminergic neurons. Furthermore, we aimed at elucidating whether this
resveratrol dimer could prevent LPS-activated N9 microglial cells from inducing PC12
cell death in an N9 microglia PC12 cell co-culture system. The effect of viniferin on
the aforementioned outcomes was also investigated in the presence of resveratrol, and
resveratrol itself was used as reference molecule to benchmark the effect of viniferin. Our
results show that viniferin can successfully protect PC12 dopaminergic neurons from
oxidative stress-induced apoptosis, and is also able to prevent microglia from promoting
neuronal death, with a synergetic effect being observed when resveratrol is used in a
mixture together with viniferin.

2. Materials and Methods
2.1. Drugs and Chemicals

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless
stated otherwise.

2.2. Extractions and Purifications of Polyphenols

Grape canes variety “Ugni” (Vitaceae) were collected from Cognac’s vineyards in
France. Grape canes were extracted in an extruder (BC21 clextral) apparatus with a mixture
of ethanol/water (8/2) as a solvent. The solution was concentrated after filtration, at 40 ◦C
under a vacuum and lyophilized. Dried extract (4 g) was dissolved in 20 mL of a mixture
called Biosolvants 1 with the following composition Makigreen D10–EtOAc–EtOH–H2O,
(4:2:3:2) and injected into a centrifugal partition chromatography (CPC) apparatus. The
CPC method used to obtain viniferin is the one presented previously [20], but using green
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solvents as Biosolvent 1 and Biosolvent 2 (Cyclopentane–EtOAc–EtOH–H2O, 1:2:1:2). Thus,
fractions were collected and combined on the basis of HPLC analysis, providing a total
of three fractions of interest. Fraction 1 (101 mg) corresponded to 95% pure resveratrol as
white solid. Fraction 2 (175 mg) contained the dimer of interest, as with viniferin along
with other compounds. Afterwards, fraction 2 was re-purified by semi-preparative HPLC
and a yellow solid isolated was identified by 1H and 13C NMR spectroscopy analysis in
acetone-d6 and mass spectrometry as with viniferin to 98% purity. The concentration of
viniferin after extrusion–extraction is very dependent on the grape variety used but with
Ugni’s grapecane the total polyphenol yield is 0.3% by weight with a concentration of
viniferin in the extract grapine-shoot of between 15 and 20%.

2.3. Cell Culture and Treatments

A rat pheochromocytoma cell line (PC12 cells) was obtained from ATCC (Rockville,
MD, USA). Cells were maintained in a humidified environment at 37 ◦C and 5% CO2
atmosphere and routinely grown in RPMI 1640 medium supplemented with 10% heat-
inactivated horse serum (HS), 5% heat inactivated fetal bovine serum (FBS; Corning Cellgro,
Manassas, VA, USA) and gentamicin (50 µg/mL). Neuronal differentiation was evoked
by nerve growth factor-7S (NGF, 50 ng/mL) in RPMI 1640 supplemented with 1% FBS for
9–10 days, as already described [10,21]. NGF-differentiated PC12 cells (neuronal PC12)
displayed a dopaminergic phenotype (Figure 1) as already reported [21,22]. They were
pretreated with resveratrol or viniferin (generously provided by Dr. Jérôme Guillard,
University of Poitiers, Poitiers, France) at 10–9 M or a mixture of the two molecules at
10–9 M for 3 h. Then 6-OHDA (50 µM) or LPS (2 µg/mL) [9] was added to the medium for
24 h. All experiments were performed in RPMI medium without phenol red, supplemented
with 1% charcoal-stripped serum to remove steroids from the medium. Microglial cell
line N9 was grown in Dulbecco’s modified Eagle’s medium nutrient mixture F12-Ham’s
(DMEM-F12) supplemented with 10% HS.
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Figure 1. Representative microphotograph of nerve growth factor (NGF)-differentiated PC12 for
9 days by immunofluorescence. Nuclei are counterstained in blue with Dapi. NF: neurofilaments
revealed with an anti-neurofilaments antibody (green). TH: tyrosine hydroxylase revealed with an
anti-tyrosine antibody as a marker of dopamine (red). Scale bar = 10 µm.
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2.4. Neuronal–Glial Co-Culture

Neuronal PC12 cells and N9 microglia were co-cultured without cellular contact to
study the impact of LPS-activated microglia on the survival of neuronal cells, as we have
already described [9]. In this co-culture system, microglial cells communicate with PC12
neuronal cells through a semipermeable membrane, in the absence of a direct contact
between the two cellular systems [23]. Briefly, N9 microglial cells were grown onto culture
inserts (pore size 0.4 µm; BD Falcon, Oakville, ON, Canada), LPS (2 µg/mL) was added.
After 24 h, inserts containing N9 cells were washed with PBS and then transferred on
neuronal PC12, for another 24 h. The PC12 supernatant was collected for cell death
measurements with lactate dehydrogenase (LDH) cytotoxicity tests as described below.
For immunofluorescent experiment, N9 microglial cells were grown in culture inserts
and treated as described then transferred on neuronal PC12 cells grown previously on
coverslips [9,11].

2.5. Cytotoxicity Measurements

Cytotoxicity was evaluated using a colorimetric assay based on the quantification
of LDH activity released from damaged cells into the cell culture medium, as already
described [20]. LDH is a stable cytoplasmic enzyme present in all cells, which is rapidly
released into the cell culture supernatant upon plasma membrane damage. Enzyme activity
in the cell culture medium is a direct function of lysed cells [24]. Briefly, 100 µL of cell-free
culture media served to quantify LDH activity by measuring absorbance at 490 nm using a
Thermo Lab Systems (Franklin, MA, USA). Total cellular LDH was determined cells lysed
using 1% Triton X-100 (high control); the assay medium was used as a low control and was
subtracted from all absorbance measurements:

Cytotoxicity (%) = (Experimental value-Low control)/(High control-Low control) × 100

2.6. MTT Assay

The cell metabolic activity was measured using 3-(4,5-dimethyltrazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay [21]. Neuronal PC12 cells, plated in 96-wells
plates, were treated as already described and then incubated for 4 h at 37 ◦C with MTT dye
(5 mg/mL), followed by solubilization in SDS 10% and the absorbance was measured at
the 595 nm with a microplate reader (Thermo Lab Systems, Franklin, MA, USA).

2.7. Apoptosis- Specific DNA Denaturation Detection

Apoptosis-specific detection of DNA denaturation by formamide was assessed with
the single-stranded DNA (ssDNA) apoptosis ELISA kit (Chemicon International, Telok
Panglima Garang, Malaysia) as already described [15,22]. This procedure relies the on
selective DNA denaturation by formamide in apoptotic cells, which does not occur in
necrotic cells nor in cells with DNA damage in the absence of apoptosis [25]. The detection
of denatured DNA was performed with a monoclonal antibody highly specific to ssDNA
and a peroxidase-labelled secondary antibody on fixed neuronal PC12 cells. Following,
ssDNA immune detection, the reaction was then terminated with a hydrochloric acid
solution and ssDNA was quantified by measuring absorbance at 405 nm in a microplate
reader (Thermolab Systems, Vasai-Virar, India). ssDNA was quantified relative to control
conditions. Absorbance of positive (wells coated with provided ssDNA) and negative
controls (wells coated with S1 nuclease that digest ssDNA) served as quality controls for
the ELISA assay, as previously described [26,27].

2.8. Immunofluorescent Microscopy

Apoptotic P12 neuronal cells were detected by both terminal deoxynucleotidyl trans-
ferase dUTP nick end labeling (TUNEL, Roche Diagnostics, Basel, Switzerland) and cleaved
caspase-3 immunofluorescence. Neuronal PC12 cells were seeded at 25,000 cells/cm2,
differentiated and treated on collagen-coated coverslips in 24-well plates for immunofluo-
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rescent microscopy. Briefly, after viniferin and/or resveratrol and/or 6-OHDA treatments,
cells were fixed in 4% paraformaldehyde for 15 min at 37 ◦C, then washed and incubated
for 1 h at room temperature in a blocking and permeabilizing solution containing 1% BSA,
0.18% fish skin gelatin, 0.1% Triton X-100 and 0.02% sodium azide [22,26]. Cells were then
incubated with anti-cleaved caspase-3 antibody (New England Biolabs, Pickering, ON,
Canada) diluted 1:500, for 2 h at room temperature, followed by 90-min incubation with a
Cy3-conjugated secondary antibody (Medicorp, Montreal, QC, Canada) diluted 1:500 for
1 h at 4 ◦C. The coverslips were then transferred to the TUNEL reaction mixture in a humid-
ified atmosphere at 37 ◦C. The cells were rinsed with PBS, nuclei were counterstained in
blue with DAPI for 10 min at 37 ◦C and mounted with ProLong Antifade kits (Invitrogen).
PC12 neuronal cells were considered to be apoptotic when they were positive for cleaved
caspase-3 and their nuclei were stained by TUNEL. The number of apoptotic neuronal
cells among 300 randomly chosen neuronal cells was counted on 10 different optical fields
from 3 slides per group [15], with Pro Express 6.3 software (Media Cybernetics, Rockville,
MD, USA).

2.9. Electrophoresis and Immunoblot Analysis

Neuronal cells were grown and treated in 6-well plates. Total proteins were extracted
with a Nuclear Extraction Kit (Active Motif, Carlsbad, CA, USA) and their concentration
determined by using the BCA protein assay kit (Pierce Biotechnology Inc., Rockford, AZ,
USA). Fifteen µg of protein were loaded onto a 12% SDS-polyacrylamide gel. After elec-
trophoretic separation (125 V, for 1 h 30), proteins were transferred onto PVDF membranes
(0.22 µm pore size, BioRad) at 25 V overnight. The membranes were blocked in TBST
(TBS + Tween 0.05%) with 5% non-fat dry milk for 1 h at room temperature and incu-
bated overnight at 4 ◦C with primary antibodies: anti-cleaved caspase-3 antibody (1:500)
anti-cleaved PARP-1 antibody (1:500) or an anti-β-actin antibody (1:500) (Cell Signaling,
Danvers, MA, USA). The blots were then rinsed three times with TBS 0.1% Tween 20 and
incubated with peroxidase-conjugated (POD) secondary antibody (1:10,000) for 2 h at room
temperature. Blots were washed with TBS 0.1% Tween 20 three times and the signal finally
revealed by enhanced chemiluminescence with the AlphaEase FC imaging system (Al-
pha Innotech, San Leandro, CA, USA) and analyzed with AlphaEase FC software (Alpha
Innotech) and ImageJ (imagej.nih.gov).

2.10. ELISA

Pro-inflammatory cytokines IL-1α and TNF-α were measured by specific ELISA kits
(BioLegend, San Diego, CA, USA). Following pre-incubation with resveratrol, viniferin, or
a mixture of the two molecules for 3 h, N9 microglial cells were administered with LPS
4 µg/mL for 24 h. Supernatants were collected after 27 h and processed for the presence
of selected cytokines by ELISA, according to the protocols supplied by the manufacturer.
Briefly, the supernatants were collected following the polyphenols and LPS challenges.
96-well plates were coated with mouse-specific monoclonal antibody (IL-1α and TNF-α)
and after an overnight incubation, standards and samples were added to the wells for
2 h. The plates were then incubated in the presence of a biotinylated anti-mouse detection
antibody for 1 h, followed by a 30 min incubation with an avidin horseradish peroxidase
solution. Finally, a tetramethylbenzidine solution was added to the wells for 15 min in the
dark to reveal the presence of the cytokines. The reaction was terminated by the addition
of 2N sulfuric acid and resulting absorbance recorded at 450 nm using a microplate reader
(Synergy H1, BioTek, Winnosky, VT, USA).

2.11. Statistical Analysis

Significant differences between groups were ascertained by One-way analysis of
variance (ANOVA), followed by Tukey’s post-hoc analysis, performed using the Graph-
Pad Prism8 for Windows (http://www.graphpad.com/). All data were expressed as
means ± SEM from at least 3 independent experiments. A p-value < 0.05 was considered

imagej.nih.gov
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statistically significant. Asterisks (*) indicate statistical differences between the treatments
and their respective controls (*** p < 0.001, ** p < 0.01, * p < 0.05), plus signs (+) denote
statistical differences between the treatments and 6-OHDA (+++ p < 0.001, ++ p < 0.01,
+ p < 0.05), dollar signs ($) indicate statistical difference between 6-OHDA+resveratrol
and 6-OHDA+mixture of the two polyphenols or 6-OHDA and viniferin ($$$ < 0.001,
$ < 0.05) and number signs (#) indicates statistical difference between 6-OHDA+viniferin
and 6-OHDA + mixture of the two polyphenols (### p < 0.001, ## p < 0.01). The same
symbols were used in the experiments where LPS was used instead of 6-OHDA.

3. Results
3.1. Viniferin Reduced 6-OHDA-Induced Cytotoxicity and Promoted Cell Survival

To evaluate whether viniferin, alone and in combination with resveratrol protected
neuronal PC12 cells from 6-OHDA-induced cytotoxicity, we investigated LDH release
and metabolic activity in neuronal cells pre-treated for 3 h with resveratrol, viniferin
or their combination, before administration of 6-OHDA neurotoxin for 24 h. When the
two polyphenols, both at a concentration of 10–9 M, were administered alone before 6-
OHDA treatment, they induced a decrease in LDH release by 19 ± 2.5% and 20.3 ± 1.3%,
respectively for resveratrol and viniferin (Figure 2A) and increased cellular metabolic
activity (Figure 2B) compared to cells treated with 6-OHDA only, by 15.3 ± 0.9% and
14.3 ± 1.9%, respectively. Moreover, preincubation with a mixture of resveratrol and
viniferin at a final concentration of 10 -9 M, induced a 27.7 ± 2.3% decrease in LHD release
compared to cells exposed to 6-OHDA only (Figure 2A). The same effect was observed for
cellular metabolic activity with an increase of 26 ± 2.1% (Figure 2B), notably the effect of
the mix of the two polyphenols administered before 6-OHDA challenge was more marked
compared to the single polyphenols (Figure 2B).
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Figure 2. Levels of cytotoxicity (A) and metabolic activity (B) of PC12 neurons pretreated for three hours with culture
medium (control), resveratrol, viniferin or a mixture of both polyphenols (Mix), all at a final concentration of 10–9. Cells
were then treated with 6-hydroxydopamine (6-OHDA) at 50 µM for 24 h, as described in the Material and Methods. The
supernatants and the cells were used to perform cell death (lactate dehydrogenase (LDH) assay). Data are expressed as
means ± SEM of five independent experiments. For each experiment, each condition was in assessed in sextuplicate.
Asterisks (*) indicate statistical differences between the treatments and their respective controls (*** p < 0.001), plus signs (+)
denote statistical differences between 6-OHDA and 6-OHDA in the presence of polyphenols (+++ p < 0.001, ++ p < 0.01,).

3.2. Viniferin Decreased the Rate of Apoptotic Neuronal PC12 Cells

In order to determine whether polyphenols may counteract cell death by inhibiting
the apoptotic cascade, we assessed DNA fragmentation using a ssDNA apoptosis ELISA
kit. In line with the results illustrated in Figure 2, resveratrol and viniferin alone or in
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combination inhibited 6-OHDA-induced DNA fragmentation in neuronal PC12 cells by
52.8 ± 9.6%, 52 ± 9.2% and 55.8 ± 10.3%, respectively (Figure 3A). This result was further
confirmed by double immunofluorescence indicating an increase in TUNEL and cleaved
caspase-3 positive cells after 6-OHDA treatment (Figure 3B). Notably, this anti-apototic
effect was more marked when resveratrol and viniferin were used in combination which
induced a 36.3± 4.2% decrease in the number of apoptotic cells relative to 6-OHDA treated
cells, compare to the 22 ± 4% and 25.7 ± 2.3% of resveratrol and viniferin, respectively
(Figure 3B).
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or a mixture of both polyphenols (Mix) all at a final concentration of 10–9 M. Cells were then treated with 6-OHDA at
50 µM for 24 h, as described in the Material and Methods. Apoptotic neuronal cells among 300 randomly chosen neuronal
cells were counted on 10 different optical fields from 3 slides per group, as described in Material and Methods. Data are
expressed as means ± SEM of three experiments. For each experiment, each condition was assessed in triplicate. Asterisks
(*) indicate statistical differences between the treatments and their respective controls (*** p < 0.001, ** p < 0.01), plus signs
(+) denote statistical differences between 6-OHDA and 6-OHDA in the presence of polyphenols (+++ p < 0.001, ++ p < 0.01),
dollar sign ($) indicates statistical difference between 6-OHDA+resveratrol and 6-OHDA+mixture of the two polyphenols
($$$ < 0.001) and number sign (#) indicates statistical difference between 6-OHDA+viniferin and 6-OHDA + mixture of the
two polyphenols (### p < 0.001).

3.3. Viniferin Used Alone or in Combination with Resveratrol Decreased the Cleavage of Caspase-3
and PARP-1 in Neuronal PC12

To further confirm the ability of viniferin to counteract the activation of the apoptotic
signaling cascade, we investigated the cleavage of caspase-3 and PARP-1, two dominant
markers of early apoptotic signaling, by Western blotting. 6-OHDA increased the cleav-
age of both caspase-3 and PARP-1 (Figure 4A,B), while these effects were blunted by
pre-incubation of neuronal PC12 cells with either viniferin (20.5 ± 0.8% for caspase-3
and 26.1 ± 1.5% forPARP-1), resveratrol (19.8 ± 2.6% for caspase-3 and 27.7 ± 3.3% for
PARP-1) or their combination (34.6 ± 2.6 for caspase-3 and 38.9 ± 1.5% for PARP-1) before
administration with 6-OHDA (Figure 4A,B). This effect was more pronounced when the
mixture of resveratrol and viniferin was administered. In particular, the cleavage of PARP-1
did not increase in the cells pre-treated with the mix of polyphenols compared to control,
despite these cells being exposed to 6-OHDA (Figure 4B). These data strongly suggest
that, viniferin or resveratrol, used alone or in combination, exerted anti-apoptotic effects,
confirming our results illustrated in Figures 2 and 3.
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Figure 4. Expression of apoptotic cleaved caspase-3 (A) and cleaved Parp-1 (B) in PC12 neurons pretreated for three hours
with the culture medium (control), resveratrol, viniferin or a mixture of both polyphenols (Mix) at a final concentration of
10–9 M. Cells were then treated with 6-OHDA at 50 µM for 24 h, as described in the Material and Methods. Top panel: Data
are expressed as the ratio of cleaved caspase-3 (A) or cleaved Parp-1 (B) to β-actin. Bottom panel: representative Western
blot bands of cleaved caspase-3, cleaved Parp-1 or β-actin. Optical densities were measured on the same membrane. Data
are expressed as means ± SEM of three experiments performed in triplicate. Asterisks (*) indicate statistical differences
between the treatments and their respective controls (*** p < 0.001, ** p < 0.01), plus signs (+) denote statistical differences
between 6-OHDA and 6-OHDA in the presence of polyphenols (+++ p < 0.001, + p < 0.05).

3.4. Viniferin, Resveratrol and Their Combination Decreased Neuronal PC12 Cytotoxicity Induced
by Activated Microglia, in a Co-Culture System

We have previously demonstrated that LPS-activated N9 microglia cells induced
cytotoxicity in neuronal PC12 in a paracrine fashion in a microglia-neuronal PC12 cells
co-culture system [9,11]. In order to evaluate whether viniferin may prevent N9 activation
and subsequent neuronal PC12 cytotoxicity, N9 cells were pre-treated with the two polyphe-
nols or their mixture and incubated with LPS for 24 h before being co-cultured with PC12
neurons for additional 24 h (Figure 5A). Viniferin, resveratrol and their combination coun-
teracted the increase in LDH release from PC12 neurons co-cultured with LPS-activated N9
microglia, by 51 ± 7.8%, 31.3 ± 5.4% and 64 ± 4.4%, respectively (Figure 5A). This effect
was even more marked for viniferin, and the combination of viniferin and resveratrol com-
pared to resveratrol (Figure 5A), suggesting an anti-inflammatory role for viniferin and the
mixture of viniferin and resveratrol. Furthermore, to evaluate whether these polyphenols
exerted a neuroprotective effect against activated-microglia secretions, neuronal PC12 cells
were pretreated with either viniferin, resveratrol or their mixture before being incubated
with LPS-stimulated microglial cells (Figure 5B). Viniferin and resveratrol, both alone and
in combination, decreased microglia-induced neuronal PC12 cytotoxicity as indicated by a
28.3 ± 2.7%, 21.7 ± 1.5% and 51.3 ± 2% decrease in LDH release, respectively (Figure 5B),
suggesting a neuroprotective role for these polyphenols. Notably, the release of LDH was
significantly lower for neuronal PC12 pre-treated with the combination of viniferin and
resveratrol compared to each independent polyphenol.
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Figure 5. Co-culture of N9 microglial cells on neuronal PC12 cells. (A) N9 cells were pre-treated with polyphenols followed
incubation with lipopolysaccharide (LPS), as described in the Materials and Methods. (B) N9 cells were treated with LPS
and neuronal PC12 were pre-incubated with polyphenols as described in the Materials and Methods. Data are expressed as
means ± SEM of three experiments. Asterisks (*) indicate statistical differences between the treatments and their respective
controls (*** p < 0.001), plus signs (+) denote statistical differences between LPS and LPS in the presence of polyphenols.
(+++ p < 0.001, ++ p < 0.01), dollar sign ($) indicates statistical difference between LPS + resveratrol and LPS + mixture of
the two polyphenols ($$$ < 0.001, $ < 0.05) and number sign (#) indicates statistical difference between LPS + viniferin and
LPS + mixture of the two polyphenols (## p < 0.01).

3.5. Viniferin Affected the Secretion of Pro-Inflammatory Cytokines from LPS-Activated N9 Cells

To further investigate the role of viniferin, resveratrol or their mixture on neuroin-
flammatory mechanisms in N9 microglia-neuronal PC12 cells co-culture, we investigated
whether these polyphenols may counteract LPS-induced secretion of pro-inflammatory
cytokines. Figure 6 shows that a 24-h LPS treatment increased the secretion of both IL-1α
(Figure 6A) and TNFα (Figure 6B). While neither viniferin, resveratrol nor their combi-
nation counteracted the secretion of TNFα triggered by LPS (Figure 6B), pre-treating N9
cells with these polyphenols tended to decrease the levels of IL-1α in the cell culture media
compared to cells exposed to LPS only (43.3 ± 7.3% for resveratrol; 46.7 ± 11.1% viniferin;
41.5 ± 6.3% for their combination) (Figure 6A).
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4. Discussion

This study provides evidence on the neuroprotective and anti-inflammatory potential
of the polyphenol viniferin in a cellular model of PD, PC12 dopaminergic neurons, and N9
microglia–PC12 neurons co-culture system [9,10]. These effects were underlie by the ability
of this polyphenol to counteract the activation of the apoptotic cascade induced by 6-OHDA
in neuronal cells and inhibit cytotoxicity induced by LPS-activated microglia in a microglia–
neuron co-culture system. Although our in vitro model could not perfectly replicate in vivo
neuron–microglia physiology, these results enlighten that when viniferin was mixed with
its homologous resveratrol, it also proved to be more effective in countering neurotoxicity
induced by pro-inflammatory activated N9 microglia. Remarkably, despite the fact that
final concentration of the mixture of the two polyphenols matched the concentration of the
single polyphenols used in isolation, its effect was more powerful in preventing 6-OHDA-
induced increase in caspase-3/TUNEL-positive PC12 neurons and inhibiting cytotoxicity
promoted by LPS-activated N9 microglia, than resveratrol or viniferin alone.

6-OHDA, due to its similarities to endogenous catecholamines, is taken up and ac-
cumulates in catecholaminergic neurons promoting neurotoxicity mainly via oxidative
stress-related mechanisms [28]. In support of this, its administration directly into the brain
via stereotactic surgery induces parkinsonism in rodent models by promoting nigrostri-
atal pathway degeneration [29]. These effects were recapitulated in the present study in
which 6-OHDA promoted cytotoxicity, as indicated by an increase in LDH release from
PC12 dopaminergic neurons and a decrease in their metabolic activity. Importantly, these
neurotoxic effects are dependent on the activation of apoptosis as indicated by an increase
in caspase-3/TUNEL-positive cells, DNA fragmentation and the cleavage of caspase-3 and
PARP, as our present results illustrate.

Nonetheless, despite the deleterious impact of 6-OHDA on cell viability, it was suffi-
cient to administrate the PC12 neuronal cells with resveratrol, viniferin or their combination
to inhibit 6-OHDA-induced apoptosis. Of these polyphenols, resveratrol has been widely
described for its antioxidant properties [30–33] which are mainly dependent on its ability
to induce key transcription factors such as nuclear factor erythroid 2-related factor (Nrf2)
and antioxidant enzymes, including glutathione S-transferase (GST) [33,34], all crucial
antioxidants defenses [35]. Given the role of oxidative stress in the pathogenesis of neu-
rodegenerative diseases, it represents a promising target to counter neuronal loss [36].
Indeed, resveratrol has been reported to exert neuroprotective effects both in vitro and
in vivo [15,37–41], which are in agreement with the results reported herein, most likely de-
pendent on the ability of resveratrol to dampen 6-OHDA-induced oxidative stress triggered
by mitochondrial dysfunction [42]. We also investigated in our cell culture system whether
a similar effect could be exerted by the naturally occurring resveratrol dimer, viniferin,
and if these molecules could act synergically. We report that viniferin was able to inhibit
6-OHDA-induced neurotoxicity and apoptosis to the same extent as resveratrol. These
effects, in parallel to those exerted by resveratrol, may be dependent on the antioxidant
properties of viniferin [43]. Furthermore, the results reported as part of this study are cor-
roborated by previous evidence supporting the neuroprotective role of viniferin, not only
in ADmodels [18,44], but also in PD cellular models [45]. In this regard, in a PD cell model
represented by a human neuroblastoma SH-SY5Y cell line exposed to rotenone, viniferin
reduced cellular apoptosis, oxidative stress and restored mitochondrial homeostasis, all
underlain by SIRT3-mediated fork headbox O3 (FOXO3) deacetylation [45], with FOXO3
playing an important role in PD progression and dopaminergic neuron survival [46]. While
this study further supports our results and provide mechanistic insights into the role of
viniferin, our data highlight the potency of viniferin considering it was able to inhibit apop-
tosis at a concentration of 10 nM compared to previous reports using 1 µM for 24 h [45].
Remarkably, the ability of viniferin to counteract apoptosis appeared to be potentiated
by resveratrol, with these two molecules acting jointly to increase cellular metabolic ac-
tivity and decrease the number of caspase-3/TUNEL-positive cells following exposure to
6-OHDA, in our cellular paradigm. Even if the results from cellular paradigms cannot be
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directly transferred in vivo, we believe that the combination effect of these two molecules
represents a promising nutraceutical combination to investigate in in vivo models of PD.

Inflammation represents another pivotal pathogenetic mechanism in PD, underpinned
by microglia over-activation which contributes to dopaminergic neuron loss [8,47–49]. In
fact, intranigral injection of LPS, a known pro-inflammatory component of Gram-negative
bacteria, promotes dopaminergic neuron death recapitulating the pathogenetic features
of PD in rodent models [50,51]. This is corroborated with our co-culture model where
LPS-activated N9 microglia cells promoted cytotoxicity in downstream neuronal PC12 cells
in the absence of a direct cell-to-cell contact, further supporting the role of inflammation in
promoting neurotoxicity and its involvement in PD pathogenesis. Furthermore, in consider-
ation of the lack of a direct contact between N9 cells and neurons in our co-culture system,
the neurotoxic effect elicited by microglia is mediated by its secretory milieu. Indeed, the
activation of the Toll like receptor 4 (TLR4) by LPS in microglial cells triggers the activa-
tion of pro-inflammatory pathways, including nuclear factor κB (NFκB) which promotes
the secretion of pro-inflammatory cytokines, ROS and nitric oxide via the activation of
NADPH oxidase and inducible nitric oxide synthase, respectively [52]. These cytotoxic
factors, may also represent the mediators linking microglia activation with PC12 neurons
cytotoxicity [53], as indicated in our data by an increase in IL-1α and TNF-α secretion by
N9 microglia cells upon exposure to LPS. Remarkably, we demonstrated that resveratrol,
viniferin or their combination was able to counteract microglia-induced neurotoxicity both
indirectly when these polyphenols were applied to N9 cells, as well as directly when they
were used to treat PC12 neurons. This indicates that resveratrol and viniferin were both
able to modulate microglia secretory milieu, reducing the cytotoxic effect of microglia
secretome by eliciting adaptive protective responses directly in neurons. In either case,
resveratrol and viniferin exert anti-inflammatory effects and trigger molecular mechanisms
aimed at protecting cells against inflammation and oxidative stress, possibly relying on
the activation of the transcription factor nrf2 and the deacetylating enzyme SIRT-3 [17,34].
Particularly, in microglial cells, the activation of nrf2 by resveratrol may be responsible for
the inhibition of NFκB via a cross-talk between these transcription factors [54], leading to
the consequent downregulation of the inflammatory response elicited by LPS. Similarly,
viniferin has also been shown to exert anti-inflammatory responses by inhibition NFκB
signaling [55]. Thus, the ability of these polyphenols to restrain activated-microglia from
promoting cytotoxicity in PC12 neurons may be dependent on their capacity to dampen
LPS-induced inflammation and the consequent release of neurotoxic factors from N9 cells,
including nitric oxide, ROS and cytokines. Nonetheless, despite cytokines being a potential
driver of microglia-induced neurotoxicity, they are not significantly downregulated by
resveratrol or viniferin in our co-culture system. In light of this, these polyphenols may
also modulate N9 secretion of neurotoxic mediators such as ROS, nitric oxide and reactive
nitrogen species [6,13,52,56,57] that, however, were not measured in our study. Resveratrol
and viniferin also exerted direct neuroprotective effect on PC12 neurons co-cultured with
activated microglia. This action may rely on the activation of a transcriptional reprogram-
ming triggered by polyphenols in PC12 neurons in order to induce genes involved in
cellular defenses, which may be dependent on nrf2 and SIRT-3 activation [17,34]. However,
this paradigm remains to be fully elucidated.

To conclude, these polyphenols not only directly protect PC12 neurons against 6-
OHDA, but also exert their neuroprotective properties by inhibiting the neurotoxic effect
promoted by LPS-activated microglia. Moreover, the neuroprotective potential of resvera-
trol and viniferin is potentiated when they are used in combination, suggesting a synergistic
effect. Thus, considering that the foodstuff rich in resveratrol also contains other forms
of stilbenes, including viniferin, and taking into account the neuroprotective potential of
their combination, the consumption of these foods may represent a valuable nutritional
intervention in complementary therapies for neurodegenerative diseases.
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