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PREANTIPODES FOR DUAL-QUASI BIALGEBRAS

ALESSANDRO ARDIZZONI AND ALICE PAVARIN

Abstract. It is known that a dual quasi-bialgebra with antipode H, i.e. a dual quasi-Hopf
algebra, fulfils a fundamental theorem for right dual quasi-Hopf H-bicomodules. The converse
in general is not true. We prove that, for a dual quasi-bialgebra H, the structure theorem
amounts to the existence of a suitable map S : H → H that we call a preantipode of H.
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1. Introduction

Let H be a bialgebra. It is well known that the functor (−) ⊗ H : M → M
H
H determines an

equivalence between the categoryM of vector spaces and the categoryM
H
H of right Hopf modules if

and only if H has an antipode i.e. it is a Hopf algebra. The if part of this statement is the so-called
structure (or fundamental) theorem for Hopf modules, which is due, in the finite-dimensional case,
to Larson and Sweedler, see [LS, Proposition 1, page 82].

In 1989 Drinfeld introduced the concept of quasi-bialgebra in connection with the Knizhnik-
Zamolodchikov system of partial differential equations. The axioms defining a quasi-bialgebra are
a translation of monoidality of its representation category with respect to the diagonal tensor
product. In [Dr], the antipode for a quasi-bialgebra (whence the concept of quasi-Hopf algebra)
is introduced in order to make the category of its flat right modules rigid. Also for quasi-Hopf
algebras a fundamental theorem was given first by Hausser and Nill [HN] and then by Bulacu and
Caenepeel [BC]. If we draw our attention to the category of co-representations of H , we get the
concepts of dual quasi-bialgebra and of dual quasi-Hopf algebra. This notions have been introduced
in [Maj2] in order to prove a Tannaka-Krein type Theorem for quasi-Hopf algebras.

A fundamental theorem for finite-dimensional dual quasi-Hopf algebras can be obtained by
duality using the results in [HN]. For an arbitrary dual quasi-Hopf algebra, the fundamental
theorem is proved in [Sch2] as follows. Schauenburg proves first that a dual quasi-bialgebra satisfies
the fundamental theorem if and only if the category of its finite-dimensional co-representations is
rigid. On the one hand any dual quasi-Hopf algebra fulfils this property. On the other hand the
converse is not true in general. Thus dual quasi-Hopf algebras do not exhaust the class of dual
quasi-bialgebras satisfying the fundamental theorem.
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2 ALESSANDRO ARDIZZONI AND ALICE PAVARIN

It is remarkable that the equivalence giving the fundamental theorem in the case of ordinary
Hopf algebras must be substituted, in the “quasi” case, by the equivalence between the category of
left H-comodules H

M and the category of right dual quasi-Hopf H-bicomodules H
M

H
H (essentially

this is due to the fact that, unlike the classical case, H is not a right H-comodule algebra but is
still an H-bicomodule algebra). The main result of this paper, Theorem 3.9, establishes that such
an equivalence amounts to the existence of a suitable map S : H → H that we call a preantipode.
By the foregoing, any dual quasi-bialgebra with antipode (i.e. a dual quasi-Hopf algebra) admits
a preantipode (in Theorem 3.10 we give a direct prove of this fact) but the converse is not true
in general (see Remark 3.12). Finally, in Example 3.14, we construct a preantipode for a group
algebra endowed with a normalized 3-cocycle.

2. Preliminaries

In this section we recall the definitions and results that will be needed in the paper.

Notation 2.1. Throughout this paper k will denote a field. All vector spaces will be defined over
k. The unadorned tensor product ⊗ will denote the tensor product over k if not stated differently.

2.2. Monoidal Categories. Recall that (see [Ka, Chap. XI]) a monoidal category is a category
M endowed with an object 1 ∈ M (called unit), a functor ⊗ : M × M → M (called tensor
product), and functorial isomorphisms aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), lX : 1 ⊗ X → X,

rX : X ⊗ 1 → X, for every X,Y, Z in M. The functorial morphism a is called the associativity
constraint and satisfies the Pentagon Axiom, that is the following relation

(U ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗X) = aU,V,W⊗X ◦ aU⊗V,W,X

holds true, for every U, V,W,X in M. The morphisms l and r are called the unit constraints and
they obey the Triangle Axiom, that is (V ⊗ lW ) ◦ aV,1,W = rV ⊗W , for every V,W in M.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can
be introduced in the general setting of monoidal categories. Given an algebra A in M one can
define the categories AM, MA and AMA of left, right and two-sided modules over A respectively.

Definition 2.3. A dual quasi-bialgebra is a datum (H,m, u,∆, ε, ω) where

• (H,∆, ε) is a coassociative coalgebra;
• m : H ⊗ H → H and u : k → H are coalgebra maps called multiplication and unit
respectively; we set 1H := u(1k);

• ω : H ⊗H ⊗H → k is a unital 3-cocycle i.e. it is convolution invertible and satisfies

ω (H ⊗H ⊗m) ∗ ω (m⊗H ⊗H) = mk (ε⊗ ω) ∗ ω (H ⊗m⊗H) ∗mk (ω ⊗ ε) and(1)

v (h⊗ k ⊗ l) = ε (h) ε (k) ε (l) whenever 1H ∈ {h, k, l}.(2)

• m is quasi-associative and unitary i.e. it satisfies

m (H ⊗m) ∗ ω = ω ∗m (m⊗H) ,(3)

m (1H ⊗ h) = h, for all h ∈ H,(4)

m (h⊗ 1H) = h, for all h ∈ H.(5)

ω is called the reassociator of the dual quasi-bialgebra.

2.1. The category of (bi)comodules for a dual quasi-bialgebra. Let (H,m, u,∆, ε, ω) be
a dual quasi-bialgebra. It is well known that the category M

H of right H-comodules becomes
a monoidal category as follows. Given a right H-comodule V , we denote by ρ = ρrV : V →
V ⊗H, ρ(v) = v0 ⊗ v1, its right H-coaction. The tensor product of two right H-comodules V and
W is a comodule via diagonal coaction i.e. ρ (v ⊗ w) = v0 ⊗ w0 ⊗ v1w1. The unit is k, which is
regarded as a right H-comodule via the trivial coaction i.e. ρ (k) = k⊗ 1H . The associativity and
unit constraints are defined, for all U, V,W ∈ M

H and u ∈ U, v ∈ V,w ∈W,k ∈ k, by

aHU,V.W (u⊗ v ⊗ w) := u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1),

lU (k ⊗ u) := ku and rU (u ⊗ k) := uk.
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The monoidal category we have just described will be denoted by (MH ,⊗, k, aH , l, r).
Similarly, the monoidal categories (HM,⊗, k,Ha, l, r) and (HM

H ,⊗, k,HaH , l, r) are introduced.
We just point out that

HaU,V.W (u⊗ v ⊗ w) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0),

HaHU,V.W (u⊗ v ⊗ w) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1).

Remark 2.4. We know that, if (H,m, u,∆, ε, ω) is a dual quasi bialgebra, we cannot construct the
category MH , because H is not an algebra. Moreover H is not an algebra in M

H or in H
M. On

the other hand ((H, ρlH , ρ
r
H),m, u) is an algebra in the monoidal category (HM

H ,⊗, k,HaH , l, r)
with ρlH = ρrH = ∆. Thus, the only way to construct the category H

M
H
H is to consider the right

H-modules in H
M

H . Hence, we can set

H
M

H
H := (HM

H)H .

The category H
M

H
H is the so called category of right dual quasi-Hopf H-bicomodules [BC, Remark

2.3].

Remark 2.5. [AMS, Example 1.5(a)] Let (A,m, u) be an algebra in a given monoidal category
(M,⊗, 1, a, l, r). Then the assignments M 7−→ (M ⊗A, (M ⊗m) ◦ aA,A,A) and f 7−→ f ⊗A define
a functor T : M → MA. Moreover the forgetful functor U : MA → M is a right adjoint of T .

2.2. An adjunction between H
M

H
H and H

M. We are going to construct an adjunction between
H
M

H
H and H

M that will be crucial afterwards.

2.6. Consider the functor L : H
M → H

M
H defined on objects by L(•V ) := •V ◦ where the

upper empty dot denotes the trivial right coaction while the upper full dot denotes the given
left H-coaction of V. The functor L has a right adjoint R : H

M
H → H

M defined on objects
by R(•M•) := •M coH , where M coH := {m ∈ M | m0 ⊗ m1 = m ⊗ 1H} is the space of right
H-coinvariant elements in M .

By Remark 2.5, the forgetful functor U : H
M

H
H → H

M
H , U (•M•

• ) :=
•M• has a right adjoint,

namely the functor T : H
M

H → H
M

H
H , T (•M•) := •M• ⊗ •H•

• . Here the upper dots indicate on
which tensor factors we have a codiagonal coaction and the lower dot indicates where the action
takes place. Explicitly, the structure of T (•M•) is given as follows:

ρlM⊗H(m⊗ h) : = m−1h1 ⊗ (m0 ⊗ h2),

ρrM⊗H(m⊗ h) : = (m0 ⊗ h1)⊗m1h2,

(m⊗ h)l : = ω−1(m−1 ⊗ h1 ⊗ l1)m0 ⊗ h2l2ω(m1 ⊗ h3 ⊗ l3).

Define the functors F := TL : H
M → H

M
H
H and G := RU : H

M
H
H → H

M. Explicitly G (•M•
• ) =

•M coH and F (•V ) := •V ◦ ⊗ •H•
• so that, for every v ∈ V, h, l ∈ H,

ρlV ⊗H(v ⊗ h) = v−1h1 ⊗ (v0 ⊗ h2),

ρr(v ⊗ h) = (v ⊗ h1)⊗ h2,

(v ⊗ h)l = ω−1(v−1 ⊗ h1 ⊗ l1)v0 ⊗ h2l2.

The following result is essentially the right-hand version of [Sch2, Lemma 2.1]

Theorem 2.7. The functor F : H
M → H

M
H
H is a left adjoint of the functor G. Moreover, the

counit and the unit of the adjunction are given respectively by ǫM : FG(M) →M, ǫM (x⊗h) := xh

and by ηN : N → GF (N), ηN (n) := n ⊗ 1H , for every M ∈ H
M

H
H , N ∈ H

M. Moreover ηN is an
isomorphism for any N ∈ H

M. In particular the functor F is fully faithful.

3. The notion of preantipode

The main result of this section is Theorem 3.9, where we show that, for a dual quasi-bialgebra
H , the adjunction (F,G) is an equivalence of categories if and only if H admits what will be called
a preantipode.
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Definition 3.1. [Maj1, page 66] A dual quasi-Hopf algebra (H,m, u,∆, ε, ω, s, α, β) is a dual
quasi-bialgebra (H,m, u,∆, ε, ω) endowed with a coalgebra antimorphism

s : H → H

and two maps α, β in H∗, such that, for all h ∈ H :

h1β(h2)s(h3) = β(h)1H(6)

s(h1)α(h2)h3 = α(h)1H(7)

ω(h1 ⊗ β(h2)s(h3)α(h4)⊗ h5) = ε(h) = ω−1(s(h1)⊗ α(h2)h3β(h4)⊗ s(h5))(8)

Remark 3.2. Let (H,m, u,∆, ε, ω, s, α, β) be a dual quasi-Hopf algebra. In [BC, Remark 2.3] it is
studied the problem of finding an isomorphism between M and M coH ⊗H , for each M ∈ H

M
H
H .

The idea is to consider the surjection PM : M → M coH defined, for all m ∈ M , by PM (m) =
m0β(m1)s(m2). Bulacu and Caenepeel observe that a natural candidate for the bijection could be
the map γM :M → M coH ⊗H, defined, for each M ∈ H

M
H
H , by setting γM (m) = PM (m0)⊗m1.

Unfortunately there is no proof of the fact that γM is bijective.

Next result characterizes when the adjunction (F,G) is an equivalence of categories in term of
the existence of a suitable map τ .

Proposition 3.3. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. The following assertions are
equivalent.

(i) The adjunction (F,G) is an equivalence.
(ii) For each M ∈ H

M
H
H , there exists a k-linear map τ :M →M coH such that:

τ(mh) = ω−1[τ(m0)−1 ⊗m1 ⊗ h]τ(m0)0, for all h ∈ H,m ∈M,(9)

m−1 ⊗ τ(m0) = τ(m0)−1m1 ⊗ τ(m0)0, for all m ∈M,(10)

τ(m0)m1 = m ∀m ∈M.(11)

(iii) For each M ∈ H
M

H
H , there exists a k-linear map τ :M →M coH such that (11) holds and

(12) τ(mh) = mε(h), for all h ∈ H,m ∈M coH .

Proof. (i) ⇒ (ii) If (F,G) is an equivalence, then ǫM :M coH ⊗H →M is an isomorphism for each
M ∈ H

M
H
H . Set, for any m ∈M :

ǫ−1
M (m) = m0 ⊗m1 ∈M coH ⊗H.

We know that ǫ−1
M is right H-colinear, i.e. the following diagram commutes:

M

ρr

M

��

ǫ
−1

M
// M coH ⊗H

ρr

McoH⊗H

��

M ⊗H
ǫ
−1

M
⊗H

// (M coH ⊗H)⊗H

In terms of elements this means that, for all m ∈M,

(13) m0 ⊗ (m1)1 ⊗ (m1)2 = (m0)
0 ⊗ (m0)

1 ⊗m1.

Let us define τ : M → M coH , τ(m) := m0ε(m1). By applying M coH ⊗ ε⊗H to both terms in
(13), we get

ǫ−1
M (m) = τ(m0)⊗m1.

We will now prove (9), (10) and (11).
From the H-linearity of ǫ−1

M , the following diagram commutes:

M ⊗H

µM

��

ǫ
−1

M
⊗H

// (M coH ⊗H)⊗H

µ
McoH⊗H

��

M
ǫ
−1

M
// M coH ⊗H
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i.e.

ω−1(τ(m0)−1 ⊗m1 ⊗ h1)τ(m0)0 ⊗m2h2 = τ(m0h1)⊗m1h2, for all m ∈M,h ∈ H.

Applying now M coH ⊗ ε on both terms, we obtain exactly (9).
ǫ−1
M is also left H-colinear, that is:

M

lρM

��

ǫ
−1

M
// M coH ⊗H

lρ
McoH⊗H

��

H ⊗M
H⊗ǫ

−1

M
// H ⊗ (M coH ⊗H)

i.e.

τ(m0)−1m1 ⊗ τ(m0)0 ⊗m2 = m−1 ⊗ τ(m0)⊗m1, for all m ∈M.

To obtain (10) we have to apply H ⊗M coH ⊗ ε to both terms.
Finally, recalling the fact that ǫMǫ

−1
M = IM , we have the following equality, for all m ∈M,

m = ǫMǫ
−1
M (m) = ǫM (τ(m0)⊗m1) = τ(m0)m1.

(ii) ⇒ (iii) It is trivial.
(iii) ⇒ (i) The only thing that we have to prove is the invertibility of ǫM , for any M ∈ H

M
H
H .

Let us define ψ :M →M coH ⊗H by setting ψ (m) := τ(m0)⊗m1. Then, for all m ∈M,

ǫMψM (m) = τ(m0)m1
(11)
= m

and for all m ∈M coH , h ∈ H,

ψMǫM (m⊗ h) = ψM (mh) = τ(m0h1)⊗m1h2
m∈McoH

= τ(mh1)⊗ h2
(12)
= m⊗ h.

So ψM is the inverse of ǫM, for all M ∈ H
M

H
H .

From Theorem 2.7, we have that ηM is always an isomorphism, so we have the equivalence. �

Remark 3.4. Let τ : M → M coH be a k-linear map such that (11) holds. Following the proof of
Proposition 3.3, it is clear that a map τ fulfils (12) if and only if it fulfils (9) and (10).

3.5. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. As observed in Remark 2.4, (H,m, u) is an
algebra in the monoidal category (HM

H ,⊗, k,HaH , l, r), where both comodule structures are given
by ∆. Consider the functor T of 2.6 and set

H⊗̂H := T (◦H•) = ◦H• ⊗ •H•

• ,

where in ◦H• the empty dot denotes the trivial left H-comodule structure and the full dot denotes
the right coaction given by ∆. Explicitly, for h, k, l ∈ H , the structure of H⊗̂H is given by

ρr
H⊗̂H

(h⊗ k) = (h1 ⊗ k1)⊗ h2k2,

ρl
H⊗̂H

(h⊗ k) = k1 ⊗ h⊗ k2,

(h⊗ k)l = h1 ⊗ k1l1ω(h2 ⊗ k2 ⊗ l2).

Set

ǫ̂H := ǫ
F,G

H⊗̂H
: (H⊗̂H)coH ⊗H → H⊗̂H

so that, for xi ⊗ yi ∈ (H⊗̂H)coH (summation understood) and h ∈ H,

ǫ̂H((xi ⊗ yi)⊗ h) = (xi ⊗ yi) · h = xi1 ⊗ yi1h1ω(xi2 ⊗ yi2 ⊗ h2).

Suppose now that ǫ̂H is an isomorphism. Then, from the right H-colinearity of ǫ̂H , we deduce the
right H-colinearity of ǫ̂−1

H , i.e., if we set

h[1] ⊗ h[2] ⊗ h[3] := ǫ̂−1
H (h⊗ 1H),

we have:

(14) h[1] ⊗ h[2] ⊗ (h[3])1 ⊗ (h[3])2 = (h1)
[1] ⊗ (h1)

[2] ⊗ (h1)
[3] ⊗ h2.
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Define
β(h) := h[1] ⊗ h[2]ε(h[3]) ∈ (H⊗̂H)coH .

Then, by applying H ⊗H ⊗ ε⊗H on each side of (14), we get:

(15) ǫ̂−1
H (h⊗ 1H) = β(h1)⊗ h2.

Let consider a new left coaction for H⊗̂H :

ρl : H⊗̂H → H ⊗ (H⊗̂H), ρl(h⊗ k) := h1 ⊗ h2 ⊗ k = (∆⊗H)(h⊗ k).

Let us verify that ǫ̂H isH-left colinear respect on this new coaction i.e. that the following commutes:

(H⊗̂H)coH ⊗H

∆⊗H⊗H

��

ǫ̂H
// H⊗̂H

∆⊗H

��

H ⊗ ((H⊗̂H)coH ⊗H)
H⊗ǫ̂H

// H ⊗ (H⊗̂H)

In fact

(∆⊗H) ◦ ǫ̂H(xi ⊗ yi ⊗ h) = (∆⊗H)(xi1 ⊗ yi1h1ω(xi2 ⊗ yi2 ⊗ h2))

= xi1 ⊗ xi2 ⊗ yi1h1ω(xi3 ⊗ yi2 ⊗ h2)

= (H ⊗ ǫ̂H) ◦ (∆⊗H ⊗H)(xi ⊗ yi ⊗ h).

Then also ǫ̂−1
H is left H-colinear with respect to this structure, i.e:

(∆⊗H ⊗H) ◦ ǫ̂−1(x⊗ 1H) = (H ⊗ ǫ̂−1
H ) ◦ (∆⊗H)(x⊗ 1H).

If we set h1 ⊗ h2 := β(h), the last displayed equality means

(16) ((x1)
1)1 ⊗ ((x1)

1)2 ⊗ (x1)
2 ⊗ x2 = x1 ⊗ (x2)

1 ⊗ (x2)
2 ⊗ x3.

Let us define, for any x ∈ H,

S(x) := ε(x1)x2.

By applying H ⊗ ε⊗H ⊗ ε on each side of (16) it results:

(17) β(x) = x1 ⊗ S(x2).

Now let us deduce the properties of S from the bijectivity of ǫ̂H and its colinearity.
From (17) and β(x) ∈ (H⊗̂H)coH , we have:

x1 ⊗ S(x3)1 ⊗ x2S(x3)2 = x1 ⊗ S(x2)⊗ 1H .

By applying ε⊗H ⊗H on both sides, we obtain that

(18) S(x2)1 ⊗ x1S(x2)2 = S(x)⊗ 1H , for all x ∈ H.

From

x⊗ 1H = ǫ̂H ǫ̂
−1
H (x⊗ 1H)

= ǫ̂H(x1 ⊗ S(x2)⊗ x3)

= x11 ⊗ S(x2)1x3ω(x12 ⊗ S(x2)2 ⊗ x4)

= x1 ⊗ S(x3)1x4ω(x2 ⊗ S(x3)2 ⊗ x5)

we get
x⊗ 1H = x1 ⊗ S(x3)1x4ω(x2 ⊗ S(x3)2 ⊗ x5).

By applying ε⊗ ε on both sides, we get

(19) ω(x1 ⊗ S(x2)⊗ x3) = ε(x), for all x ∈ H.

From the left H-colinearity with respect to the usual coaction of ǫ̂H
−1

we have:

ρl ◦ ǫ̂−1
H (x⊗ 1H) = (H ⊗ ǫ̂−1

H )(1H ⊗ x⊗ 1H)

i.e.
S(x2)1x31 ⊗ x1 ⊗ S(x2)2 ⊗ x32 = 1H ⊗ x1 ⊗ S(x2)⊗ x3.
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Applying H ⊗ ε⊗H ⊗ ε on both sides, we obtain:

(20) S(x1)1x2 ⊗ S(x1)2 = 1H ⊗ S(x), for all x ∈ H.

Definition 3.6. A preantipode for a dual quasi-bialgebra (H,m, u,∆, ε, ω) is a k-linear map
S : H → H such that (18), (19) and (20) hold.

Remark 3.7. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a preantipode. Then the
following equalities hold

(21) h1εS(h2) = εS(h)1H. = εS(h1)h2 for all h ∈ H.

Lemma 3.8. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a preantipode. For any M ∈
H
M

H
H and m ∈M , set

(22) τ(m) := ω[m−1 ⊗ S(m1)1 ⊗m2]m0S(m1)2.

Then (22) defines a map τ :M → M coH which fulfills (9), (10) and (11).

Proof. To prove that τ is well-defined we have to check if Imτ ⊆M coH .

Let us compute, for all m ∈M ,

ρr(τ(m)) = ω(m−1 ⊗ S(m2)1 ⊗m3)m0S(m2)2 ⊗m1S(m2)3

(18)
= ω(m−1 ⊗ S(m1)1 ⊗m2)m0S(m1)2 ⊗ 1H

= τ(m)⊗ 1H .

Now let us prove (11). For all m ∈M ,

τ(m0)m1 = ω(m−1 ⊗ S(m1)1 ⊗m2)(m0S(m1)2)m3

(3)
=

[
ω(m−1 ⊗ S(m1)1 ⊗m2)ω

−1(m0−1
⊗ S(m1)2 ⊗m3)

m00(S(m1)3m4)ω(m01 ⊗ S(m1)4 ⊗m4)

]

= m0(S(m2)1m3)ω(m1 ⊗ S(m2)2 ⊗m3)

(20)
= m01Hω(m1 ⊗ S(m2)⊗m3)

(19)
= m1H .

Let us check (12). For m ∈M coH , h ∈ H,

τ(mh) = ω(m−1h1 ⊗ S(m1h3)1 ⊗m2h4)(m0h2)S(m1h3)2

(∗)
= ω(m−1h1 ⊗ S(h3)1 ⊗ h4)(m0h2)S(h3)2

(3)
= ω(m−1h1 ⊗ S(h3)1 ⊗ h4)ω

−1(m0−1
⊗ h21 ⊗ S(h3)2)m00(h22S(h3)3)

= ω(m−11h1 ⊗ S(h4)1 ⊗ h5)ω
−1(m−12 ⊗ h2 ⊗ S(h4)2)m0(h3S(h4)3)

(18)
= ω(m−11h1 ⊗ S(h3)1 ⊗ h4)ω

−1(m−12 ⊗ h2 ⊗ S(h3)2)m0

(1)
= ω−1(m−11 ⊗ h1 ⊗ S(h4)1h5)ω(h2 ⊗ S(h4)2 ⊗ h6)ω(m−12 ⊗ h3S(h4)3 ⊗ h7)m0

(18)
= ω−1(m−1 ⊗ h1 ⊗ S(h3)1h4)ω(h2 ⊗ S(h3)2 ⊗ h5)m0

(20)
= ω(h2 ⊗ S(h3)⊗ h4)m0

(19)
= ε(h)m,

where in (∗) we used that m ∈M coH . Now, by Remark 3.4, we conclude. �

We are now able to state the main theorem characterizing when (F,G) is an equivalence.

Theorem 3.9. For a dual quasi-bialgebra (H,m, u,∆, ε, ω) the following are equivalent.

(i) The adjunction (F,G) of Theorem 2.7 is an equivalence of categories.
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(ii) ǫ̂H is a bijection.
(iii) There exists a preantipode.

Proof. (i) ⇒ (ii) It is trivial because ǫ̂H = ǫ
F,G

H⊗̂H
.

(ii) ⇒ (iii) See Remark 3.5.
(iii) ⇒ (i) Let us define τ as in (22). Apply Lemma 3.8 and Proposition 3.3. �

Theorem 3.10. Let (H,m, u,∆, ε, ω, s, α, β) be a dual quasi-Hopf algebra. Then

S := β ∗ s ∗ α

is a preantipode. Here ∗ denotes the convolution product.

Proof. Fix h ∈ H. Let us check (18):

S(h2)1 ⊗ h1S(h2)2 = β(h2)s(h3)1α(h4)⊗ h1s(h3)2

(∗)
= s(h32)α(h4)⊗ h1β(h2)s(h31)

(6)
= s(h2)α(h3)⊗ β(h1)1H

= S(h)⊗ 1H .

where in (∗) we used that s is a coalgebra anti-homomorphism. Let us prove (20):

S(h1)1h2 ⊗ S(h1)2 = β(h1)s(h2)1α(h3)h4 ⊗ s(h2)2

(∗)
= β(h1)s(h22)α(h3)h4 ⊗ s (h21)

(7)
= β(h1)α(h3)⊗ s(h2).

= 1H ⊗ S(h).

Finally we have to verify (19):

ω(h1 ⊗ S(h2)⊗ h3) = ω(h1β(h2)⊗ s(h3)⊗ α(h4)h5)
(8)
= ε(h).

�

Corollary 3.11. (Cf. right-hand version of [Sch2, Corollary 2.7]) Let (H,m, u,∆, ε, ω, s, α, β) a
dual quasi-Hopf algebra. Then the adjunction (F,G) of Theorem 2.7 is an equivalence of categories.

Remark 3.12. Let us show that the converse of Theorem 3.10 does not hold true in general. By
[Sch1, Example 4.5.1], there is a dual quasi-bialgebra H which is not a dual quasi-Hopf algebra
and such that the category H

Mf of finite-dimensional left H-comodules is left and right rigid.
Then, by the right-hand version of [Sch2, Theorem 3.1], the adjunction (F,G) of Theorem 2.7 is
an equivalence of categories. By Theorem 3.9, H has a preantipode.

Nevertheless, for a finite-dimensional dual quasi-bialgebra, the existence of an antipode amounts
to the existence of a preantipode. This follows by duality in view of [Sch2, Theorem 3.1].

Remark 3.13. Consider a dual quasi-Hopf algebra (H,m, u,∆, ε, ω, s, α, β) and the associated
preantipode S. Than the map τ defined by (22) becomes:

τ(m) = ω(m−1 ⊗ S(m1)1 ⊗m2)m0S(m1)2

= ω(m−1 ⊗ β(m11)s(m12)1 ⊗m2)m0s(m12)2α(m13)

= ω(m−1 ⊗ β(m1)s(m3)⊗m5)m0s(m2)α(m4)

= ω(m−1 ⊗ s(m3)⊗m5)m0β(m1)s(m2)α(m4)

= ω(m−1 ⊗ s(m1)⊗m3)PM (m0)α(m2),

where PM denotes the map recalled in Remark 3.2.
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Example 3.14. Let G be a group. Let θ : G×G×G→ k
∗ := k\ {0} be a normalized 3-cocycle on

the group G in the sense of [Maj1, Example 2.3.2, page 54] i.e. a map such that, for all g, h, k, l ∈ H

θ (g, 1G, h) = 1

θ (h, k, l) θ (g, hk, l) θ (g, h, k) = θ (g, h, kl) θ (gh, k, l) .

Then θ can be extended by linearity to a reassociator ω : kG ⊗ kG ⊗ kG → k making kG a dual
quasi-bialgebra with usual underlying algebra and coalgebra structures. Moreover, by [AM, page
193], kG is indeed a dual quasi-Hopf algebra where α, β : kG → k are defined on generators by
α(g) := 1k and β(g) := [ω

(
g, g−1, g

)
]−1 and the antipode s : kG→ kG is given by s(g) := g−1, for

all g ∈ G. By Theorem 3.10, we have a preantipode on kG, which is defined by S := β ∗ s ∗ α so
that

S(g) := [ω
(
g, g−1, g

)
]−1g−1, for all g ∈ G.

Note that, unlike the antipode, this preantipode is not an coalgebra anti-homomorphism as

S(g2)⊗ S(g1) = [ω
(
g, g−1, g

)
]−1∆S(g), for all g ∈ G.
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