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Abstract

Inferring past demographic histories is crucial in population genetics, and the amount of complete 

genomes now available should in principle facilitate this inference. In practice, however, the available 

inferential methods suffer from severe limitations. Although hundreds complete genomes can be 

simultaneously analyzed, complex demographic processes can easily exceed computational constraints, and 

the procedures to evaluate the reliability of the estimates contribute to increase the computational effort.  

Here we present an Approximate Bayesian Computation framework based on the Random Forest algorithm 

(ABC-RF), to infer complex past population processes using complete genomes. To this aim, we propose to 

summarize the data by the full genomic distribution of the four mutually exclusive categories of 

segregating sites (FDSS), a statistic fast to compute from unphased genome data and that does not require 

the ancestral state of alleles to be known. We constructed an efficient ABC pipeline and tested how 

accurately it allows one to recognize the true model among models of increasing complexity, using 

simulated data and taking into account different sampling strategies in terms of number of individuals 

analyzed, number and size of the genetic loci considered. We also compared the FDSS with the unfolded 

and folded Site Frequency Spectrum, and for these statistics we highlighted the experimental conditions A
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maximizing the inferential power of the ABC-RF procedure. We finally analyzed real datasets, testing 

models on the dispersal of anatomically modern humans out of Africa and exploring the evolutionary 

relationships of the three species of Orangutan inhabiting Borneo and Sumatra. 

Introduction 

A faithful reconstruction of the demographic dynamics of a species is important both to improve 

our knowledge about the past and to disentangle the effects of demography from those of natural selection 

(Akey et al., 2004; Lohmueller, 2014; D. Meyer, Single, Mack, Erlich, & Thomson, 2006). In recent years, 

thousands of modern and ancient complete genome sequences have become available, potentially 

containing vast amounts of information about the evolutionary history of populations(1000 Genomes 

Project Consortium, 2012; Dasmahapatra et al., 2012; De Manuel et al., 2016; Mallick et al., 2016; M. 

Meyer et al., 2012; Moreno-Mayar et al., 2018; Prüfer et al., 2014). However, these genomes do not speak 

by themselves; to extract the evolutionary information they contain, appropriate inferential statistical 

methods are required. Some methods based on the Sequential Markovian Coalescent (SMC) model 

(McVean & Cardin, 2005), became popular among population geneticists due to their ability to infer 

population size changes through time (PSMC; Li & Durbin, 2011) and divergence times (MSMC; Schiffels 

& Durbin, 2014), and to scale well on whole genome sequences. Under these approaches, the local density 

of heterozygote sites along chromosomes is used to estimate the times of the most recent common ancestor 

(TMRCA) of genomic regions separated by recombination, thus providing insight into ancestral population 

sizes and the timing of divergence processes. These estimates are often used to indirectly support 

hypotheses regarding the evolution of the studied organisms. Albeit sophisticated, these methods present 

some limitations; the temporal resolution of the inferred demographic events seems to be strongly 

dependent on the number of individuals included, with poor performance in the recent past especially when 

analyzing single individuals. Moreover, these methods assume no gene flow among the investigated 

populations, which in many cases is plainly implausible. The consequences on the inferential process of 

violation of this assumption have been investigated using both mathematical theory (Mazet, Rodríguez, 

Grusea, Boitard, & Chikhi, 2016) and computer simulations (Chikhi et al., 2018). 

Other methods infer demographic parameters via the diffusion approximation (Gutenkunst, 

Hernandez, Williamson, & Bustamante, 2010), or coalescent simulations (Beeravolu, Hickerson, Frantz, & 

Lohse, 2018; Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013), from the SFS computed on 

large genomic datasets. The SFS records the observed number of polymorphisms segregating at different 

frequencies in a sample of n individuals and is generally computed over a certain number of genomic 

regions where no influence of natural selection is assumed. The expectation of the SFS under different 

evolutionary scenarios could be approximated by the diffusion theory (as implemented e.g. in dadi), 

directly via coalescent simulations (as in fastsimcoal or ABLE), or computed analytically (Chen, 2012; A
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Jouganous, Long, Ragsdale, & Gravel, 2017; Kamm, Terhorst, & Song, 2017); alternative demographic 

histories can be compared via e.g. AIC (Akaike, 1974). Still, there are limits to the complexity of models 

that can be analyzed, and AIC-like approaches can only be used to understand which modifications 

significantly improve the model, without explicit model testing and a direct attribution of probabilities to 

each tested scenario. Therefore, through these approaches, model checking can be problematic (i.e. to 

evaluate whether and to what extent the compared models can actually be distinguished from each other, or 

whether the selected model can capture the observed variation), and so is quantifying the strength of the 

support associated to the best model (Beeravolu et al., 2018). Indeed, the only available procedure to assess 

the models identifiability or to test for the goodness of fit of the best scenario requires the analysis of many 

datasets simulated under known demographic conditions, which can be computationally prohibitive, in 

particular for complex evolutionary scenarios (Excoffier et al., 2013). 

Recently, an inferential method that couples the ability of the SMC to deal with whole genome 

sequences and the population signal gathered from the SFS has been developed (SMC++; Terhorst, Kamm, 

& Song, 2017). Under this inferential framework, both the genomic and the SFS variation are jointly used 

to estimate population size trajectories through time, as well as the divergence time between pairs of 

populations. Although this approach seems to scale well on thousands of unphased genomes, it is based on 

the same assumption of classical SMC methods (with populations evolving independently), which severely 

limits its use whenever gene flow cannot be ruled out.

One powerful and flexible way to quantitatively compare alternative models and estimating 

model’s parameters relies on the Approximate Bayesian Computation (ABC) methods. Under these 

methods, the likelihood functions need not be specified, because posterior distributions can be 

approximated by simulation, even under complex (and hence realistic) population models, incorporating 

prior information. The genetic data, both observed and simulated, are summarized by the same set of 

“sufficient” summary statistics, selected to be informative about the genealogic processes under 

investigation. The ability of the framework to distinguish among the alternative demographic models tested 

and the quality of the results can be evaluated with rather limited additional effort (for a review see e.g. 

Bertorelle, Benazzo, & Mona, 2010; Csilléry, Blum, Gaggiotti, & François, 2010). 

      Although ABC has the potential to deal with complex and realistic evolutionary scenarios, its 

application to the analysis of large genomic datasets, such as complete genomes, is still problematic. In its 

original formulation, indeed, the ABC procedure, depending on the complexity of the models tested (i.e. 

the number of parameters, and the size of the prior distributions on the parameters), may require the 

simulation of millions data sets of the same size of those observed. This step becomes computationally very 

expensive as the dataset size increases in size, or when many models need be compared. In addition, there 

is no accepted standard as for the choice of the summary statistics describing both observed and simulated 

data, as recognized since the first formal introduction of ABC (Mark A. Beaumont, Zhang, & Balding, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

2002; Marjoram, Molitor, Plagnol, & Tavare, 2003). Increasing the number of summary statistics, indeed, 

makes it easier to choose the best model, but inevitably reduces the accuracy of the demographic inference 

(this problem is referred to as the “curse of dimensionality”, Blum & François, 2010). Ideally, the good 

practice would be to select a set of summary statistics that is both low-dimensional and highly informative 

on the demographic parameters defining the model. In practice, however, this problem is still unsolved, 

despite several serious attempts (M G B Blum, Nunes, Prangle, & Sisson, 2013). 

Recently, a new ABC framework has been developed based on a machine-learning tool called 

Random Forest (ABC-RF, Pudlo et al., 2015). Under ABC-RF, the Bayesian model selection is rephrased 

as a classification problem. At first, the classifier is constructed from simulations from the prior distribution 

via a machine learning RF algorithm. Once the classifier is constructed and applied to the observed data, 

the posterior probability of the resulting model can be approximated through another RF that regresses the 

selection error over the statistics used to summarize the data. The RF classification algorithm has been 

shown to be insensitive both to the correlation between the predictors (in case of ABC, the summary 

statistics) and to the presence of relatively large numbers of noisy variables. This means that even choosing 

a large collection of summary statistics, the correlation between some of them and others (which may be 

uninformative about the models tested), have no consequences on the RF performance, and hence on the 

accuracy of the inference. Moreover, compared to the standard ABC methods, the RF algorithm performs 

well with a radically lower number of simulations (from millions to tens of thousands per model). These 

properties make the new ABC-RF algorithm of particular interest for the statistical analysis of massive 

genetic datasets. In this light, the unfolded SFS, that due to the above mentioned limitations has been rarely 

used in a classical ABC context (Eldon, Birkner, Blath, & Freund, 2015), should be a suitable (and possibly 

sufficient) statistic to summarize genomic data (Lapierre, Lambert, & Achaz, 2017; Smith et al., 2017; 

Terhorst & Song, 2015). However, to obtain a complete representation of the frequency spectrum the 

ancestral state of a SNP has to be known; any uncertainty linked to the identification of the ancestral state 

cause indeed a bias in the reconstruction of the spectrum and, consequently, on the inference of the 

demographic dynamics behind it (Hernandez, Williamson, & Bustamante, 2007; Keightley & Jackson, 

2018). In such cases, the folded version of the SFS should be used, with unavoidable loss of information 

(Keightley & Jackson, 2018). Moreover, since the SFS is based on allele frequencies, its reliability should 

increase as increasing the number of individuals sampled per population, that in certain condition may 

rather be a limiting factor (i.e. in the analysis of ancient data). 

 In this paper we tested the power of the newly developed ABC-RF procedure for model selection 

summarizing the data through a set of summary statistics that 1- can be easily calculated from unphased 

genomes data, 2- do not require information about ancestral state of alleles and 3- are known to be 

informative about past processes of divergence and admixture (Wakeley & Hey, 1997). These statistics are 

the four mutually exclusive categories of segregating sites for pair of populations (i.e. private A
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polymorphisms in either population, shared polymorphisms and fixed differences), calculated as frequency 

distributions over the whole genome (hence the FDSS, frequency distribution of segregating sites). These 

statistics have already been successfully used in a standard ABC context (Robinson, Bunnefeld, Hearn, 

Stone, & Hickerson, 2014), but only in the form of the first four moments of the distribution across loci. 

Here, for the first time, and thanks to the ABC-RF procedure, we analyze the full genomic distribution of 

each statistic, and compare its performance with the one achievable using the unfolded and the folded 

pairwise joint SFS (calculated across all sites, including monomorphic loci). 

We first performed a power analysis, to evaluate how accurately this ABC pipeline can recognize 

the true model among models of increasing complexity, using simulated data summarized by both the 

FDSS and the SFS. We also explored the performances of the presented procedure with respect to the 

experimental conditions, evaluating the consequences of sampling strategies involving different numbers of 

chromosomes, genomic loci, and locus lengths. Our results show that the ABC-RF coupled with the FDSS 

can reliably distinguish among demographic histories, in particular when few chromosomes per population 

are considered. In all other cases, the performances are comparable to those obtained with the SFS.

As a final step, we applied our method to two case studies, in all cases choosing to sample a single 

individual (i.e. two chromosomes) per population. First, we analyzed the demographic history of 

anatomically modern humans and the dynamics of migration out of the African continent, explicitly 

comparing two models proposed by Malaspinas et al., (2016) and by Pagani et al., (2016). Secondly, we 

reconstructed the past demographic history and the interaction dynamics among the three orangutan species 

inhabiting Borneo and Sumatra, revising the models presented by Nater et al., (2017).

Materials and Methods

The ABC-RF

In the original formulation of ABC, the most used algorithm for model selection was based on the 

weighted multinomial logistic regression, introduced by M. A. Beaumont (2008). Under the logistic 

regression method, the estimation of the coefficients for the regression between a model indicator 

(response) variable and the simulated summary statistics (the explanatory variables) allowed the estimation 

of the posterior probability for each model at the intercept condition where observed and simulated 

summary statistics coincide. However, this algorithm suffers from two important limitations. First, to 

obtain reliable estimates of the models’ posterior distribution, many simulations are necessary, making it 

difficult to analyse massive datasets with thousands of genomic loci. The second crucial point regards the 

selection of the vector of summary statistics to compare simulated and observed data, that has to be, at the 

same time, sufficiently informative and low-dimensional (Blum & François, 2010).

These important issues related to the conventional ABC framework were recently addressed by the A
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introduction of a paradigm shift in the model selection procedure, based on a Machine Learning procedure 

called random forest (RF, Pudlo et al., 2015). Under the RF approach, the model selection stage is 

rephrased as a classification problem. The Machine Learning classifier is constructed from the reference 

table, composed by a set of simulation records made of model indices and summary statistics for the 

associated simulated data. The reference table serves as training database for a RF that forecasts model 

index based on the summary statistics. This classification method has shown to be insensitive both to the 

correlations among summary statistics and to the presence of uninformative variables; moreover, it 

accommodates large dimensional summary statistics with no consequences on the estimation performances. 

Once the classifier is constructed, it is applied to the real data; the posterior probability of the selected 

model is then approximated from a secondary RF that regresses the selection error over the available 

summary statistics.

The FDSS

To compute the FDSS we evaluated the genomic distributions of the four mutually exclusive 

categories of segregating sites in two populations, namely (i) segregating sites private of the first 

population; (ii) segregating sites private of the second populations; (iii) segregating sites that are 

polymorphic in both populations; and (iv) segregating sites fixed for different alleles in the two populations 

(Wakeley & Hey, 1997). We considered the genome as subdivided in k independent fragments of length m, 

and for each fragment we counted the number of sites belonging to each of the four above-mentioned 

categories. This way, for a locus Lj and a fixed pair of populations we have the tuple {Lji, Ljii, Ljiii, Ljiv} of 

the numbers of sites in each of the four categories. The final vector of summary statistics is composed of 

the truncated frequency distribution of loci having from 0 to n segregating sites in each category, for each 

pair of populations considered. The maximum number of segregating sites in a locus of length m is fixed to 

n (100 in our case), and hence the last category contains all the observations higher or equal to n. 

Specifically, for a fixed pair of populations, the summary statistics SSi(z), SSii(z), SSiii(z), SSiv(z) are: 

𝑆𝑆𝐴(𝑥) =  
𝑘

∑
𝑗 = 1

𝐼(𝐿𝑗𝐴 = 𝑥 ∨ (𝑥 = 𝑛 ∧  𝐿𝑗𝐴 > 𝑥)),  𝑤ℎ𝑒𝑟𝑒  𝑥 ∈ 𝑁, 𝑥 ≤ 𝑛, 𝐴 ∈ {𝑖, 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣}

In the one-population models, we use a single truncated frequency distribution of within-population 

segregating sites in a locus; in this case we thus counted the number of genomic fragments carrying from 0 

to n polymorphic sites. This statistic SS(z), is hence defined as:

𝑆𝑆(𝑥) =  
𝑘

∑
𝑗 = 1

𝐼(𝐿𝑗 = 𝑥 ∨ (𝑥 = 𝑛 ∧  𝐿𝑗 > 𝑥)),  𝑤ℎ𝑒𝑟𝑒  𝑥 ∈ 𝑁, 𝑥 ≤ 𝑛

Power Analysis

To determine the power of both the FDSS and the SFS in distinguishing among alternative A
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evolutionary trajectories, we simulated genetic data considering different experimental conditions. We 

tested all the possible combinations of locus length (bp) {200; 500; 1,000; 2,000; 5,000}, number of loci 

{1,000; 5,000; 10,000} and number of chromosomes {2, 4, 10, 20}, for a total of 60 combinations of 

sampling conditions tested. For each combination, we generated data with intra-locus recombination 

(recombination rate= 1x10-8), and with a fixed mutation rate (1x10-8 /bp/generation).  We evaluated the 

power considering three sets of models of increasing complexity, detailed below. The FDSS and the two 

SFS were calculated from the ms (Hudson, 2002) or msms (Ewing & Hermisson, 2010) output of each 

simulation through a in-house python script (available on github https://github.com/anbena/ABC-FDSS). 

For each combination of experimental conditions, we compared alternative models within the three sets 

tested treating each simulated dataset for each model as pseudo-observed data (pods). All the ABC-RF 

estimates have been obtained using the function abcrf from the package abcrf and employing a forest of 

500 trees, a number suggested to provide the best trade-off between computational efficiency and statistical 

precision (Pudlo et al., 2015). We computed the confusion matrices and we evaluated the out-of-bag 

classification error (CE); for each comparison we then calculated the proportion of True Positives (TP) as 

1-CE. The proportion of TP is thus a measure of the power of the whole inferential procedure, considering 

all its features (model selection approach, alternative models compared, statistics summarizing the data, 

genomic parameters simulated).

One-population models

We started by considering four demographic models (Fig. 1). The first model represents a 

constantly evolving population with an effective population size N1, drawn from a uniform prior 

distribution (Table S1). Under the second model, the population experienced a bottleneck of intensity i, T 

generations ago. The intensity and the time of the bottleneck, and the ancient effective population size Na 

are drawn from uniform prior distributions, showed in Table S1. The third model represents an expanding 

population. The expansion (of intensity i) is exponential and starts T generations ago, with the effective 

population size increasing from N1/i to N1 (prior distributions in Table S1). Under the last model, the 

population is structured in different demes, exchanging migrants at a certain rate. The actual number of 

demes d, the migration rate m and the effective population size N1 are drawn from prior distributions 

(Table S1).

Two-populations models 

We then moved to considering three demographic models with two populations (Fig. 2). The first 

one is a simple split model without gene flow after the divergence. Under this model, an ancestral 

population of size Nanc splits Tsep generation ago into two populations. These two derived populations 

evolve with a constant population size (N1 and N2) until the present time (priors for these free parameters A
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are shown in Table S2). The second model also includes a continuous and bidirectional migration, all the 

way from the divergence moment to the present. The per generation migration rates m12 and m21 are 

drawn from priors defined in Table S2. The third and last model assumes a single pulse of bidirectional 

admixture at time Tadm after divergence. Admixture rates adm12 adm21, and the time of admixture are 

drawn from priors (Table S2). 

Multi-populations models

In most realistic cases, populations do interact with each other. Among the many possible 

scenarios, we chose to initially focus on the hypotheses proposed to explain the expansion of anatomically 

modern humans out of Africa. The basic alternative is between a single dispersal occurring along a 

Northern corridor (see e.g. Malaspinas et al., 2016) or two dispersal events, first along the so-called 

Southern route, and then through a Northern corridor (e.g. Pagani et al., 2016; Reyes-Centeno et al., 2014; 

Tassi et al., 2015). To design the models we followed the parametrization proposed by Malaspinas et al., 

(2016), with some minor modifications (Fig. 3). Both models share the main demographic structure: on the 

left the archaic groups (i.e. Neandertal, Denisova and an unknown archaic source), and on the right the 

anatomically modern humans (with a first separation between Africans and non-Africans and subsequent 

separations among population that left Africa). Given the evidence for admixture of Neandertals and 

Denisovans with non-African modern human populations (M. Meyer et al., 2012; Prüfer et al., 2014), we 

allowed for genetic exchanges from archaic to modern species, indicated in Fig. 3 by the colored arrows. 

The archaic populations actually sending migrants to modern humans are unknown, and hence here we 

used two ghost populations that diverged from the Denisovan and the Neandertal Altai samples 393 kya 

and 110 kya, respectively (Malaspinas et al., 2016). This way, we took into account that the archaic 

contributions to the modern gene pool did not necessarily come from the archaic populations that have been 

genotyped so far. We modeled bidirectional migration between modern populations along a stepping-stone, 

thus allowing for gene flow only between geographically neighboring populations. Under the Single 

Dispersal model (SDM) a single wave of migration outside Africa gave rise to both Eurasian and 

Austromelanesian populations, whereas under the Multiple Dispersal model (MDM) there are two waves of 

migration out of Africa, the first giving rise to Austromelanesians and the second to Eurasians. We took 

into account the presence of genetic structure within Africa modeling the expansion from a single 

unsampled “ghost” population under the SD model, and from two separated unsampled “ghost” populations 

for the MD model. The prior distributions for all the parameters considered in these models are in Tables 

S3 and S4.

We simulated both demographic models under all possible combinations of experimental 

parameters. We ran 50,000 simulations per model and combination of experimental parameters, using the 

ms/msms software.A
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Real Case: out of Africa dynamics

We explicitly compared SDM and MDM considering the high-coverage genomes of Denisova and 

Neandertal (M. Meyer et al., 2012; Prüfer et al., 2014), together with modern human samples from Pagani 

et al. (2016). A detailed description of the samples is in Table S5. All the individuals were mapped against 

the human reference genome hg19 build 37. To calculate the observed FDSS we only considered autosomal 

regions outside known and predicted genes +/- 10,000 bp and outside CpG islands and repeated regions (as 

defined on the UCSC platform, Hinrichs et al., 2016). We extracted 10,000 independent fragments of 500 

bp length, separated by at least 10,000 bps in genomic regions that passed a set of minimal quality filters 

used for the analysis of the ancient genomes (map35_50%; M. Meyer et al., 2012; Prüfer et al., 2014). 

Power analysis (see Results-Multi populations models section), showed we could safely analyze a single 

individual (i.e. two chromosomes) per population. Therefore, each run of the analysis took into account the 

Denisova, the Neandertal, one African, one European one Asian and, in turn, either one out of six Papuans 

from Pagani et al. (2016) or one of 25 Papuans from Malaspinas et al. (2019) (detailed in Table S5). As for 

the Papuan genomes in Malaspinas et al. (2016), we downloaded the alignments in CRAM format from 

https://www.ebi.ac.uk/ega/datasets/EGAD00001001634. The mpileup and call commands from samtools-

1.6 (Li et al., 2009), were used to call all variants within the 10,000 neutral genomic fragments, using the --

consensus-caller flag, without considering indels. We then filtered the initial call set according to the filters 

reported in Malaspinas et al. (2016) using vcflib and bcftools (Li et al., 2009). Each of the resulting 31 

observed FDSS was separately analyzed through the ABC-RF model selection procedure. Finally, we 

checked whether the selected model is actually able to account for the observed variation through a 

Principal Component Analysis (PCA) of the simulated and observed data.

Real Case: Orangutan evolutionary history

We selected seven orangutan individuals, one from each of the populations defined by Nater et al. 

(2017), choosing the genomes with the highest coverage (Table S6). We downloaded the FASTQ files from 

https://www.ncbi.nlm.nih.gov/sra/PRJEB19688, and mapped the reads to the ponAbe2 reference genome 

(http://genome.wustl.edu/genomes/detail/pongo-abelii/) using the BWA-MEM v0.7.15 (Li & Durbin, 

2010). We used picard-tools-1.98 (http://picard.sourceforge.net/) to add read groups and to filtered out 

duplicated reads from the BAM aligments. We performed local realignment around indels by the Genome 

Analysis Toolkit (GATK) v2.7-2 (Van der Auwera et al., 2013). To obtain genomic fragments suitable to 

calculate the FDSS, we generated a mappability mask (identified with the GEM-mappability module from 

the GEM library build, Derrien et al., 2012) so as to consider only genomic positions within a uniquely 

mappable 100-mer (up to 4 mismatches allowed). We then excluded from this mask all the exonic regions 

+/- 10,000 bp, repeated regions (as defined in the Pongo abelii Ensembl gene annotation release 78), as A
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well as loci on the X chromosome and in the mitochondrial genome. We then generated the final mask 

calculating the number of fragments separated by at least 10 kb, thus obtaining 9,000 fragments of 1,000 bp 

length. We called the SNPs within these fragments using the UnifiedGenotyper algorithm from GATK; the 

filtering step has been performed as reported in Nater et al. (2017) through vcflib. We finally calculated the 

observed FDSS from the quality filtered VCF file.

To investigate past population dynamics of the three Orangutan species, we designed competitive 

scenarios following the demographic models reported in Nater et al. (2017). We directly compared complex 

demographies, designing the within-species substructure as described by Nater et al. (2017), (Fig. 4A). The 

four competing models indeed share the same within-species features (four populations for the Bornean 

group, two Sumatran populations north of Lake Toba, and a single population south of Lake Toba), while 

differing for the tree topology, i.e. for the evolutionary relationships among the three species, as reported in 

Fig. 4A. We modeled bidirectional migration both among populations within a species, and between 

neighboring species. A detailed description of the models’ parameters and of the priors are in Tables S7-

S10. We ran 50,000 simulations per model using the ms software (Hudson, 2002), generating two 

chromosomes per population (4 Bornean, 1 south of Lake Toba and 2 north of Lake Toba), and 9,000 

independent fragments of 1kb length per chromosome. We first assessed the power to distinguish among 

the four models calculating the proportion of TPs as described above, and then explicitly compared the 

simulated variation with the FDSS calculated on the observed data (Fig. 4B). Also in this case, the model 

checking has been performed through PCA.

Results

Power Analysis

One-population models

The four plots of Fig. 1B report the results of the power analyses obtained summarizing the data 

through the FDSS, whereas plots of Fig. 1C report the results obtained with the folded SFS. Being quite 

redundant, the results for the unfolded SFS are presented in Figure S1. In each plot, we reported the 

proportion of times each model was correctly recognized as the most likely one. For the FDSS, the 

percentage of true positives is quite high, ranging from almost 80% to 100% depending on the model 

generating the pod and on the combination of experimental conditions tested. The bottleneck model has the 

highest rate of identification, with most combinations of experimental conditions yielding nearly 100% true 

positives. By contrast, the least identifiable model seems the one considering a structured population, with 

0.78 to 0.90 true positives. However, we observed that the decrease in the power is actually linked to the 

extent of gene flow among demes, and to the number of demes sampled; as rates of gene flow increase and 

the number of demes sampled decreases, the structured and the panmictic models converge, hence 

becoming harder to distinguish (Fig. S2). As expected, we observed a general increase in power with the A
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increase of both the locus length and the number of loci considered. By contrast, the number of sampled 

chromosomes does not appear to be directly linked to the increase of the proportion of true positives when 

the data are summarized through the FDSS. For some sampling conditions, we observed instead a decrease 

in the TP rate going from 2 to 20 chromosomes (see Fig. 1B). We showed that this behavior reflects the 

overlap of the FDSS generated by the constant and the structured models, an overlap increasing in parallel 

with the number of chromosomes sampled (Fig. S3). When sample size increases, indeed, the total branch 

length of coalescent trees is strongly influenced by the most recent part of the tree (see e.g. Wakeley & 

Aliacar, 2001), where the structured model behaves as a constant model because migration has not yet 

occurred and all lineages stay in the local deme where the data have been sampled. When the data were 

summarized through the SFS (both folded and unfolded) we observed, instead, significant differences in the 

proportion of true positives at increasing numbers of chromosomes sampled per population. When the 

number of chromosomes is between ten and twenty, the TP rate always ranges between 90 and 100% for all 

the models tested except for the structured one, which showed a slightly lower proportion of TP, between 

85 and 95% (Fig. 1C, Figure S1). With only two chromosomes, and with four chromosomes for certain 

combination of experimental parameters, the percentage of TP only ranges between 70% and 85%. With 

the SFS we sometimes observed a decrease of the TP rate when considering more genetic loci, or longer 

locus lengths. This happened under the constant model (TP rate about 75%) and under the exponential 

model (TP rate about 80%).

Two-populations models

The plots in Fig. 2B, C and Figure S4 show the results for the two-populations models. When 

considering the FDSS the proportion of TP is generally quite high, with the Divergence with Migration and 

the Divergence with Admixture models showing the highest proportion of TP, reaching for many 

experimental conditions the 100%. For the Divergence model, the TP proportion is lower, ranging from 62 

to 90%. Once again, the performance of the FDSS correlates with the number and the length of genetic loci, 

and not with the number of chromosomes. The folded and unfolded SFS do not show significant differences 

in their performance (Fig 2C and Figure S4), and we generally observed the same features emerging from 

the comparison of one-populations models. When only two chromosomes per population were considered 

the proportion of TP was between 60% and 65% for the Divergence model, between 72% and 82% for the 

Divergence with Migration model, and between 55% and 78% for the Divergence with Admixture model. 

With more chromosomes sampled we observed an increase in the TP rate, until reaching the values 

achieved with the FDSS. Both folded and unfolded SFS seem not to be sensitive to the number of loci, nor 

to their length. A
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Multi-populations models

Fig. 3B, C and Figure S5 summarize the power analysis comparing SDM and MDM. For the FDSS 

the proportion of true positives ranges between 0.65 and 0.70 for the SDM, and between 0.65 and 0.8 for 

the MDM, in this case with a slight increase of the power with the size of the fragments simulated and the 

number of loci simulated. Because the SDM and the MDM share several features, in particular when under 

MD the time interval between the first and second exit is short, we also evaluated the ability of the FDSS to 

be informative about the correct model as a function of this interval. To do this, we considered 10,000 pods 

from the MDM. We then subdivided these 10,000 pods in 6 bins of increasing interval between these two 

events (up to 60,000 years), measuring, within each bin, the proportion of times in which the MDM is 

correctly recognized by the ABC-RF procedure. As might be expected, the proportion of true positives 

increases with increasing time intervals (Fig. S6), reaching values of 90% for some combinations of 

experimental parameters. When the data are summarized through the SFS the proportion of TP reach 75% 

for the SDM and 0.8 for the MDM. In this case the highest proportions of TP are observed for twenty 

chromosomes, with negligible or null impact of the number of genetic loci or locus length. 

Real Case: out of Africa dynamics

Simulations in the previous section show that alternative models can be distinguished using the 

FDSS to summarize the data, except when the difference between them becomes so small that the models 

overlap. Interestingly, the success of FDSS in distinguishing models does not seem to depend on the 

number of chromosomes analyzed; a single individual sampled per population shows a comparable 

discrimination power as twenty chromosomes. Thus, it seems that ABC models comparison through FDSS 

is particularly suited for small sample sizes, e.g. in studies of ancient DNA. To further explore this feature 

we applied the FDSS to estimate posterior probabilities of alternative models about early human expansion 

from Africa. Whether human demographic history is better understood assuming one (Malaspinas et al., 

2016; Mallick et al., 2016) or two (Pagani et al., 2016; Reyes-Centeno et al., 2014; Tassi et al., 2015) major 

episodes of African dispersal is still an open question. While concluding that indigenous Australians and 

Papuans seem to derive their ancestry from the same African wave of dispersal as most Eurasians, Mallick 

et al. (2016) admitted that these inferences change depending on the computational method used for 

phasing haplotypes. Therefore, it made sense to compare the SDM and the MDM through our ABC 

approach. The proportion of true positives for the combination of experimental parameters here considered 

(i.e. 10,000 loci of 500 bp length and 2 chromosomes per population) was 0.68 for the SDM, and 0.74 for 

the MDM (Fig. 3A). 

Regardless of the Papuan individual considered in each run of 31 replicated experiments, the 

results always supported the MDM, with posterior probabilities ranging from 0.74 to 0.76 for the Pagani et A
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al. (2016) genomes, and from 0.69 to 0.74 for the Malaspinas et al. (2016) genomes (Fig. 5 and Tables S11-

S12), The PCA of the simulated and observed data shown in Figure S7 confirms that the MDM is able to 

reproduce the genetic variation found in real data. 

Real Case: Orangutan evolutionary history

As a second application, we investigated the past demographic and evolutionary dynamics of the 

orangutan. In addition to the two species previously recognized in Borneo (Pongo pygmeus) and in 

Sumatra, North of Lake Toba (Pongo abelii), Nater et al. (2017) described a new species of Sumatran 

orangutan, Pongo tapanuliensis, South of Lake Toba. To reduce the otherwise excessive computational 

effort in their ABC analysis, Nater et al. (2017) had to resort to an ad-hoc procedure, incorporating factors 

such as bottlenecks and population structure only after comparing simplified versions of their models; this 

raises questions on the robustness of the conclusions thus reached. As we saw, the ABC-RF approach can 

handle complex model comparisons, and the analysis of a single individual per population further 

accelerates the simulation step. We first assessed the ability to correctly recognize the four models through 

a power analysis (Fig. 4A). The most identifiable model (TP=0.802) appeared to be the model 2b, under 

which there is a first separation of South Toba from Borneo Orangutan, followed by the divergence of 

North Toba from South Toba. The model assuming an early separation of South Toba form North Toba, 

followed by the separation of Borneo from South Toba, actually showed the lowest proportion of true 

positives (0.480). The application to real data favored the model 1a, (also associated with the highest 

posterior probability in Nater et al., 2017), with a posterior probability of 0.49. Under the most supported 

model both the North Toba (first) and Borneo (later) separated from Pongo tapanuliensis (Fig. 4B). Model 

1a also proven to be able to account for real variation, as it is shown in Figure S8.

Discussion

The cost of genotyping has dramatically dropped lately, making population-scale genomic data 

available for a large set of organisms (1000 Genomes Project Consortium, 2012; Benazzo et al., 2017; 

Dasmahapatra et al., 2012; De Manuel et al., 2016; Miller et al., 2012). The main challenge now is how to 

extract as much information as possible from these data, developing flexible and robust statistical methods 

of analysis (Excoffier et al., 2013; Li & Durbin, 2011; Schiffels & Durbin, 2014). Approximate Bayesian 

Computation, explicitly comparing alternative demographic models and estimating the models’ 

probabilities, represents a powerful inferential tool about past demographic events (Mark A. Beaumont, 

2010). One of the main advantages of such a simulation-based approach is the possibility to easily check 

whether the models being compared are actually distinguishable, hence quantifying the reliability of the 

estimates produced (Csilléry et al., 2010). Nevertheless, despite few successful attempts (Boitard, 

Rodríguez, Jay, Mona, & Austerlitz, 2016), only recently, with the development of the Random Forest A
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procedure for ABC model selection (Pudlo et al., 2015), it has become possible to definitely overcome the 

issues linked to the use of uninformative/correlated summary statistics, and to significantly reduce the 

computational effort of the simulation step. With this work, we took advantage of this newly proposed 

algorithm to test the flexibility of an ABC-based framework in comparing different demographic models. 

As customary, we summarized the data through the folded and unfolded version of the SFS, but the novelty 

of this work lies in the use of the FDSS, namely the complete genomic distribution of the four mutually 

exclusive categories of segregating sites for pairs of populations (Wakeley & Hey, 1997).

Power Analysis

Initially, we analyzed sets of models with increasing levels of complexity, simulating genetic data 

under a broad spectrum of experimental conditions. This extensive power analysis showed that both the 

SFS and the FDSS allow one to often recognize the model under which the data were generated, with some 

uncertainties only when two models are just marginally different. This was the case for both simple (one or 

two-population scenarios, Figs 1 and 2) and complex (multi-populations scenarios, Fig. 3) demographies. 

When we compared one-population scenarios, the FDSS is necessarily composed only by a single 

distribution, representing the frequency of genomic fragments carrying a certain number of polymorphic 

sites. Nonetheless the model identifiability, calculated as the proportion of TPs over 50,000 pods, reached 

values between 80% and 100%, with slightly lower values only for the structured model. This reduction in 

power was always due to the levels of gene flow among demes; when it is high, the structured model tends 

to panmixia (Fig. S2), as has already been known since Wright’s times (Wright, 1931). We also showed 

that the power depends on the number of demes; indeed, the proportion of TPs increases in parallel with the 

number of demes considered in the structured model (Fig. S2). 

   Among the two-populations demographies, the models with bi-directional migration at a constant 

rate and with pulse of admixture proved easiest to identify, with almost 100% TPs, regardless of the 

combination of experimental parameters tested. With the FDSS we obtained lower TP rates (about 70-80%) 

only when using 1,000 short loci, whereas with the SFS the proportion of TP correlates with the number of 

chromosomes used.

Even when rather complicated scenarios were compared (e.g. the multi-populations models), the 

rate of accurate results is close to 70% TPs. As expected, when processes occur at short time distances, they 

are difficult to discriminate. When, under MDM, the two expansions from Africa are simulated at very 

close times, the SDM and the MDM models become extremely similar. Accordingly, we observed an 

increase in the power of the test at increasing intervals between the African divergence and the second exit 

(Fig. S6), reaching values close to 90%. 

We also tested whether using the complete frequency distribution of the four categories of A
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segregating sites actually entails an advantage respect to the use of its summary (as e.g. in Robinson et al., 

2014), comparing one, two and multi-populations models through the first two moments of the four 

distributions. The results, reported in Figs S9-S11, are significantly in favor of the use of the full 

distribution, and increasingly so with the complexity of the models, in particular when few chromosomes 

(two or four) or short locus lengths are analyzed.

Comparison between SFS and FDSS

In general, our results showed that both the (folded and unfolded) SFS and the FDSS obtained good 

discrimination power, regardless of the complexity of the models being compared. Going into detail, the 

FDSS shows a better performance with respect to the SFS when few chromosomes per population (i.e. two 

or four) are available, as emerged in particular from the analysis of one- and two-populations models. 

Under these models the dimensionality of the folded SFS for two or four chromosomes is often lower than 

the number of models’ parameters, possibly making it difficult to discriminate among the demographic 

scenarios tested. On the other hand, when tens of chromosomes may be analyzed, the SFS seem to be the 

better choice to summarize the data. Considering the FDSS, the accuracy of the model selection seems to be 

more dependent on the number of loci considered and on the locus length rather than on the number of 

individuals sampled per population. As opposed to the SFS, the FDSS is then a suitable summary of whole 

genome data for ABC-RF analysis of even suboptimal datasets, such as those coming from the study of 

ancient DNA data, or of elusive species. Moreover, when dealing with highly complex models, the 

simulation of a small number of chromosomes also reduces the computational costs of the simulation step. 

The performances of the folded and unfolded SFS are comparable, with a slight increase in the 

power of the unfolded spectrum for some specific conditions (usually when considering four chromosomes) 

or demographic model analyzed (as one-populations models or MDM). However, we should remind that 

we generated the unfolded SFS through simulations, thus assuming that the ancestral state of alleles is 

known with certainty. When analyzing real data the spectrum instead needs to be polarized, meaning that 

the ancestral and derived alleles have to be defined using an outgroup, where the outgroup allele is typically 

taken as ancestral under parsimony assumption. Parallel changes or peculiar features of the demographic 

structure of the outgroup population (i.e. structured population) could introduce a bias in the definition of 

ancestral states, leading to a skew toward sites with a high frequency of the derived state and, therefore, 

potentially generating inaccurate demographic signals (Baudry & Depaulis, 2003; Hernandez et al., 2007; 

Morton, Dar, & Wright, 2009). It is anyway worth noting that this is not the case for the FDSS, which may 

be calculated from the number of polymorphic sites across populations, without further assumptions on the 

state of alleles.

Applications to real datasetsA
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 We finally analyzed two demographic models about the anatomically modern human expansion out 

of Africa, combining ancient and modern genome data. The former (Neandertal and Denisova, in our case) 

are characterized by highly fragmented DNA, and so, we restricted the analysis to short DNA stretches 

(500 bp) to maximize the number of independent loci retrievable. Despite this limitation, even with 2 

chromosomes per population we obtained a good ability to tell models apart (Fig. 3). Thirty-one replicated 

experiments, differing for the Papuan genome being considered, consistently supported the MDM over the 

SDM (Fig. 5), i.e. a first expansion from Africa of the ancestors of the current Austro-Melanesians, 

followed by a second expansion leading to the peopling of Eurasia. Considering different modern 

individuals from African, European and Asian populations did not change the support for the MDM. These 

results raise several questions; indeed, it was the SDM that showed the best fit in Malaspinas et al. (2016), 

whereas the MDM appeared to account for the data only when the analysis was restricted to modern 

populations. However, our findings are in agreement with those by Pagani et al. (2016), who estimated that 

at least 2% of the Papuan genomes derive from an earlier, and distinct, dispersal out of Africa. Other 

genomic studies (Tassi et al., 2015), but not all (Mallick et al., 2016), and phenotypic analyses (Reyes-

Centeno et al., 2014) appear in closer agreement with the MDM, which calls for further research in this 

area. Note that Malaspinas and collaborators argued that apparent support for multiple dispersal events 

really came from the confounding effect of Denisovan admixture in the Australian-Papuans’ ancestors; 

however, both in this and in a previous (Tassi et al., 2015) study, we found statistically-significant support 

for the MDM after correcting for possible Denisovan admixture. Be that as it may, in no other study 

besides the present one (i) the alternative hypotheses are explicitly compared analyzing complete genomes; 

(ii) posterior probabilities are estimated for each model, and (iii) the accuracy of the estimates is assessed 

by power analysis. 

We then moved to investigating the evolutionary history of the three extant Orangutan species. We 

basically improved the ABC analysis performed by Nater et al. (2017) summarizing the data through FDSS, 

sampling a single individual per population, and applying the ABC-RF model selection framework. Nater 

and colleagues (2017) started comparing simplified evolutionary scenarios, and considered population 

substructure and gene flow only when estimating parameters, but not in the phase of model choice. ABC-

RF allowed us to avoid this uncertain procedure, confirming Nater et al.’s (2017) conclusion that the first 

split separated the North Toba and the newly identified South Toba species (Fig. 4B). The main difference 

was about the strength of the support associated to this model. While Nater and colleagues (2017) estimated 

high posterior probabilities for the best-fitting model (73% when comparing the 4 models and 98% when 

comparing the two best scenarios), our procedure associated to the same model a posterior probability of 

49% (Fig. 4B). Moreover, the power analysis that we conducted (absent in Nater et al., 2017), revealed that 

the ability to correctly distinguish among the four tested models is between 48% and 80%, with the selected 

model that can be erroneously recognized as the most probable one in the 38% of cases. Although model 1a A
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has been selected as the most supported scenario, the uncertainty emerged from the classification error 

suggests that the true evolutionary history of Orangutan species is still largely unknown. These results 

emphasize (i) the importance of including complex demographic histories in the model selection step, so as 

to evaluate the real posterior probability associated to the best model, on which the parameter estimation 

will be performed and (ii) the importance of performing a power analysis of the models tested, so as to be 

aware of the level of uncertainty about the conclusions of the study.

Conclusions

In this paper we showed that ABC-RF can often reconstruct a complex series of demographic 

processes, based both on the SFS and on the FDSS. The FDSS generally exhibited better performance when 

few chromosomes per populations were analyzed; this feature, together with the ease of estimation from 

whole genome data without further assumptions, makes this statistic particularly suitable for demographic 

inference through an ABC approach. It is also worth noting that the power to correctly identify the true 

model was quite good when we simulated short fragments, even in the comparison of complex 

demographies (Fig. 3). This finding means that the ABC-RF model selection procedure through FDSS or 

SFS is suitable for the analysis of ancient data (M. Meyer et al., 2012) and of RAD sequencing data (Rowe, 

Renaut, & Guggisberg, 2011), where short DNA fragments are more the rule than the exception.

In all our analyses we considered the FDSS or the SFS as calculated from known genotypes, 

meaning that the presented procedure is currently optimized for high-coverage data (De Manuel et al., 

2016; Mallick et al., 2016; Miller et al., 2012). A natural extension of this work will thus be to implement 

the use of low coverage data, developing an approach able to retrieve the FDSS taking into account the 

genotype uncertainty and sequencing errors, for instance through the use of the genotype likelihoods (as, 

e.g., in ANGSD, Korneliussen, Albrechtsen, & Nielsen, 2014).

 The flexibility of the ABC-RF model selection approach, combined with the inferential power 

proven by the summary statistics that we proposed to calculate on genomic data, may contribute to a 

detailed and comprehensive study of complex demographic dynamics for any species for which few high 

coverage genomes are available.
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Figure Legends

Fig 1. One-population models and proportion of True Positives. A) Demographic models compared: 

Constant, Bottleneck, Expansion, Structured population. N1 is the effective population size, i the intensity 

of the bottleneck or of the expansion, T the time of the bottleneck or of the start of the expansion, m is the 

migration rate. B) True Positives rates for the FDSS. C) True Positives rates for the folded SFS. 

The plot below each of the four models represents the proportion of TPs obtained analyzing pods coming 

from the above model under 60 combinations of experimental parameters. Different locus lengths are in the 

x-axes, number of loci is represented by different colors and the number of chromosomes is represented by 

different symbols.

Fig 2. Two-populations models and proportion of True Positives. A) Demographic models compared: 

Divergence with isolation, Divergence with migration, Divergence with a single pulse of admixture. Nanc is 

the effective population size of the ancestral population, N1 and N2 are the effective population sizes of the 

diverged populations, Tsep is the time of the split, m12 and m21 the migration rates, Tadm is the time of the 

single pulse of admixture, adm12 and adm21 the proportions of admixture. B) True Positives rates for the 

FDSS. C) True Positives rates for the folded SFS. The plots have the same features of Fig 1.A
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Fig 3. Multi-populations models and proportion of True Positives. A) Demographic models compared: 

Single Dispersal and Multiple Dispersals. The populations sampled are indicated in bold. B) True Positives 

rates for the FDSS. C) True Positives rates for the folded SFS. The plots have the same features of Fig 1.

Fig 4. Demographic models tested to study the evolutionary history of Orangutan species. A) Four 

demographic models compared. The numbers in the black boxes indicate the proportion of TP calculated 

analyzing 50,000 pods coming from that demographic model. NT, Sumatran populations north of Lake 

Toba; ST, the Sumatran population south of Lake Toba; BO, Bornean populations. B) Number of votes 

associated to each model by ABC-RF and posterior probability of the most supported model (model 1a).

Fig 5. Posterior Probabilities for the MDM. Left panel: posterior probabilities obtained analyzing 6 

Papuan individuals from Pagani et al. (2016) (PR). Right panel: posterior probabilities obtained analyzing 

25 Papuan individuals from Malaspinas et al. (2016) (MR).
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