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We present an informational view of classical propositional logic that stems from a kind 
of informational semantics whereby the meaning of a logical operator is specified solely 
in terms of the information that is actually possessed by an agent. In this view the 
inferential power of logical agents is naturally bounded by their limited capability of 
manipulating “virtual information”, namely information that is not implicitly contained 
in the data. Although this informational semantics cannot be expressed by any finitely-
valued matrix, it can be expressed by a non-deterministic 3-valued matrix that was first 
introduced by W.V.O. Quine, but ignored by the logical community. Within the general 
framework presented in [21] we provide an in-depth discussion of this informational 
semantics and a detailed analysis of a specific infinite hierarchy of tractable approximations 
to classical propositional logic that is based on it. This hierarchy can be used to model the 
inferential power of resource-bounded agents and admits of a uniform proof-theoretical 
characterization that is half-way between a classical version of Natural Deduction and the 
method of semantic tableaux.

© 2015 Elsevier B.V. All rights reserved.

1. The background problem

The fundamental question that we address in this paper is the following:

Do we actually possess the information that the conclusion of an inference is true whenever we possess
the information that its premises are true? (1)

The lack of a general decision procedure strongly suggests that the intuitive answer is “no” in the domain of classical 
first-order logic: there is no guarantee that we are in a position to effectively recognize the truth of a valid consequence 
A of a set � of sentences in all informational situations in which we recognize the truth of the sentences in �. Moreover, 
despite the existence of decision procedures for classical propositional logic, the widely believed conjecture that P �= NP, 
makes it highly improbable that there exists a feasible one. So, again, there is no guarantee that we are in a position to 
feasibly recognize that the conclusion of a valid propositional inference is true in all informational situations in which we 
recognize that its premises are true. Therefore, if we construe the notion of “actually possessing” a piece of information as 
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having access to it in practice,1 and not only in principle, a positive answer to (1) sounds highly counterintuitive even in 
the restricted domain of propositional logic.

In fact, standard logical systems provide adequate models of logically omniscient agents, a normative ideal that can only 
be approximated in practice. This is a source of major difficulties in all research areas where there is an urgent need for less 
idealized, yet theoretically principled, models of logical agents with bounded cognitive and computational resources. From 
this point of view, it makes sense to require as in [36] that a logical system should consist not only in an algorithmic or 
semantic characterization of a logic L, but also in a definition of how this logic L can be approximated in practice by realistic 
agents, no matter whether human or artificial.

Despite various interesting, albeit scattered and differently motivated, contributions,2 logic still lacks solid general foun-
dations for an approximation theory. In this paper we elaborate on ideas and results presented in a series of previous papers 
[16,22,17,21,18,19] to make a step in this direction by outlining an “informational view” of classical propositional logic that 
naturally yields a sequence of tractable approximations. We start from the following problem: for which subsystems of 
classical propositional logic does it make intuitive sense to give a positive answer to (1)? As argued in [21], a rather natural 
solution stems from an alternative informational semantics for the Boolean operators, whereby the meaning of a logical 
operator is specified solely in terms of the information that is actually possessed by an agent. This semantics leads to an in-
cremental characterization of Boolean logic as the limit of a sequence of tractable depth-bounded subsystems of increasing 
inferential power (and increasing computational complexity).3

While the semantic definition of this hierarchy is independent of any specific proof-theoretical formalism, it admits of 
a simple characterization in terms of a proof system that is half-way between a classical version of Natural Deduction and 
the method of semantic tableaux. The basic 0-depth logic is naturally characterized by means of a set of introduction and 
elimination rules. These can be seen as natural deduction rules that are logically weaker than the standard Gentzen-style 
rules, in that they involve no “discharge” of assumptions, and are more suitable to represent the classical meaning of the 
logical operators. Alternatively, they can also be seen as a kind of tableau-like rules that extend the elimination rules of the 
KE system [25] via a set of introduction rules.

The increasing inferential power of each k-depth approximation (with k > 0) depends only on a single structural rule and 
on the depth at which its application is allowed. This structural rule is, in essence, a (classical) cut rule — closely related to 
the Principle of Bivalence — that governs the manipulation of “virtual information”, i.e., information that we do not actually 
possess, but we temporarily assume as if we possessed it. In our approach, therefore, the answer to (1) is a matter of degree
and depends on the minimum depth at which the use of virtual information is required to obtain the conclusion from the 
premises.

The main new contributions of this paper with respect to [21] are the following: (i) we focus on a specific hierarchy of 
depth-bounded approximations to Boolean Logic belonging to one of the families abstractly discussed in [21] and present in 
more detail their semantic and proof-theoretical properties, with clarifying examples; (ii) we provide an in-depth discussion 
of an intuitive informational semantics for the basic (0-depth) system of this hierarchy that was anticipated back in the 
1970’s by some observations of Willard V.O. Quine [46] (with no connection with tractable inference) and can be expressed 
by a 3-valued non-deterministic matrix; this semantics was subsequently and independently re-proposed (with no apparent 
connection with the intuitive interpretation given by Quine) by Crawford and Etherington [13] who claimed (without proof) 
that it provides a characterization of unit resolution;4 here we support their intuition that this semantics may become 
the basic foundational tool for a general theory of tractable approximations to classical logic, by showing that it captures 
exactly all the logical inferences that can be drawn by using only “actual information”; we also show that its scope is much 
wider than what envisaged in [13], in that it is relevant to any logical formalism with no syntactic restrictions;5 (iii) we 
provide a direct proof of the completeness of classical 0-depth deduction with respect to this 3-valued non-deterministic 
semantics; (iv) we provide a detailed discussion of depth-bounded intelim trees — a natural proof-theoretical characterization 
of the hierarchy defined via the informational semantics — and a very simple proof of a normal form theorem that is more 
general and more informative than the subformula theorem in [21].

1 This may include implicit information that can be extracted from the information explicitly held by an agent (whether human or artificial) via a natural 
feasible procedure, i.e., one that is part of the agent’s “built-in” inferential procedures.

2 With no claim of exhaustivity, we mention [10,47,27,28,13,43,48,31,32,34,35,33,39].
3 The hierarchy discussed in this paper originates from a long-standing research program started in [14] and can be interestingly compared to the similar 

hierarchies proposed in the contributions cited in footnote 2. From the proof-theoretical viewpoint, it is related to Stålmarck’s method [51,48,8], which has 
proved quite successful in the area of system verification (see [9]); for a more detailed discussion of this relation see [21].

4 This non-deterministic semantics is briefly discussed also in [21] and claimed to be equivalent to the “modular” semantics thoroughly investigated in 
that paper.

5 In fact, the discussion of the 0-depth case in [13] is restricted to formulae in negation normal form. This requires preliminary translation via the De 
Morgan laws. However, the equivalence ¬(A ∧ B) ≡ ¬A ∨¬B is not sound under the non-deterministic semantics, and this generates unnecessary anomalies 
such as the failure of modus ponens (Example 2). Moreover, the k-depth semantics presented in this paper is based on a classical reductio ad absurdum that 
applies only to formulae in clausal form.
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Table 1
Kleene’s 3-valued tables.

∧ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥

∨ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥

¬
1 0
0 1
⊥ ⊥

2. An informational semantics for the Boolean operators

The classical meaning of the logical operators is usually specified by the familiar truth-tables that fix the conditions 
under which a sentence is true or false in terms of the truth or falsity of its immediate constituents. The underlying notions 
of truth and falsity are assumed to obey the two classical principles of Bivalence (any sentence is either true or false 
independent of our holding any information about it) and Non-Contradiction (no sentence can be at the same time true and 
false). This way of fixing the meaning of a logical operator is perfectly in tune with the classical, information-transcendent, 
notions of truth and falsity and with the traditional view of logical inference as a truth-transmission device; but it is at 
odds with the equally important view of logical inference as an information-processing device. To abide by the latter view 
we need a semantics based on informational notions. Moreover, in order to define subsystems of classical logic that justify 
a positive answer to (1), we need a semantics based on the notion of actual information, i.e., to put it with Jaakko Hintikka, 
information that “we actually possess (as distinguished from the information we in some sense have potentially available to 
us) and with which we can in fact operate” [38, p. 229].

The primary notions of this semantics, therefore, are not classical truth and falsity, but informational truth and informa-
tional falsity, namely holding the information that a sentence is true, respectively false. Here, by saying that an agent x holds
the information that A is true (respectively false) we mean that this is information that is practically available to x and with 
which x can operate. Clearly, these notions do not satisfy the informational version of the Principle of Bivalence: it may well 
be that for a given A, we neither hold the information that A is true, nor do we hold the information that A is false. On the 
other hand, in this paper we assume that they do satisfy the informational version of the Principle of Non-Contradiction: no 
agent can actually possess both the information that A is true and the information that A is false, as this would be deemed 
to be equivalent to possessing no definite information about A.6

We use the values 1 and 0 to represent, respectively, informational truth and falsity. When a sentence takes neither of 
these two defined values, we say that it is informationally indeterminate. It is technically convenient to treat informational 
indeterminacy as a third value that we denote by “⊥”.7 The three values are partially ordered by the relation � such that 
v � w (“v is less defined than, or equal to, w”) if, and only if, v = ⊥ or v = w for v, w ∈ {0, 1, ⊥}.

Note that the old familiar truth tables for ∧, ∨ and ¬ are still intuitively sound under this informational reinterpretation 
of 1 and 0. For example, if we hold the information that A is true and the information that B is true, then we thereby hold 
the information that A ∧ B is true, etc. However, they are no longer exhaustive: they do not tell us what happens when one 
or all of the immediate constituents of a complex sentence take the value ⊥.

So, we need to conservatively extend the classical truth-tables with new entries to accommodate the third value ⊥. More 
precisely, for every n-ary Boolean operator �, whose classical meaning is fixed by a truth-function f� , we want to specify 
its informational meaning as given by some sort of function f̂� satisfying:

f̂�(z1, . . . , zn) = f�(z1, . . . , zn), whenever z1, . . . , zn ∈ {0,1}. (2)

Given our interpretation of the third value ⊥ as informational indeterminacy, a reasonable requirement is also that our 
logical operators are monotonic in the following sense:

v1 � w1 and . . . and vn � wn 	⇒ f̂�(v1, . . . , vn) � f̂�(w1, . . . , wn) (3)

Let us, from now on, restrict our attention to the logical operators ∧, ∨, ¬. Under the requirements (2) and (3), the tables 
of Kleene’s (strong) 3-valued logic [40, §64], shown in Table 1, may appear as the most natural candidates to represent their 
informational meaning.

However, while the table for negation appears perfectly in tune with our informational interpretation of the three val-
ues, the tables for ∧ and ∨ are not, in that they do not appear to account for some of our intuitive judgments. Typical 
counterevidence is presented in the following quotations from Willard V.O. Quine taken from his book The Roots of Reference
and concerning what he there calls “the primitive meaning of the logical operators”. This is expressed in terms of an agent’s 
disposition to assent or dissent to a sentence in a given informational situation:

6 Notice that this assumption does not rule out the possibility of hidden inconsistencies in an agent’s information state, but only of inconsistencies that 
can be feasibly detected by that agent. It is, however, possible to investigate paraconsistent variants of the semantics proposed in this paper in which even 
this weak informational version of the Principle of Non-Contradiction is relaxed. This will be the subject of a subsequent paper.

7 This is the symbol for “undefined”, the bottom element of the information ordering, not to be confused with the “falsum” logical constant that we shall 
denote by “�”.
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Conjunction has its blind spot [...] when neither component commands assent or dissent. There is no direct way of 
mastering this quarter. In some such cases the conjunction commands dissent and in others it commands nothing. This 
sector is mastered only later, in theory-laden ways. Where the components are “it is a mouse” and “it is a chipmunk”, 
and neither is affirmed nor denied, the conjunction will still be denied. But where the components are “it is a mouse” 
and “it is in the kitchen”, and neither is affirmed nor denied, the conjunction will perhaps be left in abeyance.
[. . . ]
Alternation, like conjunction, has its blind quarter where neither component commands assent or dissent. We might 
assent to the alternation of “it is a mouse” and “it is chipmunk” or we might abstain [46, p. 77].

In general, when we are faced with a conjunction A ∧ B in which both A and B are informationally indeterminate, the 
value of the conjunction may be either informational falsity 0, or informational indeterminacy ⊥, depending on whether or 
not we hold the additional information that A and B cannot be simultaneously true. And the value of A ∨ B may be either 
informational truth 1 or informational indeterminacy ⊥, depending on whether or not we hold the additional information 
that at least one of A and B must be true.8 This discussion strongly suggests that Kleene’s 3-valued tables are not apt to 
capture the informational meaning of the logical operators ∨ and ∧ and that, indeed, no system of standard deterministic
tables can do any better. Quine’s suggestion, reported in the above quotations, leads to the following non-deterministic tables 
for ∧ and ∨:

∧ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥,0

∨ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥,1

Here, the entries in which both arguments are ⊥ yield two alternative possible values, meaning that the value of the com-
pound sentence is not uniquely determined by the values of its immediate constituents, but can be either of the two values 
shown. In other words, the “function” f̂� that fixes the informational meaning of a binary operator � is a non-deterministic 
truth-function.9 These non-deterministic tables where independently rediscovered by Crawford and Etherington [13] who 
claimed that they provide a semantic characterization of unit-resolution. The general theory of non-deterministic matrices 
has been brought to the attention of the logical community and extensively investigated by Arnon Avron and co-authors 
(see [3,4,1,2,5] among others).

A non-deterministic table for the informational meaning of the Boolean conditional can be obtained in the obvious way:

→ 1 0 ⊥
1 1 0 ⊥
0 1 1 1
⊥ 1 ⊥ ⊥,1.

Now, what inferences can be justified by the only means of the informational meaning of the logical operators as specified 
by the informational 3-valued tables? Let L be a Boolean language with the four standard logical operators and Form(L) be 
the set of all L-formulae.

Definition 2.1. A 3ND-valuation is a mapping V : Form(L) → {0, 1, ⊥}, satisfying the following conditions for all A, B ∈
Form(L):

1. V (¬A) = f̂¬(V (A))

2. V (A ◦ B) ∈ f̂◦(V (A), V (B))

where (i) ◦ is ∧, ∨ or →, (ii) f̂¬ is the deterministic truth-function defined by the informational 3-valued table for ¬, and 
(iii) f̂◦ is the non-deterministic truth-function defined by the informational 3-valued table for ◦.

This approach can be extended to arbitrary Boolean operators. A general method can be obtained from [21] by translating 
the modular semantics for arbitrary Boolean operators in terms of non-deterministic truth-functions (Section 2.9) that satisfy 
Conditions (2) and (3). A 3ND-valuation can be seen as describing a minimal information state that is closed under the 
implicit information that depends only on the informational meaning of the logical operators. This is information that we 
actually possess and with which we can operate, in the precise sense that we have (as will be shown in the sequel) a natural

8 As far as the operator ∨ is concerned, its informational meaning we are discussing here clearly departs from its intuitionistic meaning, according to 
which a disjunction A ∨ B is intuitionistically true (roughly speaking, provable) if and only if either A is intuitionistically true or B is intuitionistically true. 
This is the so-called disjunction property of intuitionistic logic. While this property is appropriate for (constructive) mathematics, it is quite at odds with 
ordinary usage outside mathematics. On this point see [29], pp. 266–267 and 277–278.

9 This is just convenient jargon for a function V 2 → 2V \ {∅}, with V the set of truth-values.
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and feasible procedure to decide, for every formula A, whether the information that A is true, or the information that A is 
false, or neither of them actually belongs to our information state.10

It may be observed that: (i) agents may not be aware even of easy consequences of their assumptions and there is still 
a difference between implicit and explicit information,11 (ii) even implicit information that can be feasibly extracted from 
the explicit one requires the consumption of resources. Both observations raise interesting questions that we do not address 
here. We focus on the distinction between two kinds of implicit information: the first type is the one that can be feasibly 
extracted by using only information that we actually possess (actual information); the second is the one that essentially 
requires the simulation of potential information that we do not actually possess (virtual information). It turns out that the 
latter can also be feasibly extracted whenever the nested use of virtual information is limited.

In what follows we shall make use of signed formulae (S-formulae for short), namely expressions of the form T A or F A
with the intended meaning of “A is informationally true” or “we actually possess the information that A is true” and “A is 
informationally false” or “we actually possess the information that A is false”.12 Using signed formulae allows us to express 
a 3ND-valuation V as a set of S-formulae, namely the set {T A | V (A) = 1} ∪ {F A | V (A) = 0}. We shall use “ϕ, ψ, θ, . . .”, 
as variables ranging over S-formulae and continue using “A, B, C, . . .” as variables ranging over usual unsigned formulae. 
We shall also use “X, Y , Z ,. . . ”, as variables ranging over sets of S-formulae and continue using “�, �, �, . . .”, as variables 
ranging over sets of unsigned formulae. The unsigned part of an S-formula is the unsigned formula that results from it by 
removing the sign T or F . Given an S-formula ϕ , we denote by ϕu the unsigned part of ϕ and by Xu the set {ϕu | ϕ ∈ X}.

Let us say that a 3ND-valuation V satisfies an S-formula T A if V (A) = 1 and an S-formula F A if V (A) = 0.

Definitions 2.2. For every set X of S-formulae and every S-formula ϕ , we say that:

• ϕ is a 0-depth consequence of X if V satisfies ϕ for every 3ND-valuation V such that V satisfies all the S-formulae in X .
• X is 0-depth inconsistent if there is no 3ND-valuation V such that V satisfies all the S-formulae in X .

In the sequel, we shall use the symbol “�0” for the 0-depth consequence relation and write “X �0 ϕ” for “ϕ is a 0-depth 
consequence of X”. We shall also write X �0 to mean that X is 0-depth inconsistent. The notions of 0-depth consequence 
and 0-depth inconsistency can be extended to unsigned formulae as follows (writing T � for {T A | A ∈ �}):

Definitions 2.3. For every set � of unsigned formulae and every unsigned formula A, we say that:

• A is a 0-depth consequence of a set � if T � �0 T A.
• � is 0-depth inconsistent if T � is 0-depth inconsistent.

We shall abuse of the same relation symbol “�0” to denote 0-depth consequence and inconsistency for both signed and 
unsigned formulae. In [21] (Proposition 2.49) it is shown that 0-depth consequence and 0-depth inconsistency cannot be 
characterized by any finite deterministic matrix. So, the logic �0 is not a finite many-valued logic in the standard sense.

The 0-depth consequence relation �0 is a subsystem of classical propositional logic obtained by replacing the notion of 
“possible world” with our weaker notion of information state (described by a 3ND-valuation). It is not difficult to show that 
the relation �0 is a Tarskian consequence relation, that is, it satisfies reflexivity, monotonicity and cut. It is also structural, 
in that it satisfies substitution invariance. Like Kleene’s 3-valued logic [40, §64] and Belnap’s 4-valued logic [6,7], this 
consequence relation has no tautologies.13

An important consequence of its informational characterization is that the 0-depth logic �0 is tractable, just as we should 
expect given that it intends to be the logic of “actual information”, namely the information that is practically available to 
an agent (as opposed to the potential information that is available to her only in principle).14 However, this is far from 
being obvious if we focus on the 3ND-table presentation, which seems to suggest an exponential blow up as in the classical 
case. Indeed, the tractability of the 0-depth logic will become apparent in Section 6, when we shall provide a natural 
proof-theoretical characterization of this logic that is quite close to deductive practice.

Observe that, according to our definitions, �0 is explosive just like classical logic: when X is 0-depth inconsistent, X �0 ϕ
for every ϕ , since there is no 3ND-valuation V that satisfies all the formulae in X . However, 0-depth inconsistency is stricter 

10 Assuming that P �= NP, this is clearly not the case of the implicit information that stems from their classical meaning.
11 This issue is interestingly related to the vast literature on awareness (see, for example, [42,30,41,49]).
12 In fact, in this context, the signs “T ” and “F ” act as propositional attitudes and, in a multiagent setting, can be indexed by symbols “x, y, z, . . .” standing 

for different agents. So Tx A and Fx A mean that A is informationally true, respectively false, for agent x. In this paper we shall omit indexes since we will 
not be dealing with multiagent systems. From this point of view one could see our signs as a sort of epistemic modalities and our consequence relations 
as a sort of first-degree epistemic logics in which the modalities cannot be iterated or used within a sentence.
13 This is not so surprising if one thinks that a tautology is usually described as “a consequence of the empty set of premises”. There is no way of 

extracting information from the empty information state without simulating virtual extensions of it. Accordingly, tautologies make their appearance only at 
depths k > 0, when the use of virtual information is allowed, and the set of provable tautologies increases with k.
14 We stress that tractability here is, so to speak, a “side effect” of an informational interpretation of the logical operators that makes no direct reference 

to questions of computational complexity. On this point see also footnote 26 and related text.
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than classical inconsistency — a set X of S-formulae may well be 0-depth consistent but classically inconsistent — and, more 
importantly, can be feasibly detected (see Proposition 6.1 below and the following comment).

3. Virtual information and depth-bounded consequence

What about the classical inferences that are not valid in the 0-depth logic? For example, consider the classically valid 
inference:

A ∨ B ¬A ∨ B

B
This inference cannot be justified by the 3ND-tables. A counterexample is any 3ND-valuation V such that V (A) = V (B) = ⊥
and V (A ∨ B) = V (¬A ∨ B) = 1. In order to validate the above inference, we need to restrict our attention to the refinements
of V in which the value of A is defined, namely the 3ND-valuations V ′ such that for all B , V (B) � V ′(B) and V ′(A) �= ⊥:

. . . V (A) = ⊥ . . .

. . . V ′
1(A) = 1 . . . . . . V ′

2(A) = 0 . . .

It is easy to check, using the 3ND-tables for ∨ and ¬, that V ′(B) = 1 for every such refinement of V . The information 
concerning A in either of these refinements is not even implicitly contained in the actual information state expressed by V . 
This is what we call virtual information. So, the 0-depth logic is simply the logic of deductive reasoning with no virtual 
information.

The notion of k-depth consequence depends not only on the depth at which the use of virtual information is allowed, 
but also on the subset of Form(L) on which the introduction of virtual information is allowed. In [21] this subset was called 
the virtual space and, in the context of this paper, can be simply defined as a function f of the set � ∪ {A} consisting of the 
premises � and of the conclusion A of the given inference.15

In the sequel we shall denote by “sub” the function that maps any given set � of formulae to the set of all its subformu-
lae, and by “at” the function that maps any given � to the set of its atomic subformulae. Let F be the set of all operations 
f on the finite subsets of Form(L) such that: (i) for all �, at(�) ⊆ f (�), (ii) f (�) is closed under subformulae, that is, 
sub( f (�)) = f (�), (iii) | f (�)| ≤ p(|�|) for some fixed polynomial p, where we denote by |�| the number of occurrences 
of symbols in � (the size of �).16 Distinguished examples of operations in F are sub and at. However, in general, f (�)

may contain also formulae that are not in sub(�). For example, the operation f that maps � to the set of all formulae 
of bounded logical complexity that can be built out of sub(�) or of at(�) is also in F . The operations in F are partially 
ordered by the relation � such that f1 � f2 if and only if, for every finite �, f1(�) ⊆ f2(�).

Definition 3.1. For all X , ϕ , and for all f ∈F ,

1. X � f
0 ϕ if and only if X �0 ϕ;

2. X � f
k+1 ϕ if and only if X ∪ {T A} � f

k ϕ and X ∪ {F A} � f
k ϕ for some A ∈ f (Xu ∪ {ϕu}).

Notice that the above definition covers also the case of k-depth inconsistency by assuming X � f
k as equivalent to X � f

k ϕ
for all ϕ . So:

1. X � f
0 if and only if X �0;

2. X � f
k+1 if and only if X ∪ {T A} � f

k and X ∪ {F A} � f
k for some A ∈ f (Xu ∪ {ϕu}).

When X � f
k ϕ (X � f

k ) we say that ϕ is a k-depth consequence of X (X is k-depth inconsistent) over the f -bounded virtual space. 
Observe that, since �0 is monotonic,

� f
j ⊆� f

k whenever j ≤ k. (4)

The transition from � f
k to � f

k+1 corresponds to an increase in the depth at which the nested use of virtual information 
(restricted to formulae in the virtual space defined by f ) is allowed. Observe also that:

� f1
k ⊆� f2

k whenever f1 � f2. (5)

15 In [21] the virtual space was defined as a function of the search space that was in turn a function of � ∪ {A} (Section 3.2).
16 This third requirement is essential in order to define a hierarchy of tractable approximations to Boolean logic.
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Then, it is not difficult to show that:

Proposition 3.2. For every f , the relation � f∞= ⋃
k∈N |	 f

k is the consequence relation of classical propositional logic.

Proof. Suppose that � classically implies A and let p1, . . . , pk the atomic formulae occurring in � ∪ {A}. Let V be an 
arbitrary 3ND-valuation such that (i) V (A) = 1 for all A ∈ � and (ii) V (pi) �= ⊥ for all i = 1, . . . , k. Since the 3ND-tables 
agree with the classical truth-tables whenever the rows consist all of defined values, and � classically implies ϕ , it follows 
that V (A) = 1. This implies, by definition of �atk , that � �atk A. Since, by definition of F , at� f for every f ∈F , it follows 
from (5) that � � f

k A for every f . �

While the 0-depth logic is Tarskian and structural, the k-depth consequence relations are not transitive17 and may not 
be structural. Unbounded transitivity is replaced by its depth-bounded version:

X � f
j ϕ X,ϕ � f

k ψ

X � f
j+k ψ

Structurality depends on the function f that defines the virtual space. For example �at
k is not structural. While ∅ �at1 p ∨¬p, 

the minimum depth k at which ∅ �at1 σ(p ∨ ¬p) depends on the substitution σ . On the other hand �subk is structural. In 
general, structurality can be imposed by restricting the operations in F to those such that, for every σ , �, σ f (�) ⊆ f (σ�), 
where by σ� we mean the result of applying σ to every formula in �. This is not satisfied when f = at. However, it is 
satisfied when f (�) = sub(�) or f (�) is the set of all formulae of given bounded complexity that can be built out of 
sub(�). As will be shown in the next section, each � f

k inherits the tractability of �0 although the complexity of the natural 
decision procedure grows with k (and with the degree of the polynomial p that bounds the size of the virtual space defined 
by f ).

4. Classical intelim deduction

A natural proof-theoretical characterization of the 0-depth logic �0 is obtained by means of a set of introduction and 
elimination rules (intelim rules) for the logical operators that are displayed in Tables 2 and 3. In view of the informational 
interpretation of the signs T and F (see p. 83 above), as expressing the informational truth and the informational falsity 
of the sentence to which they are prefixed, the intelim rules are presented in terms of S-formulae, to highlight their 
correspondence with the informational semantics of the previous sections. However, a version for unsigned formulae is 
simply obtained by replacing each S-formula T A with A and each S-formula F A with ¬A.

Their soundness can be immediately verified by inspection of the 3ND-tables. For example, if an agent x actually pos-
sesses the information that A ∨ B is true (the value of A ∨ B is 1) and x actually possesses the information that A is false, 
(the value of ¬A is 0), then x actually possesses also the information that B is true, since the other possible two values are 
ruled out by the table for ∨. It turns out that the intelim rules are also complete for the 0-depth logic, as will be shown 
later on.

Our intelim rules are different from the standard intelim rules of Gentzen-style natural deduction and are better suited 
to represent arguments in classical logic. In this respect, observe that the intelim rules for disjunction and conjunction 
are dual of each other, and that a sentence and its negation are treated in a symmetric way. Accordingly, for each logical 
operator, we have intelim rules for the truth of a sentence containing it as main operator and intelim rules for the falsity of 
such a sentence.18 In these rules the sentence containing the logical operator that is to be eliminated is called major premise
and the other is called minor premise.

The intelim rules generate intelim sequences, i.e., finite sequences ϕ1, . . . ϕn of S-formulae such that, for every i = 0, . . . , n, 
either ϕi is an assumption or it is the conclusion of the application of an intelim rule to preceding formulae. In Fig. 1 we 
show simple examples of intelim sequences using, respectively, the intelim rules for signed formulae and their version for 
unsigned formulae. The intelim rules are not complete for Boolean logic, but only for the 0-depth consequence relation �0

17 In the terminology of [21] these are “weak depth-bounded consequence relations”, see Section 3.3.
18 Observe that the two-premise elimination rules for true disjunctions and false conjunctions correspond to time-honoured principles of inference: modus 

ponens, modus tollens, disjunctive syllogism and its dual. The less natural rules, from the point of view of ordinary usage, namely the introduction rules for 
true conditionals and the elimination rules for false conditionals, are however faithful to the classical “truth-table” meaning of this operator. On the other 
hand Gentzen’s rule for introducing the conditional is faithful to its intuitionistic meaning.
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Table 2
Introduction rules for the standard Boolean operators.

F A

T ¬A

T ¬-I T A

F ¬A

F¬-I

T A

T A ∨ B

T ∨-I1 T B

T A ∨ B

T ∨-I2

F A
F B

F A ∨ B

F∨-I

F A

F A ∧ B

F∧-I1 F B

F A ∧ B

F∧-I2

T A
T B

T A ∧ B

T ∧-I

F A

T A → B

T→-I1 T B

T A → B

T→-I2

T A
F B

F A → B

F→-I

Table 3
Elimination rules for the four standard Boolean operators.

T ¬A

F A

T ¬-E F ¬A

T A

F¬-E

T A ∨ B
F A

T B

T ∨-E1

T A ∨ B
F B

T A

T ∨-E2 F A ∨ B

F A

F∨-E1 F A ∨ B

F B

F∨-E2

F A ∧ B
T A

F B

F∧-E1

F A ∧ B
T B

F A

F∧-E2 T A ∧ B

T A

T ∧-E1 T A ∧ B

T B

T ∧-E2

T A → B
T A

T B

T→-E1

T A → B
F B

F A

T→-E2 F A → B

T A

F→-E1 F A → B

F B

F→-E2

1 T (p ∨ q) → ¬r Assumption
2 T p Assumption
3 T (p ∧ t) → r Assumption

4 T p ∨ q T ∨-I1 (2)
5 T ¬r T →-E1 (1, 4)
6 F r T ¬-E (5)
7 F (p ∧ t) T →-E2 (3, 6)
8 F t F∧-E1 (7, 2).

1 (p ∨ q) → ¬r Assumption
2 p Assumption
3 (p ∧ t) → r Assumption

4 p ∨ q T ∨-I1 (2)
5 ¬r T →-E1 (1, 4)
6 ¬(p ∧ t) T →-E2 (3, 5)
7 ¬t F∧-E1 (6, 2).

Fig. 1. On the left, an intelim sequence which proves the S-formula on line 8 from the assumptions, using the rules for signed formulae. On the right, the 
corresponding sequence using the rules for unsigned formulae.

(this will be shown later on in Proposition 4.7). Completeness for full Boolean logic is obtained by adding only the following 
branching rule:19

With the addition of PB to the stock of rules, proofs and refutations are represented, as in semantic tableaux, by downward-
growing intelim trees.

Each application of PB invites us to consider virtual information about the truth or falsity of the formula A (the PB-
formula) and allows us to append both T A and F A as sibling nodes at the end of any branch of the tree, generating two 
new branches. The S-formulae T A and F A are called virtual assumptions. Notice that PB is, in essence, a classical cut rule 
which is not eliminable, but whose use (as will be shown in the sequel) can be restricted so as to satisfy the subformula 
property. The main conceptual advantage of this proof-theoretical characterization of classical logic, from our informational 
viewpoint, consists in the fact that it clearly separates the rules that fix the meaning of the logical operators in terms of the 

19 “PB” stands for “Principle of Bivalence”.
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information that we actually possess (the intelim rules) from the single structural rule that introduces virtual information 
(the PB rule).20 Intuitively, the more virtual information needs to be invoked via PB, the more difficult the deductive process 
is both from the computational and the cognitive viewpoint.21 The method of intelim trees bears some resemblance with 
Smullyan-style semantic tableaux [24]. However: (i) like in Natural Deduction there are introduction as well as elimination 
rules, and the method can be used as a direct proof method as well as a refutation method, (ii) the tableau branching rules 
are replaced by two-premise rules, so that all the operational rules have a linear format, (iii) there is only one branching rule 
corresponding to the Principle of Bivalence. A variant which brings out the analogy with Gentzen-style natural deduction is 
described in Appendix A.

Definition 4.1. An intelim tree for X is a finite tree T of S-formulae such that, for every S-formula ϕ occurring in T , either 
(i) ϕ ∈ X , or (ii) ϕ results from an application of an intelim rule to preceding S-formulae in the same branch, or (iii) ϕ is a 
virtual assumption introduced by an application of the branching rule PB.

We say that a branch of an intelim tree is closed if it contains both T A and F A for some formula A, otherwise it is 
open.

Definitions 4.2. For all X, ϕ ,

1. An intelim proof of ϕ from X is an intelim tree T for X such that ϕ occurs at the end of all open branches of T ;
2. A refutation of X is an intelim tree T for X such that every branch of T is closed.

Notice that, according to the above definition, every refutation of X is, at the same time, a proof of ϕ from X , for every 
S-formula ϕ (since there are no open branches and the condition that ϕ occurs at the end of all open branches is vacuously 
satisfied).

Definition 4.3. We say that an intelim proof of ϕ from X (an intelim refutation of X) has the subformula property (SFP) if, 
for every S-formula ψ occurring in it, ψu is a subformula of θu for some θ in X ∪ {ϕ} (in X).

In the next section we shall show that every intelim proof of ϕ from X can be transformed into an intelim proof of ϕ
from X with the SFP. The SFP is a key property of logical systems in that it allows us to search for proofs or refutations 
by analytic methods, i.e. by considering only inference steps involving formulae that are “contained” in the assumptions (or 
also in the conclusion in the case of proofs). So, no special ingenuity is required to construct such an analytic argument 
and its search is amenable to algorithmic treatment. In particular, in our classical intelim system, the SFP guarantees that 
we can impose a bound on the applications of PB, which could in principle be applied to arbitrary formulae, with no loss 
of deductive power. Similarly, we can impose a bound on the sensible applications of introduction rules, which could in 
principle be applied ad infinitum leading to ever more complex formulae. (On this point see also Proposition 5.10 below.)

When moving from intelim trees for S-formulae to trees for standard unsigned formulae, the subformula property is 
weakened as follows:

Definition 4.4. We say that an intelim proof T of A from � has the weak subformula property (WSFP) if every formula 
occurring in T is a weak subformula22 of some formula in � ∪ {A}.

Definitions 4.5. The depth of an intelim tree T is the maximum number of virtual assumptions occurring in a branch of T . 
An intelim tree T is a k-depth intelim proof of ϕ from X (a k-depth refutation of X) if T is an intelim proof of ϕ from X
(a refutation of X) and T is of depth k.

Observe also that a 0-depth intelim tree is nothing but an intelim sequence. An example of an intelim proof of depth 2
with the SFP is given in Fig. 2. This is an intelim proof of T u from the premises marked with a “∗”. The reader can check 
that each S-formula that is not a premise either is obtained from previous S-formulae on the same branch by an application 
of one of the intelim rules in Tables 2 and 3, or is one of the virtual assumptions introduced by the branching rule PB. All 

20 By contrast, in Gentzen-style systems some of the intelim rules (the “discharge rules” of natural deduction and their counterparts in the sequent 
calculus) make essential use of virtual information. Since in Gentzen-style proof systems cut is eliminable, no approximation hierarchy can be produced by 
controlling the application of the cut rule.
21 PB is a form of non-constructive dilemma. In a recent interesting paper [39], Klassen and colleagues propose a similar view of classical case analysis as 

the source of the “effort” required by a deductive task. This idea was already present in some early contributions on approximation methods [13, p. 286]; 
see also the notion of “intricacy” in [26]. In our view, the primary source of intractability is the use of virtual information, a more general phenomenon than 
reasoning by cases. Indeed, the pure implication fragment of intuitionistic logic, which is characterized simply by the NJ intelim rules for →, is P-SPACE 
complete [50], but does not appear to involve any case analysis. It does, however, make use of virtual information (in the introduction rule for →).
22 Recall that B is a weak subformula of A if B is a subformula of A or the negation of a subformula of A.
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Fig. 2. An intelim proof of depth 2 using S-formulae. Each branch is an intelim sequence for the set of S-formulae containing the initial assumptions 
(marked with ∗) and the virtual assumptions introduced by the applications of PB.

the open branches end with the S-formula T u. The rightmost branch is closed since it contains both T r and F r. Each open 
branch is a 0-depth intelim proof of T u from the union of the initial premises plus the virtual assumptions introduced by 
the rule PB on that branch.

In Fig. 3 we show three examples of intelim trees using unsigned formulae that enjoy the WSFP. Again, the initial 
assumptions are the formulae marked with a “∗”.

Let us first focus on 0-depth intelim proofs and refutations.

Definition 4.6. For all X, ϕ , we say that ϕ is 0-depth deducible from X , and write X �0 ϕ , if there is a 0-depth proof of ϕ
from X . We also say that X is 0-depth refutable, and write X �0, if there is a 0-depth refutation of X .

Proposition 4.7. For every set X of S-formulae and every S-formula ϕ ,

X �0 ϕ if and only if X �0 ϕ.

Proof. An indirect proof is given in [21] where the 0-depth consequence relation �0 is characterized in terms of another 
semantics (called “modular semantics”) that is shown to be equivalent to the informational 3-valued semantics. Here we 
provide a direct adequacy proof.



M. D’Agostino / Theoretical Computer Science 606 (2015) 79–97 89
Fig. 3. Intelim trees using unsigned formulae.

The reader can check that the intelim rules are all sound with respect to the informational 3ND-tables.
As for completeness, suppose that X �0 ϕ . Then X is not 0-depth refutable; otherwise, by definition of 0-depth inte-

lim proof, it should hold that X �0 ϕ against the hypothesis. Now, consider the set X∗ = {ψ | X �0 ψ}. Since X is not 
0-depth refutable, for no formula A, T A and F A are both in X∗ . Then, it is easy to verify that the function V defined as 
follows:

V (A) =
{

1 if T A ∈ X∗
0 if F A ∈ X∗
⊥ otherwise

is a 3ND-valuation, i.e. it agrees with the 3-valued informational tables. Here we just outline a typical case. Suppose 
V (A) = V (B) = ⊥. Then F A ∨ B /∈ X∗ . Otherwise, if F A ∨ B ∈ X∗ , then by definition of X∗ and by the rules F∨-E , F A
and F B should also be in X∗; therefore, by definition of V , V (A) = V (B) = 0 against our assumption. Hence V (A ∨ B) �= 0. 
Moreover, T A ∨ B , may or may not belong to X∗ , and so V (A ∨ B) = 1 or V (A ∨ B) = ⊥. Finally, observe that: (i) ψ ∈ X∗
for all ψ ∈ X and so, by definition of V , V satisfies all ψ ∈ X ; (ii) by the hypothesis that � �0 ϕ , ϕ /∈ X∗ and so V does not 
satisfy ϕ . Hence X �0 ϕ . �
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Corollary 4.8. For every set X of S-formulae,

X �0 if and only if X �0 .

The following definition mimics Definition 3.1:

Definition 4.9. For all X , ϕ and all f ∈F ,

1. X � f
0 ϕ if and only if X �0 ϕ;

2. X � f
k+1 ϕ if and only if X ∪ {T A} � f

k ϕ and X ∪ {F A} � f
k ϕ for some A ∈ f (Xu ∪ {ϕu});

As Definition 3.1, the above definition covers the case of k-depth refutability. When X � f
k ϕ (X � f

k ) we say that ϕ is 
deducible at depth k from X (X is refutable at depth k) over the f -bounded virtual space. It follows immediately from Definitions 4.9
and 4.5 that:

Proposition 4.10. For all X, ϕ and all f ∈ F , X � f
k ϕ (X � f

k ) if and only if there is a k-depth intelim proof of ϕ from X (a k-depth 
intelim refutation of X) such that all its PB-formulae are in f (Xu ∪ {ϕu}).

Given Proposition 4.7 and the close correspondence between Definitions 3.1 and 4.9, it is far from surprising that:

Proposition 4.11. For all X, ϕ , X � f
k ϕ if and only if X � f

k ϕ .

5. Normal intelim proofs

Consider the following intelim sequences:

1 T p → ¬q Assumption
2 T (p → ¬q) → p Assumption
3 T p → r Assumption
4 T p Assumption

5 T ¬q from 1, 4
6 F q from 5
7 T p ∨ q from 4
8 T p from 4, 6
9 T r from 3, 7

1 T p Assumption
2 T ¬p Assumption

3 F p from 2
4 T p ∨ q from 1
5 T q from 4, 3

The first one is an intelim proof of T r from {T p → ¬q, T (p → ¬q) → p, T p → r} and the second one is the so-called 
“Lewis”’ proof of (an arbitrary) T q from {T p, T ¬p}, which is often used to show the explosivity of classical logic. Observe 
that both proofs are redundant.

In the left-hand proof the S-formula T p ∨ q is first introduced (from premise T p) and then eliminated (using the minor 
premise F q) to re-obtain the S-formula T p which was already contained in the sequence, that is, this proof contains circular 
reasoning. In the right-hand proof, the S-formula T p ∨ q is first introduced (from premise T p) and then eliminated (using 
F p as minor premise); however, the sequence was already closed before the T ∨-introduction and so, by Definition 4.2.1, 
the closed sequence T p, T ¬p, F p was already a proof of T q from T p and T ¬p.

The same kind of redundancy is observed whenever a formula is, at the same time, the conclusion of an introduction 
and the major premise of an elimination.

Definition 5.1. We say that an occurrence of an S-formula ϕ in an intelim tree T is a detour if ϕ is both the conclusion of 
an introduction and the major premise of an elimination.

Let ϕ denote the conjugate of the S-formula ϕ , namely the S-formula T A if ϕ is equal to F A and F A if ϕ is equal 
to T A.

Definition 5.2. An occurrence of an S-formula ϕ is idle in an intelim tree T if (i) it is not the terminal node of its branch, 
(ii) it is not used in T as premise of some application of an intelim rule, and (iii) ϕ is not the conjugate of some S-formula 
occurring in the same branch.
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Definition 5.3. Given an intelim tree T , a path in T is a finite sequence of nodes such that the first node is the root of T
and each of the subsequent nodes is an immediate successor of the previous one. A path is closed if it contains both ϕ and 
ϕ for some formula ϕ .

Observe that, according to the above definition, every branch is a maximal path.

Definition 5.4. Let T be an intelim proof of ϕ from � (an intelim refutation of �). We say that T is non-redundant if it 
satisfies the following conditions:

1. T contains no idle occurrences of formulae;
2. no branch of T contains more than one occurrence of the same formula;
3. no branch of T properly includes a closed path.

Our argument above shows that whenever an intelim proof or refutation T contains a detour, then either the second or 
the third non-redundancy condition is violated. Thus:

Lemma 5.5. If an intelim proof or refutation T is non-redundant, then it contains no detours.

Proof. Suppose T contains a detour, namely a formula ϕ that is at the same time the conclusion of an introduction and 
the major premise of an elimination. By inspection of the rules, either the conclusion of the elimination is equal to one of 
the premises of the introduction, or the minor premise of the elimination is the complement of one of the premises of the 
introduction and so the branch was already closed before the elimination. In either case T is redundant. �

We remark that turning an intelim proof or refutation T into a non-redundant one (with no increase in the size of the 
proof) is computationally easy, in that it only involves the following steps:

1. checking if there are closed paths and removing whatever follows;
2. removing any repetition of (S-)formulae in the same branch;
3. checking if there are idle occurrences of S-formulae, and
4. for each idle occurrence of an S-formula ϕ:

(a) if ϕ is the conclusion of an application of an intelim rule, just remove ϕ from T ;
(b) if ϕ is a virtual assumption introduced by an application of PB, remove both ϕ and the whole subtree generated 

by its conjugate S-formula ϕ introduced in the same application of PB; then attach the subtree below ϕ to the 
immediate predecessor of ϕ .

It is easy to verify that the result of this procedure is still an intelim proof of the same conclusion from the same premises 
or an intelim refutation of the same assumptions.

Given an intelim proof T of ϕ from X (an intelim refutation of X), and any operation f ∈ F (see Section 3 above), we 
say that an application of PB in T is f -analytic if its PB-formula is in f (Xu ∪ {ϕu}) ( f (Xu)), namely in the virtual space 
defined by the operation f (recall that this is, by definition, closed under subformulae and polynomially bounded). When 
f = sub, that is the virtual space consists exactly of the subformulae of Xu ∪ {ϕu} (of Xu), we just say that the application 
of PB is analytic. Then, it can be shown that:

Lemma 5.6. Given any f ∈ F , every k-depth intelim proof T of ϕ from X (k-depth intelim refutation of X) can be transformed into 
a k + j-depth intelim proof T ′ of ϕ from X (intelim refutation T ′ of X), for some j ≥ 0, such that every application of PB in T is 
f -analytic.

Proof. We use the notation T
n

to denote either an empty intelim tree or a non-empty intelim tree such that n is one of its 

terminal nodes. The proof is by lexicographic induction on 〈γ (T ), λ(T )〉, where γ (T ) is the maximum logical complexity23

of a PB-formula in T that is not f -analytic and λ(T ) is the number of occurrences of such non- f -analytic PB-formulae of 
maximal complexity.

Let γ (T ) = m > 0 and let A be a PB-formula of logical complexity m. There are several cases depending on the logical 
form of A. We discuss only the case A = B ∨ C , the other cases being similar.

23 The logical complexity of a formula is the number of occurrences of logical operators in it.
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If A = B ∨ C , then T has the following form:

where T1 and T2 are intelim trees such that each of their open branches contains ϕ (or are both closed intelim trees in 
case T is a refutation of X). Let T ′ be the following intelim tree:

Clearly T ′ is a k +1-depth intelim proof of ϕ from X (a k +1-depth intelim refutation of X). Moreover, either γ (T ′) < γ (T ), 
or γ (T ′) = γ (T ) and λ(T ′) < λ(T ). �

In fact, the construction used in the proof of the above proposition shows that every intelim tree can be transformed 
into an equivalent one in which all the PB-formulae are atomic. So, in principle, we could reformulate the notion of intelim 
tree in such a way that PB is applied only to atomic formulae without loss of completeness. However: (i) each application 
of this construction increases the depth of the tree, so that it is convenient to use it only to the extent in which it is needed 
to remove applications of PB that are not f -analytic; (ii) if we insist that the applications of PB be restricted to atomic 
formulae, the property of being an intelim tree is no longer preserved under uniform substitutions of the atomic formulae 
occurring in the tree with arbitrary formulae. On the other hand, if we require that the notion of intelim tree be restricted 
so as to permit only analytic applications of PB (that is, f -analytic applications with f = sub), the property of being an 
intelim tree is indeed invariant under uniform substitutions.

Definition 5.7. Given any f ∈F , we say that an intelim proof T of ϕ from X is f -normal if (i) T is non-redundant, (ii) every 
application or PB in T is f -analytic and (iii) neither of the two conjugate S-formulae in a closed branch is the conclusion 
of an introduction.

When every application of PB is analytic (i.e., with f = sub) we just say that T is normal. We stress that f -normality 
is an important generalization of normality in the context of depth-bounded approximations in that in some cases the 
minimum depth of a normal proof is greater than the minimum depth of an f -normal proof. In general, whenever f1 � f2
the minimum depth of an f1-normal proof may be greater than that of an f2-normal proof.

Proposition 5.8. Given any f ∈ F , every intelim proof T of ϕ from X (intelim refutation of X) can be transformed into an f -normal 
one.

Proof. By Lemma 5.6, T can be transformed into an intelim proof T ′ of ϕ from X (intelim refutation of X) such that 
all the applications of PB are f -analytic. As explained above, T ′ can be transformed into a non-redundant intelim proof 
T ′′ of ϕ from X (intelim refutation of X) with no size increase. Finally, suppose that ψ and ψ both occur in a branch 
of T ′′ . First, notice that they cannot be both conclusions of introductions, for in this case one can easily verify, by in-
spection of the introduction rules, that the branch would properly contain a closed path and so T ′′ would be redundant. 
For example, suppose that ψ = T A ∧ B and both T A ∧ B and F A ∧ B are conclusions of introductions. Then, both T A
and T B and at least one of F A and F B already belong to the same branch, and so the branch would properly contain 
a closed path, against the hypothesis that T ′′ is non-redundant. Suppose now that only one of them is the conclusion of 
an introduction. Then, just observe that this introduction can be retracted and replaced by an elimination without intro-
ducing a new detour. For example, suppose that ψ = T A ∨ B and that ψ is the conclusion of an introduction. Then either 
T A or T B occurs above in the same branch. But either of F A and F B can be appended to the branch as conclusion 
of an application of F∨-E to ψ , so as to obtain a closed branch. Moreover, this move introduces no new detour because 
ψ , by hypothesis, is not the conclusion of an introduction. The argument is the same for the other possible logical forms 
of ψ . �
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The following proposition states a generalization of the SFP for intelim proofs and refutations:24

Proposition 5.9 (Generalized SFP). For every f ∈ F , if T is an f -normal proof of ϕ from X, or an f -normal refutation of X, then for 
every S-formula ψ occurring in T ,

ψu ∈ f (Xu ∪ {ϕu}) ∪ sub(Xu ∪ {ϕu})
if T is a proof of ϕ from X, or

ψu ∈ f (Xu) ∪ sub(Xu)

if T is a refutation of X.

Proof. Let T be an f -normal intelim proof of ϕ from X (refutation of X) and suppose that there are S-formulae ω in 
T such that ωu /∈ f (Xu ∪ {ϕu}) ∪ sub(Xu ∪ {ϕu}) (ωu /∈ f (Xu) ∪ sub(Xu)). Let us call such formulae spurious. Let ψ be 
a spurious formula of maximal logical complexity.25 Then ψ cannot result from the application of an elimination rule, 
otherwise T would contain a more complex spurious formula, namely the major premise of this elimination. Moreover, 
since T is f -normal, no spurious formula can occur in it as a virtual assumption introduced by an application of PB, since 
f -normal intelim trees contain only f -analytic applications of PB. Therefore ψ must be the conclusion of an introduction. 
Since T is non-redundant, it contains no idle occurrences of formulae, and so either (i) ψ = θ for some θ occurring in the 
same branch or (ii) ψ is used as a premise of a rule application. But both alternatives are impossible. The first alternative 
violates condition (iii) in the definition of an f -normal proof (Definition 5.7). For the second alternative, first observe that 
ψ cannot be the minor premise of an elimination, otherwise there would be again a more complex spurious formula in 
T , namely the major premise of this elimination. Moreover, ψ cannot be used in T as major premise of an elimination, 
otherwise ψ would be a detour and, by Lemma 5.5, T would be redundant, against the hypothesis that T is f -normal. �

In the special case in which f = sub we obtain the usual SFP. Observe that, since 0-depth intelim trees have no virtual 
assumptions, every normal 0-depth proof or refutation has the SFP. The above proposition can be adapted to trees of 
unsigned formulae in the obvious way and, when dealing with such tress, the SFP is replaced, as before, by the WSFP.

Let � f
N be the unbounded deducibility relation defined as follows: X � f

N ϕ (X � f
N ) if there is an f -normal intelim proof 

of ϕ from X (an f -normal refutation of X). Proposition 5.8 guarantees that � f
N is complete for classical propositional logic. 

This implies, among other things, that the application of the introduction rules can be goal-oriented in the sense clarified by 
the following:

Proposition 5.10. Let T be an f -normal proof of ϕ from X (refutation of X) and let ψ1, . . . , ψn be a maximal sequence of formulae 
occurring in a branch of T such that, for every i = 2, . . . , n, ψi is the conclusion of an application of an introduction rule to previous 
S-formulae in the sequence. Then one of the following holds true:

1. ψn is the minor premise of an elimination
2. ψn = ϕ

Proof. First, by Clause (iii) in Definition 5.7, ψn cannot be the conjugate of any other S-formula in the same branch. Since, 
by Clause (i), the intelim tree is non-redundant, ψn cannot be idle, and so it is either the terminal node of its branch, in 
which case the branch is open and ψn = ϕ , or the premise of an application of an intelim rule. Given that the sequence 
of introductions is maximal in the branch, ψn is not used as premise of an introduction. Moreover, by Proposition 5.5, 
non-redundant proofs contain no detours, and so ψn is not used as major premise of an elimination. Thus either ψn = ϕ of 
ψ is used as minor premise of an elimination. �

By the above propositions, the search for a proof or a refutation can be governed by a procedure that is informally 
described by the following four general rules for expanding an intelim tree:

1. stop expanding a branch whenever it is closed,
2. give priority to the elimination rules,
3. apply the introduction rules only to obtain either the conclusion of the proof, or a minor premise that is needed for an 

elimination,
4. apply the branching rule PB to an open branch only when instructions 1–3 fail.

24 Notice that whenever � ⊆ f (�), then also sub(�) ⊆ f (�).
25 See footnote 23 above.
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The choice of the PB-formula in the last instruction depends on the operation f that defines the virtual space. When 
f = sub, one can always, without loss of completeness, choose as PB-formula some subformula of the assumptions or of 
the conclusion that does not already occur in the branch. This is the procedure that has been followed in the construction 
of the trees in Fig. 3. If we apply these rules mechanically, the resulting intelim proof would not contain detours but may 
still be redundant in that it may contain idle formulae. Then, to obtain a normal proof it is sufficient to remove all the idle 
formulae from the tree.

6. The tractability of depth-bounded deduction

The generalized SFP of intelim proofs and refutations paves the way for a feasible decision procedure for intelim de-
ducibility and refutability. The following proposition is proven in [21].

Proposition 6.1. Whether or not X �0 ϕ (X is 0-depth refutable) can be decided in time O (n2) where n is the total number of 
occurrences of symbols in X ∪ {ϕ} (in X).

Proposition 6.1 suggests that the explosivity of 0-depth consequence is far less serious a problem then the explosivity of 
classical consequence. For, we can always feasibly detect that our premises are 0-depth inconsistent and, therefore, we may 
as well abstain from drawing bizarre conclusions on their basis. Unlike hidden classical inconsistencies, that may be hard to 
discover even for agents equipped with powerful (but still bounded) computational resources, 0-depth inconsistency lies, as 
it were, on the surface. So, we always have a feasible means to ensure that our premises are 0-depth consistent, in which 
case the consequence relation �0 is not explosive, even if these premises are classically inconsistent.

Given Propositions 6.1, a simple analysis shows that, for each f ∈ F and each fixed k, � f
k admits of a feasible decision 

procedure:

Proposition 6.2. For each f ∈F and each k ∈N, whether or not X � f
k ϕ (X � f

k ), can be decided in polynomial time.

More precisely, when f � sub, the complexity of the decision problem is O (nk+2), where n is the total number of 
occurrences of symbols in X ∪ {ϕ} (in X). In general, the complexity is O (p(n)k+2) where p is a polynomial depending on 
f (recall that the virtual space is, by definition, polynomially bounded).

For unbounded k, the method of intelim trees is a proof system for full classical propositional logic that enjoys the 
SFP. However, this presentation of classical logic allows also for representing proofs that do not have the SFP simply by 
permitting applications of PB to formulae that are not subformulae either of the premises or of the conclusion. On the 
connection between the rule PB and the cut rule of Gentzen’s sequent calculus, as well as on the advantages of such a 
cut-based formalization of classical logic, see [14,15]. Moreover, for unbounded k, the introduction rules become redundant, 
since they can be easily derived from the elimination rules with the help of PB. The system consisting only of the elimination 
rules plus PB (with no depth bound) is a complete refutation system for classical propositional logic that enjoys the SFP, 
since the applications of PB can be restricted to subformulae and the elimination rules obviously preserve the SFP. This 
system, known as KE, was originally proposed as a more efficient alternative to Smullyan’s semantic tableaux. It was shown 
that KE has an exponential speed-up on semantic tableaux and on Gentzen’s cut-free sequent calculus even if we consider 
its “analytic restriction” that yields only refutations with the SFP [14,25,15]. The unbounded method of intelim trees can be 
seen as an extension of KE, obtained by adding suitable introduction rules for the logical operators. So, intended as a method 
for full classical propositional logic, intelim trees still have an exponential speed-up on Smullyan’s semantic tableaux and 
on cut-free sequent proofs even when we consider only normal intelim proofs and refutations.

7. Conclusions and further work

The relations �k and �k provide an infinite sequence of tractable depth-bounded approximations to classical propositional 
logic. Observe that in our approach, the tractability of each approximation results from a notion of depth that applies to 
single proofs and refutations. This measure is not based on computational complexity, but on the distinction between actual 
and virtual information, the tractability of k-depth consequence being derivative. Thus, depth-bounded deduction offers a 
solution to the problem of logical omniscience that appears to overcome the main objection of [44] against complexity-based 
approaches.26

The method of intelim trees combines features of Natural Deduction (it is based on introduction and elimination rules 
that satisfy a form of the inversion principle [16]) and of Smullyan’s Semantic Tableaux (it is a tree method with no 
discharge rules that can be used as a refutation system as well as proof system), but is essentially more efficient than both. 
It appears to be heuristically interesting for further developments in a variety of areas. Possible extensions of the work 
presented here, that may be of interest for researchers in computer science and artificial intelligence, include:

26 “The issue of computational complexity can only make sense for an infinite family of questions, whose answers may be undecidable or at least not in 
polytime. But for individual questions whose answers we do not know, the appeal to computational complexity misses the issue.” [44, p. 462].
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Table 4
The classical intelim rules.

INTRODUCTION RULES

A B

A ∧ B
∧ I ¬A

¬(A ∧ B)
¬∧ I1

¬B

¬(A ∧ B)
¬∧ I2

¬A ¬B

¬(A ∨ B)
¬∨ I A

A ∨ B
∨ I1

B

A ∨ B
∨ I2

A ¬B

¬(A → B)
¬toI ¬A

A → B
→ I1

B

A → B
→ I2

A

¬¬A
¬¬I A ¬A

� � I

ELIMINATION RULES

A ∨ B ¬A

B
∨ E1

A ∨ B ¬B

A
∨ E2

¬(A ∨ B)

¬A
¬∨ E1

¬(A ∨ B)

¬B
¬∨ E2

¬(A ∧ B) A

¬B
¬∧ E1

¬(A ∧ B) B

¬A
¬∧ E2

A ∧ B

A
∧ E1

A ∧ B

B
∧ E2

A → B A

B
→ E1

A → B ¬B

¬A
→ E2

¬(A → B)

A
¬→ E1

¬(A → B)

¬B
¬→ E2

¬¬A

A
¬¬E �

A
� E

• providing alternative characterizations of classes of inferences whose validity can (or cannot) be shown at a given 
depth k;

• extending the notions of depth-bounded consequence and depth-bounded inconsistency to non-classical logics by rel-
ativizing the primary semantic notions of informational truth and informational falsity to points of some structured 
space (e.g., possible worlds, information states, etc., equipped with an accessibility relation);27

• investigating depth-bounded approximations for the logics of formal inconsistency [12] and, more in general, for para-
consistent logics [45].

Appendix A

In this appendix we describe a variant of the method of intelim trees that highlights its analogies and dissimilarities 
with Gentzen style natural deduction.

We deal with unsigned formulae and assume that the propositional language contains also the logical constant �, denoting 
“the falsum”, intended as an absurd proposition. Unlike the intelim rules of standard natural deduction, our intelim rules 
contain no discharge rules. As a result they are not complete for full Boolean logic, but only for the 0-depth logic discussed 
in Section 2.

To obtain a complete set of rules it is sufficient to add a single discharge rule that corresponds to PB: if we have a 
deduction 
1 of B from assumptions � ∪ {A} and a deduction 
2 of B from assumptions � ∪ {¬A}, we thereby have a 
deduction of B from � ∪ �. Schematically:

�, [A]

1
B

�, [¬A]

2
B

B
RB

27 From the proof-theoretical point of view, this involves shifting from intelim trees of S-formulae to intelim trees of labelled S-formulae. For example, 
depth-bounded systems for intuitionistic or substructural logics could possibly be developed by adding suitable introduction rules to the KE-like systems 
discussed in [23] and bounding the applications of the generalized rule of bivalence. A similar generalized rule of bivalence has been also fruitfully used in 
the context of many-valued logics; see for example [37,11].
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Fig. 4. Classical intelim deduction.

where the conclusion B does not depend on the “discharged” assumptions A and ¬A that are enclosed in square brackets 
and represent virtual assumptions. We leave it to the reader to show that Gentzen’s rules can be simulated by means of the 
rules in Table 4 and RB.

If we allow unbounded applications of RB, a classical intelim deduction of A from � is simply a tree of formulae built in 
accordance with the intelim rules and RB, such that A occurs in the root and all the undischarged formulae occurring in 
the leaves belong to �. The tree in Fig. 4 is a classical intelim deduction of v from

{p → ¬q,q ∨ r,¬(r ∧ ¬q), p ∨ t, (t ∨ u) → ¬s,¬v → s}.
Notice that the last step is an occurrence of RB that discharges the temporary assumptions p (which occurs twice among the 
leaves of the left subtree) and ¬p (which occurs once among the leaves of the right subtree). This format of intelim trees, 
with the conclusion as root and the assumptions as leaves, is more perspicuous, since it allows us to visualize immediately 
the inner structure of the proof. However, it involves a good deal of redundancy in the representation of arguments. This 
is apparent from the proof tree in Fig. 4, where the derivation of ¬q from the assumptions p and p → ¬q is repeated 
twice because the conclusion ¬q is used twice as premise of distinct inference steps. Moreover, the format of the rule of 
bivalence is not particularly convenient for the transformation of proofs and for the implementation of efficient proof-search 
algorithms. The format presented in Section 4 provides a more concise representation of arguments and is better suited to 
algorithmic treatment.
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