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A B S T R A C T

The paper outlines some recent developments of the boundary element method (BEM) that makes it more
user friendly and suitable for a realistic simulation in geomechanics, especially for underground excavations
and tunnelling. The innovations refer to the introduction of isogeometric concepts, elasto-plastic analysis
and the simulation of ground support. The introduction of isogeometric concepts for the description of the
excavation boundaries results in less user and analysis effort, since complex geometries can be modelled with
few parameters and degrees of freedom. No mesh generation is necessary. Heterogeneous and inelastic ground
conditions are considered via general inclusions and rock bolts via linear inclusions.

A comparison of results of test examples with other numerical methods and analytical solutions confirms
the efficiency and accuracy of the proposed implementation. A practical example with a complex geometry is
presented.
1. Introduction

Since the publication of the first paper on the topic (Hughes et al.,
2005), isogeometric analysis has gained increased popularity. The ma-
jority of applications have been with the Finite Element method (FEM)
and much less with the BEM. However, the advantage of the BEM,
that requires only the discretisation of the boundary, makes it an
ideal companion to Computer Aided Design (CAD). First applications
of the isogeometric BEM (IGABEM) were published in elasticity in
2-D (Simpson et al., 2012, 2013) and in 3-D (Scott et al., 2013).
Other applications followed (for example see An et al., 2018; Fang
et al., 2020). In Marussig et al. (2015) the concept of a geometry
independent field approximation, which involved a decoupling of the
geometry definition and the approximation of the unknown, was first
introduced and was later adopted by others (Atroshchenko et al., 2018).
The seamless integration of BEM and CAD was discussed in Marussig
(2016). In a recent book published on the isogeometric BEM (Beer et al.,
2019) it was shown how geometrical information can be taken directly
from CAD data and that efficient and accurate simulations with very
few unknowns can be obtained.

One fact that has hampered the widespread use of the BEM is that
fundamental solutions, on which the method is based, exist only for
elastic material properties and homogeneous domains. Fundamental
solutions can be obtained for anisotropic materials, but they are very
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complicated (Pan and Chou, 1976). To overcome the fact that the
original BEM can only deal with homogeneous and elastic domains,
several workarounds were introduced. Among them we mention the
introduction of boundary element regions, to consider a piecewise het-
erogeneous domain (Banerjee and Raveendra, 1986) and the coupling
of the BEM with the Finite Element Method (FEM) where the FEM
regions model non-linear behaviour (Wendland, 1990). The topic of
elastic inclusions was recently dealt with in Sun et al. (2020). The
concept of including non-linear effects by adding a volume integral was
first introduced by Brebbia and Walker (1980) and Banerjee (1994) and
later expanded in Gao and Davies (2011). Various ways of avoiding the
generation of a volume mesh were presented (see for example Tanaka
et al., 2001), but their application is limited to finite domain problems.
All of the mentioned solutions involve the introduction of errors or
increase the discretisation effort.

In this paper we show several innovations that make the BEM
suitable for realistic simulations in underground construction. This
means that the BEM simulation can consider ground support, hetero-
geneous ground conditions and non-linear material behaviour. We first
introduce the theoretical background of the BEM with volume effects.
Then the evaluation of the arising boundary and volume integrals is
discussed in some detail. This includes the description of the excavation
geometry with NURBS patches and the definition of subdomains, where
https://doi.org/10.1016/j.compgeo.2021.104055
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material properties differ from the ones used to compute the fundamen-
tal solutions or which behave in an inelastic way. Rock bolts are also
modelled as (linear) subdomains and their analytical integration allows
many of them to be used in a simulation with a small increase in the
numerical effort.

Two test examples are included, which test the accuracy and ef-
ficiency of the simulation of ground support and elasto-plastic mate-
rial behaviour. Finally a practical example with some complexity is
presented.

It is emphasised that the simulation approach presented here does
not involve any mesh generation. Instead, geometries are defined by
NURBS patches using data generated by CAD programs or input data,
in a similar data format, that are user generated.

2. Theory

In the following we will use the word inclusion to specify part
of the analysis domain that is not modelled by boundary elements,
i.e. parts of the domain that has different material properties or behaves
inelastically. This also applies to the ground support.

As will be explained, we use the concept of initial stresses inside
inclusions to consider those volume effects, which are not considered
by the boundary discretisation.

In the following we will use matrix algebra and it is therefore nec-
essary to convert the stress and strain tensors 𝜎𝑖𝑗 , 𝜖𝑖𝑗 to pseudo-vectors
𝝈, 𝝐 using Voigt notation:

𝝈 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎11
𝜎22
𝜎33
𝜎12
𝜎23
𝜎13

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

and 𝝐 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜖11
𝜖22
𝜖33

𝜖12 + 𝜖21
𝜖23 + 𝜖32
𝜖13 + 𝜖31

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(1)

The initial stress vector 𝝈0, due the fact that a point inside the in-
clusion has properties that are different to the ones used for computing
the fundamental solutions, is given by:

𝝈0 = (𝐃 − 𝐃𝑖𝑛𝑐𝑙)𝝐 (2)

where 𝝐 is the total strain, 𝐃 is the constitutive matrix for computing
he fundamental solutions and 𝐃𝑖𝑛𝑐𝑙 is the corresponding matrix for the
nclusion point.

emark. While the matrix 𝐃 is restricted to an isotropic elasticity
atrix, the constitutive matrix 𝐃𝑖𝑛𝑐𝑙 can be quite general, ranging

rom the sparsely populated isotropic elasticity matrix to a fully pop-
lated anisotropic elasticity matrix. Indeed, later on we will use an
lasto-plastic constitutive matrix for 𝐃𝑖𝑛𝑐𝑙.

In the following we first establish the governing integral equations
nd then discuss in detail how the arising volume and surface integrals
re evaluated.

.1. Governing integral equations

Consider a domain 𝛺 with a boundary 𝛤 , containing a subdomain
0 where initial stresses 𝝈0(�̂�) are present. We apply the theorem by
etti and the collocation method to arrive at the governing integral
quations. This means that we set the work done on the boundary

by tractions 𝖳 times displacements 𝐮 equal to the work done by
isplacements 𝖴 times tractions 𝐭. We assume 𝖳 and 𝖴 to be funda-
ental solutions of the governing differential equation at �̂� due to
source at �̃�𝑛 and 𝐮, 𝐭 to be boundary values. If initial stresses are

resent, additional work is done in the domain 𝛺0 by the initial stresses
̂ ̃ ̂
0(𝒙) times the fundamental solution for strains 𝖤(𝒙𝑛,𝒙). The integral

2

equation can be written as (see Brebbia et al., 1984; Aliabadi, 2002;
Banerjee and Butterfield, 1981):

∫𝛤
𝖳(�̃�𝑛, �̂�)𝐮(�̂�) 𝑑𝛤 (�̂�) = ∫𝛤

𝖴(�̃�𝑛, �̂�) 𝐭(�̂�) 𝑑𝛤 (�̂�)

+∫𝛺0

𝖤(�̃�𝑛, �̂�)𝝈0(�̂�)𝑑𝛺0(�̂�).
(3)

here �̃�𝑛 are the coordinates of the collocation point 𝑛. To be able to
olve the integral equations they have to be regularised. The regularised
ntegral equations are written as :

∫𝛤
𝖳(�̃�𝑛, �̂�)(𝐮(�̂�) − 𝐮(�̃�𝑛)) 𝑑𝛤 (�̂�) − 𝐀𝑛𝐮(�̃�𝑛) = ∫𝛤

𝖴(�̃�𝑛, �̂�) 𝐭(�̂�) 𝑑𝛤 (�̂�)

+∫𝛺0

𝖤(�̃�𝑛, �̂�)𝝈0(�̂�)𝑑𝛺0(�̂�).

(4)

where 𝐀𝑛 = 𝟎 for finite domain problems and 𝐀𝑛 = 𝐈 for infinite domain
problems. The derivation of Eq. (4) and the fundamental solutions 𝖴
and 𝖳 are presented in Beer et al. (2019). The fundamental solution 𝖤
is given by:

𝐸𝑖𝑗𝑘 =
−𝐶
𝑟2

[

𝐶3(𝑟,𝑘𝛿𝑖𝑗 + 𝑟,𝑗𝛿𝑖𝑘) − 𝑟,𝑖𝛿𝑗𝑘 + 𝐶4 𝑟,𝑖𝑟,𝑗𝑟,𝑘
]

(5)

where 𝑟 = |�̂� − �̃�|, 𝑟,𝑖 =
𝑟𝑖
𝑟 and 𝛿𝑖𝑗 is the Kronecker Delta. The constants

are: 𝐶 = 1
16𝜋𝐺(1−𝜈) , 𝐶3 = 1−2𝜈 and 𝐶4 = 3 where 𝐺 is the shear modulus

nd 𝜈 the Poisson’s ratio.
The tensor 𝐸𝑖𝑗𝑘 is converted to a matrix 𝖤:

=
⎡

⎢

⎢

⎣

𝐸111 𝐸122 𝐸133 𝐸112 + 𝐸121 𝐸123 + 𝐸132 𝐸113 + 𝐸131
𝐸211 𝐸222 𝐸233 𝐸212 + 𝐸221 𝐸223 + 𝐸232 𝐸213 + 𝐸231
𝐸311 𝐸322 𝐸333 𝐸312 + 𝐸321 𝐸323 + 𝐸332 𝐸313 + 𝐸331

⎤

⎥

⎥

⎦

(6)

3. Discretisation of integral equations

To be able to solve Eqs. (4) we have to discretise them. This involves
2 steps:

• The subdivision of the boundary domain into patches and the
volume domain into inclusions

• The approximation of the unknown boundary values and the
approximation of initial stresses.

This will be discussed in the subsequent sections separately for the
boundary and volume integrals.

3.1. Discretisation of the boundary integrals

For the numerical solution of the boundary integral equations the
integrals are expressed as sum of integrals over patches:

∫𝛤
𝖴(�̃�𝑛, �̂�) 𝐭(�̂�) 𝑑𝛤 (�̂�) − ∫𝛤

𝖳(�̃�𝑛, �̂�)(𝐮(�̂�) − 𝐮(�̃�𝑛)) 𝑑𝛤 (�̂�) + 𝐀𝑛𝐮(�̃�𝑛) =

𝐸
∑

𝑒=1
∫𝛤𝑒

𝖴(�̃�𝑛, �̂�) 𝐭𝑒(�̂�) 𝑑𝛤𝑒(�̂�) −
𝐸
∑

𝑒=1
∫𝛤𝑒

𝖳(�̃�𝑛, �̂�)𝐮𝑒(�̂�)𝑑𝛤𝑒

+

[ 𝐸
∑

𝑒=1

(

∫𝛤𝑒
𝖳(�̃�𝑛, �̂�)𝑑𝛤𝑒

)

+ 𝐀𝑛

]

𝐮(�̃�𝑛)

(7)

where 𝑒 specifies the patch number and 𝐸 is the total number of
patches. In the following the geometry of patches is specified using
NURBS basis functions. The advantage of this is that some geometrical
shapes such as cylinder and spheres can be described exactly with few
parameters. For further information on NURBS and how (7) is obtained
the reader is referred to Beer et al. (2019).

There are 3 types of patches that are useful for geomechanics mod-
elling: finite, infinite and trimmed patches. In addition we introduce a
special patch with a cutout that can be used for modelling intersections.
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Fig. 1. A finite patch with control points (numbered squares). Left: in the global, right: in the local coordinate system. Also shown is the ‘‘outward normal’’.
Fig. 2. Example of an infinite patch. Left in the global and right in the local coordinate system.
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3.1.1. Geometry definition of finite patches
In Fig. 1 we show an example of a finite patch. The mapping from

the local 𝝃(𝜉, 𝜂) to the global 𝒙 coordinate system is given by

𝒙(𝜉, 𝜂) =
𝐼
∑

𝑖=1
𝑅𝑖(𝜉, 𝜂)𝒙𝑖. (8)

where 𝑅𝑖(𝜉, 𝜂) are NURBS basis functions and the control points (coor-
dinates 𝒙𝑖) are numbered consecutively, first in the 𝜉- and then in the
𝜂-direction.

The vectors tangential to the surface are given by

𝐯𝜉 =
𝜕𝒙
𝜕𝜉

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑥1
𝜕𝜉
𝜕𝑥2
𝜕𝜉
𝜕𝑥3
𝜕𝜉

⎞

⎟

⎟

⎟

⎟

⎠

and 𝐯𝜂 =
𝜕𝒙
𝜕𝜂

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑥1
𝜕𝜂
𝜕𝑥2
𝜕𝜂
𝜕𝑥3
𝜕𝜂

⎞

⎟

⎟

⎟

⎟

⎠

(9)

nd the unit vector normal is

=
𝐯𝜉 × 𝐯𝜂
𝐽

. (10)

The Jacobian is

𝐽 = |𝐯𝜉 × 𝐯𝜂|. (11)

The direction of the ‘‘outward normal’’ depends on how the control
points are numbered.

3.1.2. Geometry definition of infinite patches
Here we introduce a patch definition that is useful for the simulation

in geomechanics where one sometimes has to consider a surface that
tends to infinity (Beer, 2015). In this case we define an infinite patch
as shown in Fig. 2. The mapping for a patch that extends to infinity in
the 𝜂-direction is given by

𝒙 =
2
∑

𝑗=1

𝐼
∑

𝑖=1
𝑅∞
𝑖𝑗 (𝜉, 𝜂)𝒙𝑖𝑗 (12)

where

𝑅∞(𝜉, 𝜂) = 𝑅 (𝜉)𝑀∞(𝜂) (13)
𝑖𝑗 𝑖 𝑗 T

3

and the special infinite basis functions are

𝑀∞
1 =

1 − 2𝜂
1 − 𝜂

and 𝑀∞
2 =

𝜂
1 − 𝜂

. (14)

The vectors in the tangential directions are given by

𝐯𝜉 = 𝜕𝒙
𝜕𝜉

=
2
∑

𝑗=1

𝐼
∑

𝑖=1

𝜕𝑅𝑖(𝜉)
𝜕𝜉

𝑀∞
𝑗 (𝜂)𝒙𝑖𝑗 (15)

𝜂 = 𝜕𝒙
𝜕𝜂

=
2
∑

𝑗=1

𝐼
∑

𝑖=1
𝑅𝑖(𝜉)

𝜕𝑀∞
𝑗 (𝜂)

𝜕𝜂
𝒙𝑖𝑗 (16)

where
𝜕𝑀∞

1
𝜕𝜂

= −1
(1 − 𝜂)2

and
𝜕𝑀∞

2
𝜕𝜂

= 1
(1 − 𝜂)2

. (17)

The unit vector normal is computed as for the finite patch. It is noted
hat the Jacobian 𝐽 tends to infinity as 𝜂 tends to 1.

.1.3. Trimmed patches
Patches can be trimmed using trimming curves, resulting in more

omplex geometries. The trimming curves are defined in patch coordi-
ates 𝜉, 𝜂. A trimmed patch is shown in Fig. 3. More information about
rimming can be found in Beer (2015).

.1.4. Special patches
Special patches can be used to model intersections of curved sur-

aces with flat surfaces with a minimum of effort. A special patch is
hown in Fig. 4.

Its geometry is defined by:

(𝜉, 𝜂) = (1 − 𝜂)𝒙𝐼 + 𝜂𝒙𝐼𝐼 (18)

here

𝐼 (𝜉) =
𝐽
∑

𝑗=1
𝑅𝑗 (𝜉)𝒙𝐼𝑗 and 𝒙𝐼𝐼 (𝜉) =

𝐽
∑

𝑗=1
𝑅𝑗 (𝜉)𝒙𝐼𝐼𝑗 (19)

he superscript II refers to the inner and I to the outer bounding curve.
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Fig. 3. Figure showing a normal patch, trimming curves and the resulting trimmed patch.
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Fig. 4. Example of a special patch with a circular cutout.

The vectors in 𝜉 and 𝜂 directions are given by:

𝐯𝜉 = (1 − 𝜂)𝐯𝐼 + 𝜂𝐯𝐼𝐼 and 𝐯𝜂 = 𝒙𝐼 − 𝒙𝐼𝐼 (20)

where

𝐯𝐼 (𝜉) =
𝐽
∑

𝑗=1

𝜕𝑅𝑗 (𝜉)
𝜕𝜉

𝒙𝐼𝑗 and 𝐯𝐼𝐼 (𝜉) =
𝐽
∑

𝑗=1

𝜕𝑅𝑗 (𝜉)
𝜕𝜉

𝒙𝐼𝐼𝑗 (21)

he outward normal and the Jacobian are computed the same way as
or finite patches.

.1.5. Defining geometry with NURBS
CAD programs use NURBS to describe geometrical shapes (cylinder,

pheres or general smooth shapes). If two shapes intersect trimming is
pplied. Since CAD programs are mainly designed for visualisation, the
esulting intersection geometry may have small gaps. The interested
eader may consult (Beer et al., 2019), where a whole chapter is
evoted to the topic of how data from CAD can be used for a BEM
imulation. However, instead of asking the CAD program to compute
he intersection geometry and then extract the necessary data, which
s complicated, one may write a MATLAB function that computes the
ntersection geometry without gaps. For the practical example we have
eveloped a function that does this.

Here we show on an example how easy it is to define complex
eometrical shapes with NURBS. We start with the definition of a
ircular excavation and of 2 cross-passages. Only a few lines of input
ata (shown in Fig. 5 on the left and middle) are required. The two
eometries are then intersected resulting in the geometry definition
n the right of Fig. 5 consisting of a trimmed patch, normal patches,
nfinite patches and special patches. Note that no mesh generation is
ecessary. The dotted lines indicate integration regions (see the section
n integration below).
4

.1.6. Approximation of boundary values
To be able to solve the patch integrals in Eq. (7), the boundary

alues must be approximated. For the approximation we also use
URBS basis functions. For normal patches the unknown boundary
alues are approximated by

�̂�𝑒(𝜉, 𝜂) =
𝐾
∑

𝑘=1
�̂�𝑘(𝜉, 𝜂) �̂�𝑒𝑘

�̂�𝑒(𝜉, 𝜂) =
𝐾
∑

𝑘=1
�̂�𝑘(𝜉, 𝜂) �̂�𝑒𝑘.

(22)

where �̂�𝑘(𝜉, 𝜂) are NURBS basis functions (the hat indicating that they
may be different to the ones used for describing the geometry) and �̂�𝑒𝑘, �̂�

𝑒
𝑘

are parameter values. It should be noted that in contrast to Lagrange
polynomials, parameter values do not in general represent real values.

For infinite patches we have 2 choices for the displacements:

• Plane strain: Displacements are constant to infinity:

�̂�𝑒(𝜉, 𝜂) = �̂�𝑒(𝜉, 𝜂 = 0) =
𝐾∞
∑

𝑘=1
�̂�𝑘(𝜉) �̂�𝑒∞𝑘 (23)

• Decay : Displacements decay to zero as infinity is approached

�̂�𝑒(𝜉, 𝜂) = (1 − 𝜂)�̂�𝑒(𝜉, 𝜂 = 0) = (1 − 𝜂)
𝐾∞
∑

𝑘=1
�̂�𝑘(𝜉) �̂�𝑒∞𝑘 (24)

where 𝐾∞ is the number of parameters and �̂�𝑒∞𝑘 are the parameter
values on the finite boundary.

Our refinement philosophy is to take the NURBS functions that
define the geometry of the problem and refine them as necessary using
knot insertion and order elevation.

Known values are defined by

�̄�𝑒(𝜉, 𝜂) =
�̄�
∑

𝑘=1
�̄�𝑘(𝜉, 𝜂) �̄�𝑒𝑘

�̄�𝑒(𝜉, 𝜂) =
�̄�
∑

𝑘=1
�̄�𝑘(𝜉, 𝜂) �̄�𝑒𝑘.

(25)

where �̄�𝑘 are basis functions, which may be different from the ones
defining the geometry and the unknown values.

Inserting the approximations into the patch integrals allows the
boundary parameters can be taken outside:

∫𝛤𝑒
𝖴(�̃�𝑛, �̂�) 𝐭𝑒(�̂�) 𝑑𝛤𝑒(�̂�) = ∫𝛤𝑒

𝖴(�̃�𝑛, �̂�)

( 𝐾
∑

𝑘=1
𝑅𝑘(𝜉, 𝜂) �̂�𝑒𝑘

)

𝑑𝛤𝑒(�̂�) (26)

=
𝐾
∑

(

∫ 𝖴(�̃�𝑛, �̂�)𝑅𝑘(𝜉, 𝜂) 𝑑𝛤𝑒(�̂�)

)

�̂�𝑒𝑘

𝑘=1 𝛤𝑒
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Fig. 5. Example of definition of geometry with NURBS, showing input data required. Left: circular excavation, middle: cross-passages, right: combined geometry.
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∫𝛤𝑒
𝖳(�̃�𝑛, �̂�) 𝐮𝑒(�̂�) 𝑑𝛤𝑒(�̂�) = ∫𝛤𝑒

𝖴(�̃�𝑛, �̂�)

( 𝐾
∑

𝑘=1
𝑅𝑘(𝜉, 𝜂) �̂�𝑒𝑘

)

𝑑𝛤𝑒(�̂�) (27)

=
𝐾
∑

𝑘=1

(

∫𝛤𝑒
𝖳(�̃�𝑛, �̂�)𝑅𝑘(𝜉, 𝜂) 𝑑𝛤𝑒(�̂�)

)

�̂�𝑒𝑘

where the hat and overbar has been omitted, because this depends if
the values are known or unknown. This requires only the integration
of fundamental solutions times the basis functions, which will be
discussed later.

3.2. Discretisation of volume integral

The volume integral is solved numerically by dividing the vol-
ume into inclusions, defining each one geometrically. The integral is
replaced by a sum of integrations over inclusions:

∫𝛺0

𝖤(�̃�𝑛, �̂�)𝝈0(�̂�)𝑑𝛺0(�̂�) =
𝑁𝑖
∑

𝑛𝑖=1
∫𝛺𝑛𝑖

𝖤(�̃�𝑛, �̂�)𝝈0(�̂�)𝑑𝛺𝑛𝑖(�̂�). (28)

where 𝑁𝑖 is the number of inclusions and 𝛺𝑛𝑖 specifies the inclusion
domain. For the numerical treatment an approximation of the initial
stress 𝝈0 is assumed inside the inclusion and the integrals are solved
numerically or analytically as will be explained later.

Two types of inclusions are considered: General inclusion that repre-
sent a volume of material that has different elastic properties or behaves
inelastically and linear inclusions to represent rock bolts. It should
be noted that a 𝐶0 continuity of displacements exists at the interface
between the inclusion and the domain.

3.2.1. Geometrical definition of general inclusion
General inclusions are defined by bounding NURBS surfaces. We

establish a local coordinate system 𝒔 = (𝑠, 𝑡, 𝑟)T = [0, 1]3 as shown in
Fig. 6 and map from local 𝒔 coordinates to global 𝒙 coordinates. The
global coordinates of a point 𝒙 with the local coordinates 𝒔 are given
by

𝒙(𝑠, 𝑡, 𝑟) = (1 − 𝑟) 𝒙𝐼 (𝑠, 𝑡) + 𝑟 𝒙𝐼𝐼 (𝑠, 𝑡) (29)

where

𝒙𝐼 (𝑠, 𝑡) =
𝐾𝐼
∑

𝑅𝐼𝑘(𝑠, 𝑡) 𝒙
𝐼
𝑘 and 𝒙𝐼𝐼 (𝑠, 𝑡) =

𝐾𝐼𝐼
∑

𝑅𝐼𝐼𝑘 (𝑠, 𝑡) 𝒙𝐼𝐼𝑘 . (30)

𝑘=1 𝑘=1

5

The superscript 𝐼 relates to the bottom (red) surface and 𝐼𝐼 to the
top (green) bounding surface and 𝒙𝐼𝑘, 𝒙

𝐼𝐼
𝑘 are control point coordinates.

𝐼 and 𝐾𝐼𝐼 represent the number of control points, 𝑅𝐼𝑘(𝑠, 𝑡) and 𝑅𝐼𝐼𝑘 (𝑠, 𝑡)
re NURBS basis functions. Note that there is a one to one mapping
etween the local surface coordinates 𝜉, 𝜂 and the local coordinates 𝑠, 𝑡.

The derivatives are given by

𝜕𝒙(𝑠, 𝑡, 𝑟)
𝜕𝑠

= (1 − 𝑟)
𝜕𝒙𝐼 (𝑠, 𝑡)
𝜕𝑠

+ 𝑟
𝜕𝒙𝐼𝐼 (𝑠, 𝑡)

𝜕𝑠
𝜕𝒙(𝑠, 𝑡, 𝑟)

𝜕𝑡
= (1 − 𝑟)

𝜕𝒙𝐼 (𝑠, 𝑡)
𝜕𝑡

+ 𝑟
𝜕𝒙𝐼𝐼 (𝑠, 𝑡)

𝜕𝑡
𝜕𝒙(𝑠, 𝑡, 𝑟)

𝜕𝑟
= −𝒙𝐼 (𝑠, 𝑡)+ 𝒙𝐼𝐼 (𝑠, 𝑡)

(31)

here for example:

𝜕𝒙𝐼 (𝑠, 𝑡)
𝜕𝑠

=
𝐾𝐼
∑

𝑘=1

𝜕𝑅𝐼𝑘(𝑠, 𝑡)
𝜕𝑠

𝒙𝐼𝑘 and 𝜕𝒙𝐼𝐼 (𝑠, 𝑡)
𝜕𝑠

=
𝐾𝐼𝐼
∑

𝑘=1

𝜕𝑅𝐼𝐼𝑘 (𝑠, 𝑡)
𝜕𝑠

𝒙𝐼𝐼𝑘 .

(32)

he Jacobi matrix of this mapping is

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝒙
𝜕𝑠
𝜕𝒙
𝜕𝑡
𝜕𝒙
𝜕𝑟

⎞

⎟

⎟

⎟

⎟

⎠

(33)

and the Jacobian is 𝐽 = |𝐉|.

.2.2. Geometry definition of linear inclusion
This type of inclusions is used to model cables and rock bolts. Here

e assume that the geometry is defined by a linear NURBS curve and
hat the bar has a circular cross-section with radius 𝑅 over which the
tress and strain are assumed constant. The assumption is that the area

of the cross-section of the inclusion is significantly smaller than that of the
medium it is embedded in, allowing simplifications to be introduced for the
integration. We establish a local coordinate system 𝑠 = [0, 1] as shown
on the right in Fig. 7. The global coordinates of a point 𝒙 with the local
coordinate 𝑠 are given by

𝒙(𝑠) =
𝐾
∑

𝑅𝑘(𝑠) 𝒙𝑘 (34)

𝑘=1
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Fig. 6. Mapping of 3-D inclusion showing the bottom and top NURBS surfaces and the associated control points defining the inclusion: Left in global 𝒙, right in local 𝒔 space.
lso shown are subregions for the volume integration.
Fig. 7. Definition of linear inclusion by a NURBS curve with control points as hollow squares in global (left) and local (right) coordinates.
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here 𝐾 is the number of control points, 𝑅𝑘(𝑠) are NURBS basis
functions and 𝒙𝑘 are control point coordinates. We also define a local
coordinate system whereby the 𝑧′ axis is along the bar, specified by
unit vector 𝐯𝑧′ . The vector along the bar is given by

𝐕𝑧′ =
𝜕𝒙(𝑠)
𝜕𝑠

=
𝐾
∑

𝑘=1

𝜕𝑅𝑘(𝑠)
𝜕𝑠

𝒙𝑘 (35)

he Jacobian is

=
√

V2
𝑧′𝑥

+ V2
𝑧′𝑦

+ V2
𝑧′𝑧

(36)

The unit vector in 𝑧′ direction is given by

𝐯𝑧′ = 𝐕𝑧′∕𝐽 (37)

3.2.3. Approximation of initial stress
For the numerical integration, introduced below, we need the values

of the initial stress at Gauss points. It is inefficient to compute 𝝈0 at
every Gauss point, whose location changes according to the location
of �̃�𝑛. Instead we compute the initial stress at a fixed grid of points
inside the inclusion. The value of initial stress at a point with the local
coordinates 𝒔 = (𝑠, 𝑡, 𝑟)T for general inclusions and 𝒔 = 𝑠 for linear
inclusions can be obtained by interpolation between grid points:

𝝈0(𝒔) =
𝐿
∑

𝑙=1
𝑀𝜎

𝑙 (𝒔)𝝈0𝑙 (38)

where 𝝈0𝑙 is the initial stress vector at grid point 𝑙 with the local
coordinate 𝒔𝑙. 𝐿 is the total number of inclusion points and 𝑀𝜎

𝑙 (𝒔) are

linear or constant basis functions, which will be shown later. o

6

4. Numerical integration of boundary integrals

The boundary integrals to be solved are:

𝐔𝑒𝑛𝑘 = ∫𝛤𝑒
𝖴(�̃�𝑛, �̂�)�̂�𝑘(𝜉, 𝜂) 𝑑𝛤𝑒(�̂�)

𝐓𝑒𝑛𝑘 = ∫𝛤𝑒
𝖳(�̃�𝑛, �̂�)�̂�𝑘(𝜉, 𝜂) 𝑑𝛤𝑒(�̂�) (39)

𝐓𝑒𝑛 = ∫𝛤𝑒
𝖳(�̃�𝑛, �̂�) 𝑑𝛤𝑒(�̂�)

hey are evaluated numerically, using Gauss Quadrature. The integra-
ion scheme now depends on the location of the collocation point. If it
s outside the patch we use regular integration otherwise we have to
se singular integration.

Initially we divide the patch into integration regions depending on
he following:

• The location of the collocation points. They should be on integra-
tion region boundaries.

• The aspect ratios of each integration region. It should be moderate
and this is particularly important for singular integration.

.1. Regular integration

For regular integration we have to consider that the value of in-
egrand tends to infinity as the collocation point is approached. To
aintain an adequate precision of integration is crucial to the quality
f the results. Therefore the number of Gauss points has to be increased
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𝜂
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near the collocation point. There is no analytical formula to determine
the number of Gauss points required for a certain precision, but esti-
mates have been worked out in Beer et al. (2019). The number depends
on the size of the integration region and the proximity of the collocation
point. The best strategy is to limit the number of Gauss points available
and to subdivide the integration region into subregions. A Quadtree
method that increases the number of Gauss points near the collocation
point is most efficient.

Gauss Quadrature requires limits which range from −1 to +1.
Therefore we introduce new local coordinates inside each subregion
�̄� = (𝜉, �̄�)T = [−1, 1]2. The transformation to the patch coordinate system
= (𝜉, 𝜂)T = [0, 1]2 is given by:

𝜉 =
▵𝜉𝑠
2

(1 + 𝜉) + 𝜉𝑠1 (40)

=
▵𝜂𝑠
2

(1 + �̄�) + 𝜂𝑠1 (41)

here ▵𝜉𝑠 ×▵𝜂𝑠 is the size of the subregion and 𝜉𝑠1, 𝜂𝑠1 are the starting
coordinates.

The integration can be written as:

𝐔𝑒𝑛𝑘 =
𝑆
∑

𝑠=1

𝑔𝜉 (𝑠)
∑

𝑖=1

𝑔𝜂 (𝑠)
∑

𝑗=1
𝖴
(

�̃�𝑛, �̂�(𝜉𝑖, �̄�𝑗 )
)

𝑅𝑘(𝜉(𝜉𝑖), 𝜂(�̄�𝑗 ))
▵𝜉𝑠
2

▵𝜂𝑠
2
𝐽 (𝜉𝑖, �̄�𝑗 )𝑊𝑖𝑊𝑗

𝐓𝑒𝑛𝑘 =
𝑆
∑

𝑠=1

𝑔𝜉 (𝑠)
∑

𝑖=1

𝑔𝜂 (𝑠)
∑

𝑗=1
𝖳
(

�̃�𝑛, �̂�(𝜉𝑖, �̄�𝑗 )
)

𝑅𝑘(𝜉(𝜉𝑖), 𝜂(�̄�𝑗 ))
▵𝜉𝑠
2

▵𝜂𝑠
2
𝐽 (𝜉𝑖, �̄�𝑗 )𝑊𝑖𝑊𝑗

(42)

𝐓𝑒𝑛 =
𝑆
∑

𝑠=1

𝑔𝜉 (𝑠)
∑

𝑖=1

𝑔𝜂 (𝑠)
∑

𝑗=1
𝖳
(

�̃�𝑛, �̂�(𝜉𝑖, �̄�𝑗 )
) ▵𝜉𝑠

2
▵𝜂𝑠
2
𝐽 (𝜉𝑖, �̄�𝑗 )𝑊𝑖𝑊𝑗

where 𝑔𝜉 (𝑠), 𝑔𝜂(𝑠) is the number of Gauss points in 𝜉, 𝜂 directions, 𝑊𝑖,𝑊𝑗
are Gauss weights, 𝑆 is the number of subregions and 𝐽 is the Jacobian
of the transformation from global coordinates 𝒙 to local 𝝃 coordinates.

4.2. Singular integration

If the collocation point is part of the subregion then the integral
involving 𝖴 is weakly singular. The integral is solved by subdividing
the integration region into triangular subregions with the collocation
point at the apex (Fig. 8). This means that the Jacobian tends to zero as
the collocation point is approached. The singular integration can now
be written as

▵𝐔𝑒
𝑛𝑘 =

𝑁𝑡
∑

𝑛𝑡=1

𝑔𝜉
∑

𝑖=1

𝑔𝜂
∑

𝑗=1
𝖴
(

�̃�𝑛, �̂�(𝜉𝑖, �̄�𝑗 )
)

𝑅𝑘(𝜉(𝜉𝑖), 𝜂(�̄�𝑗 ))0.25 𝐽𝜉,𝑛𝑡 (𝜉𝑖, �̄�𝑗 )𝐽 (𝜉𝑖, �̄�𝑗 )𝑊𝑖𝑊𝑗

(43)

where 𝑁𝑡 is the number of triangles. There are now two Jacobians
involved, one for the transformation from the patch coordinates to
triangular coordinates (𝐽𝜉,𝑛𝑡 (𝜉𝑖, �̄�𝑗 )) which tends to zero and one for the
transformation from patch to global coordinates (𝐽 (𝜉𝑖, �̄�)).

5. Integration of integrals over 𝜴𝟎

For the inclusion integrals we use numerical integration for general
inclusions and analytical integration for linear inclusions. For the nu-
merical integration we subdivide the inclusion into integration regions
with the same criteria as used for the boundary integration and apply
Gauss quadrature. When point 𝑛 is part of the integration region we
have to invoke singular integration, if it is not a regular one.

5.1. General inclusions

The integral to be solved for each inclusion is :

𝐁𝑛𝑖0𝑛 = 𝖤(�̃�𝑛, �̂�)𝝈0(�̂�)𝑑𝛺𝑛𝑖(�̂�) (44)
∫𝛺𝑛𝑖

7

Fig. 8. Definition of a triangular subregion. The collocation point is located at point
3.

Introducing the interpolation of initial stresses (38) we have:

𝐁𝑛𝑖0𝑛 = ∫𝛺𝑛𝑖
𝖤(�̃�𝑛, �̂�)

𝐽
∑

𝑗=1
𝑀𝜎

𝑗 (�̂�)𝝈0𝑗 =
𝐽
∑

𝑗=1
𝐁𝑛𝑖0𝑛𝑗𝝈0𝑗 (45)

where

𝐁𝑛𝑖0𝑛𝑗 = ∫𝛺𝑛𝑖
𝖤(�̃�𝑛, �̂�)𝑀𝜎

𝑗 (�̂�)𝑑𝛺𝑛𝑖(�̂�) (46)

5.1.1. Regular integration
To maintain adequate precision of integration we subdivide the

integration region into subregions depending on the size of the in-
tegration region and the proximity of point 𝑛. For sub-region 𝑛𝑠 the
transformation from the inclusion (𝒔) coordinates to the coordinates
used for Gauss integration �̄� = (𝜉, �̄�, 𝜁 )T = [−1, 1]3 is given by

𝑠 =
𝛥𝑠𝑛
2

(1 + 𝜉) + 𝑠𝑛𝑠

𝑡 =
𝛥𝑡𝑛
2

(1 + �̄�) + 𝑡𝑛𝑠 (47)

𝑟 =
𝛥𝑟𝑛
2

(1 + 𝜁 ) + 𝑟𝑛𝑠

where 𝛥𝑠𝑛 × 𝛥𝑡𝑛 × 𝛥𝑟𝑛 denotes the size of the sub-region and 𝑠𝑛, 𝑡𝑛, 𝑟𝑛
are the edge coordinates. The Jacobian of this transformation is 𝐽 𝑛𝜉 =
1
8 𝛥𝑠𝑛 𝛥𝑡𝑛 𝛥𝑟𝑛.

We can write:

𝐁𝑛𝑖0𝑛𝑗 =
𝑁𝑠
∑

𝑛𝑠=1
∫

1

−1 ∫

1

−1 ∫

1

−1
𝖤
(

�̃�𝑛, �̄�(𝜉, �̄�, 𝜁 )
)

𝑀𝜎
𝑗
(

�̄�(𝜉, �̄�, 𝜁 )
)

𝐽 (𝒔) 𝐽 𝑛𝑠𝜉 𝑑𝜉𝑑�̄�𝑑𝜁

(48)

where 𝐽 (𝐬) is the Jacobian of the mapping between 𝒔 and 𝒙 coordinate
systems.

Applying Gauss integration we have:

𝐁𝑛𝑖0𝑛𝑗 ≈
𝑁𝑠
∑

𝑛𝑠=1

𝐺𝑠
∑

𝑔𝑠=1

𝐺𝑡
∑

𝑔𝑡=1

𝐺𝑟
∑

𝑔𝑟=1
𝖤
(

�̃�𝑛, �̄�(𝜉𝑔𝑠 , �̄�𝑔𝑡 , 𝜁𝑔𝑟 )
)

𝑀𝜎
𝑗

(

�̄�(𝜉𝑔𝑠 , �̄�𝑔𝑡 , 𝜁𝑔𝑟 )
)

𝐽 (𝒔) 𝐽 𝑛𝑠𝜉 𝑊𝑔𝑠 𝑊𝑔𝑡 𝑊𝑔𝑟

(49)

where 𝑁𝑠 is the number of subregions and 𝐺𝑠, 𝐺𝑡 and 𝐺𝑟 are the
number of Gauss points (which depends on the proximity of 𝑛) and
𝜉𝑔𝑠 , �̄�𝑔𝑡 , 𝜁𝑔𝑟 the Gauss point coordinates in 𝑠, 𝑡 and 𝑟 directions, respec-
tively. 𝑊𝑔𝑠 𝑊𝑔𝑡 𝑊𝑔𝑟 are Gauss weights.

5.1.2. Singular integration
If the integration region includes the point 𝒙𝑛, then the integrand

tends to infinity as the point is approached. To deal with the integration
involving the weakly singular Kernel we compute the Gauss points
in a local coordinate system, where the Jacobian tends to zero as
the singularity point is approached. Singular integration of general
inclusions is discussed in detail in Beer et al. (2019).
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Fig. 9. Analytical computation of regular integral for a subregion of length 𝐻 of a
linear inclusion.

5.2. Linear inclusion, reinforcement bar

For the linear inclusions we can apply analytical integration. We
model the bar as a cylindrical region with radius 𝑅 and length 𝐻 and
ssume the initial stress to be in the local 𝑧′ direction and to vary
inearly along the bar. Since the initial stresses are computed from the
trains, this means that the displacements along the bar can have a
uadratic variation. We consider two types of integration: one where
oint �̃� is outside the inclusion (regular integration) and one where it
s not (singular integration).

.2.1. Analytical computation of regular integral
Since we assume that the cross-sectional area is significantly smaller

han the surrounding medium we can assume that 𝖤 is constant over
he cross-section. In addition we note that the result will multiply with
he initial stresses in local directions ({𝝈′

0}). The integral to be solved
s therefore:
′
0𝑛𝑙 = ∫𝛺

1
𝑟2𝑐
�̃�′𝑀𝜎

𝑙 𝑑𝛺𝑖(�̂�) (50)

here the prime indicates that the result is computed in the local
′, 𝑦′, 𝑧′ coordinate system (Fig. 9). 𝑟𝑐 is the distance between the source
oint and a point on the axis of the inclusion.

The integral to be solved is:

𝖤′𝑖𝑗 = −𝐶 ∫𝑉
1
𝑟2𝑐

[

𝐶3(𝑟′,𝑘𝛿𝑖𝑗 + 𝑟
′
,𝑗𝛿𝑖𝑘) − 𝑟

′
,𝑖𝛿𝑗𝑘 + 𝐶4 𝑟

′
,𝑖𝑟

′
,𝑗𝑟

′
,𝑘

]

𝑀𝜎
𝑙 𝑑𝑉 (51)

We choose the local axes such that �̃�′ = 0 as follows. The vector
pointing in the 𝑥′ direction is given by:

𝐕𝑥′ = (�̃� − �̂�) × 𝐯𝑧′ (52)

and the one in 𝑦′ direction is:

𝐕𝑦′ = 𝐯𝑧′ × 𝐯𝑥′ (53)

where the capital letter indicates that the vector is not normalised.
If point �̃� is along the axis of the bar this computation does not work

and then we assume

𝐯𝑥′ = 𝐯𝑦 × 𝐯𝑧′ (54)

here 𝐯𝑦 is a vector in global 𝑦-direction.
For the computation of the fundamental solution we have:

= 0 𝑟 = −�̃�′ 𝑟 = 𝑧′ − �̃�′ 𝑟 = 𝑟 =
√

�̃�′2 + (𝑧′ − �̃�′)2 (55)
1 2 3 𝑐

8

Fig. 10. Explanation of singular integration by subdivision into conical subregions.
Left: section through bar, right: Axonometric view. Singular point is marked by red
square.

and

𝑟′,1 = 0 𝑟,2 = −
�̃�′

𝑟𝑐
𝑟′,3 =

𝑧′ − �̃�′
𝑟𝑐

𝑑𝑉 = 𝜋𝑅2𝑑�̃�′ (56)

The integral to be solved is:

▵𝖤′𝑖𝑗 = 𝜋𝑅2𝐶 ∫

𝐻

𝑧′=0

1
𝑟2𝑐

[

𝐶3(𝑟,𝑘𝛿𝑖𝑗 + 𝑟,𝑗𝛿𝑖𝑘) − 𝑟,𝑖𝛿𝑗𝑘 + 𝐶4 𝑟,𝑖𝑟,𝑗𝑟,𝑘
]

𝑀𝜎
𝑙 (𝑧

′)𝑑𝑧′

(57)

where the linear interpolation functions are given by:

𝑀𝜎
1 (𝑧

′) = 𝑧′

𝐻
𝑀𝜎

2 = 1 − 𝑧′

𝐻
(58)

The analytical solution in Voigt notation is provided in Appendix A.
Since the result of the multiplication with 𝝈′

0 has to be in global
coordinates a transformation to the global system is necessary:

𝐁0𝑛𝑗 = 𝐓𝐁′
0𝑛𝑗 (59)

where 𝐓 is the transformation matrix given by:

𝐓 =

⎛

⎜

⎜

⎜

⎝

𝑣𝑥′𝑥 𝑣𝑦′𝑥 𝑣𝑧′𝑥
𝑣𝑥′𝑦 𝑣𝑦′𝑦 𝑣𝑧′𝑦
𝑣𝑥′𝑧 𝑣𝑦′𝑧 𝑣𝑧′𝑧

⎞

⎟

⎟

⎟

⎠

(60)

5.2.2. Analytical computation of singular integral
Referring to Fig. 10 we subdivide the bolt into 2 subregions and

obtain the following integrals in polar coordinates:

▵𝖤′1 = ∫

2𝜋

𝜙=0 ∫

𝜋

𝜃=𝜋−𝜃 ∫

𝐻
cos (𝜋−𝜃)

𝑟=0

1
𝑟2
�̃�′ sin 𝜃𝑑𝑟 𝑟2𝑀𝜎

𝑙 𝑑𝜃𝑑𝜙 (61)

▵𝖤′2 = ∫

2𝜋

𝜙=0 ∫

𝜋−𝜃

𝜃=𝜋∕2 ∫

𝑅
sin (𝜋−𝜃)

𝑟=0

1
𝑟2
�̃�′ sin 𝜃𝑑𝑟 𝑟2𝑀𝜎

𝑙 𝑑𝜃𝑑𝜙

with 𝜃 = arctan(𝑅∕𝐻). It can be seen that the 𝑟2 term cancels out which
means that the integrand is no longer singular.

The shape functions can be expressed in cylindrical coordinates in
two different formats, depending on the position of the collocation
point, i.e.:

𝑀𝜎
1 (𝑟, 𝜃) = −𝑟 cos 𝜃

𝐻
(62)

𝑀𝜎 (𝑟, 𝜃) = 1 + 𝑟 cos 𝜃 (63)
2 𝐻
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h

c

if the collocation point is on the top of the cylinder,

𝑀𝜎
1 (𝑟, 𝜃) = 𝑟 cos 𝜃

𝐻
(64)

𝑀𝜎
2 (𝑟, 𝜃) = 1 − 𝑟 cos 𝜃

𝐻
(65)

if the collocation point is on the bottom of the cylinder. In such a way
we have that:

▵𝖤′�̃�𝑛=𝑡𝑜𝑝(𝑗, 𝑘) = −▵𝖤′�̃�𝑛=𝑏𝑜𝑡𝑡𝑜𝑚(𝑗, 𝑘) (66)

The terms of ▵𝖤′ = ▵𝖤′1+▵𝖤′2, in Voigt notation, different from zero
are provided in Appendix B.

As before a transformation to the global system is necessary:

𝐁0𝑛𝑗 = 𝐓𝐁′
0𝑛𝑗 (67)

6. System of equations

The discretised integral equations can be written in matrix form
as:

[𝐋]{𝐱} = {𝐫} + [𝐁0]{𝝈0} (68)

where 𝐋 is an assembled left hand side, 𝐱 is the vector of unknowns and
𝐫 is the assembled right hand side involving known boundary values
(for details of derivation see Beer et al., 2019). [𝐁0] is a matrix where
the rows refer to the collocation points 𝑛 and which multiplies with
vector {𝝈0} that gathers all initial stress components at grid points
inside the inclusions.

7. Computation of values at grid points inside the inclusion

To compute the initial stresses at grid points we need to compute
the strains at these points. Even though it is possible to compute the
strains directly using integral equations this is rather cumbersome as
it involves the integration of strongly singular functions and involves
complicated methods to isolate the singularity (see for example Gao
and Davies, 2011). To avoid this we compute the displacements first
and then compute the strains using a method that is used in the Finite
Element Method.

7.1. Computation of displacements

The displacement vector 𝐮 at a grid point 𝒙 inside the inclusion is
given by:

𝐮(𝒙) = ∫𝛤
[𝖴(𝒙, �̂�) 𝐭(�̂�) − 𝖳(𝒙, �̂�) 𝐮(�̂�)] 𝑑𝛤 (�̂�)

+ ∫𝛺0

𝖤(𝒙, �̂�)𝝈0(�̂�)𝑑𝛺0(�̂�)
(69)

After the solution the values 𝐮(�̂�) and 𝐭(�̂�) are known, so the integrals
can be evaluated numerically.

We gather displacement vectors at all grid points in a vector {𝐮}
and obtain:

{𝐮} = [�̂�]𝐱 + {�̄�} + [�̄�0]{𝝈0} (70)

where [�̂�] is an assembled matrix that multiplies with the unknown 𝐱
and {�̄�} collects the displacement contribution due to given BC’s. [�̄�0]
is similar to [𝐁0] except that the grid point coordinates 𝒙𝑖 replace the
source point coordinates �̃�𝑛.

Because of the singularity of 𝖳 the displacements cannot be com-
puted on the problem boundary. So if the inclusion point lies on
a boundary patch we recover the displacement from the computed
boundary values. For points on a patch boundary (𝒙𝑘) we replace
Eq. (69) by:

𝐮(𝒙𝑘) =
𝐼
∑

𝑅𝑢𝑖 (𝜉𝑘, 𝜂𝑘)𝐮
𝑒
𝑖 (71)
𝑖
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where 𝑅𝑢𝑖 (𝜉, 𝜂) are the NURBS basis functions used for approximating
the displacements in patch 𝑒, that contains the point 𝒙𝑘 and 𝜉𝑘, 𝜂𝑘 are
the local coordinates of the point. The matrix [�̂�] and the vector {�̄�}
ave to be modified for these grid points, whereas [�̄�0] will contain

zero rows in this case.

7.2. Computation of strains, general inclusions

To compute the strains we interpolate the displacements between
grid points and obtain for the displacement at a point with the local
coordinate 𝒔:

𝐮(𝒔) =
𝑁
∑

𝑛=1
𝑀𝑛(𝒔)𝐮𝑛 (72)

where 𝐮𝑛 is the displacement vector at grid point 𝑛 and 𝑁 is the number
of grid points. The interpolation functions 𝑀𝑛(𝑠, 𝑟, 𝑡) are obtained by
onsidering grid coordinates 𝑠, 𝑡, 𝑟.

Rewriting (72) for a point with the local coordinates 𝑠, 𝑡, 𝑟 in terms
of local interpolation functions we have:

𝐮(𝑠, 𝑡, 𝑟) =
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝐿𝑖(𝑠)𝐿𝑗 (𝑡)𝐿𝑘(𝑟)𝐮𝑛(𝑖,𝑗,𝑘) (73)

where 𝐿𝑖(𝑠), 𝐿𝑗 (𝑡), 𝐿𝑘(𝑟) are piecewise constant, linear or quadratic
interpolation functions of the local coordinates 𝑠, 𝑡, 𝑟 respectively and
𝐼, 𝐽 ,𝐾 specify the span of the function in the local directions 𝑠, 𝑡, 𝑟,
i.e. 1 for constant, 2 for linear and 3 for quadratic interpolation. 𝑛(𝑖, 𝑗, 𝑘)
is the grid node number corresponding to 𝑖, 𝑗, 𝑘. The interpolation
functions have zero values outside the span.

Replacing the 3 sums by one we have

𝐮(𝑠, 𝑡, 𝑟) =
𝑁
∑

𝑛=1
𝑀𝑛(𝑖,𝑗,𝑘)(𝑠, 𝑡, 𝑟)𝐮𝑛(𝑖,𝑗,𝑘) (74)

where 𝑁 is the total number of grid points and

𝑀𝑛(𝑖,𝑗,𝑘)(𝑠, 𝑡, 𝑟) = 𝐿𝑖(𝑠)𝐿𝑗 (𝑡)𝐿𝑘(𝑟) (75)

The derivatives of the displacements are given by

𝜕𝐮(𝑠, 𝑡, 𝑟)
𝜕𝑠

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑠

𝐮𝑛 (76)

𝜕𝐮(𝑠, 𝑡, 𝑟)
𝜕𝑡

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑡

𝐮𝑛 (77)

𝜕𝐮(𝑠, 𝑡, 𝑟)
𝜕𝑟

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑟

𝐮𝑛 (78)

where
𝜕𝑀𝑛
𝜕𝑠

=
𝜕𝐿𝑖(𝑠)
𝜕𝑠

𝐿𝑗 (𝑡)𝐿𝑘(𝑟) (79)

𝜕𝑀𝑛
𝜕𝑡

= 𝐿𝑖(𝑠)
𝜕𝐿𝑗 (𝑡)
𝜕𝑡

𝐿𝑘(𝑟) (80)

𝜕𝑀𝑛
𝜕𝑟

= 𝐿𝑖(𝑠)𝐿𝑗 (𝑡)
𝜕𝐿𝑘(𝑟)
𝜕𝑟

(81)

Unfortunately we cannot use NURBS for the interpolation functions
as they are based on parameter values instead of real values. Therefore
they cannot be used to interpolate the real displacement values at
internal points. We use Lagrange polynomials instead.

The strains are given by:

𝜖𝑥 =
𝜕𝑢𝑥
𝜕𝑥

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑥

𝑢𝑥𝑛 (82)

𝜖𝑦 =
𝜕𝑢𝑦
𝜕𝑦

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑦

𝑢𝑦𝑛 (83)

𝜖𝑧 =
𝜕𝑢𝑧 =

𝑁
∑ 𝜕𝑀𝑛 𝑢𝑧𝑛 (84)
𝜕𝑧 𝑛=1 𝜕𝑧



G. Beer, C. Duenser and V. Mallardo Computers and Geotechnics 134 (2021) 104055

𝛾

T

𝝐

w

𝐁

a

𝐁

w
c

{

{

{

w
d

7

c
a
t
b

𝜖

w

𝐁

c

w
i

{

8

d
(

{

w

[

E
e

t

w

[

w

{

w

[

[

a

(

{

8

𝛾𝑥𝑦 =
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦
𝜕𝑥

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑥

𝑢𝑦𝑛 +
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑦

𝑢𝑥𝑛 (85)

𝛾𝑧𝑦 =
𝜕𝑢𝑧
𝜕𝑦

+
𝜕𝑢𝑦
𝜕𝑧

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑧

𝑢𝑦𝑛 +
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑦

𝑢𝑧𝑛 (86)

𝑥𝑧 =
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑥

𝑢𝑧𝑛 +
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑧

𝑢𝑥𝑛 (87)

he strains at grid point 𝑘 can be written in matrix notation:

(𝒙𝑘) = �̂�(𝒙𝑘){𝐮} (88)

here

̂ (𝒙𝑘) =
(

𝐁1 𝐁2 ⋯
)

(89)

nd

𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑀𝑖
𝜕𝑥 0 0
0 𝜕𝑀𝑖

𝜕𝑦 0

0 0 𝜕𝑀𝑖
𝜕𝑧

𝜕𝑀𝑖
𝜕𝑦

𝜕𝑀𝑖
𝜕𝑥 0

0 𝜕𝑀𝑖
𝜕𝑧

𝜕𝑀𝑖
𝜕𝑦

𝜕𝑀𝑖
𝜕𝑧 0 𝜕𝑀𝑖

𝜕𝑥

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(90)

The global derivatives of 𝑀𝑛 are given by:

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑀𝑛
𝜕𝑥
𝜕𝑀𝑛
𝜕𝑦
𝜕𝑀𝑛
𝜕𝑧

⎞

⎟

⎟

⎟

⎟

⎠

= 𝐉−1
⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑀𝑛
𝜕𝑠
𝜕𝑀𝑛
𝜕𝑡
𝜕𝑀𝑛
𝜕𝑟

⎞

⎟

⎟

⎟

⎟

⎠

(91)

here 𝐉 is the Jacobian matrix Eq. (33). For a linear inclusion we
ompute the strain in local directions as is shown later.

Gathering all strain vectors at grid points in {𝝐} we can write:

𝝐} = [�̂�]{𝐮} (92)

After substitution of {𝐮} we obtain:

𝝐} = [�̂�]
(

[�̂�]𝐱 + {�̄�} + [�̄�0]{𝝈0}
)

(93)

The initial stresses are computed by

𝝈0} =
[

𝐃 − 𝐃𝑖𝑛𝑐𝑙
]

{𝝐} =
[

𝐃 − 𝐃𝑖𝑛𝑐𝑙
]

[�̂�]
(

[�̂�]𝐱 + {�̄�} + [�̄�0]{𝝈0}
)

(94)

here
[

𝐃 − 𝐃𝑖𝑛𝑐𝑙
]

is a matrix containing 𝐃−𝐃𝑖𝑛𝑐𝑙 as sub-matrices on the
iagonal.

.2.1. Computation of strain for linear inclusions
For linear inclusions it is convenient to work with the strain in local

oordinates. If we assume the bolt to be fully grouted, i.e. no slip is
llowed between the bolt and the domain it is embedded in and that
he Poisson’s ratio of the bolt has no effect, the only strain that has to
e considered is the one along the bar2:

𝑧′ =
𝜕𝑢𝑧′
𝜕𝑧′

=
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑧′

𝑢𝑧′𝑛 =
𝑁
∑

𝑛=1

𝜕𝑀𝑛
𝜕𝑠

1
𝐽
(𝐯𝑧′ ⋅ 𝐮𝑛) (95)

here 𝐽 is the Jacobian and 𝐯𝑧′ is a unit vector in 𝑧′ direction.
Eq. (90) now becomes

𝑛 =
1
𝐽

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
0 0 0

𝜕𝑀𝑛
𝜕𝑠 𝑣𝑧′𝑥

𝜕𝑀𝑛
𝜕𝑠 𝑣𝑧′𝑦

𝜕𝑀𝑛
𝜕𝑠 𝑣𝑧′𝑧

0 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(96)

2 It should be noted that this restriction can be lifted, i.e. slip can be
onsidered.
 m
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The local initial stress vector is given by:

{𝝈′
0} = (𝐃′ − 𝐃′

𝑖𝑛𝑐𝑙){𝝐
′} (97)

where

(𝐃′ − 𝐃′
𝑖𝑛𝑐𝑙) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐸 − 𝐸𝑖𝑛𝑐𝑙 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(98)

here 𝐸 and 𝐸𝑖𝑛𝑐𝑙 is the Young’ modulus of the domain and the
nclusion respectively and

𝝈′
0} =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0
0
𝜎0𝑧′
0
0
0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(99)

. Solution procedure

A solution that already includes the effect of inclusions that have
ifferent elastic properties is possible by combining equation (68) with
93). Eq. (93) can be written in the following form:

𝝐} = [�̂�]{𝐱} + { ̄̄𝐜} + [�̄�0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙]){𝝐} (100)

here:

�̂�] = [�̂�][�̂�], [�̂�0] = [�̂�][�̄�0], { ̄̄𝐜} = [�̂�]{�̄�}, (101)

q. (100) along with Eq. (68) form the following linear system of
quations:
(

[𝐋] −[𝐁0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙])
−[�̂�] [𝐈] − [�̂�0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙])

)(

{𝐱}
{𝝐}

)

=

(

{𝐫}
{ ̄̄𝐜}

)

(102)

hat can be solved in terms of boundary unknowns and internal strains.
It is also possible to obtain a system of equations that only multiplies

ith the boundary unknown:

𝐋]′{𝐱} = {𝐫}′ (103)

here [𝐋]′ and {𝐫}′ are modified left and right hand sides.
We rewrite the strain vector as:

𝝐} = ([𝐈] − [�̂�0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙])−1)([�̂�]{𝐱} + { ̄̄𝐜}) = [𝐀]{𝐱} + {𝐛} (104)

here

𝐀] = ([𝐈]−[�̂�0]([𝐃]−[𝐃𝑖𝑛𝑐𝑙]))−1[�̂�] {𝐛} = ([𝐈]−[�̂�0]([𝐃]−[𝐃𝑖𝑛𝑐𝑙]))−1{ ̄̄𝐜}

(105)

Eq. (104) can be inserted in Eq. (68) in order to obtain:

𝐋]{𝐱} = {𝐫} + [𝐁0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙])([𝐀]{𝐱} + {𝐛}) (106)

nd, hence, the following system of equations can be obtained

[𝐋] − [𝐁0])([𝐃] − [𝐃𝑖𝑛𝑐𝑙])[𝐀]{𝐱} = {𝐫} + [𝐁0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙]){𝐛} (107)

The matrices in Eq. (103) are defined by:

[𝐋]′ = ([𝐋] − [𝐁0])([𝐃] − [𝐃𝑖𝑛𝑐𝑙])[𝐀] (108)
𝐫}′ = {𝐫} + [𝐁0]([𝐃] − [𝐃𝑖𝑛𝑐𝑙]){𝐛} (109)

.1. Elasto-plasticity, Newton–Raphson method

If the stress at an inclusion point exceeds the elastic limit incre-

ental/iterative elasto-plastic procedures, well known in the FEM, are
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applied. A detailed discussion of these methods is beyond the scope of
this paper. A very good description can be found in Smith et al. (2013).

First we consider that [𝐃𝑖𝑛𝑐𝑙] = [𝐃𝑒,𝑖𝑛𝑐𝑙] for the case of elastic
behaviour and [𝐃𝑖𝑛𝑐𝑙] = [𝐃𝑒𝑝,𝑖𝑛𝑐𝑙] for the case of elasto-plastic be-
haviour, where [𝐃𝑒,𝑖𝑛𝑐𝑙] is the elastic constitutive matrix and [𝐃𝑒𝑝,𝑖𝑛𝑐𝑙]
is the elasto-plastic constitutive matrix. We proceed in an incremen-
tal/iterative way and check after each increment if the yield function
F(𝝈) is smaller or greater than zero.

The increment of stress in the plastic regime is:

▵𝝈 = 𝐃𝑒𝑝,𝑖𝑛𝑐𝑙▵𝝐∗ (110)

where ▵𝝐∗ is the in-elastic strain increment (i.e. the one that occurs
after the stress has reached a state where F(𝝈)=0) . The in-elastic (▵𝝐∗)
and elastic (▵𝝐𝑒) strain increments can be computed by:

▵𝝐∗ = 𝑓▵𝝐 , ▵𝝐𝑒 = (1 − 𝑓 )▵𝝐 (111)

where ▵𝝐 is the total plastic strain increment and

𝑓 =
𝐹𝑛𝑒𝑤

𝐹𝑛𝑒𝑤 − 𝐹𝑜𝑙𝑑
if 𝑓 > 0 𝑓 = 0 otherwise (112)

𝑛𝑒𝑤 is the value of 𝐹 at the end of the increment, 𝐹𝑜𝑙𝑑 is the value at
the beginning.

The initial stress due to plasticity is given by:

▵𝝈𝑝0 = (𝐃 − 𝐃𝑒𝑝,𝑖𝑛𝑐𝑙)▵𝝐∗ = (𝐃 − 𝐃𝑒𝑝,𝑖𝑛𝑐𝑙)𝑓▵𝝐 (113)

If the increment in total strain ▵𝝐 has occurred while traversing the
yield surface then:

𝝈𝑒0 = (𝐃 − 𝐃𝑒,𝑖𝑛𝑐𝑙)(1 − 𝑓 )▵𝝐 (114)

The total initial stress increment, including plastic effects, is given
by

▵𝝈0 = ▵𝝈𝑒0 +▵𝝈𝑝0 = ((1−𝑓 )(𝐃−𝐃𝑒,𝑖𝑛𝑐𝑙)+𝑓 (𝐃−𝐃𝑒𝑝,𝑖𝑛𝑐𝑙))▵𝝐 = 𝐃′▵𝝐 (115)

where

𝐃′ = ((1 − 𝑓 )(𝐃 − 𝐃𝑒,𝑖𝑛𝑐𝑙) + 𝑓 (𝐃 − 𝐃𝑒𝑝,𝑖𝑛𝑐𝑙)) (116)

If the strain increment is totally elastic (f=0) we have:

▵𝝈0 = 𝐃′▵𝝐 = (𝐃 − 𝐃𝑒,𝑖𝑛𝑐𝑙)▵𝝐 (117)

If the strain increment is totally plastic (f=1) we have:

▵𝝈0 = 𝐃′▵𝝐 = (𝐃 − 𝐃𝑒𝑝,𝑖𝑛𝑐𝑙)▵𝝐 (118)

To start the simulation we set 𝑓 in Eq. (116) equal to zero i.e. 𝐃′ =
𝐃𝑒,𝑖𝑛𝑐𝑙 and obtain the first result:

[𝐋]′{𝐱0} = {𝐫}′ (119)

With this result we compute the value of the yield function at
internal points and compute a load factor 𝜆 that reduces the load to
the one where first yield occurred. We then reduce the results to first
yield:

{𝐱0} => 𝜆{𝐱0} (120)

We also adjust the stresses at internal points to the new load level. For
the first load step (𝑛=1) the matrix 𝐃′ is updated with 𝑓 = 1 for the
point where the first yield has occurred.

We apply the rest of the loading in 𝑛 steps. The increment in load
is:

▵{𝐫}′ = 1 − 𝜆
𝑛

{𝐫}′ (121)

t each increment we solve:

𝐋]′{▵𝐱𝑖} = {▵𝐫}′ (122)

or the second and subsequent load steps we update the matrix 𝐃′ with
according to the current state of stress. Standard return algorithms

an be applied to ensure that the stresses stay on the yield surface.
11
Fig. 11. Geometry of test example.

Remark. Note that incremental/iterative procedures need only be
applied for elasto-plastic behaviour. When inclusions are defined that
have different elastic behaviour the solution is obtained without itera-
tion.

9. Test examples

We test the implementation on an example of a circular, infinitely
long, tunnel in an infinite domain subjected to a virgin stress (see
Fig. 11). Since the aim of the examples is to test the accuracy of the
implementation and not to perform a realistic simulation, we use non-
dimensional parameters. For the domain we assume E=1 and 𝜈 = 0 and
for the radius of the tunnel, R=1. The results of the IGABEM simulation
are compared with a FEM analysis using the software PLAXIS and an
analytical calculation.

9.1. Elastic analysis with no ground support

In order to establish a comparable regime between the IGABEM
and PLAXIS simulations we first conduct an elastic simulation without
ground support and with a virgin stress 𝜎𝑥 = 0, 𝜎𝑦 = 0, 𝜎𝑧 = −1.

9.1.1. Discretisation with PLAXIS
The infinite domain is approximated by providing an artificial

boundary at some distance from the tunnel. Since this distance affects
the results we examine the error introduced by varying the distances
from the tunnel centre to the artificial boundary to 2.5, 5 and 10 times
the tunnel diameter (2.5D, 5D, 10D). The boundary conditions at the
outer boundary of the mesh (shown in Fig. 12) are that displacements
normal to the faces of the cuboid are set to zero. The fact that the
tunnel is infinitely long can be modelled by extending the mesh along
the tunnel axis to 10 m (=5D). The mesh consists of quadratic 10-noded
tetrahedral elements. For load case 0 the virgin stresses are assigned
to all elements of the mesh and the excavation is then simulated by
deactivating the elements inside the tunnel. This will give the same
result as a much simpler plane strain simulation but the same mesh will
be used for the second test example where a 3-D analysis is necessary.

9.1.2. Discretisation with IGABEM
Only the boundary of the tunnel is discretised as the infinite domain

is explicitly considered by the fundamental solutions. The excavation
boundary is defined by 16 control points and basis functions of order
2 (quadratic) along the tunnel walls and of order 1 (linear) along the
tunnel axis are used. It should be noted that this geometrical description
exactly represents a circular tunnel. To simulate the infinite extent of
the tunnel we use plane strain infinite patches. The excavation of the
tunnel is simulated by assigning a virgin stress state. Excavation forces
on the boundary are then automatically computed. The discretisation is
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Fig. 12. Finite element mesh with distance 2.5D from the tunnel centre to the outer
boundary.

Fig. 13. Discretisation of tunnel into 6 patches. Patch numbers are shown. Patches
3 to 6 are infinite. Control points are shown as hollow squares, collocation points as
filled squares.

shown in Fig. 13. For the approximation of the displacements the same
basis functions as for the description of the geometry are used, resulting
in the collocation points shown. The discretisation has 48 degrees of
freedom.

9.1.3. Comparison of results
To investigate the effect of the artificial boundary on the results

of the FEM analysis we compare the values of vertical displacements
along a vertical line above the tunnel with the exact result (Kirsch
solution Kirsch, 1898) and the IGABEM result. It can be seen in Fig. 14
that the FEM results converge to the exact results, while the IGABEM
result already is in excellent agreement. The computing time for the
PLAXIS simulation was 3 min 53 s and for the IGABEM simulation 8 s.

9.2. Elastic simulation with rock bolts

This example is designed to test the implementation of rock bolts.
Three rock bolts are installed at the top of the tunnel (Fig. 15). The
diameter of the bolts is 0.05 and the elastic modulus is twice the value
of the domain (i.e. E𝑏𝑜𝑙𝑡 = 2). It is noted that the consideration of the
ock bolts renders the analysis three dimensional. The aim is to study
12
Fig. 14. Variation of the vertical displacement above the tunnel: Comparison of FEM
results with the BEM result and the exact solution.

Fig. 15. Geometry of the elastic simulation with bolts.

the local influence of the rock bolts, assuming that further away plane
strain conditions prevail.

9.2.1. Discretisation with PLAXIS
In PLAXIS rock bolts are simulated as embedded beams. The geom-

etry of the bolt can be arbitrarily located in the finite element mesh,
thus nodes of the bolt do not need to coincide with nodes of the finite
element mesh. As the beam cross section is small, compared with its
length, the bending stiffness is almost zero, therefore it can be assumed
that the beam acts as a bolt. In Fig. 16 the three bolts are shown
embedded in the surrounding FEM mesh.

9.2.2. Discretisation with IGABEM
The bolts are defined as linear inclusions. In order to get results

comparable to PLAXIS the continuity of displacements is changed to
𝐶0 at the point where the rock bolts meet the boundary patch. This
is done be inserting knots into the basis functions that approximate
the unknown. This increases the number of collocation points and the
degrees of freedom. The IGABEM discretisation is shown in Fig. 17 and
has 108 degrees of freedom.

9.2.3. Comparison of results
We compare the displacements along the rock bolts in Fig. 18.

Good agreement can be observed. The computation time of the PLAXIS
simulation was 6 min and 12 s and for the IGABEM simulation 24 s.
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Fig. 16. Bolts simulated as embedded beams with PLAXIS.
w

𝑟

Fig. 17. Discretisation of the problem with IGABEM. Shown are the bolts in blue with
he associated control points as hollow squares. The collocation points obtained after
not insertion are shown as red filled squares.

Fig. 18. Comparison of displacements along the rock bolts.
13
Fig. 19. Volume discretisation for the plasticity example. Shown are the two (green
and red) surfaces defining the inclusion and the control points as hollow squares. Also
shown are the internal points as stars and the subdivision into integration regions for
the volume integration. These regions are automatically determined depending on the
location of internal points and on the aspect ratio.

9.3. Elasto-plastic simulation without rock bolts

For this test we can compare with an analytical solution in plane
strain due to Duncan–Fama (see for example Hoek and Brown, 1980).
For a hydrostatic virgin stress of 𝑝0 (compression positive) and a Mohr–
Coulomb yield condition with a friction angle 𝜙 and cohesion c, the
solution for the elasto-plastic radial displacement of the tunnel wall is
given by:

𝑢𝑝 =
𝑅(1 + 𝜈)

𝐸

(

2(1 − 𝜈)(𝑝0 − 𝑝𝑐𝑟)
𝑟𝑝
𝑅

2
− (1 − 2𝜈)𝑝0

)

(123)

here the extent of the plastic zone is given by:

𝑝 = 𝑅
(

2𝑝0(𝑘 − 1) + 𝜎𝑐𝑚
)

1
𝑘−1

(124)

(1 + 𝑘)𝜎𝑐𝑚
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Fig. 20. Example of large cavern: Perspective view of excavation stages.
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and

𝜎𝑐𝑚 =
2c 𝑐𝑜𝑠𝜙
1 − 𝑠𝑖𝑛𝜙

(125)

𝑘 =
1 + 𝑠𝑖𝑛𝜙
1 − 𝑠𝑖𝑛𝜙

(126)

9.3.1. Discretisation with IGABEM
For this simulation the excavation is surrounded with a general

inclusion extending one radius from the excavation surface as shown
in Fig. 19. The properties assigned to the inclusion are 𝐸 = 1, 𝜈 =
0, 𝜙 = 10◦, 𝑐 = 0.5. A hydrostatic compressive virgin stress 𝑝0 = 1 was
pplied.

.3.2. Comparison of results
For the above input data the analytical solution for the extent of

he plastic zone was computed as 1.3, which means it is within the in-
lusion. The theoretical solution for the radial displacement was 1.262
hich compares well with the IGABEM solution of 1.269. Convergence

o 1% of residual was achieved after 6 iterations.

0. Practical example

The practical example relates to the excavation of a large under-
round cavern with a height of 60 m, a width of 50 m and an extension
f 300 m. The cavern is at a depth of 500 m resulting in a vertical virgin
ompressive stress of 15 MPa with 𝑘0 = 0.8. The rock mass properties
re listed in Table 1. A Mohr–Coulomb yield condition with a dilation
ngle of 𝜓 = 0 is assumed.

The aim of the simulation is to investigate if a pre-installation of
round support would lead to a safer and more economic excavation.
he required excavation stages are shown on a 60 m section of the
avern in Fig. 20. In the first stage a tunnel system consisting of
ircular tunnels (by raise boring) and rectangular horizontal tunnels
by blasting) is excavated. Next cables are installed from the circular
14
able 1
ock mass properties.
E (MPa) 𝜈 𝑐 (MPa) 𝜙 (degrees)

23000 0.25 1.63 36

tunnels of such length that they reach to the surface of the cavern to be
excavated. Finally the cavern is excavated. The cross-sectional diameter
of the cables is 25 mm with the modulus of elasticity of E=210 GPa.

10.1. The simulation model

For a preliminary analysis we analyse a 60 m section of the cavern.
At the edges of the section we use infinite plane strain boundary
elements. Nine cables per circular excavation are considered. We start
with the definition of the excavation surfaces using the method outlined
in Section 3.1.5. For the description of the smooth shape of the cavern
walls 4 control points and a basis function of order 3 has been used for
each half. For the variation of the unknowns we use the same basis
functions as for the description of the geometry except that for the
bottom surface the basis function was elevated by one order from linear
to quadratic across the cavern.

The resulting simulation model is shown in Fig. 21 for the final
excavation stage and has 612 degrees of freedom. It should be
stressed that no mesh generation is involved here. The dotted
lines in Fig. 21 define integration regions, which are automatically
determined depending of the location of collocation points and
their aspect ratio.

Next the inclusions are specified. This relates to the cables and to
the part of the domain where it is assumed that non-linear behaviour is
taking place. In this study we concentrate on the rock mass behaviour
between the tunnels and the excavation surface, so this part is selected.
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Fig. 21. IGABEM model of excavation surfaces, showing control points as hollow
quares and collocation points as filled red squares.

Fig. 22. Definition of the inclusions showing bolt inclusions and bounding surfaces
(red and green lines) defining the part of the domain where non-linear behaviour is
modelled.

The definition of the inclusions is shown in Fig. 22 and the final model
in Fig. 23.

10.2. Preliminary results

The novel approach to simulation will be used for a detailed study to
determine if pre-installation of ground support can make the excavation
of large underground caverns more feasible, safe and economic. Here
only a preliminary result is presented in Fig. 24. For this case the
convergence to 1% residual was achieved in 10 iterations.

It is clear that more cables are required to provide adequate pre-
support but it should be noted that the number of cables can be
increased substantially without significantly increasing the simulation
effort. This is because cables are generated automatically and because
15
Fig. 23. Perspective view of geometry definition for the final excavation stage.
Boundary Patches are colour coded. The grid points inside the general inclusion for
modelling non-linear behaviour are shown as white dots.

Fig. 24. Result of the analysis: Contours of absolute displacement plotted on the cavern
surface, the cables and a plane inside the general inclusion.

the numerical effort only increases slightly due to the fact that analyt-
ical integration is used. It should be noted that the number of degrees
of freedom is not increased by increasing the number of cables.

11. Summary and conclusions

A new approach to simulation for underground excavations using
isogeometric methods and NURBS has been presented, which makes it
extremely user friendly and efficient. No mesh generation is required
and geometric data can be specified in a CAD data format. Since CAD
software also uses NURBS and trimmed NURBS surfaces the connection
to CAD is natural. Parts of the domain that have different material
properties or behave in an inelastic way can be considered but a
definition of inclusions is necessary. This means that for most practical
applications only near field effects are considered in the simulation,
i.e inclusions have limited extent and are located near the region of
interest. If this restriction can be accepted, then the software can do
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everything a FEM simulation can do, but with a drastic reduction of
user effort and execution time.

One of the main contributions of the paper is the presentation of
analytically integrated rock bolt inclusions. Numerical integration is the
most compute intensive aspect of any BEM simulation. In case of large
patches the number of Gauss points can be high. This is because of the
nature of the integrals, which exhibit singular behaviour, i.e. where
the value of the integrand increases rapidly as the source point is
approached. For the numerical volume integration, where the integra-
tion is in 3 directions the computational effort is particularly high.
However, it is noted that the matrices that require volume integration
only depend on geometry and can be precomputed for a particular
model. Also, the computations are able to exploit to a very high degree
the use of multiple processor hardware.

At the time of writing the simulation model has been written in
MATLAB, had a first application to a real problem and will be used for
a detailed study to simulate the effect of pre-support for large caverns.

Although concrete arches and shotcrete can be modelled with the
general inclusion approach presented here, it becomes cumbersome,
when the thickness is small. Therefore, special shotcrete inclusions with
a semi-analytical integration are being developed next. It should be
pointed out that it is also possible to develop inclusion geometries, that
are not restricted to the cuboid shape presented here (in the sense that
only two surfaces can be of general shape).

Finally, it is hoped that this contribution will make the BEM more
attractive for simulations of underground excavations.
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Appendix A. Linear inclusion. Volume regular integral

The analytical solution in Voigt notation (only terms different from
zero are listed) is for 𝑙 = 1:

▵𝖤′(1, 4)(�̃�′ ≠ 0) = 2𝐶𝜋𝑅2 𝐶3
𝐻�̃�′

[

𝑟𝑐0 +
�̃�′▵𝑧′ − �̃�′2

𝑟𝑐1

]

▵𝖤′(1, 6)(�̃�′ ≠ 0) = 2𝐶𝜋𝑅2 𝐶3
𝐻

[

𝐻
𝑟𝑐1

+ ln
(

𝑟𝑐0 − �̃�′

𝑟𝑐1 + ▵𝑧′

)]

▵𝖤′(1, 6)(�̃�′ = 0) = 2𝐶𝜋𝑅2 𝐶3
𝐻

{

�̃�′

|▵𝑧′|
− �̃�′

|�̃�′|
− ln

[

(

▵𝑧′
) ̄▵𝑧′ (−�̃�′

)𝑧′
]

}

𝖤′(2, 1)(�̃�′ ≠ 0) = 𝐶𝜋 𝑅2

𝐻�̃�′

(

�̃�′2 − �̃�′▵𝑧′

𝑟𝑐1
− 𝑟𝑐0

)

▵𝖤′(2, 2)(�̃�′ ≠ 0) = 𝐶𝜋 𝑅2

𝐻�̃�′

{

�̃�′2 + 2𝐶3𝑟2𝑐0
𝑟𝑐0

+

+
▵𝑧′

[

�̃�′▵𝑧′2 + (𝐻 + �̃�′)�̃�′2
]

− 2𝐶3𝑟2𝑐1(�̃�
′2 − �̃�′▵𝑧′)

𝑟3𝑐1

}

▵𝖤′(2, 3)(�̃�′ ≠ 0) = 𝐶𝜋𝑅2 �̃�′
(

1 −
𝑟2𝑐0 + 2𝐻2 − 3𝐻�̃�′

3

)

𝐻 𝑟𝑐0 𝑟𝑐1
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▵𝖤′(2, 5)(�̃�′ ≠ 0) = 2𝐶𝜋𝑅
2

𝐻

{

𝐻
[

(𝐶3 − 1)𝐻(▵𝑧′ − �̃�′) + 𝐶3𝑟2𝑐0 − �̃�
′2]

𝑟3𝑐1
+

�̃�′( 1
𝑟𝑐1

− 1
𝑟𝑐0

) + 𝐶3 ln
𝑟𝑐0 − �̃�′

𝑟𝑐1 + ▵𝑧′

}

▵𝖤′(2, 5)(�̃�′ = 0) = ▵𝖤′𝑀1
(1, 6)(�̃�′ = 0) (A.1)

▵𝖤′(3, 1)(�̃�′ ≠ 0) = 𝐶𝜋𝑅
2

𝐻

(

ln
𝑟𝑐1 + ▵𝑧′

𝑟𝑐0 − �̃�′
− 𝐻
𝑟𝑐1

)

▵𝖤′(3, 1)(�̃�′ = 0) = −
▵𝖤′𝑀1

(1, 6)(�̃�′ = 0)
2𝐶3

𝖤′(3, 2)(�̃�′ ≠ 0)
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𝐻

[
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𝑟2𝑐0
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2

𝐻

{

𝐻
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[
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𝑟𝑐0
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) − 2(1 + 𝐶3) ln
𝑟𝑐1 + ▵𝑧′

𝑟𝑐0 − �̃�′

}

▵𝖤′(3, 3)(�̃�′ = 0) =
1 + 𝐶3
𝐶3

▵𝖤′𝑀1
(1, 6)(�̃�′ = 0)

▵𝖤′(3, 5)(�̃�′ ≠ 0)

= 2𝐶𝜋 𝑅2

𝐻�̃�′

[

(2 + 𝐶3)�̃�′2 + (1 + 𝐶3)�̃�′2

𝑟𝑐0
+

(1 + 𝐶3)�̃�′▵𝑧′3

𝑟3𝑐1
−

−
(2 + 𝐶3)�̃�′4 + �̃�′2▵𝑧′((3 + 𝐶3)▵𝑧′ − 𝐶3�̃�′)

𝑟3𝑐1

]

and for 𝑙 = 2:

𝖤′(1, 4)(�̃�′ ≠ 0) = 2𝐶𝜋𝑅2 𝐶3
𝐻�̃�′

[

𝑟𝑐1 +
�̃�′▵𝑧′ − �̃�′2

𝑟𝑐0

]

▵𝖤′(1, 6)(�̃�′ ≠ 0) = −2𝐶𝜋𝑅2 𝐶3
𝐻

[

𝐻
𝑟𝑐0

+ ln
(

𝑟𝑐0 − �̃�′

𝑟𝑐1 + ▵𝑧′

)]

▵𝖤′(1, 6)(�̃�′ = 0) = 2𝐶𝜋𝑅2 𝐶3
𝐻

{

▵𝑧′

|▵𝑧′|
− ▵𝑧′

|�̃�′|
+ ln

[

(

▵𝑧′
) ̄▵𝑧′ (−�̃�′

)𝑧′
]

}

▵𝖤′(2, 1)(�̃�′ ≠ 0) = 𝐶𝜋 𝑅2

𝐻�̃�′

(

𝑦′2 − �̃�′▵𝑧′

𝑟𝑐0
− 𝑟𝑐1

)

▵𝖤′(2, 2)(�̃�′ ≠ 0)

= 𝐶𝜋 𝑅2

𝐻�̃�′

[

(1 + 2𝐶3)𝐻2 + �̃�′2 − 2𝐻�̃�′(1 + 2𝐶3) + 2𝐶3𝑟2𝑐0
𝑟𝑐1

+

+
�̃�′(𝑟2𝑐0▵𝑧

′ +𝐻�̃�′2) − 2𝐶3𝑟2𝑐0(�̃�
′2 − �̃�′▵𝑧′)

𝑟3𝑐0

]

▵𝖤′(2, 3)(�̃�′ ≠ 0) = 𝐶𝜋𝑅2 �̃�′

𝐻

(

1
𝑟𝑐1

−
𝑟2𝑐0 +𝐻�̃�

′

𝑟3𝑐0

)

▵𝖤′(2, 5)(�̃�′ ≠ 0)

= 2𝐶𝜋𝑅
2

𝐻

(

�̃�′ − 𝐶3𝐻
𝑟𝑐0

−
𝐻�̃�′2

𝑟3𝑐0
+ ▵𝑧′

𝑟𝑐1
+ 𝐶3 ln

𝑟𝑐1 + ▵𝑧′

𝑟𝑐0 − �̃�′

)

▵𝖤′(2, 5)(�̃�′ = 0) = ▵𝖤′𝑀2
(1, 6)(�̃�′ = 0) (A.2)

▵𝖤′(3, 1)(�̃�′ ≠ 0) = 𝐶𝜋𝑅
2

𝐻

(

− ln
𝑟𝑐1 + ▵𝑧′

𝑟𝑐0 − �̃�′
+ 𝐻
𝑟𝑐0

)

▵𝖤′(3, 1)(�̃�′ = 0) = −
▵𝖤′𝑀2

(1, 6)(�̃�′ = 0)
2𝐶3

𝖤′(3, 2)(�̃�′ ≠ 0) = 𝐶𝜋𝑅
2

𝐻

[

▵𝑧′

𝑟𝑐1
+
�̃�′(𝐻�̃�′ + 𝑟2𝑐0)

𝑟3𝑐0
− ln

▵𝑧′ + 𝑟𝑐1
𝑟𝑐0 − �̃�′

]

▵𝖤′(3, 2)(�̃�′ = 0) = ▵𝖤′𝑀2
(3, 1)(�̃�′ = 0)

▵𝖤′(3, 3)(�̃�′ ≠ 0) = 𝐶𝜋𝑅
2
[

𝐻�̃�′2
3

−
2(1 + 𝐶3)𝐻 + �̃�′

− ▵𝑧′ +

𝐻 𝑟𝑐0 𝑟𝑐0 𝑟𝑐1
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▵

a

▵

▵

+ 2(1 + 𝐶3) ln
𝑟𝑐1 + ▵𝑧′

𝑟𝑐0 − �̃�′

]

▵𝖤′(3, 3)(�̃�′ = 0) =
1 + 𝐶3
𝐶3

▵𝖤′𝑀2
(1, 6)(�̃�′ = 0)

𝖤′(3, 5)(�̃�′ ≠ 0) = 2𝐶𝜋 𝑅2

𝐻�̃�′

[

(1 + 𝐶3)𝑟2𝑐0 + �̃�
′2 + (1 + 𝐶3)(𝐻2 − 2𝐻�̃�′)

𝑟𝑐1

+
(1 + 𝐶3)�̃�′3▵𝑧′

𝑟3𝑐0
−

−
(2 + 𝐶3)�̃�′4 − �̃�′2�̃�′(𝐶3▵𝑧′ − (3 + 𝐶3)�̃�′)

𝑟3𝑐0

]

where:

▵𝑧′ = 𝐻 − �̃�′ 𝑟𝑐1 =
√

�̃�′2 + ▵𝑧′2 𝑟𝑐0 =
√

�̃�′2 + 𝑧′2

̄▵𝑧′ = ▵𝑧′∕|▵𝑧′| 𝑧′ = �̃�′∕|�̃�′|▵𝑧′
(A.3)

Appendix B. Linear inclusion. Volume singular integral

The terms of ▵𝖤′ = ▵𝖤′1+▵𝖤′2, in Voigt notation, different from zero
re for 𝑙 = 1:

𝖤′(1, 6) = ▵𝖤′(2, 5) = 𝐶𝜋
4𝐻

{

𝐻2
[

8 + 8𝐶3 − (9 + 8𝐶3) cos 𝜃 + cos 3𝜃 +

𝑅2
(

(3 − 8𝐶3) cos 𝜃 + cos 3𝜃 + 8𝐶3 ln
cos 𝜃∕2
sin 𝜃∕2

)]}

▵𝖤′(3, 1) = ▵𝖤′(3, 2) = 𝐶𝜋
8𝐻

[

𝑅2
(

11 cos 𝜃 + cos 3𝜃 + 8 ln
sin 𝜃∕2
cos 𝜃∕2

)

−

(B.1)

− 4𝐻2 cos 𝜃 sin2 𝜃
]

𝖤′(3, 3) = −𝐶𝜋 𝑅
2

4𝐻

[

(11 + 8𝐶3) cos 𝜃 + cos 3𝜃 + 8(1 + 𝐶3) ln
sin 𝜃∕2
cos 𝜃∕2

]

+

𝐶𝜋𝐻
(

1 + 4𝐶3 + 2 cos 𝜃 + cos 2𝜃
)

sin2 𝜃∕2

and for 𝑙 = 2

▵𝖤′(1, 6) = ▵𝖤′(2, 5) = 𝐶𝜋
4𝐻

{

𝐻2 [8 + 8𝐶3 − (9 + 8𝐶3) cos 𝜃 + cos 3𝜃
]

+

+ 𝑅
[

(8𝐶3 − 3)𝑅 cos 𝜃 − 𝑅 cos 3𝜃 + 8(𝐻 + 2𝐶3𝐻 +

𝐶3𝑅 ln
sin 𝜃∕2
cos 𝜃∕2

) + 4𝐻(−1 − 4𝐶3 + cos 2̃𝜃) sin 𝜃
]}

▵𝖤′(3, 1) = ▵𝖤′(3, 2) = −𝐶𝜋𝐻
2

cos 𝜃 sin2 𝜃 − 𝐶𝜋𝑅
8𝐻

[

𝑅
(

11 cos 𝜃 + cos 3𝜃 +

8 ln
sin 𝜃∕2
cos 𝜃∕2

)

− 2𝐻
(

5 sin 𝜃 + sin 3𝜃 − 4
)

]

(B.2)

▵𝖤′(3, 3) = 𝐶𝜋𝐻
(

1 + 4𝐶3 + 2 cos 𝜃 + cos 2𝜃
)

sin2 𝜃∕2+

𝐶𝜋 𝑅
4𝐻

[

(11 + 8𝐶3)𝑅 cos 𝜃 + 𝑅 cos 3𝜃+

8
(

𝐻 + 2𝐶3𝐻 + (1 + 𝐶3)𝑅 ln
sin 𝜃∕2
cos 𝜃∕2

)

−

4𝐻
(

3 + 4𝐶3 + cos 2𝜃
)

sin 𝜃
]
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