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Geochemical fingerprinting is a rapidly expanding discipline in the earth and environmental sciences, anchored 
in the recognition that geological processes leave behind physical, chemical and sometimes also isotopic patterns 
in the samples. Furthermore, the geochemical fingerprinting of natural cycles (water, carbon, soil and biota 
fingerprinting) are influenced by the anthropogenic impact and by the climate change. So, their monitoring is 
a tool of resilience and adaptation. In recent years, computational statistics and artificial intelligence methods 
have started to be used to help the process of geochemical fingerprinting. In this paper we consider data from 
57 wells located in the province of Ferrara (Italy), all belonging to the same geological group and separated 
into 4 different aquifers. The aquifer from which each well extracts its water is known only in 18 of the 57 
cases, while in other 39 cases it can be only hypothesized based on geological considerations. We devise a novel 
technique for geochemical fingerprinting of groundwater by means of which we are able to identify the exact 
aquifer from which a sample is extracted with a sufficiently high accuracy. Then, we experimentally prove that 
out method is sensibly more accurate than typical statistical approaches, such as principal component analysis, 
for this particular problem.
1. Introduction

The increasing exploitation of water resources for human, industrial, 
and agricultural ends has brought in the last decades great attention to-

ward the quality control of the groundwater [1, 2]. The complex reality 
of this sector has pushed the scientific community to take part in the 
study and the management of water resources, to improve the knowl-

edge and to protect every realistic aspect of their management. The 
general intent is to deal with the problems originated by the variation 
of volumes and intensity of precipitation due to climate change, over-

exploitation, salinization, anthropic pollution, degradation, and mas-

sive irrigation. An example of the need of a multidisciplinary approach 
is [3], but, in fact, many studies have demonstrated that a mindful 
protection of the existing water resources could contribute to the preser-

vation of the availability of fresh water [4, 5, 6]. An hydro-geochemistry 
approach facilitates the understanding of the aquifer reborn, allowing 
to define the chemical composition of waters, and, through the applica-

tion of specific models, to suspect and identify the presence of possible 
mixing between waters of different compositions. The quality of the wa-

ter, and the geochemical fingerprint, of water bodies can be modified 
due to, for example, an interaction with a plume of polluted waters. A 
geochemical analysis allows one to identify the geochemical markers 
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and to delimit the areas of diffusion of the plume and/or the intensity 
of the contamination, in order to quantify the impact and the risks.

Geologists usually develop a monitoring network, and, based on 
the sampling provided, they build a picture of the baseline conceptual 
hydrogeological model of the studied area, providing a prototype mon-

itoring for continuous data acquisition. Then, by hand, sometimes with 
the help of basic statistical tools, they try to obtain the modeling of 
multi-aquifer flow in order to increase the knowledge of their hydro-

geological characteristic, as well as to find the geochemical fingerprint 
that represents a specific aquifer level. This process is very expensive 
and entails an elevated risk of mistake due to potential loss of infor-

mation, manual loading of data, and prolonged analysis time. In the 
recent literature, various statistical methods have been used to aid the 
traditional geochemical investigation to understand pollution sources, 
possible correlation among elements, and, in some cases, the nature 
of the contamination [7, 8, 9]. The recent work focused on protection 
of groundwater against pollution, deterioration, and for input pollu-

tion identification include applying geographical information systems 
and decision analysis [10, 11], logistic regression model learning [12], 
univariate and multivariate analysis [13], and multiple regression mod-

els [14]. More in general, machine learning is emerging as an effective, 
less complicated and less expensive [15], empirical approach for both 
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regression and/or classification of nonlinear systems, ranging from few 
to thousands of variables, and they are ideal for addressing those prob-

lems where our theoretical knowledge is still incomplete but for which 
we do have a significant number of observations. In the past decades, it 
has proven useful for a very large number of applications, and among 
the techniques most commonly used we may mention artificial neu-

ral networks [16, 17, 18, 19], support vector machines [20], but also 
self-organizing map, decision trees, ensemble methods such as random 
forests, case-based reasoning, neuro-fuzzy networks, and evolutionary 
algorithms [21].

In this paper we considered 57 water wells located in the province 
of Ferrara, all belonging to the geological group 𝐴 (the most superfi-

cial one), which, in turn, is separated into 4 different aquifers, named 
from 𝐴1 to 𝐴4 (see the stratigraphy made available by ENI-Agip, Re-

gione Emilia Romagna and Eni-Agip deposit, 1998). The aquifer from 
which each well extracts its water is known only in 18 of the 57 cases, 
while in other 39 cases it can be only hypothesized based on geological 
considerations; the ultimate purpose of the present study it to devise an 
automatic, machine learning based method to identify the geochemical 
fingerprint of each aquifer, so that each unknown well can be assigned 
an aquifer, and the control network can be improved. This problem is 
associated to the well-known clustering problem, usually dealt with us-

ing classic statistical methods such as PCA [22, 23, 24, 25, 26]. In the 
typical setting, this problem is stated as follows: given samples of differ-

ent aquifer, is there a geochemical fingerprint that allows one to identify 
the aquifers? The classic solution to this problem consists of applying 
a feature reduction and identification method, such as PCA, and then 
use the extracted features to design a fingerprint. In our case, however, 
the problem is different: we already know the geological structure, and 
we look for the best fingerprint that identifies each aquifer. Therefore, 
we cannot proceed as in classic way, which would imply disregarding 
the know geological group structure. For the purposes of this study, 910 
samples were considered, 229 of which were extracted by a single-filter

pump, and therefore can be used for this study. Each sample consists of 
13 chemical-physical indicators. We search the geochemical fingerprint 
of each aquifer among combinations of these indicators and among 
combinations of ratios of affine elements and quantities. The number of 
possible combinations is exponential in the number of variables, giving 
rise to a feature selection problem combined with a clustering prob-

lem, which we express as an optimization problem and solve using an 
evolutionary algorithm. The result is the precise characterization of the 
geochemical fingerprint of each of the four aquifer, expressed in terms 
of centroid, that is, in terms of an ideal, hypothetical set of values for 
each aquifer of a selection of the indicators, that represents the aquifer 
itself. By using such a fingerprint, we were able to assign the correct 
aquifer to each of unknown wells, with a reasonable expected accuracy. 
Our approach differs from the classical clustering plus reduction one in 
several points: (i) in our case, the geological group is known, and we do 
not use clustering to identify the aquifer but, instead, their fingerprint; 
(ii) our reduction is dynamic: we search for the best subset towards 
fingerprint identification; (iii) we take into account possible non-linear 
contribution of each characteristic or ratio, improving the accuracy of 
the fingerprints.

This paper is organized as follows. In the next section, we give the 
necessary background on fingerprinting, feature selection, and cluster-

ing. In Section 3 we present our data and give a very simple exploratory 
analysis. In Section 4 we present the mathematical formulation of our 
technique: our results can be understood without the technical details 
of the method, which are however presented for completeness and re-

producibility reasons. Then, in Section 5 we present our results, and 
we discuss them also via a simple comparison with those that can be 
obtained by existing approaches, before concluding.
2

2. Background

Feature selection. Feature selection is a machine learning technique for 
data preprocessing, defined as eliminating features from the data base 
that are irrelevant to the task to be performed [27]. In its original for-

mulation and meaning, feature selection facilitates data understanding, 
reduces the storage requirements, and lowers the processing time, so 
that model learning becomes an easier process. Feature selection meth-

ods that do not incorporate dependencies between attributes are called 
univariate methods, and they consist in applying some criterion to each 
pair feature-response, and measuring the individual power of a given 
feature with respect to the response independently from the other fea-

tures, so that each feature can be ranked accordingly. In multivariate

methods, on the other hand, the assessment is performed for subsets 
of features rather than single features. There are several different ap-

proaches to feature selection in the literature. Among them, the most 
versatile ones are those that define the selection problem as an opti-

mization problem. A multi-objective optimization problem (see, e.g. [28]) 
can be formally defined as the optimization problem of simultaneously 
minimizing (or maximizing) a set of 𝑘 arbitrary functions:⎧⎪⎪⎨⎪⎪⎩
min∕max 𝑓1(𝑥̄)
min∕max 𝑓2(𝑥̄)
…
min∕max 𝑓𝑘(𝑥̄),

(1)

where 𝑥̄ is a vector of decision variables. A multi-objective optimiza-

tion problem can be continuous, in which we look for real values, or 
combinatorial, we look for objects from a countably (in)finite set, typi-

cally integers, permutations, or graphs. Maximization and minimization 
problems can be reduced to each other, so that it is sufficient to consider 
one type only. A set  of solutions for a multi-objective problem is non 
dominated (or Pareto optimal) if and only if for each 𝑥̄ ∈  , there exists 
no 𝑦̄ ∈  such that (i) there exists 𝑖 (1 ≤ 𝑖 ≤ 𝑘) that 𝑓𝑖 (𝑦̄) improves 𝑓𝑖 (𝑥̄), 
and (ii) for every 𝑗, (1 ≤ 𝑗 ≤ 𝑘, 𝑗 ≠ 𝑖), 𝑓𝑗 (𝑥̄) does not improve 𝑓𝑖 (𝑦̄). In 
other words, a solution 𝑥̄ dominates a solution 𝑦̄ if and only if 𝑥̄ is better 
than 𝑦̄ in at least one objective, and it is not worse than 𝑦̄ in the remain-

ing objectives. We say that 𝑥̄ is non-dominated if and only if there is not 
other solution that dominates it. The set of non dominated solutions 
from  is called Pareto front. Optimization problems can be approached 
in several ways; among them, multi-objective evolutionary algorithms are 
a popular choice (see, e.g. [29, 30, 31]).

Feature selection can be seen as a multi-objective optimization prob-

lem, in which the solution encodes the selected features, and the ob-

jective(s) are designed to evaluate the performances of some model-

extraction algorithm; this may entail, for example, instantiating (1) as:{
max 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑥̄)
min 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑥̄), (2)

where 𝑥̄ represents the chosen features; model (2) can be referred to 
as a wrapper. A typical concretization of a wrapper is feature selec-

tion for classification algorithms, whose performances are influenced 
by many factors, among which are the selected features. Evolutionary 
algorithms for feature selection have been reviewed [29], and a very 
recent survey of multi-objective algorithms for data mining in general 
can be found in [31]. An early evolutionary approach that includes the 
use of a multi-objective optimization algorithm for feature selection has 
been presented in [32], while a formulation of feature selection as a 
multi-objective optimization problem can be found in [30]. In [33] the 
authors proposed a wrapper-based approach that takes the error rate of 
the classifier as a whole and by-class, as well as the size of the subset, us-

ing multi-objective evolutionary computation, while the one proposed 
in [34] optimizes both the accuracy and the size of a decision tree. An-

other wrapper-based solutions were proposed in [35, 36], applied to the 
problem of cancer diagnosis are compared, and in [37], applied to au-

tomatic pattern classification. Other recent examples of multi-objective 
feature selection systems include [29, 38, 39].
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Fig. 1. The area under study: aerial view.
Centroid-based cluster analysis and 𝑲𝑵𝑵 . Cluster analysis or clus-

tering is the task of grouping a set of objects so that those in the same 
group, or cluster are more similar to each other than to those in other 
groups. The literature on cluster analysis is very wide, and includes 
hierarchical clustering, centroid-based models, distribution-based models, 
density models, among many others. Centroid-based models are of par-

ticular interest for us, because they are especially useful for numerical, 
many dimensional objects such as groundwater samples. The concept of 
centroid is essential in the most well-known centroid-based clustering 
algorithm, that is, 𝑘-means [40]: given a group of objects and a notion 
of distance, its centroid is the set of values that describes an object 𝐶
(which may or may not be a concrete object of the group) such that the 
geometric mean of the distances between 𝐶 and every other element of 
the group is minimal. In the 𝑘-means algorithm the groups (and even 
their number) is not known beforehand (this type of cluster analysis 
is called exploratory), and the algorithm is based on an initial random 
guessing of the centroid that eventually converges to a local optimum. 
𝐾𝑁𝑁 [41] is a distance-based classification algorithm, whose main idea 
is that close-by objects can be classified in a similar way. In this paper 
we use both ideas of centroid and distance-based classification in order 
to systematically extract geochemical fingerprints.

Geochemical fingerprinting. Geochemical fingerprinting is a rapidly 
expanding discipline in the earth and environmental sciences. It is an-

chored in the recognition that geological processes leave behind physi-

cal, chemical and sometimes also isotopic patterns in the samples. Many 
of these patterns, informally referred to as geochemical fingerprints, may 
differ only in fine details from each other. For this reason, approaching 
fingerprinting requires highly precise and accurate data analysis [42]. 
Applications of geochemical fingerprinting range on a wide set of con-

texts, from studies on ancient artifacts such as glass or ceramics [43], 
to mineral identification and discovery of Jurassic-age kimberlite [44], 
to dust transport monitoring [45], to groundwater resources identifi-

cation and study [46]. Groundwater resources analysis has been the 
focus of studies aimed to fingerprinting for different purposes. In [47], 
for example, the authors use fingerprinting to evaluate the occurrence 
of microorganic elements and help understanding the sources and the 
processes which may be controlling the transport and fate of emerging 
contaminants in the floodplain of the River Thames to the northwest of 
Oxford and in the River Lambourn, in South-East England. In [48], top 
and subsoil groundwater were sampled around a station in Tomiño, in 
North-East Spain, and analyzed to identify and quantify volatile fuel or-

ganic compounds as well as diesel range organic elements. Also, in [49], 
discriminant analysis was used to identify the most probable source of 
chloride salinity in groundwater samples based on their geochemical 
fingerprints. Finally, geochemical fingerprinting proved itself relevant 
3

for the study of the quality of food and beverages, especially wine, as 
shown in [50].

Because of the statistical nature of geochemical fingerprints, statis-

tical methods are suitable for their identification. In the most recent 
literature, statistical methods are being progressively integrated and 
paired with machine learning and artificial intelligence based tech-

nology. In this paper, we develop a novel method for groundwater 
fingerprint identification, based on feature selection, solved as an op-

timization problem, and implemented via a evolutionary algorithm.

3. Data and hydrogeological assessment

The waters exploited for drinking purposes in northern Italy aquifers 
are contained in the Pliocene-Quaternary continental and marine Po de-

posit. This very important and valuable aquifer reservoir was the subject 
of extensive research over the past 20 years. Numerous studies have 
investigated the stratigraphic characteristics of the Po basin [51, 52]. 
The aquifers of the Emilia Romagna plain, in which the Po basin is 
partly inserted, consist mainly of alluvial deposits in the most super-

ficial part of the plain, for a thickness of about 400-500 m, and, in 
minimal part, from marginal marine deposits. An areal view of the area 
of interest, located in the province of Ferrara (Emilia Romagna, Italy), 
can be seen in Fig. 1. With the purpose of characterizing the chemi-

cal state of the underground waters in this region, we have used data 
from the regional waters monitoring program, which are publicly avail-

able as per Italian Law 30/09. In order to be able to use all historical 
data from this program, we have verified, for each monitoring station, 
the structural characteristics, the depth, and the position of each filter. 
Whenever these details were not available, or the monitoring station 
presented more than one filter, it has been excluded from the study.

On the basis of the stratigraphy made available by ENI-Agip (Re-

gione Emilia Romagna and Eni-Agip deposit, 1998) for hydrocarbons 
investigations, three aquifers groups were identified and referred to as 
𝐴, 𝐵 and 𝐶 . The first two groups are located in the Quaternary de-

posits, while the aquifer system 𝐶 belongs to Quaternary marine delta 
deposits. The data used for this study consist of 910 samples extracted 
from 57 wells located in the province of Ferrara, all belonging to the 
geological group 𝐴 (the most superficial one), from 2010 to 2017. The 
hydro-stratigraphic units of interest, shown in Fig. 2, and named from 
𝐴1 to 𝐴4 from the most to the least superficial one, are formed from 
one or more depositional sequences characterized by cyclic alternations 
of fine deposits (at the base) and coarser ones (the roof). Within each 
sequence, there are deposits composed by different lithologies, corre-

sponding to various systems and depositional environments. At the base 
of each sequence is a very constant level to low permeability that acts 
as acquiclude, identified between the different units [53].
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Fig. 2. The area under study: cross-sectional view.

Table 1. Some basic statistical measures of our variables.

feature min max mean p-value kurtosis skewness

𝜂 122.00 2038.00 469.50 7.01 ∗ 10−20 7.18 2.15

𝑇 11.20 20.00 15.81 1.16 ∗ 10−18 5.37 0.55

𝐸.𝐶. 252.00 4175.00 1574.00 1.36 ∗ 10−18 2.45 1.08

𝐻𝐶𝑂−
3 140.00 1879.00 606.50 3.54 ∗ 10−11 4.44 1.18

𝐶𝑙− 0.50 1413.00 56.00 2.43 ∗ 10−21 2.81 1.25

𝑆𝑂2−
4 0.50 143.00 18.05 1.61 ∗ 10−19 7.59 2.03

𝐶𝑎2+ 26.00 18400.00 462.70 1.91 ∗ 10−29 64.02 7.03

𝑀𝑔2+ 9.00 74740.00 381.33 2.89 ∗ 10−32 226.95 15.03

𝑁𝑎+ 8.00 763.30 183.52 1.79 ∗ 10−18 4.02 1.51

𝐾+ 0.89 768.50 24.39 1.27 ∗ 10−29 42.85 6.13

𝑁𝐻+
4 0.00 63062.00 2135.61 2.01 ∗ 10−27 43.06 5.51

𝐹𝑒 0.00 41824.00 1501.52 1.40 ∗ 10−27 39.20 5.47

𝐴𝑠 0.01 0.04 3.23 ∗ 10−3 1.38 ∗ 10−22 18.84 3.23

Table 2. Correlation matrix.

𝑇 𝐸.𝐶. 𝜂 𝐻𝐶𝑂−
3 𝐶𝑙− 𝑆𝑂2−

4 𝐶𝑎2+ 𝑀𝑔2+ 𝑁𝑎+ 𝐾+ 𝑁𝐻+
4 𝐹𝑒 𝐴𝑠

𝑇 1.000

𝐸.𝐶. 0.050 1.000

𝜂 0.134 0.760 1.000

𝐻𝐶𝑂−
3 0.069 0.479 0.786 1.000

𝐶𝑙− 0.026 0.956 0.625 0.249 1.000

𝑆𝑂2−
4 0.208 -0.329 -0.230 -0.344 -0.294 1.000

𝐶𝑎2+ 0.002 0.189 0.141 0.109 0.159 -0.082 1.000

𝑀𝑔2+ 0.038 0.102 0.024 -0.019 0.132 -0.038 -0.010 1.000

𝑁𝑎+ -0.031 0.842 0.490 0.265 0.866 -0.364 -0.093 0.131 1.000

𝐾+ 0.012 0.248 0.141 0.049 0.248 -0.061 0.767 -0.009 -0.093 1.000

𝑁𝐻+
4 -0.005 0.366 0.338 0.345 0.305 -0.213 -0.096 -0.030 0.332 -0.096 1.000

𝐹𝑒 0.053 0.357 0.462 0.472 0.269 -0.141 -0.054 0.007 0.223 -0.062 0.112 1.000

𝐴𝑠 -0.003 -0.206 -0.191 -0.073 -0.208 0.029 -0.051 -0.018 -0.154 -0.047 0.051 -0.004 1.000
The exact aquifer from which each well extracts its water is known 
only in 18 of the 57 cases, while in other 39 cases it can be only hy-

pothesized based on geological and stratigraphic considerations. Out 
of the total samples, we selected those which were extracted using 
single-filter pumps (that is, that give the guarantee that the ground-

water comes from one aquifer only) and of which the precise aquifer 
was known, reducing our data set to 229 samples. Each sample con-

tains 13 chemical-physical indicators: 𝜂 (hardness), 𝑇 , 𝐸.𝐶 ., 𝑁𝑎+, 𝐾+, 
𝐶𝑎2+, 𝑀𝑔2+, 𝐶𝑙−, 𝑆𝑂2−

4 , 𝐻𝐶𝑂−
3 , 𝑁𝐻+

4 , 𝐹𝑒, 𝐴𝑠. Data were already pre-

processed, so no null values or low-variance columns have been found. 
Some relevant statistical measures of the different chemical elements 
are shown in Table 1: the (non-standardized) mean, the 𝑝-value associ-
4

ated with a Shapiro normality test (in which the null hypothesis is that 
the population is normally distributed), the kurtosis, and the skewness of 
each distribution. As it can be easily observed, none of the variables are 
normal (their 𝑝-values are well below 0.05), and they present a very 
high levels of kurtosis and skewness, being 𝑀𝑔2+ and 𝐶𝑎2+ the most 
evident examples. We show in Fig. 3 and Fig. 4 the graphical repre-

sentation of the statistical behavior of each of the variables (except for 
the temperature, which presented the closest-to-normal behavior and it 
is therefore less informative). As it can be seen, the parameters show 
a very erratic behavior, with the presence of a relevant percentage of 
outliers [54]. The fact that most variables do not show a normal be-

havior can be considered as an argument against classical statistical 
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Fig. 3. Distribution and outliers detection analysis: 𝐸.𝐶., 𝜂, 𝐻𝐶𝑂−
3 , 𝐶𝑙, 𝑆𝑂4, 𝐶𝑎.
methods for fingerprint extraction. The correlation between elements 
can be seen in Table 2; the most evident ones are electrical conductiv-

ity with 𝐶𝑙−, and hardness with electrical conductivity and 𝐻𝐶𝑂−
3 . A 

Piper’s diagram of the samples, that helps us understanding the hydro-

chemical facies of the geological group is shown in Fig. 5. As it can be 
seen, this geological group is characterized by a water mainly of a mag-

nesium bicarbonate type, with no dominant cations facie, and a clear 
bicarbonate anion facie.
5

As much as the temporal and spatial variability of our data are con-

cerned, the following considerations are in order. On the one side, the 
observation period is less than 7 years from the first to the last sam-

ple. On the other side, the maximum distance between two extraction 
points is less than 22 km across. Since our approach is innovative, we 
first decided to ignore the differences that may emerge because of the 
temporal and the spatial variability. However, thanks to the very na-

ture of the approach, both temporal and spatial variability can be taken 
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Fig. 4. Distribution and outliers detection analysis: 𝑀𝑔, 𝑁𝑎, 𝐾 , 𝑁𝐻4 , 𝐹𝑒, 𝐴𝑠.
into account with a minimal generalization of the method itself. At the 
end of Section 4, we briefly discuss such generalization.

4. Method

Problem formulation. Each instance in our data set can be seen as a 
vector in ℝ𝑑 ; for example, in our case, we have that in the original data 
set 𝑑 = 13 because we consider the chemical-physical parameter as they 
6

appear in the samples. To evaluate the distance between two instances 
𝐼 = (𝑎1, … , 𝑎𝑑 ) and 𝐽 = (𝑎′1, … , 𝑎′

𝑑
), we use the well-known notion of 

Euclidean distance, as in (3), below:

𝑑𝑖𝑠𝑡(𝐼, 𝐽 ) =
√

Σ𝑑
𝑖=1(|𝑎𝑖 − 𝑎′

𝑖
|2) (3)

In this way we can compute the distance between any two samples of 
groundwater. Such a value is strongly influenced by the parameters (the 
specific subset of the 𝑑 dimensions) that are taken into consideration. If 
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Fig. 5. A Piper’s diagram of the samples.

we choose to represent the instances with a specific subset of parame-

ters, instead of using all of them, the relative distances among different 
pairs of instances can vary very much. Our data set naturally entails a 
supervised classification problem, expressed as a matrix, as in (4):

𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎11 … 𝑎1𝑑 𝐴1
… … …
𝑎𝑚11 … 𝑎𝑚1𝑑

𝐴1
𝑎(𝑚1+1)1 … 𝑎(𝑚1+1)𝑑 𝐴2

… … …
𝑎𝑚21 … 𝑎𝑚2𝑑

𝐴2
𝑎(𝑚2+1)1 … 𝑎(𝑚2+1)𝑑 𝐴3

… … …
𝑎𝑚31 … 𝑎𝑚1𝑑

𝐴3
𝑎(𝑚3+1)1 … 𝑎(𝑚3+1)𝑑 𝐴4

… … …
𝑎𝑚41 … 𝑎𝑚4𝑑

𝐴4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Consequently, the fingerprint extraction problem can be seen as a fea-

ture selection problem, that is, the problem of establishing the best

subset of chemical-physical parameter. However, unlike the classical 
feature selection problem, selecting the correct classification algorithm 
(i.e., the correct inference model) is not immediate. We choose to model 
the fingerprint of an aquifer as the set of values that best represent an 
(ideal) sample of groundwater from that aquifer, that is, its centroid. 
Thus, we have a feature selection for centroid identification problem, as it 
is a clustering problem in which the clusters are already set.

Multi-objective optimization problem formulation. Let 𝑥̄ = (𝑥1, …, 
𝑥𝑑 ) a vector of solution variables, each taking values in the domain 
{0, 1}; as in a classical feature selection problem, each 1 means that the 
corresponding feature is selected, while 0 means that it is discarded; we 
denote by 𝐶𝑗 (𝑥̄) the centroid of the 𝑗-th aquifer (1 ≤ 𝑗 ≤ 4, in our case) 
computed using precisely the attributes that correspond to 𝑥̄. In order 
to adapt (2) to our problem, we need to define how we evaluate the 
performances of the solution, which, in our case, means defining what 
classification problem we want to solve. To this end, indicating by 𝐴(𝐼)
the (true) aquifer to which the instance 𝐼 correspond, we compute the 
simple accuracy of 𝑥̄ over 𝐷 as follows:

𝑆𝑖𝑚𝑝𝑙𝑒𝐴𝑐𝑐(𝑥̄) = Σ𝐼∈𝐷

{
1 if 𝐴(𝐼) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑗

{𝑑(𝐼,𝐶𝑗 )}
0 otherwise

(5)

Because of the particular nature of our problem, we can modify (5) to 
take into account that, although it is hypothesized the existence of im-

permeable layers between aquifers, infiltrations may occur. Therefore, 
7

a misclassification can be graded as less severe, in some sense, if the ex-

pected aquifer confines with the true one. The adjusted accuracy takes 
this aspect into account:

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐴𝑐𝑐(𝑥̄) = Σ𝐼∈𝐷

⎧⎪⎨⎪⎩
1 if 𝐴(𝐼) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑗

{𝑑(𝐼,𝐶𝑗 )}
1
2 if 𝐴(𝐼) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑗

{𝑑(𝐼,𝐶𝑗 )} ± 1
0 otherwise

(6)

The two variants of the accuracy, namely (5) and (6) of a fingerprint 
selection can be used to reformulate our problem as an optimization 
problem, as they can both be seen as suitable performance indicators. 
Minimizing the cardinality of the selected features is also correct in fin-

gerprinting selection, as smaller fingerprints are more interpretable. In 
order to take into account the fact that some geochemical processes are 
not necessarily linear, we can slightly complicate our formulation by 
introducing a third objective. As a matter of fact, we can expand the 
domain of each solution variable 𝑥𝑖 to take value in ℕ, instead of {0, 1}. 
While we still interpret 0 as discarding the corresponding parameter, we 
now interpret a positive value as the power to which the corresponding 
parameter is raised; we simulate, in this way, a sort of dynamic nor-

malization of our data. In each execution, then, a vector of solutions 
variables 𝑥̄ entails a transformation of the original data set (4) into:

𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎11
𝑥1 … 𝑎1𝑑

𝑥𝑑 𝐴1
… … …

𝑎𝑚11
𝑥1 … 𝑎𝑚1𝑑

𝑥𝑑 𝐴1
𝑎11 … 𝑎1𝑑 𝐴2
… … …

𝑎𝑚21
𝑥1 … 𝑎𝑚2𝑑

𝑥𝑑 𝐴2
𝑎11 … 𝑎1𝑑

𝑥𝑑 𝐴3
… … …

𝑎𝑚31
𝑥1 … 𝑎𝑚1𝑑

𝑥𝑑 𝐴3
𝑎11

𝑥1 … 𝑎1𝑑
𝑥𝑑 𝐴4

… … …
𝑎𝑚41

𝑥1 … 𝑎𝑚2𝑑
𝑥𝑑 𝐴4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where, for simplicity of notation, we have not shown the case of dis-

carded attributes. There are two natural ways to optimize the complex-

ity of the resulting fingerprint in terms of non-linear behavior, as in (7), 
that is, by minimizing the sum of all exponents:

𝑆𝑢𝑚𝐸𝑥𝑝(𝑥̄) = Σ𝑑
𝑖=1𝑥̄𝑖 (8)

or the maximum exponent:

𝑀𝑎𝑥𝐸𝑥𝑝(𝑥̄) =
𝑑

max
𝑖=1

𝑥̄𝑖. (9)

The objective functions (8) and (9) can be combined to obtain four 
variants of (2):

⎧⎪⎨⎪⎩
max 𝑆𝑖𝑚𝑝𝑙𝑒𝐴𝑐𝑐(𝑥̄)
min 𝑆𝑢𝑚𝐸𝑥𝑝(𝑥̄)
min 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑥̄)

(10)

⎧⎪⎨⎪⎩
max 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐴𝑐𝑐(𝑥̄)
min 𝑆𝑢𝑚𝐸𝑥𝑝(𝑥̄)
min 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑥̄)

(11)

⎧⎪⎨⎪⎩
max 𝑆𝑖𝑚𝑝𝑙𝑒𝐴𝑐𝑐(𝑥̄)
min 𝑀𝑎𝑥𝐸𝑥𝑝(𝑥̄)
min 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑥̄)

(12)

⎧⎪⎨⎪⎩
max 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐴𝑐𝑐(𝑥̄)
min 𝑀𝑎𝑥𝐸𝑥𝑝(𝑥̄)
min 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑥̄)

(13)

Models (10), (11), (12), and (13) will be tested and compared to 
each other in order to establish the best schema.
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Temporal and spatial generalization. Our method can be seen as a 
propositional learning technique, in the sense that it is adimensional. 
In other words, possible temporal and spatial variations among values 
are ignored, and fingerprints are extracted by implicitly averaging the 
values over the whole period and the whole area under study. This 
may be acceptable in some cases (such as our one, for example: the 
accuracy that our fingerprints show proves that our approximation is 
acceptable). However, our approach is easily generalizable, to obtain 
a more-than-propositional method. Spatial variations of data are simply 
taken into account by, first, partitioning data into smaller areas, then 
solve the fingerprint problem per each area as above explained, and, 
finally, studying ow fingerprint are influenced by the physical posi-

tions of the wells. Instead, to take into account the temporal variability, 
the generalization would be as follows. First, every single extraction 
point would give rise not to different samples but a single multivari-

ate temporal series, where each variable would be, as in the static case, 
a geochemical characteristic. Then, according to our schema, variables 
and non-linear contributions can be chosen within the optimization cy-

cle, without disrupting the operations flow of the static case. Finally, an 
optimization problem can be defined in which the accuracy of the clus-

tering algorithm is computed using some well-known notion of distance

between time series [55, 56]. Observe that, in both cases, the struc-

ture of aquifer fingerprint would have the same aspect as in the static 
case. Lastly, it should be noticed that the more dimensions one wants 
to include in the model, the higher is the need in terms of number of 
samples.

Limitations. This approach can be used in a variety of situations, and 
should be considered as an aid to more classic fingerprint extraction 
methods. Its frequency-based nature frees it from pure statistical con-

siderations (e.g., we do not assume normality of our variables), but, 
because of this, it needs a higher amount of samples than classic statis-

tical approaches. Moreover, as it happens in our case, data are seldom 
balanced between classes; unbalanced data may lead to incorrect re-

sults, and re-balancing procedures have the ultimate effect of reducing 
the number of usable samples for training. Moreover, while temporal 
and spatial generalizations are possible, they do require a careful im-

plementation and design.

5. Implementation, results and test

Implementation and setting. Multi-objective evolutionary algorithms

are known to be particularly suitable to perform multi-objective op-

timization, as they search for multiple optimal solutions in parallel. 
In this experiment we have chosen the well-known NSGA-II (Non-

dominated Sorted Genetic Algorithm) [57] algorithm, which is avail-

able as open-source from the suite jMetal [58]. NGSA-II is an elitist 
Pareto-based multi-objective evolutionary algorithm that employs a 
strategy with a binary tournament selection and a rank-crowding better 
function, where the rank of an individual in a population is the non-

domination level of the individual in the whole population. We used the 
standard parameters in each experiment, and implemented elementary 
variants of mutation and crossover for them to be specific to our solu-

tion format. To cope with the intrinsic unbalancing of our data (over 
70% of the samples belong to 𝐴1), we operated a re-sampling, to obtain 
a training set with 10 samples per each aquifer (𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔), and left every 
other sample for test (𝐷𝑡𝑒𝑠𝑡). The test was performed by applying the ac-

curacy function(s) to 𝐷𝑡𝑒𝑠𝑡 using the centroid and the selected attributes 
extracted from the chosen solution. For each of the four different multi-

objective optimization models we have executed 10 runs, each with a 
different seed; the population side was 100 in each experiment, and we 
set each experiment for 100 generations each.

A multi-objective optimization problem gives rise to a Pareto front, 
that is, to a last population of (non-dominated) individuals from which 
one or more individuals can be selected via a decision-making process. 
An example of Pareto front in our case is shown in Fig. 7. As expected, 
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Fig. 6. Simple schematics of the proposed methodology.

Fig. 7. Example of Pareto front.

it is 3-dimensional, as we have optimized three objectives; recall that, 
intuitively, each element of the front is a solution which cannot be im-

proved by any of the objective without worsening at least one of the 
others (within the space of explored solutions of that particular run). 
The standard approach to decision making in a Pareto front is choos-

ing one objective among all of them, and selecting the solution with the 
best value on that objective; in our case that would be the accuracy. 
Unfortunately, this strategy gives rise to fingerprints with too many 
characteristics, which would be not only too difficult to interpret, but 
also prone to overfitting, and hardly representable in a graphical way. 
Therefore, we selected the most accurate solution with strictly less than 
six elements. Our complete strategy, depicted in Fig. 6, consists of: pre-

processing the original data set, dealing with null values (we have cho-

sen to eliminate every record with at least one value) and low-variance 
columns (in our data set all columns present sufficient variance), sepa-

rating it into training and test subsets (as explained before), performing 
the fingerprint extraction, selecting the best element(s) from the Pareto 
front(s), and returning it (them) for interpretation.

Characteristics-based fingerprinting. For this set of experiments we 
used 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐷𝑡𝑒𝑠𝑡 without any further transformation. We obtained 
four sets of results, displayed in Table 3. The column acc indicates the 
obtained accuracy in test, and the remaining columns show how this 
accuracy becomes when analyzed by class, that is, how accurate is our 
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Table 3. Results of the characteristics-based fingerprinting experiment. From top to bottom: 
model (10), (11), (12), and (13). Starred results are the best ones of each model.

recall

fingerprint acc. 𝐴1 𝐴2 𝐴3 𝐴4
model (10) 𝜂, (𝐻𝐶𝑂−

3 )
3, (𝑁𝐻+

4 )
2
, (𝐹𝑒)2 0.60 0.55 0.71 1.00 1.00

𝜂, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

2
, 𝐹𝑒 0.60 0.55 0.71 1.00 1.00

(𝜂)3, (𝐻𝐶𝑂−
3 )

2, (𝐹𝑒)3 0.60 0.55 0.71 0.90 1.00

(𝑇 )2, 𝜂, (𝐻𝐶𝑂−
3 )

3 0.55 0.49 0.81 0.90 0.75

𝜂, (𝐻𝐶𝑂−
3 )

2, (𝑁𝑎+)2, 𝑁𝐻+
4 0.54 0.47 0.81 1.00 1.00

(𝜂)3, 𝐻𝐶𝑂−
3 , 𝐹𝑒 0.60 0.55 0.71 0.90 1.00

(𝜂)3, (𝐻𝐶𝑂−
3 )

2, (𝐹𝑒)3 0.60 0.55 0.71 0.90 1.00

(𝑇 )2, 𝜂, 𝐻𝐶𝑂−
3 0.55 0.49 0.81 0.90 0.75

𝜂, (𝐻𝐶𝑂−
3 )

3, (𝑁𝑎+)3, (𝐹𝑒)3 0.54 0.47 0.71 1.00 1.00

∗ (𝜂)3, 𝐻𝐶𝑂−
3 , 𝐹𝑒 0.60 0.55 0.71 0.90 1.00

model (11) (𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

3
, (𝐹𝑒)2 0.66 0.55 0.71 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝐹𝑒)3, (𝐴𝑠)2 0.66 0.55 0.71 0.90 1.00

(𝜂)2, 𝐻𝐶𝑂−
3 , (𝑁𝐻+

4 )
2

0.64 0.53 0.81 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, 𝑁𝐻+
4 , (𝐹𝑒)2 0.66 0.55 0.71 1.00 1.00

𝜂, (𝐻𝐶𝑂−
3 )

2, (𝑁𝑎+)2, (𝑁𝐻+
4 )

3
, (𝐴𝑠)2 0.62 0.47 0.81 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, 𝑁𝐻+
4 , 𝐹𝑒 0.66 0.55 0.71 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

3
, (𝐹𝑒)2 0.66 0.55 0.71 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, 𝑁𝐻+
4 , (𝐹𝑒)3 0.66 0.55 0.71 1.00 1.00

∗ (𝜂)3, (𝐻𝐶𝑂−
3 )

2, 𝐹𝑒 0.66 0.55 0.71 0.90 1.00

𝜂, (𝐻𝐶𝑂−
3 )

2, (𝑁𝑎+)2, (𝑁𝐻+
4 )

2
, (𝐹𝑒)3 0.62 0.47 0.81 1.00 1.00

model (12) (𝜂)2,𝐻𝐶𝑂−
3 , (𝑁𝐻+

4 )
3

0.59 0.53 0.48 1.0 1.00

(𝜂)3, 𝐻𝐶𝑂−
3 , (𝐹𝑒)3 0.60 0.55 0.43 0.90 1.00

(𝜂)3, (𝐻𝐶𝑂−
3 )

3, (𝐹𝑒)3 0.60 0.55 0.43 0.90 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

2
, 𝐹𝑒 0.60 0.55 0.48 0.90 1.00

(𝑇 )2, (𝐻𝐶𝑂−
3 )

2, 𝑆𝑂2−
4 , 𝑁𝐻+

4 0.54 0.48 0.43 1.00 0.75

(𝜂)3, (𝐻𝐶𝑂−
3 )

3, (𝐹𝑒)3 0.60 0.55 0.43 0.90 1.00

(𝜂)3, (𝐻𝐶𝑂−
3 )

3, (𝐹𝑒)3 0.60 0.55 0.43 0.90 1.00

(𝑇 )2, 𝜂, (𝐻𝐶𝑂−
3 )

2 0.55 0.49 0.43 1.00 0.75

∗ (𝜂)3, 𝐻𝐶𝑂−
3 , (𝐹𝑒)3 0.60 0.55 0.43 0.90 1.00

(𝑇 )2, 𝜂, 𝐻𝐶𝑂−
3 0.55 0.49 0.43 1.00 0.75

model (13) (𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

3
, (𝐹𝑒)2 0.66 0.55 0.71 1.00 1.00

𝜂, 𝐻𝐶𝑂−
3 , 𝑁𝐻+

4 , 𝐹𝑒 0.64 0.54 0.81 0.90 1.00

∗ (𝜂)2, (𝐻𝐶𝑂−
3 )

2, 𝑁𝐻+
4 0.64 0.53 0.81 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

2
, 𝑁𝐻+

4 , (𝐴𝑠)2 0.66 0.55 0.71 1.00 1.00

𝜂, (𝐻𝐶𝑂−
3 )

2, (𝑁𝑎+)2, (𝑁𝐻+
4 )

3
, (𝐴𝑠)2 0.62 0.47 0.81 1.00 1.00

𝜂, (𝐻𝐶𝑂−
3 )

2, (𝑁𝑎+)2, (𝑁𝐻+
4 )

3
0.62 0.47 0.81 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

2, (𝑁𝐻+
4 )

2
0.64 0.53 0.81 1.00 1.00

𝜂, (𝐻𝐶𝑂−
3 )

2, 𝑁𝑎+, (𝑁𝐻+
4 )

2
, (𝐹𝑒)2, (𝐴𝑠)3 0.62 0.47 0.81 1.00 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, (𝑁𝐻+
4 )

2
, (𝐹𝑒)3 0.66 0.55 0.71 1.00 1.00

𝜂, (𝐻𝐶𝑂−
3 )

2, (𝑁𝑎+)2, 𝑁𝐻+
4 , (𝐹𝑒)2 0.62 0.47 0.81 1.00 1.00
model in identifying each of the four aquifers. As it can be observed, the 
general accuracy ranges from 0.54 to 0.66, which can be considered rel-

atively high. By looking as the single class results, as it turns out, the 
aquifers 𝐴3 and 𝐴4 are identified with accuracies from 0.9 to 1, and 
aquifer 𝐴2 is correctly identified with a rate from 0.71 to 0.81. Aquifer 
𝐴1 seems to be the most difficult one. For each model, we identified the 
simplest most accurate solution whose result can be displayed, looking at 
the highest accuracies within fingerprints with less than four columns, 
and with a preference for lower exponents - these are indicated by a ∗
in Table 3. In Fig. 8, such solutions are displayed in a graphical way, 
where their distinguishing power becomes evident. These results can 
be explained as follows. The 𝐶𝑎2+ and 𝐻𝐶𝑂−

3 levels are controlled by 
the interaction between rock and water, and related to the dissolution 
of carbonate and to the degradation of organic matter [59]. Hydrogen 
carbonate, in particular, is the dissolved inorganic carbon in fresh wa-

ters, which derives from the dissolution of calcite and dolomite, and its 
levels, therefore, implicitly express the concentrations of calcium and 
magnesium derived from these two minerals. Moreover, calcium and 
magnesium, together, define the level of hardness (𝜂) of the water. Fi-

nally, iron and manganese, among others, are widely found in soils and 
aquifers, and have similar geochemical behavior. The reducing condi-

tions, residence time, well depth, and salinity are the key factors leading 
the dissolution and migration of 𝐹𝑒 and 𝑀𝑛 to groundwater [60]. This 
9

may explain our findings, that seem to indicate the 𝐻𝐶𝑂−
3 , 𝐹𝑒, and 𝜂, 

allow one to distinguish between the aquifers of the group under anal-

ysis.

Ratios-based fingerprinting. The fingerprinting problem can be also 
approached by looking into subsets of ratios among characteristics, in-

stead of subsets of characteristics. In other words, instead of looking 
for the geochemical fingerprint of each aquifer among combinations of 
the chemicals indicators, we search it among combinations of ratios of 
affine elements and quantities. This entails pre-processing the data set 
to compute such ratios, and then applying the same optimization mod-

els. The reason behind this approach lies in the fact that combinations 
of ratios of affine elements can sometimes better identify the geochem-

ical signatures of an aquifer, as they tend to be preserved during the 
dilution contribution of meteoric waters of reborn. In Table 4 we show 
the ten executions with the four models. As it can be seen, some of 
the proposed solutions present very high accuracies; general accuracy 
now ranges from 0.79 to 0.91, and aquifer 𝐴1 is now correctly identi-

fied with accuracies from 0.75 to 0.91. For those fingerprints with three 
elements or less, their ability of discernment can be also shown graph-

ically (see Fig. 9); thus, we show the simplest most accurate solution 
for each model in this case as well. As we can see, using ratios in-

creases in a sensible way the accuracy of our characterization; the ratios 
that emerged as those with better discernment ability can be explained 
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Fig. 8. Graphical representation of the starred solutions from Table 3. Figure (𝑎): 𝜂3 ⋅108, 𝐻𝐶𝑂−
3 , 𝐹𝑒. Figure (𝑏): 𝜂3 ⋅108, 𝐻𝐶𝑂−

3
2 ⋅105, 𝐹𝑒. Figure (𝑐): 𝜂3 ⋅108, 𝐻𝐶𝑂−

3 , 𝐹𝑒3 . 
Figure (𝑑): 𝜂2 ⋅ 105, 𝐻𝐶𝑂−

3
2 ⋅ 105, 𝑁𝐻+

4 .

Fig. 9. Graphical representation of the starred solutions from Table 4. Figure (𝑎): (𝐸.𝐶.∕𝐶𝑎2+)3 ⋅ 105, (𝐸.𝐶.∕𝐶𝑙−)3 ⋅ 104 . Figure (𝑏): (𝐸.𝐶.∕𝐶𝑎2+), (𝐸.𝐶.∕𝐶𝑙−). Figure (𝑐): 
(𝜂∕𝐶𝑙−), (𝐸.𝐶.∕𝐶𝑙−). Figure (𝑑): (𝐸.𝐶.∕𝐶𝑎2+), (𝐸.𝐶.∕𝐶𝑙−).
as follows. First, electrical conductivity has been used to characterize 
groundwater by several authors [61, 62], the presence of inorganic sus-
10
pended solids such as chloride, nitrate, phosphate, and sulfate ions (ions 
that carry a negative charge), or aluminum, calcium, magnesium, iron, 
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Table 4. Results of the ratios-based fingerprinting experiment. From top to bottom: model (10), (11),

(12), and (13). Starred results are the best ones of each model.

recall

fingerprint acc. 𝐴1 𝐴2 𝐴3 𝐴4
model (10) 𝐸.𝐶./𝐶𝑙−, 𝐻𝐶𝑂−

3 /𝐶𝑎2+ 0.84 0.90 0.52 0.50 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, (𝜂∕𝐶𝑙−)2, (𝑁𝑎+∕𝑇 )2, (𝐻𝐶𝑂−
3 ∕𝐶𝑎2+)2 0.86 0.90 0.52 0.80 1.00

∗ (𝐸.𝐶.∕𝐶𝑙−)3, (𝐻𝐶𝑂−
3 ∕𝑁𝑎+)3, (𝐸.𝐶.∕𝐶𝑎2+)3 0.85 0.90 0.48 0.80 1.00

(𝜂∕𝐶𝑙−)3, 𝐻𝐶𝑂−
3 /𝐶𝑎2+ 0.79 0.81 0.62 0.90 1.00

𝐸.𝐶./𝐶𝑙−, 𝜂/𝐶𝑙−, (𝜂∕𝑇 )3 0.85 0.91 0.43 0.80 1.00

(𝐶𝑙−∕𝑁𝑎+)2, 𝐸.𝐶./𝐶𝑙−, 𝑁𝑎+/𝑇 , (𝐻𝐶𝑂−
3 ∕𝜂)

2 0.83 0.90 0.43 0.50 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, (𝐻𝐶𝑂−
3 ∕𝑇 )

2 0.79 0.79 0.67 0.90 1.00

(𝐸.𝐶.∕𝐶𝑙−)2, (𝜂∕𝐶𝑙−)2 0.85 0.90 0.48 0.80 1.00

(𝐸.𝐶.∕𝐶𝑙−)2, 𝐶𝑎2+/𝐾+, (𝐸.𝐶.∕𝐶𝑎2+)2 0.75 0.82 0.24 0.70 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, (𝐻𝐶𝑂−
3 ∕𝑇 )

3, (𝜂∕𝑇 )3 0.84 0.86 0.62 0.90 1.00

model (11) 𝜂/𝐶𝑙−, (𝜂∕𝑁𝑎+)3 0.90 0.82 0.43 0.80 1.00

(𝑁𝐻+
4 )

2
, (𝐸.𝐶.∕𝐶𝑙−)3, (𝜂∕𝐶𝑙−)3 0.91 0.90 0.48 0.70 1.00

(𝜂∕𝐶𝑙−)2, 𝐸.𝐶./𝐶𝑎2+ 0.88 0.75 0.57 0.90 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, (𝜂∕𝐶𝑙−)3, 𝑁𝑎+/𝑇 0.87 0.90 0.43 0.80 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, (𝜂∕𝐶𝑙−)2,(𝜂∕𝑁𝑎+)3 0.91 0.90 0.48 0.80 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, 𝑁𝑎+/𝑇 , 𝜂/𝑇 0.89 0.76 0.67 1.00 1.00

(𝐸.𝐶.∕𝐶𝑙−)2, (𝐻𝐶𝑂−
3 ∕𝜂)

3, (𝐻𝐶𝑂−
3 ∕𝑇 )

3 0.86 0.79 0.67 0.90 1.00

𝐶𝑙−/𝑁𝑎+, 𝐸.𝐶./𝐶𝑙−, 𝑁𝑎+/𝑇 0.91 0.90 0.43 0.50 1.00

𝐸.𝐶./𝐶𝑙−, 𝜂/𝐶𝑙−, (𝜂∕𝑇 )3 0.90 0.91 0.43 0.80 1.00

∗ 𝐸.𝐶./𝐶𝑙−, 𝐸.𝐶./𝐶𝑎2+ 0.91 0.90 0.48 0.60 1.00

model (12) (𝐶𝑙−∕𝑁𝑎+)2, (𝐸.𝐶.∕𝐶𝑙−)2, (𝜂∕𝐶𝑙−)2 0.85 0.90 0.48 0.80 1.00

∗ 𝐸.𝐶./𝐶𝑙−, (𝜂∕𝐶𝑙−)2 0.85 0.90 0.48 0.80 1.00

𝑁𝐻+
4 , 𝐸.𝐶./𝐶𝑙−, 𝜂/𝑇 0.83 0.90 0.38 0.50 1.00

(𝑁𝐻+
4 )

3
, (𝜂∕𝐶𝑙−)2, (𝐻𝐶𝑂−

3 ∕𝐶𝑎2+)2, 𝐸.𝐶./𝜂 0.81 0.83 0.67 0.80 1.00

𝑇 , (𝜂∕𝐶𝑙−)2, 𝐻𝐶𝑂−
3 /𝐶𝑎2+ 0.79 0.80 0.62 0.90 1.00

𝜂/𝐶𝑙−, 𝐻𝐶𝑂−
3 /𝐶𝑎2+ 0.79 0.81 0.62 0.90 1.00

𝐴𝑠, 𝐸.𝐶./𝐶𝑙−, 𝐸.𝐶./𝑁𝑎+ 0.84 0.91 0.48 0.50 1.00

(𝐸.𝐶.∕𝐶𝑙−)2, (𝑁𝑎+∕𝑇 )2 0.83 0.90 0.43 0.50 1.00

𝜂/𝐶𝑙−, 𝐸.𝐶./𝐶𝑎2+ 0.75 0.75 0.57 0.90 1.00

𝜂/𝐶𝑙−, 𝐻𝐶𝑂−
3 /𝑇 0.66 0.60 0.81 1.00 1.00

model (13) (𝐸.𝐶.∕𝐶𝑙−)2, (𝐸.𝐶.∕𝐶𝑎2+)2 0.90 0.90 0.48 0.60 1.00

𝐸.𝐶./𝐶𝑙−, 𝜂/𝐶𝑙−, 𝐻𝐶𝑂−
3 /𝑁𝑎+ 0.91 0.90 0.48 0.80 1.00

(𝑁𝐻+
4 )

2
, (𝜂∕𝐶𝑙−)3, (𝐻𝐶𝑂−

3 ∕𝐶𝑎2+)3, (𝐸.𝐶.∕𝐻𝐶𝑂−
3 )

3 0.88 0.82 0.67 0.80 1.00

(𝜂∕𝐶𝑙−)3, (𝐻𝐶𝑂−
3 ∕𝐶𝑎2+)2, (𝑇 ∕𝐾+)2 0.87 0.81 0.62 1.00 1.00

𝐸.𝐶./𝐶𝑙−, 𝜂/𝐶𝑙− 0.91 0.90 0.48 0.80 1.00

(𝐸.𝐶.∕𝐶𝑙−)3, (𝜂∕𝐶𝑙−)2 0.91 0.90 0.48 0.80 1.00

(𝜂)2, (𝐻𝐶𝑂−
3 )

3, 𝜂/𝐶𝑙−, (𝐻𝐶𝑂−
3 ∕𝐶𝑎2+)3 0.89 0.88 0.57 0.90 1.00

𝜂/𝐶𝑙−, (𝐻𝐶𝑂−
3 ∕𝐶𝑎2+)3, 𝜂/𝑇 0.86 0.78 0.62 0.90 1.00

𝐸.𝐶./𝐶𝑙−, (𝜂∕𝐶𝑙−)2, 𝜂/𝑇 0.91 0.91 0.43 0.80 1.00

∗ 𝐸.𝐶./𝐶𝑙−, 𝐸.𝐶./𝐶𝑎2+ 0.90 0.90 0.48 0.60 1.00
and sodium ions (ions that carry a positive charge) may affect elec-

trical conductivity. Electrical conductivity values may reflect both the 
recharge dynamics and the possible excessive pumping of wells. Sec-

ond, the concentration ratios between alkaline earth elements could be 
correlated to water-sediment interaction times, and the contribution of 
fossil water content trapped in deep sediments [63]. In conclusions, the 
fingerprints that emerge from our analysis seem to indicate that the 
different aquifers can be distinguished from these elements: freshwa-

ter/fossil water mixing and saltwater contamination.

Choosing fingerprints. After our analysis of the results, it seems clear 
that the following pair of ratios:

𝐸.𝐶.∕𝐶𝑙−,𝐸.𝐶.∕𝐶𝑎2+

is able to distinguish with the most accuracy the four aquifers. By read-

ing the linear boundaries between values, one obtains that each aquifer 
is characterized by the following intervals:

𝐴1 ∶ under 𝐸.𝐶.∕𝐶𝑎2+ = −0.272 ⋅𝐸.𝐶.∕𝐶𝑙− + 14.251
𝐴2 ∶ between 𝐸.𝐶.∕𝐶𝑎2+ = 0.16 ⋅𝐸.𝐶.∕𝐶𝑙− + 7.267 and

𝐸.𝐶.∕𝐶𝑎2+ = 0.1748 ⋅𝐸.𝐶.∕𝐶𝑙− + 15.475
𝐴3 ∶ between 𝐸.𝐶.∕𝐶𝑎2+ = 0.161 ⋅𝐸.𝐶.∕𝐶𝑙− + 0.049 and

𝐸.𝐶.∕𝐶𝑎2+ = 0.16 ⋅𝐸.𝐶.∕𝐶𝑙− + 7.267
𝐴4 ∶ under 𝐸.𝐶.∕𝐶𝑎2+ = 0.161 ⋅𝐸.𝐶.∕𝐶𝑙− + 0.049
11
Comparison with classical statistical methods. Principal component 
analysis followed by clustering is the most classical approach to prob-

lems similar to the one we have considered here [23, 24, 25, 26]. How-

ever, in the classical setting, the geological group from which samples 
are taken is now completely known, or must be confirmed. Clustering, 
that is, finding the number of clusters, their centroids, and associating 
every sample to its centroid, is a typical approach when aquifers must 
be identified or confirmed; principal component analysis is applied as 
a preliminary step to reduce the number of variables to be taken into 
account. So, in the classical setting, the number of clusters must be 
guessed, as well as their centroids. To compare our results with those 
that can be obtained with existing approaches, then, we apply prin-

cipal components analysis only: since our geological group is known, 
their centroids are also known, and only fingerprints remain to be dis-

covered. Principal component analysis (or PCA [64, 65]) is a technique 
for reducing the dimensionality of a data set, increasing interpretability 
but at the same time minimizing information loss. It does so by creating 
new uncorrelated variables that successively maximize variance. Find-

ing such new variables, the principal components, reduces to solving an 
eigenvalue/eigenvector problem, and the new variables are defined by 
the data set. PCA has been successfully used in pure fingerprinting in 
the recent literature [66, 67]. Although it does not explicitly assume 
Gaussian distribution of the variables, PCA is only concerned with vari-
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Fig. 10. Graph of the first two principal components of the PCA over the original data set. Left-hand side: characteristics-based PCA. Right-hand side: ratios-based 
PCA.
ance; non-normal distributions (such as those shown in our data) have 
higher order statistic beyond variance which are not taken into account 
in this analysis, leading to the conclusion that applying such classical 
tool may return possibly unreliable results. Moreover, as a purely sta-

tistical approach, it does not always offer the elasticity required to test 
the performance of a solution; in other words, there are no systematic 
methods to reduce the elements in a principal component, or taking 
into account non-linear underlying processes. We have applied the al-

gorithm for PCA available in the well-known learning suite R [68] to the 
entire data set 𝐷 of characteristics; Fig. 10 (left-hand side) represents 
the loads and standardized scores of the first two principal components, 
resulting into a two-dimensional projection of the initial axes of the 
variables and the (standardized) scores of the individuals in the data. If 
we choose as fingerprint the union of the first two component, which 
explain the 93% of the variance in our the data, we obtain the following 
signature:

𝐸.𝐶., 𝜂,𝐶𝑙−, 𝐶𝑎2+,𝑀𝑔2+,𝑁𝑎+,

which has a simple accuracy of 0.45. As it can be observed, our method 
gives us a much better result (from 0.54 to 0.66). If we focus on the re-

call of the fingerprint produced by the PCA, we find that it is 0.38, 0.76, 
0.00, and 0.75, respectively, for 𝐴1, 𝐴2, 𝐴3 and 𝐴4, which are generally 
worse than the values obtained by our fingerprints. For completeness of 
exposition, it should also be pointed out that the PCA was computed on 
the entire data set; in machine learning terms, this means that the ob-

tained value is to be considered full training mode, while the values in 
Table 3 are in training+test mode. Usually, full training results are bet-

ter in terms of absolute accuracy, but less generalizable (that is, they 
tend to overfit). In other words, our fingerprints are more accurate, and 
more reliable solutions. PCA applied to the data set with the ratios re-

sulted as in Fig. 10 (right-hand side); applying similar criteria as in the 
previous case gives us the following fingerprint:

𝐸.𝐶.,𝐶𝑙−∕𝑆𝑂2−
4 ,𝐻𝐶𝑂−

3 ∕𝑆𝑂
2−
4 ,𝐸.𝐶.∕𝑆𝑂2−

4 , 𝜂∕𝑆𝑂2−
4 , 𝐹 𝑒∕𝐴𝑠,

which has a simple accuracy, again in full training mode, of 0.67. Again, 
the accuracies obtained in test mode by our model are sensibly higher, 
and the recall values, which are, respectively, 0.53, 0.48, 0.70, and 
0.25, follow a similar pattern.
12
6. Conclusions

In this paper we have considered the results of the geochemical anal-

ysis of groundwater samples from 57 water wells located in the province 
of Ferrara, all belonging to the same geological group, called group 
𝐴. The hydro-stratigraphic units of interest, which form this group, 
are in turn formed from one or more depositional sequences charac-

terized by cyclic alternations of fine and coarse deposits. Within each 
sequence, there are deposits composed by different lithologies, corre-

sponding to various systems and depositional environments, and at the 
base of each sequence is a very constant level to low permeability that 
acts as acquiclude, identified between the different units. We considered 
the problem of identifying the geochemical fingerprint of each aquifer 
of this group, so that those wells that extract water from the same group 
but from an unknown aquifer can be safely assigned one, without mak-

ing decisions based on the depth of the well itself. We proved that our 
method, based on an artificial intelligence technique which we called 
feature selection for centroid identification, returns fingerprints with a 
high level of accuracy, sensibly higher than the one that can be ob-

tained with purely statistical algorithms. Also, as expected, fingerprints 
that have been obtained using simple characteristics are less precise 
than those obtained using ratios among elements, as the latter can bet-

ter identify the geochemical signature of an aquifer, being related to the 
geochemical signature of the aquifer rocks.
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