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Abstract: Air quality modelling that relates meteorological, car traffic, and pollution data is a1

fundamental problem, approached in several different ways in the recent literature. In particular,2

a set of such data sampled at a specific location and during a specific period of time can be seen as3

a multivariate time series, and modelling the values of the pollutant concentrations can be seen as4

a multivariate temporal regression problem. In this paper we propose a new method for symbolic5

multivariate temporal regression, and we apply it to several data sets that contain real air quality6

data from the city of Wrocław (Poland). Our experiments show that our approach is superior to7

classical, especially symbolic, ones, both in statistical performances and interpretability of the8

results.9

Keywords: temporal regression; symbolic regression; air quality modelling10

1. Introduction11

Anthropogenic environmental pollution is a known and indisputable issue. In12

everyday life, we are exposed to a variety of harmful substances, often absorbed by the13

lungs and the body through the air we breath; among the most common pollutants,14

NO2, NOx, and PM10 are the most typical ones in averaged-sized and big cities. The15

potential negative effects of such an exposure has been deeply studied and confirmed16

by several authors (see, among others, [1–6]). The quality of the air quality is regularly17

monitored, and in some cases alert systems inform residents about the forecasted concen-18

tration of air pollutants. Such systems may be based on machine learning technologies,19

effectively reducing the forecasting problem to an algorithmic one. Air quality data,20

along with the most well-known influencing factors are usually monitored in a periodic21

way; the set of measurements in a given amount of time and at a given geographical22

point can be then regarded to as a time series. In this sense, the problem to be solved is a23

regression problem, and, more in particular, a multivariate temporal regression problem.24

A multivariate temporal regression problem can be solved in several ways. Follow-25

ing the classic taxonomy in machine learning, regression can be functional or symbolic;26

functional regression is a set of techniques and algorithms that allow one to extract a27

mathematical function that describes a phenomenon, while symbolic regression is devoted28

to inferencing a logical theory. Functional regression, which is far more popular and29

common, can be as simple as a linear regression, or as complex as a neural network. On30

the other hand, typical symbolic approaches include decision trees, random forests, and31

rule-based regressors. Temporal regression generalizes regression by taking into account32

past values of the independent variable to predict the current value of the dependent33

one, and it has been successfully used in many contexts, including air quality prediction.34
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Examples include autoregressive models [7,8], land use regression models [9–11], and opti-35

mized lag regression models [12]. While, in general, functional regression systems tend to36

perform statistically well, their models tend to lack in interpretability, defined not only as37

the possibility of understanding the process that is behind a prediction, but also explaining38

it. Attempts of amending this problem include optimizing the amount of lag per each39

independent variable have been done, for example, in [12]; by pinpointing exactly the40

amount of delay after which an independent variable has its maximal effect on the41

dependent one, it is possible to derive more reliable physical theories to explain the42

underlying phenomenon. However, the resulting model is still functional, and therefore43

not completely explicit. Symbolic regression is less common, and, at least in problems of44

air quality prediction, usually limited to non-interpretable symbolic systems, such as45

random forests [13]. There are two typical, explicit approaches to symbolic regression,46

that is, decision trees and rule-based regression systems. Decision trees are part of47

the more general set of techniques often referred to as classification and regression trees,48

originally introduced in [14], but then improved by several authors and implemented in49

different versions and learning suites. Rule-based regression is an alternative to decision50

tree regression based on the possibility of extracting independent rules instead of a tree,51

and it has been introduced in [15], but, as in the case of trees, improved and extended52

in different ways later on. In [16] a prototype interval temporal symbolic classification tree53

extraction algorithm, called Temporal J48, has been presented. While originally designed54

for temporal classification (i.e., classification of time series), as shown in [17] it can be55

used for temporal regression. In this formulation, Temporal J48 features, on its own,56

many of the relevant characteristics for modern prediction systems, for example for57

air quality modelling: it is symbolic, therefore its predictions are interpretable and ex-58

plainable, and it allows the use of past values of the independent variables, therefore59

it is comparable with lag regression systems. Interval temporal regression is based on60

interval temporal logic, and, in particular, on Halpern and Shoham’s modal logic for time61

intervals [18]. In short, the extracted model is based on decisions taken on the past62

values of the independent variables over intervals of time, and their temporal relations;63

for example, Temporal J48 may infer that if the amount of traffic in a certain interval of64

time is, in average, very high, while there are no gusts of wind during the same interval, then at65

the end of that interval the concentration of NO2 is high. The interaction between intervals66

are modeled via the so-called Allen’s relations, which are, in a linear understanding of67

time, thirteen [19]. The driving idea of Temporal J48 is no different from the classical68

regression tree extraction, that is, Temporal J48 is a greedy, variance-based extraction69

algorithm (it is, in fact, adapted from the WEKA’s implementation of J48 [20]). As a70

consequence, at each learning step a local optimum is searched to perform a split of the71

data set, leading, in general, to a not-necessarily-optimal trees. This problem exists in72

the non-temporal case, and not only in decision/regression trees. In a typical situation,73

greedy, locally optimal algorithms can be used in the context of feature selection, which is74

a meta-strategy that explores different selections of the independent variables and how75

such a selection influences the performances of the model. With Temporal J48, we can76

generalize such a concept to language and feature selection, that is, the process of selecting77

the best features and the best interval relations for temporal regression. As it turns out,78

the techniques for feature selection can be applied to solve the feature and language79

selection problem.80

In this paper, we consider a data set with traffic volume values, meteorological81

values, and pollution values measured at a specific, highly trafficked street crossing in82

Wrocław (Poland), from 2015 to 2017. Namely, we consider the problem of modeling the83

concentration of NO2 (nitrogen oxide) in the air, and define it as a temporal regression84

problem; by applying Temporal J48 to this problem, we approach and solve, more in85

general, a feature and language selection problem for symbolic temporal regression. To86

establish the reliability of our approach, we set an experiment with different subsets of87

the original data set, and we compare the results of temporal symbolic regression with88
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those that can be obtained with other symbolic regression algorithms, such as (lagged or89

non-lagged versions of) regression trees and linear regressors, under the same conditions.90

As we find out, temporal symbolic regression not only returns interpretable models that91

enables the user to know why a certain prediction has been performed, but, at least in92

this case, the extracted models present statistically better and more reliable results. In93

summary, we aim at solving the problem of air quality modelling by defining it as a94

temporal regression problem and we benchmark our proposed methodology based on95

temporal decision trees against methods that are present in the literature that may or96

may not consider the temporal component in an explicit way; the symbolic nature of the97

proposal allows to naturally interpret the underlying temporal theory that resembles the98

data by means of Halpern and Shoham’s logic. In this way, we hope to amend some of99

the well-known problems of prediction methods, including the post-hoc interpretability100

of the results.101

The paper is organized as follows. In Section 2 we highlight the needed background102

on function and symbolic temporal regression problem, along with the feature selection103

process for regression tasks. In Section 3 we propose to solve the symbolic temporal104

regression problem by means of temporal decision trees. In Section 4 we formalize the105

feature and language selection learning process by means of multi-objective evolutionary106

optimization algorithms. In Section 5 we present the data used in our experiments and107

the experimental settings. The experiments are discussed in Section 6, before concluding.108

2. Background109

2.1. Functional Temporal Regression110

Regression analysis is a method that allows us to predict a numerical outcome variable111

based on the value of one (univariate regression) or multiple (multivariate regression)112

predictor variables. The most basic approach to multivariate regression is a linear113

regression algorithm, typically based on a least squares method. Linear regression114

assumes that the underlying phenomenon can be approximated with a straight line (or115

a hyperplane, in the multivariate case). But in the general case, a functional regression116

algorithm searches for a generic function to approximate the values of the dependent117

variable. Assume that A is a data set with n independent variables A1, . . . , An and one118

observed variable B, where Dom(A) (resp., Dom(B)) is the set in which an independent119

variable (or attribute) A (resp., the dependent variable B) takes value, and dom(A) (resp.,120

dom(B)) is the set of its actual values of A (resp., B):121 
a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2
. . . . . . . . . . . . . . .

am,1 am,2 . . . am,n bm

 (1)

Then, solving a functional regression problem consists of finding a function F so that the122

equation:123

B = F(A1, A2, . . . , An), (2)

is satisfied. When we are dealing with a multivariate time series, composed by n124

independent and one dependent time series, then data are temporally ordered and125

associated to a timestamp:126 
a1,1 a1,2 . . . a1,n b1 t1
a2,1 a2,2 . . . a2,n b2 t2
. . . . . . . . . . . . . . . . . .

am,1 am,2 . . . am,n bm tm

 (3)

and solving a temporal functional regression problem consists of finding a function F so127

that the equation:128
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B(t) = F(A1(t), A2(t), . . . , An(t)) (4)

is satisfied for every t. Temporal regression is different from non-temporal one when,129

in identifying the function F, one takes into account the past values of the independent130

variables as well. Having fixed a maximum lag l, the equation becomes:131

B(t) = F(A1(t), A1(t− 1), . . . , A1(t− l + 1), . . . , An(t), An(t− 1), . . . , An(t− l + 1))
(5)

The literature on functional regression is very wide. Methods range from linear regres-132

sion, to polynomial regression, to generic non-linear regression, and include variants133

of the least square method(s), such as robust regression [21,22]. Autoregressive models,134

typically of the ARIMAX [23] family are methods that include, implicitly, the use of past135

values of the independent variables, and, in the most general case, of the dependent one136

as well (therefore modifying equation (5) to include B(t− 1), B(t− 2), . . . , B(t− l + 1)137

as well—as a matter of fact, the simplest autoregressive models are based on the past138

values of the dependent variable only).139

The machine learning counterpart approach to temporal functional regression, and,140

in fact, to temporal regression as a whole, consists of using non-temporal regression141

algorithm fed with new variables, that is, lagged variables, that corresponds to the past142

values of the variables of the problem. In other words, the typical strategy consists of143

producing a lagged data set from the original one:144


al,1 al−1,1 al−2,1 . . . al,n al−1,n al−2,n . . . bl tl

al+1,1 al,1 al−1,1 . . . al+1,n al,n al−1,n . . . bl+1 tl+1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am,1 am−1,1 am−2,1 . . . am,n am−1,n am−2,n . . . bm tm

 (6)

Such a strategy has the advantage of being applicable to every regression algorithm,145

up to and including the classic functional regression algorithm but, also, symbolic146

algorithms for regression. Linear regression is undoubtedly the most popular regression147

strategy, implemented in nearly every learning suite; in the case of WEKA [20], the class148

is called LinearRegression, and it can be used with lagged and non-lagged data.149

2.2. Symbolic Temporal Regression150

Classification and Regression Trees (CART) is a term introduced in [14] to refer to151

decision tree algorithms that can be used for both classification and regression. A regres-152

sion tree is a symbolic construct that resembles a decision tree (usually employed for153

classification), based on the concept of data splitting and on the following language of154

propositional letters (decisions):155

S = {A ./ a | A is an attribute and a ∈ dom(A)} (7)

where ./∈ {≤,=} and dom(A) is the domain of the attribute A. A regression tree τ is156

obtained by the following grammar:157

τ ::= (S ∧ τ) ∨ (¬S ∧ τ) | b̂ (8)

where S ∈ S and b̂ ∈ Dom(B) (however, b is not necessarily in dom(B)). Solving a158

regression problem with a regression tree entails finding a tree that induces a function F159

defined by cases:160
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F =


b̂1 if condition 1
b̂2 if condition 2
. . . . . .
b̂t if condition t

(9)

The conditions are propositional logical formulas written in the language of S , and,161

intuitively, such a function can be read as if the value of these attributes is . . . , then the162

value of the dependent variable is, in average, this one, . . . and so on. In other words, F163

is a staircase function. The main distinguishing characteristics of a staircase function164

obtained by a (classic) regression tree is that the conditions are not independent from165

each other, but they have parts in common, as they are extracted from a tree. So, for166

example, one may have a first condition of the type if A1 ≤ 5 and A2 ≤ 3, then B = 1,167

and a second condition of the type if A1 ≤ 5 and A2 > 3, then B = 3. If functional168

regression is mainly based on the least square method, the gold standard regression169

method with trees is splitting by variance, that consists in successively splitting the data set170

searching for smaller ones with lower variance in the observed values of the dependent171

variable; once the variance in a data set associated to a node is small enough, that node172

is converted into a leaf and the value of the dependent variable is approximated with173

the average value of the data set associated to it. Such an average value labels the leaf.174

Regression trees are not as common as decision trees in the literature; they are usually175

employed in ensemble methods such as random forest. However, popular learning suites176

do have simple implementations of regression trees. In the suite WEKA, the to-go177

implementation in this case is called RepTree. Despite its name, such an implementation178

is a variant of the more popular J48, which is, in fact, its counterpart for classification.179

Regression trees can be used on both atemporal and temporal data, by using, as in the180

functional case, lagged variables.181

2.3. Feature Selection for Regression182

Feature selection (FS) is a data preprocessing technique that consists of eliminating183

features from the data set that are irrelevant to the task to be performed [24]. Feature184

selection facilitates data understanding, reduces the storage requirements, and lowers185

the processing time, so that model learning becomes an easier process. Univariate feature186

selection methods are those that do not incorporate dependencies between attributes and187

they consist in applying some criterion to each pair feature-response, and measuring the188

individual power of a given feature with respect to the response independently from the189

other features, so that each feature can be ranked accordingly. In multivariate methods,190

on the other hand, the assessment is performed for subsets of features rather than single191

features. From the evaluation strategy point of view, FS can be implemented as single192

attribute evaluation (in both the univariate and the multivariate case), or as subset evaluation193

(only in the multivariate case). Feature selection algorithms are also categorized into194

filter, wrapper and embedded models. Filters are algorithms that perform the selection195

of features using an evaluation measure that classifies their ability to differentiate classes196

without making use of any machine learning algorithm. Wrapper methods select variables197

driven by the performances of an associated learning algorithm. Finally, embedded models198

perform the two operations (selecting variables and building a classifier) at the same199

time. There are several different approaches to feature selection in the literature; among200

them, evolutionary algorithms are very popular. The use of evolutionary algorithms for201

the selection of features in the design of automatic pattern classifiers was introduced202

in [25]. Since then, genetic algorithms have come to be considered as a powerful tool for203

feature selection [26], and have been proposed by numerous authors as a search strategy204

in filter, wrapper, and embedded models [27–29], as well as feature weighting algorithm205

and subset selection algorithms [30]. A review of evolutionary techniques for feature206

selection can be found in [31], and a very recent survey of multi-objective algorithms for207

data mining in general can be found in [32]. Wrapper methods for feature selection are208
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more common in the literature; often, they are implemented by defining the selection as a209

search problem, and solved using metaheuristics such as evolutionary computation (see,210

e.g., [26,30,33]). The first evolutionary approach involving multi-objective optimization211

for feature selection was proposed in [34]. A formulation of feature selection as a multi-212

objective optimization problem has been presented in [35]. In [36] a wrapper approach is213

proposed taking into account the misclassification rate of the classifier, the difference in214

error rate among classes, and the size of the subset using a multi-objective evolutionary215

algorithm. The wrapper approach proposed in [37] minimizes both the error rate and216

the size of a decision tree. Another wrapper method is proposed in [38] to maximize217

the cross-validation accuracy on the training set, maximize the classification accuracy218

on the testing set, and minimize the cardinality of feature subsets using support vector219

machines applied to protein fold recognition.220

A multi-objective optimization problem [39] can be formally defined as the optimization221

problem of simultaneously minimizing (or maximizing) a set of z arbitrary functions:222 
min / max f1(Ū)
min / max f2(Ū)
. . .
min / max fz(Ū),

(10)

where Ū is a vector of decision variables. A multi-objective optimization problem can223

be continuous, in which we look for real values, or combinatorial, in which we look224

for objects from a countably (in)finite set, typically integers, permutations, or graphs.225

Maximization and minimization problems can be reduced to each other, so that it is226

sufficient to consider one type only. A set F of solutions for a multi-objective problem227

is non dominated (or Pareto optimal) if and only if for each Ū ∈ F , there exists no V̄ ∈ F228

such that (i) there exists i (1 ≤ i ≤ z) that fi(V̄) improves fi(Ū), and (ii) for every j,229

(1 ≤ j ≤ z, j 6= i), f j(Ū) does not improve fi(V̄). In other words, a solution Ū dominates230

a solution V̄ if and only if Ū is better than V̄ in at least one objective, and it is not worse231

than V̄ in the remaining objectives. We say that Ū is non-dominated if and only if there232

is not other solution that dominates it. The set of non dominated solutions from F is233

called Pareto front. Optimization problems can be approached in several ways; among234

them, multi-objective evolutionary algorithms are a popular choice (see, e.g., [31,32,35]).235

Feature selection can be seen as a multi-objective optimization problem, in which the236

solution encodes the selected features, and the objective(s) are designed to evaluate237

the performances of some model-extraction algorithm; this may entail, for example,238

instantiating (10) as:239 {
max Per f ormance(Ū)
min Cardinality(Ū),

(11)

where Ū represents the chosen features; (11) can be seen as a type of wrapper. When240

the underlying problem is a regression problem, then (11) is a formulation of the feature241

selection problem for regression.242

3. Symbolic Temporal Regression243

Let A be a multivariate time series with n independent variables, each of m distinct244

points (from 1 to m), and no missing values; Fig. 1 (top) is an example with n = 2 and245

m = 8. Any such a time series can be interpreted as a temporal data set on its own, in the246

form of (3). In our example, this corresponds to interpreting the data as in Fig. 1 (middle,247

left). As explained in the previous section, the regression problem for B can be solved in248

a static way. Moreover, by suitably pre-processing A as in (6), the problem can be seen as249

a temporal regression problem; in our example, this corresponds to interpreting the data250

as in Fig. 1 (middle, right). The algorithm Temporal C4.5 and its implementation Temporal251

J48 [16,17] is a symbolic (classification and) regression tree that can be considered as an252
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alternative to classic solutions, whose models are interpretable, as they are based on253

decision trees, use lags (but not lagged variables), and are natively temporal. Briefly,254

Temporal C4.5 is the natural theoretical extension of C4.5 developed by Quinlan in the255

90s to the temporal case when dealing with more-than-propositional instances such as256

multivariate time series, and Temporal J48 is WEKA’s extension of J48 to the temporal257

case; observe that, such distinction must be made since implementation details may258

differ between public libraries, but the theory, in general, is the same.259

Our approach using Temporal J48 for regression is based on two steps: (i) a filter260

applied to the original data A, and (ii) a regression tree extraction from the filtered261

data, similar to the classic decision tree extraction problem. The first step consists of262

extracting from A a new data set, in which each instance is, in itself, a multivariate time263

series. Having fixed a maximum lag l, the i-th new instance (i ≥ 1) is the chunk of the264

multivariate time series A that contains, for each variable A1, . . . , An, the values at times265

from i to i + l − 1, for 1 ≤ i ≤ m− l + 1 (i.e., an l-points multivariate time series). Such266

a short time series, so-to-say, is labeled with the (i + l − 1)-th value of the dependent267

variable B. In this way, we have created a new data set with m− l + 1 instances, each of268

which is a time series. In our example, this is represented as in Fig. 1 (bottom), where269

l = 3. The second step consists of building a regression tree whose syntax is based on a270

set of decisions that generalizes the propositional decision of the standard regression271

tree. Observe that, time series describe continuous processes and, when discretized, it272

makes less sense to model the behavior of such complex objects at each point. Thus, the273

natural way to represent time series is an interval-based ontology and the novelty of274

the proposed methodology is to take decision over intervals of time. The relationships275

between intervals in a linear understanding of time are well-known; they are called276

Allen’s relations [19], and despite a somewhat cumbersome notation represent the natural277

language in a very intuitive way. In particular, Halpern and Shoham’s Modal Logic of278

Allen’s Relations (known as HS [18]) is the time interval generalization of propositional279

logic, and encompasses Allen’s relations in its language (see Tab. 1). Being a modal logic,280

formulas can be propositional or modal, the latter being, in turn, existential or universal.281

Let AP be a set of propositional letters (or atomic propositions). Formulas of HS can be282

obtained by the following grammar:283

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | 〈X2〉 | . . . | 〈Xk〉ϕ, (12)

where p ∈ AP and 〈X〉 is any of the modality corresponding to a Allen’s relation, and284

[X] denotes its universal version (e.g., ¬〈A〉ϕ ≡ [A]¬ϕ). On top of Allen’s relations, the285

operator 〈=〉 is added, to model decisions that are taken on the same interval. For each286

X ∈ {A, L, B, E, D, O}, the modality 〈X〉, corresponding to the inverse relation RX of RX ,287

is said to be the transpose of the modality 〈X〉, and vice versa. Intuitively, formulas of288

HS can express properties of a time series such as if there exists an interval in which A1 is289

high, during which A2 is low, then . . . , as an example of using existential operators, or as if290

during a certain interval A1 is always low, then . . . , as an example of using universal ones.291

Formally, HS formulas are interpreted on time series. We define:292

T = 〈I([l]), V〉,

where [l] = {1, . . . , l} is the domain of the time series, I([l]) is the set of all strict intervals293

over [l] having cardinality l(l − 1)/2, and:294

V : AP → 2I([l])

is a valuation function which assigns to each proposition p ∈ AP the set of intervals V(p)
on which p holds. Following the presentation, note that, we deliberately use l for the
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1 2 3 4 5 6 7 8
B
36
37
38
39
40
41
42

A2

90
95

100
105
110
115
120

A1

5
10
15
20
25
30
35

A1

B

A2

•
• •

•

•
• •

•
•

•
•

• •

•
•

•

•

•

• •

•

• •
•

A1 A2 B
10 110 36
15 90 36
25 90 38
30 100 40
30 105 40
20 110 39

. . . A1(t− 1) A2(t− 1) A1(t) A2(t) B(t)

. . . 10 105 10 110 36

. . . 10 110 5 100 36

. . . 5 100 5 110 38

. . . 5 110 15 115 40

. . . 15 115 20 115 40

. . . 20 115 25 105 39

A1(i; i + 1; i + 2) A2(i; i + 1; i + 2) B(i + 2)
5;10;10 110;105;110 36

10;10;15 105;110;90 36
25;5;5 95;100;110 38
5;5;15 100;110;115 40
5;15;20 110;115;115 40

15;20;25 115;115;105 39

Figure 1. A multivariate time series with three variables (top). Static regression (middle, left).
Static lagged regression (middle, right). Multivariate time series regression (bottom).

domain of T which is also the maximum fixed lag. The truth of formula ϕ on a given
interval [x, y] in a time series T is defined by structural induction on formulas as follows:

T, [x, y] 
 p iff [x, y] ∈ V(p), for all p ∈ AP ;
T, [x, y] 
 ¬ψ iff T, [x, y] 6
 ψ (i.e., it is not the case that T, [x, y] 
 ψ);
T, [x, y] 
 ψ1 ∨ ψ2 iff T, [x, y] 
 ψ1 or T, [x, y] 
 ψ2;
T, [x, y] 
 〈=〉ψ iff T, [x, y] 
 ψ;
T, [x, y] 
 〈X〉ψ iff there is [w, z] s.t. [x, y]RX [w, z] and T, [w, z] 
 ψ;
T, [x, y] 
 〈X〉ψ iff there is [w, z] s.t. [x, y]RX [w, z] and T, [w, z] 
 ψ;

where X ∈ {A, L, B, E, D, O}. It is important to point out, however, the we use logic as a
tool; through it, we describe the time series that predict a certain value, so that the expert
is able to understand the underlying phenomenon. The semantics of the relations RX
allow us to ease such an interpretation:

RA (meets) an interval that meets the current one;
RL (later than) an interval that is later than the current one;
RE (ends) an interval that ends the current one;
RB (starts) an interval that starts the current one;
RD (during) an interval that is during the current one;
RO (overlaps) an interval that overlaps the current one.

Thus, a formula of the type p ∧ 〈A〉q is interpreted as p holds now (in the current interval),295

and there is an interval that starts when the current one ends in which q holds.296

From the syntax, we can easily generalize the concept of decision, and define a set297

of temporal and atemporal decisions S = S� ∪ S=, where:298

S� = {〈X〉(A ./γ a), 〈X〉(A ./γ a) | A is an attribute and a ∈ dom(A)},
S= = {A ./γ a | A is an attribute and a ∈ dom(A)}, (13)
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HS modality Definition w.r.t. the interval structure Example
x y

w z
w z

w z
w z

w z
w z

〈A〉 (after) [x, y]RA[w, z] ⇔ y = w
〈L〉 (later) [x, y]RL[w, z] ⇔ y < w
〈B〉 (begins) [x, y]RB[w, z] ⇔ x = w ∧ z < y
〈E〉 (ends) [x, y]RE[w, z] ⇔ y = z ∧ x < w
〈D〉 (during) [x, y]RD[w, z] ⇔ x < w ∧ z < y
〈O〉 (overlaps) [x, y]RO[w, z] ⇔ x < w < y < z

Table 1: Allen’s relations and their logical notation.

where ./∈ {≤,=, 6=,>}, γ ∈ (0.0, 1.0] and 〈X〉 is an interval operator of the language299

of HS. The value γ allows us a certain degree of uncertainty: we interpret the decision300

A ./ a on an interval [x, y] with a certain value γ as true if and only if the ratio of points301

between x and y satisfying A ./ a is at least γ. A temporal regression tree is obtained by302

the following grammar:303

τ ::= (S ∧ τ) ∨ (¬S ∧ τ) | b̂, (14)

where S is a (temporal or atemporal) decision and b̂ ∈ Dom(B), in full analogy with304

non-temporal trees. The idea that drives the extraction of a regression tree is the same in305

the propositional and the temporal case, and it is based on the concept of splitting by306

variance. The result is a staircase function, with the additional characteristic that each307

leaf of the tree, which represents such a function, can be read as a formula of HS. So, if a308

propositional tree for regression gives rise to tree-rules of the type if A1 < 3 two units309

before now, and A2 > 5 one unit before now, then, in average, B = 3.2 when used on lagged310

data, Temporal J48 gives rise to rules of the type if mostly A1 < 3 during an interval before311

now, and mostly A2 > 5 in an interval during it, then, in average, B = 3.2. It should be clear,312

then, that Temporal J48 presents a superior expressive power that allows one to capture313

complex behaviours. It is natural to compare the statistical behaviour of regression trees314

over lagged data and that of Temporal J48 using the same temporal window.315

A temporal regression tree such as Temporal J48 is extracted from a temporal data316

set following the greedy approach of splitting by variance as in the propositional case.317

Being sub-optimal, worse local choice may, in general, produce better global ones. This318

is the idea behind feature selection: different subsets of attributes lead to different local319

choices, in search for global optima. In the case of temporal regression trees, however,320

the actual set of interval relations that are used for splitting behaves in a similar way:321

given a subset of all possible relations, a greedy algorithm for temporal regression322

trees extraction may perform worse local choices that may lead to better global results.323

Therefore we can define a generalization of (11):324 {
max Per f ormance(Ū, V̄)
min Cardinality(Ū),

(15)

in which Ū represents a selection of features and V̄ represents a selection of interval325

relations to be used during the extraction. This is a multi-objective optimization problem326

that generalizes the feature selection problem and we can call feature and language selection327

problem. Observe that there is, in general, an interaction between the two choices:328

different subsets of features may require different subsets of relations for a regression329

tree to perform well. The number of interval relations that are actually chosen, however,330

does not affect the interpretability of the result, and therefore it is not optimized (in the331

other objective function).332

4. Multi-objective evolutionary optimization333

In the previous section we defined the feature and selection problem as an optimiza-334

tion problem. We choose to approach such optimization problem via an evolutionary335
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algorithm, and, in particular, using the well-known algorithm NSGA-II [40], which is336

available in open source from the suite jMetal [41]. NGSA-II is an elitist Pareto-based337

multi-objective evolutionary algorithm that employs a strategy with a binary tourna-338

ment selection and a rank-crowding better function, where the rank of an individual339

in a population is the non-domination level of the individual in the whole population.340

As regression algorithm, we used the class TemporalJ48, integrated in the open source341

learning suite WEKA, run in full training mode, with the following parameters: l = 10,342

γ = 0.7. We use a fixed-length representation, where each individual solution consists343

of a bit set. In simple feature selection each individual is of the type:344

Ū = (U1, U2, . . . , Un), (16)

where, for each 1 ≤ t ≤ n, Ut = 1 (resp., Ut = 0) is interpreted as the t-th attribute being345

selected (resp., discarded), while in feature and language selection it becomes of the346

type:347

Ū, V̄ = (U1, U2, . . . , Un, V1, V2, . . . , V13). (17)

where, for each 1 ≤ t ≤ 13, Vt = 1 (resp., Vt = 0) is interpreted as the t-th interval348

relation being selected (resp., discarded). The structure of the second part, obviously,349

depends on the fact that there are 13 Allen’s relations (including equality) between any350

two intervals, as we have recalled above; there is no natural ordering of interval relations,351

and we can simply assume that a total ordering has been fixed.352

In terms of objectives, minimizing the cardinality of the individuals is straightfor-353

ward, and we do so by using the function Card(Ū) defined as:354

Card(Ū) =
n

∑
t=1

Ū(t). (18)

As much as optimizing the performances of the learning algorithm, we define:355

Corr(Ū, V̄) = 1− |ρ(Ū, V̄)|, (19)

where ρ() measures the correlation between the stochastic variable obtained by the356

observations and the staircase function obtained by Temporal J48 using only the features357

selected by Ū and the interval relations selected by V̄. The correlation varies between358

−1 (perfect negative correlation) to 1 (perfect positive correlation), being 0 the value that359

represents no correlation at all. Defined in this way, Corr ought to be minimized.360

5. Data and Experiments361

Variable Unit Mean St.Dev. Min Median Max
Air temperature °C 10.9 8.4 -15.7 10.1 37.7
Solar duration h 0.23 0.38 0 0 1
Wind speed ms−1 3.13 1.95 0 3.00 19
% Relative humidity − 74.9 17.3 20 79.0 100
Air pressure hPa 1003 8.5 906 1003 1028
Traffic − 2771 1795.0 30 3178 6713
NO2 µgm−3 50.4 23.2 1.7 49.4 231.6

Table 2: Descriptive statistics.

Our purpose in this paper is to solve a temporal regression problem for air quality362

modelling and prediction. We consider an air quality database that contains measure-363

ments of several parameters in the city of Wrocław (Poland); particularly, we consider364

data from a communication station located within a wide street with two lanes in each di-365

rection (GPS coordinates: 51.086390 North, 17.012076 East, see Fig. 2). One of the largest366
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Figure 2. An aerial view of the area of interest. The red circle is the communication station.

intersections in Wrocław is located approximately 30 meters from the measuring station,367

and is covered by traffic monitoring cameras. A weather measurement station is located368

on the outskirts of the city, at 9.6kms from the airport, and our data set is structured369

so that all such data are combined in an attempt to predict pollution concentrations.370

Pollution data are collected by the Provincial Environment Protection Inspectorate and371

encompasses the hourly NO2 concentration values during three years, from 2015 to 2017.372

The traffic data are provided by the Traffic Public Transport Management Department373

of the Roads and City Maintenance Board in Wrocław, and include hourly count of all374

types of vehicles passing the intersection. Public meteorological data are provided by375

the Institute of Meteorology and Water Management, and they include: air temperature,376

solar duration, wind speed, relative humidity, and air pressure. In order to uniform377

data, solar duration values have been re-normalized in the real interval [0, 1]. In the378

pre-processing phase, the instances with at least one missing value (617 samples, 2.3%)379

have been deleted. Some basic statistic indicators on the remaining 25687 instances are380

presented in Tab. 2.381

We considered, in particular, the set A that contains the transport, meteorological,382

and pollution data from the year 2017. From it, we extracted the sets Amonth, where383

month ranges from Jan to Dec, each containing the hourly data of the first 10 days od384

each month. Therefore, eachAmonth contains exactly 240 instances. For each month, then,385

we designed a regression experiment using: (i) classic, non-temporal linear regression386

(using the class LinearRegression); (ii) classic, non-temporal decision tree regression (using387

the class RepTree); (iii) lagged linear regression on the lagged version of Amonth, with388

l = 10; (iv) lagged propositional decision tree regression on the lagged version of Amonth,389

with l = 10, and (v) feature and language selection for temporal decision tree regression390

on the transformed version of Amonth, with l = 10 and γ = 0.7. We tested the prediction391

capabilities of each of the extracted models on the corresponding set Amonth. In the case392

of temporal regression, each experiment returns a set of classifiers, more precisely, a393

Pareto set; from it, we selected the classifier with best correlation. All experiments have394

been executed in 10-fold cross-validation mode, which guarantees the reliability of the395

results. Observe how different experiments correspond, in fact, to different preprocessing396

of the data: In (i) and (ii), a given Amonth contains 240 instances, each corresponding397

to an specific hour sample, and 6 (+1) columns, each corresponding to an independent398
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month cc mae rmse rae(%)
Jan 0.75 10.47 13.38 63.61
Feb 0.73 10.67 12.86 67.86
Mar 0.65 12.66 16.04 73.62
Apr 0.68 12.05 14.62 75.87
May 0.71 10.00 13.63 61.86
Jun 0.61 12.57 15.34 79.93
Jul 0.59 11.90 15.09 79.35

Aug 0.69 13.62 17.07 70.74
Sep 0.72 11.47 15.21 64.24
Oct 0.83 8.84 11.11 52.95
Nov 0.76 8.58 11.25 61.18
Dec 0.77 9.32 12.05 57.15

average 0.71 11.01 12.84 67.36

month cc mae rmse rae(%)
Jan 0.77 9.35 13.21 56.84
Feb 0.75 9.89 12.92 62.91
Mar 0.67 12.71 16.59 73.90
Apr 0.76 9.86 13.41 62.09
May 0.71 10.34 13.99 63.97
Jun 0.70 11.24 14.58 71.45
Jul 0.67 11.21 14.87 74.74

Aug 0.76 11.87 15.96 61.63
Sep 0.60 12.88 18.82 72.13
Oct 0.76 9.74 13.35 58.37
Nov 0.74 8.91 11.93 63.58
Dec 0.75 9.55 12.93 58.55

average 0.72 9.85 13.28 60.28

Table 3: Test results, non-temporal data: linear regression (left), and decision tree regres-
sion (right).

variable (plus the dependent one). In (iii) and (iv), a given Amonth contains 60 (+1)399

columns, each being an independent variable or its lagged version, with lags from 1 to400

10 hours; therefore, the number of instances is actually 231 (= m− l + 1), because the401

first sample for which the dependent value can be computed is the one at the hour 10.402

Finally, in (v), a given Amonth contains 231 multivariate time series, each with 10 values403

of each of the independent variables, temporally ordered, and labeled with the values of404

the independent one, starting, again, from the sample at the hour 10.405

6. Results and Discussion406

All results can be seen in the tables from Tab. 3 to Tab. 6, in which we reported,407

per each experiment, not only the correlation coefficient (cc) between the ground truth408

b ∈ dom(B) and the predicted value b̂ ∈ Dom(B) [20,42,43], but also the mean average409

error (mae), the root squared mean error (rsme), and the relative absolute error (rae). The first410

group of results concerns non-lagged data and standard approaches. As we can see,411

the correlation coefficient ranges from 0.59 to 0.83, with an average of 0.71, in the linear412

regression models, and from 0.60 to 0.72, with an average of 0.72 in the decision tree413

models. The fact that the latter show a slightly better behaviour than the former may414

indicate that the underlying process is not (strongly) linear, and that a stepwise function415

may approximate this reality in a better way. The fact that the average correlation is416

not too high in both cases, and that in both case there is at least one month in which417

it is particularly low, may indicate that non-lagged data probably do not capture the418

underlying phenomenon in its full complexity.419

As much as lagged data are concerned, in linear regression models the correlation420

coefficients range from 0.71 to 0.84, with an average of 0.78, while in decision tree models421

from 0.65 to 0.87, with an average of 0.76, presented in Tab. 4. As we can see, the422

situation reversed itself, the linear models being more precise than decision tree ones. A423

possible explanation is that, while lagged data, in general, offer more information about424

the underlying process, reasoning with more variables (i.e., 60 vs 6) allow to find very425

complex regression hyperplanes, which adapt to the data in a natural way; unfortunately,426

this is a recipe for non-interpretability, as having such complex regression function, with427

different coefficients for the same independent variable at different lags makes it very428

difficult for the expert to create an explanatory physical theory. To give one example,429

we consider the linear model extracted from AJan, and, in particular, the coefficients of430

each variable, as shown in Tab. 5. As it can be observed, the alleged influence of every431

variable seem to have some erratic behaviour, with coefficients with different signs and432
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month cc mae rmse rae(%)
Jan 0.80 9.79 12.21 59.51
Feb 0.83 8.35 10.58 53.16
Mar 0.81 9.45 12.66 54.94
Apr 0.71 11.43 14.30 71.95
May 0.73 10.67 13.86 66.02
Jun 0.72 10.61 13.63 67.41
Jul 0.75 9.94 12.57 66.29

Aug 0.77 12.80 15.45 66.44
Sep 0.78 11.31 14.56 63.34
Oct 0.82 9.00 11.58 53.96
Nov 0.80 8.22 10.60 58.61
Dec 0.84 8.08 10.42 49.51

average 0.78 9.09 12.70 60.93

month cc mae rmse rae(%)
Jan 0.75 9.59 13.75 58.31
Feb 0.84 7.93 10.41 50.43
Mar 0.78 10.26 13.42 59.65
Apr 0.71 10.29 14.45 64.75
May 0.77 9.36 12.65 57.91
Jun 0.70 11.08 14.59 70.45
Jul 0.65 10.96 15.21 73.09

Aug 0.75 12.10 16.19 62.84
Sep 0.78 10.09 14.01 56.49
Oct 0.75 10.12 13.98 60.67
Nov 0.79 7.83 10.74 55.85
Dec 0.87 7.11 9.54 43.61

average 0.76 8.87 13.24 54.11

Table 4: Test results, lagged data; linear regression (left), and decision-tree regression
(right).

lag
variable −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

Air temperature -0.77 -0.50 0.00 -1.14 0.00 0.00 0.00 0.93 0.00 0.00
Sol. duration 0.00 0.00 0.00 7.36 0.00 7.26 0.00 0.00 0.00 0.00
Wind speed -2.006 -2.50 -1.85 7.36 0.00 -1.14 0.00 0.00 0.00 -1.08

Rel. humidity -0.29 -0.19 -0.23 -0.22 0.00 0.00 0.29 0.00 0.21 0.00
Air pressure 0.00 1.97 -2.25 0.00 0.00 -2.47 0.71 0.48 -1.21 1.59

Traffic (×102) -0.82 -0.22 0.43 -0.32 0.45 -0.28 0.00 0.00 0.00 0.00

Table 5: Test results, lagged data: coefficients for the linear regression, January.

month cc mae rmse rae(%) language
Jan 0.87 7.73 10.54 46.91 〈L〉, 〈L〉, 〈E〉, 〈E〉, 〈D〉, 〈D〉, 〈B〉, 〈B〉, 〈A〉, 〈=〉
Feb 0.86 7.39 9.70 47.65 〈L〉, 〈L〉, 〈D〉, 〈D〉, 〈A〉, 〈O〉, 〈E〉, 〈B〉
Mar 0.79 10.73 13.93 63.41 〈L〉, 〈L〉, 〈A〉, 〈A〉, 〈O〉, 〈O〉, 〈E〉, 〈E〉, 〈D〉, 〈D〉, 〈B〉
Apr 0.85 7.77 10.86 48.57 〈L〉, 〈E〉, 〈D〉, 〈B〉, 〈=〉
May 0.84 7.87 10.53 50.52 〈L〉, 〈O〉, 〈O〉, 〈E〉, 〈B〉, 〈=〉
Jun 0.82 9.07 11.60 58.00 〈L〉, 〈L〉, 〈E〉, 〈D〉, 〈D〉, 〈=〉
Jul 0.78 10.00 12.87 65.62 〈A〉, 〈E〉, 〈E〉, 〈D〉, 〈B〉, 〈B〉, 〈L〉, 〈=〉

Aug 0.83 10.82 13.90 55.97 〈L〉, 〈L〉, 〈A〉, 〈A〉, 〈D〉, 〈D〉, 〈=〉
Sep 0.81 9.50 13.17 53.77 〈L〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉, 〈O〉
Oct 0.81 9.31 12.42 55.58 〈L〉, 〈L〉, 〈A〉, 〈O〉, 〈O〉, 〈E〉, 〈E〉, 〈D〉, 〈B〉, 〈=〉
Nov 0.80 8.34 11.04 61.27 〈L〉, 〈A〉, 〈A〉, 〈O〉, 〈O〉, 〈E〉, 〈E〉, 〈D〉, 〈D〉, 〈B〉, 〈=〉
Dec 0.85 7.31 10.47 45.10 〈L〉, 〈L〉, 〈A〉, 〈A〉, 〈E〉, 〈E〉, 〈B〉, 〈B〉, 〈O〉, 〈D〉

average 0.83 8.82 11.75 54.36

Table 6: Test results, temporal decision tree regression.

absolute values at different lags. It could be argued that such a matrix of values is no433

different from a weight matrix of a neural network, in some sense.434

Finally, in Tab. 6 we can see the results of Temporal J48, in which case the correlation435

coefficient ranges from 0.78 to 0.87, with an average of 0.83. As it can be noticed, in436

exchange for a higher computational experimental complexity, this method returns437

clearly better results. This is to be expected, as, by its nature, it combines the benefits438

of the lagged variables with those of symbolic regression. One can observe not only439

the improvement in average, but also in stability among the twelve months: in the440

worst case, the correlation index is 0.78, which is to be compared, for example, with441
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the worst case of simple linear regression (0.59). Moreover, it seems that Temporal J48442

behaves in a particularly good way on difficult cases: if the case of Ajul , for example,443

we have a correlation coefficient 0.67 with non-lagged data and decision trees, 0.65444

with lagged data and decision trees, and 0.78 with serialized data. In addition to the445

statistical performances of these models the following aspects should be noticed. First,446

these models have been extracted in a feature selection context; however, in all cases, the447

evolutionary algorithm found that all variables have some degree of importance, and no448

variable has been eliminated. Second, the language(s) that have been selected allow one449

to draw some considerations on the nature of the problem; for example, the fact that, in450

all cases, the relation during or its inverse (i.e., 〈D〉 or 〈D〉) has been selected indicates451

that the past interactions between the variables is a key element for modelling this452

particular phenomenon. Because Temporal J48, in this experiment, has been run without453

pruning, the resulting trees cannot be easily displayed because of their dimensions.454

Nevertheless, thanks to its intrinsic interpretability, meta-rules can be easily extracted455

from a regression tree, as, for example:456

If Rel. humidity is high while Traffic is high then NO2 tends to be high
If Sol. duration is high while Traffic is very low then NO2 tends to be low
. . .

(20)

which can contribute to design a real-world theory of the modelled phenomenon. The457

language selection part performed by the optimizer, in general, reduces the set of used458

temporal operators of HS when extracting the rules (see Tab. 6), and this is desirable459

considering that, among many others, one desideratum for interpretability is to explain460

the reasoning in an understandable way to humans, which have a strong and specific461

bias towards simpler descriptions [44].462

7. Conclusions463

In this paper we considered an air quality modelling problem as an example of464

application of a novel symbolic multivariate temporal regression technique. Multivariate465

temporal regression is the task of constructing a function that explains the behaviour of466

a dependent variable over time, using current and past values of a set of independent467

ones; air quality modelling, and, in particular, modelling the values of a pollutant as468

a function of meteorological and car traffic variables, can be seen as a multivariate469

temporal regression problem. Such problems are classically approached with a number470

of techniques, that range from simple linear regression to recurrent neural networks;471

despite their excellent statistical performances, in most cases such models are unsatisfac-472

tory in terms of their interpretability and explainability. Classic symbolic regression is an473

alternative to functional models; unfortunately, symbolic regression has not been very474

popular, probably due to the fact that its statistical performances tend not to be good475

enough for many problems. Temporal symbolic regression revealed itself as a promising476

compromise between the two strategies: while keeping a symbolic nature, temporal477

symbolic regression takes into account the temporal component of a problem in a native478

way. In this paper we not only applied a temporal symbolic regression to a real-world479

problem, but we also showed that it can be embedded into a feature selection strategy480

enriched with a language selection one. The resulting approach showed an interesting481

potential, the statistical performances of the extracted models being superior to those of482

both atemporal and temporal classical approaches.483
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