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Fish perform like mammals and 
birds in inhibitory motor control 
tasks
Tyrone Lucon-Xiccato  , Elia Gatto & Angelo Bisazza

Inhibitory control is an executive function that positively predicts performance in several cognitive 
tasks and has been considered typical of vertebrates with large and complex nervous systems such as 
primates. However, evidence is growing that some fish species have evolved complex cognitive abilities 
in spite of their relatively small brain size. We tested whether fish might also show enhanced inhibitory 
control by subjecting guppies, Poecilia reticulata, to the motor task used to test warm-blooded 
vertebrates. Guppies were trained to enter a horizontal opaque cylinder to reach a food reward; then, 
the cylinder was replaced by a transparent one, and subjects needed to inhibit the response to pass 
thought the transparency to reach the food. Guppies performed correctly in 58% trials, a performance 
fully comparable to that observed in most birds and mammals. In experiment 2, we tested guppies 
in a task with a different type of reward, a group of conspecifics. Guppies rapidly learned to detour a 
transparent barrier to reach the social reward with a performance close to that of experiment 1. Our 
study suggests that efficient inhibitory control is shown also by fish, and that its variation between-
species is only partially explained by variation in brain size.

Inhibitory control is one the core executive functions and allows an animal to control attention and behaviour 
in order to override internal predispositions or resist to external lures1–3. One of the most studied aspects of this 
executive function is inhibitory motor control, which is required when one individual has to block an impulsive 
behaviour4. Inhibitory control has been shown to correlate with performance in many cognitive tasks, and it 
is believed to be a prerequisite for sophisticated cognitive skills. For example, performance in tasks requiring 
inhibition correlates with intelligence in adult humans5, and in children it positively predicts academic achieve-
ment along with cognitive competence in later life6–8. In cotton-top tamarin, Saguinus oedipus, inhibitory control 
predicts problem-solving performance9, whereas in song sparrows, Melospiza melodia, it predicts song repertoire 
size10.

Efficient inhibitory control has often been considered a distinctive feature of humans11 or vertebrates with 
large, complex nervous systems12, as observed for other important cognitive abilities13,14. This idea is mainly based 
on evidence that even children and non-human primates often show difficulties in solving inhibitory control 
tasks15–19. Empirical support has been provided recently by a comprehensive study on three dozen mammalian 
and avian species, demonstrating that inhibitory performance positively correlates with brain size20. However, 
most of the species tested in that study were mammals, and subsequent research has shown that other bird species 
perform similarly to apes despite the much smaller brain size21.

Several complex cognitive processes and abilities believed to be distinctive of few mammalian and avian spe-
cies have been recently observed in teleost fish in spite of their relatively small brain size22,23. For instance, some 
fish species use tools, transmit cultural information, show problem solving, learn complex spatial mazes, and 
display episodic-like memory22,24–28. Some of the cognitive tasks successfully solved by fish, such as reversal learn-
ing, require inhibition to some extent29,30. Given the suggested link between inhibition and cognitive attainment 
in other tasks5–9, we hypothesised that inhibitory control might be elevated in fish too, at least in those species 
that have evolved notable cognitive abilities. To address this hypothesis, we investigated inhibitory control in the 
guppy, Poecilia reticulata, using two motor tasks that exploit the response of animals to the presence of transpar-
ent obstacles. The guppy is an ecological generalist species characterized by a considerable behavioural flexibility 
that has permitted the successful invasion of many different environments in all continents outside Antarctica31. 
Guppies have been shown to be capable of complex behaviours and enhanced cognitive abilities28,32,33.
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In experiment 1, we tested guppies using the cylinder task, which has been widely adopted to study inhibitory 
control in mammals and birds10,20,34. We followed the procedure adopted by MacLean and colleagues to compare 
32 different species20. Guppies were initially trained to enter a horizontal opaque cylinder to reach a food reward; 
in the following test trials, guppies were presented with a transparent cylinder and had to enter the cylinder from 
the open lateral sides overcoming the tendency to swim directly toward the visible target. MacLean and col-
leagues20 performed short experiments (10 test trials), but some studies have suggested that animals can increase 
their performance over trials in similar inhibitory tasks21,35. To study the occurrence of learning in guppies, we 
lengthened the duration of the experiments up to 50 trials. In the study by MacLean and colleagues20, the cylinder 
task was considered a self-control task. However, some authors have argued that self-control is required when an 
individual has to inhibit the choice of a less valuable target in order to obtain a more valuable target after a tem-
poral delay3,36; following these authors, we considered the cylinder task as a measure of inhibitory motor control.

Recent studies have recommended the use of multiple tests for assessing the cognitive abilities of a species37–39. 
This appears to be particularly important in the case of inhibition because the performance of the different spe-
cies may vary according to the relative value of the reward40. For example, the different food intake requirements 
of warm- and cold-blooded species might affect the performance in tasks using food as an attractor. Thus, in 
experiment 2, we tested guppies in an inhibitory motor control task that uses a social stimulus, the barrier task. 
We based our procedure on the test adopted to study spatial abilities and lateralisation in guppies and in other 
fish species41,42. In a series of 25 test trials, guppies were inserted in a novel tank and had to detour a C-shaped 
transparent barrier to reach a shoal of conspecifics.

Results
Experiment 1: cylinder task. In the training phase with the opaque cylinder, guppies reached the learning 
criterion of 4 out of 5 daily correct trials after 17.5 ± 8.25 trials (mean ± SD). During the entire test phase, guppies 
performed 58.40 ± 11.07% trials in which they attempted to retrieve food from the side of the transparent cylin-
der rather than through the transparency (correct trials). The proportion of correct trials in the test phase was sig-
nificantly lower compared to that in the last day of the training phase (paired-sample t test: t9 = 7.589, P < 0.0001). 
The performance of the individual fish ranged between 38–72% correct trials. The likelihood of correct trials did 
not significantly change across trials (GLMM: χ2

1 = 1.350, P = 0.245; Fig. 1a), but the time to enter the cylinder 
significantly decreased across trials (LMM: χ2

1 = 8.668, P = 0.003; Fig. 1b). Considering only the initial 10 trials, 
as in the study by MacLean and colleagues20, guppies performed 53.00 ± 29.83 correct trials (Fig. 2).

Experiment 2: barrier task. Overall, guppies performed 36.00 ± 21.51% correct trials in which they 
reached the stimulus shoal without entering the area delimited by the wings of the transparent barrier. There was 
clear evidence that the likelihood of a correct trial significantly increased across the trials (GLMM: χ2

1 = 24.766, 
P < 0.0001; Fig. 3a), and time spent in front of the transparent barrier significantly decreased across the trials 
(LMM: χ2

1 = 31.128, P < 0.0001; Fig. 3b). To better compare our experiment with the previous one, we also calcu-
lated the guppies’ performance excluding the initial three days, which corresponded to the length of the training 
phase with the opaque cylinder in experiment 1. When considering only the last two days of training, guppies 
performed 49.17 ± 34.23% correct trials.

Figure 1. Performance of guppies in the cylinder task (experiment 1). (a) Percentage of correct trials in which 
guppies did not contact the cylinder (mean ± SEM), and (b) time to solve the task (mean ± SEM) over the 10 
days of the test phase.
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Discussion
In this study, we investigated the ability of a fish species, the guppy, to perform two inhibition motor tasks based 
on the presence of transparent obstacles between the subject and the goal. Our results indicate that guppies are 
capable of solving inhibition motor tasks and that their performance is fully comparable to that observed in 
warm-blooded vertebrates.

In the cylinder task (experiment 1), guppies had to reach a food reward by entering a transparent cylinder 
from the open lateral sides, rather than trying to approach the food directly. This task was similar to the one 
adopted in a large study testing 32 species of mammals and birds20 and thus allowed a direct comparison between 
guppies and other species. We found no substantial difference between the percentage of correct trials made by 
guppies, 58% (53% if we consider only the first 10 trials), and the average performance of the mammalian and 

Figure 2. Comparison between the performance of guppies in the cylinder task (black bar) and that of 32 
mammalian and avian species tested in the same task by MacLean et al.20. Bars represent mean percentage of 
correct trials. To allow the comparison with the other species, we used the performance of guppies in the initial 
10 trials.

Figure 3. Performance of guppies in the barrier task (experiment 2). (a) Percentage of correct trials in which 
guppies did not enter the barrier (mean ± SEM) and (b) time to solve the task (mean ± SEM) over the 5 days of 
the experiment.
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avian species tested by MacLean and colleagues (63% correct trials; Fig. 2). When apes are not considered, the dif-
ference between guppies and warm-blooded species (58%) is even smaller. Also the individual guppy with lowest 
performance (38% correct trials) outperformed several mammalian and avian species.

In contrast with two recent studies on birds21,35, we did not find evidence of an increase in the number of 
correct trials due to training. The absence of change in performance across the 50 test trials also allows to exclude 
that our measure of inhibitory motor control was affected by the novelty associated with the replacement of the 
cylinder. Indeed, guppies and other fish species often explore small, armless novel objects introduced in their 
aquaria43,44 and this behaviour might potentially affect performance. It remains to be addressed whether response 
to novelty might partially explain inter-specific differences in studies with a reduced number of testing trials20,21. 
The time to solve the task had a small but significant decrease over the trials, which might indicate a small perfor-
mance improvement due to learning21. However, it is likely that, using this protocol, learning mostly occurred in 
the training phase with the opaque cylinder.

There is evidence that inhibitory control performance might depend on the context and the value of the 
reward40,45. For example, humans show greater inhibitory control with food than with money reward40. Although 
the procedure of our cylinder task was as close as possible to that adopted for mammals and birds, heterotherms 
such as guppies may assign a different value to a food reward because of their different metabolic requirements. 
We controlled for this issue by performing a second experiment in which guppies had to detour a transparent 
barrier to reach a social reward. The overall performance of guppies in the barrier task tends to be lower than the 
performance of guppies in the cylinder task. This difference might be explained by the fact that, in the barrier 
task, during the initial days, the guppies had to learn to detour the barrier and handle the transparency simultane-
ously; conversely, in the cylinder task, these two phases were separated because the animals were initially trained 
using an opaque cylinder. Experiments on infants46, cotton top tamarins18 and three species of apes19 showed that 
subjects initially trained using an opaque barrier performed better than those exposed only to a transparent bar-
rier. In line with this interpretation, at the beginning of the barrier experiment, the performance of guppies was 
rather poor, less than 20% correct trials. This agrees with a previous study that compared the behaviour of guppies 
with a transparent and a semi-transparent barrier in 5 test trials, finding reduced detour performance with the 
transparent barrier42. However, in the present study, after three days of experiments (roughly corresponding to 
the length of the training using the opaque cylinder in experiment 1), the guppies reached a performance very 
close to that of the cylinder task (50%). We should additionally consider that the barrier was perhaps more dif-
ficult to detour because it was larger than the cylinder and was C-shaped. In the light of these clarifications, the 
performance of the guppies appears similar for the two different types of reward, and thus this study does not 
support the hypothesis that the high performance of guppies in experiment 1 was the consequence of a reduced 
attractiveness of the food reward compared to warm-blooded vertebrates.

The clear increase in the guppies’ percentage of correct trials across testing days in the barrier task was accom-
panied by a marked decrease in the time taken to solve the task. Both improvements likely indicate that the 
guppies had learned to handle the transparent barrier. It is interesting to note that a similar improvement was 
observed in some species (cotton-top tamarins:18; orangutans, Pongo pygmaeus:19) but not in others (gorillas, 
Gorilla gorilla; bonobos, Pan paniscus; and chimpanzees, Pan troglodytes19). These three latter species performed 
quite well in the cylinder task20, and it is still to be addressed whether the differential performance in the two tasks 
was due to methodological reasons as proposed for guppies.

Only one other study has directly investigated inhibitory performance of fish. Danisman et al.47 trained 
cleaner fish, Labroides dimidiatus, in a reverse reward contingency task: subjects had to select the smaller food 
item between two options to receive the larger food item as a reward. They found a poor performance of cleaner 
fish with none of the eight subjects being able to learn the task. Many other species did not succeed in learning 
to solve this task (e.g., chimpanzees:48; Japanese macaques, Macaca fuscata:49; cotton-top tamarins:9; black and 
brown lemurs, Eulemur fulvus and E. macaco17). The difference between the study on cleaner fish and our study 
on guppies is likely due to the large difficulty of the reverse reward contingency task. To address this point, we 
need to gather more data on the performance of fish in other inhibitory control tasks. Among the others, it will be 
important to focus on tasks requiring self-control (i.e., the choice between alternatives with different values and 
different costs), because self-control is generally considered the most challenging aspect of inhibitory control36.

An efficient inhibitory control has been usually considered typical of humans and primates11,12, and it has 
been shown to positively correlate with brain size in a recent comparative study20. As guppy’s brain is more than 
100 times smaller than the brain of the smallest species included in that comparative study, the performance of 
the guppies in the cylinder task is exceedingly higher than would be expected based on brain size. Together with 
other evidence21, this suggests that brain size alone cannot explain the large differences in inhibitory motor con-
trol observed among species.

In MacLean et al.’s study, the main predictor of inhibitory motor control performance was absolute brain 
size20. Perhaps this relationship only holds considering a sample of species with a limited range of body size or 
within a restricted taxonomic group. As recently discussed by Herculano-Houzel50, brain mass is only a proxy 
for the neuronal capability devoted to complex information processing. If larger bodies require larger brains to 
operate, then in larger species only part of the increase in brain mass can contribute to behavioural complexity. 
However, controlling for the whole brain allometry is unlikely to account for the performance of guppies, as fish 
have, on average, a relative brain weight ten times smaller than mammals and birds51.

Another important issue to be considered is that the brain of different species can differ in structure at differ-
ent scale levels, and these differences are expected to increase with increased phylogenetic distance. For example, 
neural density is extremely variable both within mammals and between mammals and birds50. Recently, Kabadayi 
et al.21 found that in three corvid species, performance in a inhibitory motor control task was much higher than 
the average performance found in mammals, although their brain mass is much smaller. This result could partly 
be explained by the fact that the forebrain of several bird species contains many more neurons compared to that 
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of mammals52. As another example, some insects are capable of exceptional cognitive performance despite having 
a brain that is extremely small even compared to a small fish like the guppy; it was suggested that this may be 
related to characteristics of the neural circuits that present wide differences between vertebrates and arthropods53.

Though they belong to the same clade, the modern ray-finned fishes (to which teleosts belong) diverged 
approximately 450 million years ago from the line of fish that gave origin to land vertebrates. In addition, a major 
genomic rearrangement – a whole-genome duplication – occurred in the line leading to teleosts soon after the 
separation; there is now evidence that this event produced a significant enrichment of the set of genes available 
for the evolution of novelties in the nervous system of this vertebrate group54. Therefore, the brains of teleost fish 
and land vertebrates evolved in large part independently and may show a very different anatomical and cytoar-
chitectonic structure. However, the cytoarchitectonic structure of the teleost brain and the localisation of the 
functions studied here are less well known compared to warm-blooded vertebrates and therefore any conclusion 
on this topic is premature.

A second important factor that can explain interspecific differences in cognitive abilities across all vertebrates 
is the selective pressure exerted by the environment in which a species evolved. Several ecological factors have 
been suggested to promote the evolution of inhibitory control. For example, species that typically feed on mov-
ing prey might show more impulsiveness11. Alternatively, species with a complex social environment may have 
been selected for greater inhibitory control, a hypothesis that has found some support20,55. Another possibility is 
that inhibitory control evolves as a by-product of selection on other behaviours and cognitive functions. As the 
capacity to inhibit prepotent but unfavourable responses is an important prerequisite for a wide range of cognitive 
tasks6–10, it is conceivable that selection acting on these cognitive functions can indirectly select for high inhibi-
tory control.

Materials and Methods
Ethical statement. The experiments adhere to the current legislation of our country (Decreto Legislativo 4 
marzo 2014, n. 26) and were approved by the Ethical Committee of Università di Padova (protocol n. 33/2015).

Subjects. The subjects were adult female guppies of an ornamental strain (“snakeskin cobra green”) bred in 
our laboratory since 2012. We tested 10 guppies in experiment 1 and 12 guppies in experiment 2. The mainte-
nance tanks (400 L), which housed guppies before the experiments, had a gravel bottom, abundant natural and 
artificial plants, water filters, and 15-W fluorescent lamps (12 h:12 h light/dark photoperiod). We kept water tem-
perature at 26 ± 1 °C and fed the fish with commercial food flakes (Fioccomix, Super Hi Group, Ovada, Italy) and 
Artemia salina nauplii three times per day.

Experiment 1: cylinder task. Apparatus. In an 80 × 40 × 38 cm tank filled with 30 cm of water, we built 
a green plastic apparatus in the shape of an hourglass (Fig. 4a) similar to the ones adopted in previous studies on 
guppies33,56,57. The central corridor (10 × 10 cm) connected two test compartments (28 × 40 cm) by means of two 
10 × 8 cm guillotine transparent doors. Each trapezoidal compartment beside the corridor had green net walls 
and housed one immature guppy as a social companion, abundant vegetation, and a water filter. One 18-W fluo-
rescent lamp and one video camera were placed above each test compartment.

We used two types of cylinders of the same size (4 cm length, 3.5 cm diameter). During the training phase, 
the cylinder was opaque (green plastic), whereas during the test phase, the cylinder was transparent (an acetate 
sheet). Both cylinders were glued above a green plastic sheet (4 × 4 cm).

Familiarization with the apparatus and the procedure. Three days before the beginning of training, we randomly 
selected a female in the maintenance tanks and moved it to the apparatus, together with one adult male and three 
juveniles to avoid social isolation. We fed the subject five times each day in the two test compartments alternately, 
in order to simulate the procedure of the following days (see below). Before feeding the subject, we moved the 
male companion to a 60 × 40 × 38 cm tank with immature guppies as social companions, vegetation, and water 
filters, and we fed it thereby. Then, we inserted a Pasteur pipette with crumbled flakes mixed with water into the 
test compartment opposite the one with the subject. We slowly moved the pipette to attract the subject; when the 
subject entered this test compartment, we closed the guillotine door and slowly released the food from the pipette. 
This was done to train the fish to get the food from the pipette. Five guppies that did not learn to feed from the 
pipette were discarded and substituted with new subjects. The day before the experiment started, the immature 
companions were removed from the tank, with the exception of the two in the trapezoidal compartments.

Training phase. The subject was trained to feed inside the opaque cylinder. We performed 5 trials per day, in 
which the position of the opaque cylinder was alternated between the two test compartments. Thirty minutes 
before the experiment started, the male companion was removed from the tank, and the female was confined 
in one test compartment. The experimenter placed the cylinder into the other test compartment at a distance of 
15 cm from the guillotine door. Then, the experimenter inserted the Pasteur pipette and showed it to the subject 
confined behind the guillotine door. After ensuring that the subject was looking in the direction of the pipette, the 
experimenter inserted food inside the cylinder and opened the guillotine door. The subject had 30 min to find the 
food; after this period the trial was considered null and was repeated thereafter. If the subject entered the cylinder, 
we waited 15 min and then started the next trial in the opposite test compartment. Based on the video recordings, 
we measured whether the first attempt to reach the food was through the front of the cylinder (incorrect trial) 
or from the open sides (correct trial). Subjects had to achieve four out of five correct trials in a day to pass to the 
test phase.
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Test phase. In the test phase, we used the transparent cylinder but other details were identical to the training 
phase. Based on the video recordings, we scored whether the subject first attempted to retrieve food through the 
cylinder (incorrect) or from the side (correct) and the time to enter the cylinder in each trial. Since the procedure 
of the cylinder task has never been used in fish, in a pilot experiment we analysed the reliability of our measures of 
performance. We performed 40 trials in which the performance of 6 guppies was scored live by the experimenter 
and from the video recordings by two other scorers. Regarding correct versus incorrect trials, the live score and 
one score from the recordings were identical in all the trials, whereas the second score from the recordings dif-
fered in 1 out of 40 trials (2.5% trials). Regarding the time to solve the task, the three scores were highly correlated 
(Spearman’s rank correlation: ρ = 0.997, P < 0.0001; ρ = 0.980, P < 0.0001; ρ = 0.981, P < 0.0001). These analyses 
revealed that our measures of performance were robust and reliable. Subjects were tested for 10 days (5 trials each 
day, 50 total trials), the only difference from the original method of MacLean and colleagues20 which performed 
10 test trials.

Experiment 2: barrier task. Apparatus. The apparatus was an 80 × 40 × 36 cm tank covered with a white 
plastic sheet and filled with 10 cm of water (Fig. 4b). In one of the short sides of the tank, we built a white start 
box (15 × 10 × 20 cm). The social stimulus was a shoal of 4 female guppies confined in a transparent sector of 
the apparatus (11 cm diameter, 18 cm height). We positioned the transparent barrier (18 × 18 cm), C-shaped by 
means of two white plastic wings (18 × 5 cm), at a distance of 30 cm from the start box and 15 cm from the stim-
ulus. An 18-W fluorescent lamp placed above the stimuli illuminated the apparatus and a video camera recorded 
the trials.

Procedure. One week before the beginning of the experiment, we moved each individual subject from the main-
tenance tank to a 50 × 20 × 38 cm ‘home tank’ with immature guppies as social companions, vegetation, and a 
water filter. The experiment consisted of a series of 25 test trials subdivided over 5 days (5 trials per day). The 
length of the experiment was reduced compared to experiment 1 for ethical reasons because this procedure was 
presumably more stressful for the subjects. We placed the stimuli in the sector of the apparatus 30 min before the 
first trial. Successively, one subject was netted from its home tank, transported in a plastic jar and gently inserted 
into the start box, from which it could swim to the stimulus. From the video recordings, we scored whether the 
subject reached the stimulus shoal by entering into the area delimited by the wings of the barrier (incorrect trial) 
or not (correct trial) and the time spent within this area. After the subject joined the shoal, we left it undisturbed 
for 5 min as a reward before starting the following trial. Four subjects that did not attempt to join the stimulus 
shoal within 20 min were substituted. At the end of the 5 daily trials, the subject was moved to the home tank.

As in the cylinder task, we analysed the reliability of our measures of performance. A second experimenter 
re-analysed the video recordings of 40 trials performed by 8 guppies. The binary measure of performance, correct 
versus incorrect trials, differed between the two scores in 1 out of 40 trials (2.5% trials). The time in front of the 
barrier was highly correlated between the two scores (Spearman’s rank correlation: ρ = 0.987, P < 0.0001).

Statistical analysis. Analyses were performed in R version 3.2.2 (The R Foundation for Statistical 
Computing, Vienna, Austria, http://www.r-project.org). For both experiments, we analysed the outcome of the 
trials (correct or incorrect) with generalized linear mixed-effects models for binomial response distributions 

Figure 4. View from above of the apparatuses used in (a) experiment 1, and in (b) experiment 2.

http://www.r-project.org
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(GLMMs, ‘glmer’ function of the ‘lme4’ R package) fitted with the trial number as covariate (to examine whether 
performance improved over trials) and individual ID as random effect. To compare the average score of guppies 
in the cylinder task with the data set of 32 mammalian and avian species from MacLean et al.20, we computed the 
percentage of correct trials in the first 10 trials. In experiment 1, we also compared the proportion of correct trials 
in the last day of the training phase of each subject versus the test phase using paired-sample t test. We analysed 
time performance (time to reach the reward in experiment 1 and time spent trying to pass thought the barrier in 
experiment 2) using linear mixed-effects models (LMMs, ‘lmer’ function of the ‘lme4’ R package) fitted with the 
trial as covariate, after log transformation due to right-skewed distributions, and individual ID as random effect.

Data availability. All data generated or analysed during this study are included in the Supplementary 
Information file.
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