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Abstract. Despite the wide use of copper alloys in thermo-mechanical applications, there is little data on their 

cyclic plasticity behaviour, particularly for CuAg alloys. This prevents the behaviour of the materials from being 

correctly described in numerical simulations for design purposes. In this work CuAg0.1 alloy used for thermo-

mechanical applications was tested by strain-controlled cyclic loading at three different temperatures (room 

temperature, 250 °C, 300 °C). In each test, stress-strain cycles were recorded until the alloy had completely 

stabilised. These cycles were then used to identify material parameters of non-linear kinematic and isotropic 

models. The focus was on plasticity models (Armstrong-Frederick, Chaboche, Voce) that are usually 

implemented in commercial finite element codes. Simulated cyclic responses with the identified material models 

were compared with experiments, and showed a good agreement. The identified material parameters for the 

CuAg alloy under investigation can be used directly in finite element models for cyclic plasticity simulations, 

thus enabling a durability analysis of components under thermo-mechanical loads to be performed, particularly 

in the field of steel-making plants.  
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Nomenclature 

 

b speed of stabilisation 

C initial hardening modulus 

E elastic modulus 

E1 elastic modulus (at the first cycle) 

Es elastic modulus (at the stabilised cycle) 

N number of cycles 

R drag stress 

R∞ saturated value of drag stress 

S deviatoric stress tensor 

X back stress tensor 

γ non-linear recovery parameter 

εel, εpl, εtot strain (elastic, plastic, total)  

εpl,acc accumulated plastic strain 

εa strain amplitude 

∆ε=2εa strain range 

σ
 

stress 

σy0
 

initial yield stress 

σyc
 

cyclic yield stress 

σa
 

stress amplitude 

σmax,1, σmax,s maximum stress (at the first and stabilised cycle) 

RT room temperature 
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1.  Introduction 

Copper alloys have considerable thermal conductivity and relatively good mechanical 

properties, thus making them suitable for structures subjected to high thermal flux and 

mechanical loads.
1
 A typical example in the steel-making industry is a mould (also known as 

a crystallizer), which is a long vertical “tube” positioned at the beginning of a continuous 

casting line and filled with liquid steel. A mould is usually made of CuAg, CuCrZr or, less 

frequently, CuNiBe copper alloys.
1
 The mould is water cooled to extract sufficient heat to 

solidify a thin solid shell in the molten steel flowing inside it. 

Owing to the vast amount of heat removed, the inner surface of the mould is subjected to 

high temperatures that cause localised plasticity. Temperatures also fluctuate due to small 

oscillations in the free surface of liquid steel, as well as due to the periodic plant switch off. 

These temperature changes cause a cyclic plasticity in critical regions of the mould (typically 

at the inner surface close to the liquid free surface), where a network of cracks may appear 

and even propagate through the mould.  

As a design requirement, a mould needs to survive several months before being replaced, 

tolerating a small amount of wear and only non-propagating cracks on its inner surface. In 

fact, the mould must be completely protected from any through-thickness crack that would 

bring the molten steel in direct contact with the cooling water, with obvious catastrophic 

consequences. 

Several studies have successfully applied the finite element method for simulating the 

thermo-mechanical response of the mould under thermal loads. The simulated elasto-plastic 

stress-strain cycles in critical regions have also been compared to experimental fatigue curves, 

to estimate crack initiation/propagation and mould service life.
2
  

A critical step in finite element modelling is the choice of the material model to simulate 

cyclic plasticity. Over the last few decades, several plasticity theories have been proposed.
 

Kinematic hardening can be modelled by adopting linear (Prager) or nonlinear (Armstrong & 

Frederick, Chaboche etc.) models, while cyclic hardening/softening behaviour can be 

captured with a nonlinear isotropic model (Voce).
3-7 

Most theories are now implemented in 

commercial finite element software and used routinely.
8-11 

 

The primary criterion for selecting a material model is its ability to represent the 

experimental material behaviour as closely as possible. Equally important is the possibility to 

identify material parameters from experiments, or at least to obtain them from the literature. 
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Parameters of plasticity models are often difficult to find in the literature, and for certain 

classes of materials, they are not available at all. One example of great interest in continuous-

casting plant design, are moulds, which are generally made with CuAg and CuCrZr alloys. 

While thermo-physical, mechanical and fatigue properties have been collected for the CuCrZr 

type,
1
 little attention has been paid to the CuAg alloy, preventing the finite element modelling 

of the mould behaviour from being correctly carried out.  

This work presents the results of experimental cyclic strain-controlled tests on a CuAg 

alloy used for continuous-casting moulds. Tests were carried out at three different and 

constant temperatures (room temperature at 20 °C, 250 °C, 300 °C). These temperatures 

typically occur in the inner surface of CuAg moulds when they are in service. Stress-strain 

cycles recorded during tests provide the database for identifying material parameters of non-

linear kinematic and isotropic plasticity models. 

Simulated cyclic material responses using the set of identified parameters are compared to 

experimental cyclic data to confirm the ability of the considered plasticity models to 

adequately represent the elasto-plastic cyclic behaviour of the CuAg alloy under study. As a 

final result, the set of identified parameters can be directly used in finite element models 

aimed at simulating the elasto-plastic cyclic response of continuous-casting moulds, whose 

durability analysis is of great interest for the steel-making industry.  

Although this work focuses on the material characterization of a copper alloy for a mould, 

the proposed procedure can be also extended to other applications and materials: for example, 

a similar copper alloy is adopted in the water cooled part of anodes for electric arc furnaces, 

where the scrap steel is melted
11

. Cyclic hardening material models are also of interest for the 

simulation of cyclic thermal shocks in steel parts
12

, and can be used, for instance, to develop 

numerical analyses for life prediction in tool steel
13

. Automotive component design can also 

benefit from accurate simulations with thermo-mechanical loads, as suggested in
14

. 

Section 2 describes the experimental tests. Section 3 outlines the equations for time-

independent material plasticity, in order to summarise the main parameters involved in the 

experimental identification discussed in Section 4.  

2.  Experimental testing 

In the experimental tests, CuAg alloy specimens (as per ASTM B 124)
15

 were subjected to 

isothermal strain-controlled cyclic tests at three different temperatures (room temperature, 250 
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o
C, 300 

o
C).

16
 The tests applied a saw-tooth fully-reversed (Rε=-1) strain waveform at a strain 

rate of 0.01 s
-1

, which also enabled the creep effect to be reduced considerably.
17

 

Specimens had a cylindrical un-notched geometry, with a smooth variation with a diameter 

from 12 mm to 7 mm, and a large fillet radius (40 mm) to prevent a stress concentration in the 

transition region. Specimens had a total length of 120 mm and a gauge length of 20 mm, see 

Figure 1(a). 

Tests at room temperature (RT) were carried out on a servo-hydraulic Instron-Schenck test 

rig, with a nominal force of ±250 kN. Specimens were clamped by mechanical grips; an 

Instron extensometer (with a 12.5 mm gauge length and range ±5 mm) was used to record the 

longitudinal elongation during testing, see Figure 1(b). A total of 10 specimens were tested at 

room temperature (20 °C). An anomalous testing behaviour occurred in two specimens (e.g. 

crack initiated by the extensometer, specimen bending) and caused distorted results, which 

were discarded from subsequent analyses. 

High temperature tests were carried out by an Instron test rig with a nominal force of ±100 

kN. Specimens were heated by an induction heating system (coil) with a 10 kW medium 

frequency generator, Hüttinger TIG 10/300. The specimen temperature, measured within the 

gauge length with a pre-stressed type K loop thermocouple, was kept constant all the time and 

nearly uniform within the gauge length. An extensometer (with a 12.5 mm gauge length and 

range ±1.8 mm) was used to record the longitudinal elongation. Test specimens were clamped 

to water-cooled hydraulic grips, see Figure 1(c). Thermal strain compensation was also 

performed before starting the test to prevent unwanted thermal stress.  

A total of 10 and 8 specimens were tested at 250 °C and 300 °C, respectively. Similarly to 

RT tests, also at high temperatures some specimens showed an anomalous behaviour during 

testing (e.g. specimen destroyed when the test started, problems with clamping) and their 

results were excluded from subsequent analyses. For each temperature, a total of seven 

specimens remained for the subsequent analyses. 

At each testing temperature, specimens were subjected to strain amplitudes εa from 0.15% 

to 0.7%. The applied strain ε and resulting axial stress σ were recorded throughout each test 

(approximately 200 points per cycle), thus enabling the shape of the stress-strain cycles to be 

described in detail. Tests were interrupted before the complete failure of the specimen, when 

the maximum stress σmax had decreased by 80% from its initial value. At the end of the test, 

the number of cycles to failure Nf was also registered. Figure 2 plots examples of 

experimental (first and stabilised) cycles at room temperature. 
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3.  Plasticity models: theoretical background 

The modelling of rate-independent elasto-plastic material behaviour under cyclic loading 

can be well represented by a combined kinematic and isotropic hardening model (see Figure 

3), in which the von Mises yield surface is expressed as:
3,4,5

 

 ( ) ( ) 0:
2

3
y0 =−−−− σRXSXS  (1) 

where S is the deviatoric stress tensor, X is the back stress (kinematic) tensor, R is the drag 

stress, and σy0 is the initial yield stress. The back stress X controls the translation of the yield 

surface (kinematic model), whereas the drag stress R controls the homothetic expansion 

(isotropic model) of the yield surface during cyclic loading. 

Different models have been proposed to relate back stress X to plastic strain.
3,4,5

 In 

Prager’s linear kinematic model, X is proportional to the plastic strain increment:  

 pld
3

2
d εX C=  (2) 

where C is the hardening modulus. The linear kinematic model was modified by 

Armstrong and Frederick (AF) by adding a recall term:
18

 

 accpl,pl dd
3

2
d εC XεX γ−=  (3) 

which depends on the accumulated plastic strain ( ) 2/1

plplaccpl, :3/2 εε dd=ε . In expression (3), 

the recall constant γ controls the decrease rate of the hardening modulus as the plastic strain 

accumulates. A better approximation is achieved by decomposing the back-stress into several 

AF models (Chaboche model):
3,4,5

 

 accpl,iiplii

i

i dd
3

2
d, εC XεXXX γ−==∑  (4) 

Generally, up to three pairs of kinematic parameters (Ci, γi) are sufficient to represent the 

behaviour of the material over a wide range of strains (each one covering a specific range of 

strains). The coefficients of the material (C1, γ1) can be used to describe the initial non-
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linearity at small strain, (C2, γ2) the non-linear behaviour at medium to large strain, whereas 

(C3, γ3) describes the asymptotic behaviour at large strain (ε >1%). 

Under uniaxial loading, the AF kinematic model provides a simple analytical solution after 

the direct integration of Eq. (3):
3,4,5

 

 
( )pl,0pl

0

εεγν

γ
ν

γ
ν −−









−+= e

C
X

C
X  (5) 

where X0, εpl,0 are the values of X and εpl at the last change in plastic strain rate, whereas 

ν=±1 depending on the direction of the plastic flow. Similarly, for the Chaboche model: 

 
( )∑ 
















−+= −−

i i

i
0

i

i pl,0pli εεγν

γ
ν

γ
ν e

C
X

C
X  (6) 

In stabilised cycles, the amplitudes of stress σa and plastic strain εpl,a are related as: 

 ( )∑
=

+=
1

apl,yca tanh
i

i

i

iC
εγ

γ
σσ     (7)

 

In the isotropic model, the change in drag stress R depends on the accumulated plastic 

strain by the differential equation (often called Voce’s model
19

): 

 ( ) accpl,dd εRRbR −= ∞  (8)

 

where b is the speed of stabilization, R∞ is the asymptotic drag stress at cyclic stabilisation 

(R∞ is positive or negative to represent either hardening or softening). Direct integration of (8) 

gives the exponential relationship: 

 ( )accpl,1
εb

eRR
−

∞ −=  (9)

 

The change of R from zero to R∞ measures the amount of hardening or softening in cyclic 

loading. This trend can also be quantified by the change in maximum stress σmax,i after N 

cycles, relative to the maximum stress in the first cycle σmax,1 and in the stabilised one σmax,s: 

Page 18 of 50

Fatigue and Fracture of Engineering Materials and Structures

Fatigue and Fracture of Engineering Materials and Structures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Review Copy

8 

 

 
accpl,1

1max,smax,

1max,imax, ε

σσ
σσ b

e
R

R −

∞

−=≅
−

−
 (10)

 

The ratio on the left-hand side of Eq. (10) always remains positive, also for materials that 

exhibit softening (σmax,s≤σmax,1 and σmax,i≤σmax,1). In strain-controlled cycling, the accumulated 

plastic strain after N cycles is approximated as Napl,accpl, 2 εε ∆≅ , where ∆εpl=2εpl,a is the 

plastic strain range (twice the amplitude) which is taken as nearly constant in each cycle.  

Expression (10) assumes that hardening or softening only depends on the amount of 

accumulated plastic strain, irrespectively of the actual value of plastic strain amplitude εpl,a 

(this assumption will be contradicted by the data for the CuAg alloy shown later). In strain-

controlled cycles, stabilisation then occurs earlier (lower N) in cycles with a larger plastic 

strain amplitude εpl,a. If two cycles have different amplitudes (εpl,a)1>(εpl,a)2, stabilisation 

occurs at different numbers of cycles N1<N2, while the accumulated plastic strain reached in 

both cases remains identical (4(εpl,a)1·N1=4(εpl,a)2·N2). 

When combined, the kinematic and isotropic models provide the stress: 

 )()()( accpl,accpl,y0accpl, εεσεσ RX ++=  (11)

 

at a certain amount of accumulated plastic strain εpl,acc reached after N cycles, where 

X(εpl,acc) and R(εpl,acc) are the corresponding values of back stress and drag stress. 

4.  Identifying material parameters from experiments 

This section explains how the material parameters were identified by fitting experimental 

data. The unknown material parameters are: the elastic modulus E, the initial yield stress σy0, 

the kinematic variables Ci, γi (with i=1,2, or 3, depending on the back-stress decomposition) 

and the isotropic variables R∞, b.  

As suggested in Ref. [3], parameters of kinematic and isotropic models can be identified 

separately and sequentially: kinematic variables from stabilised cycles, and isotropic variables 

from the time evolution of stress-strain cycles. In fact, the kinematic model stabilises after a 

few cycles,
3,4,5

 during which the isotropic model contributes little to strain 

hardening/softening, due to the relatively small amount of accumulated plastic strain. On the 

other hand, in subsequent cycles the strain hardening/softening is essentially controlled by the 

isotropic model. 
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4.1.  Elastic modulus 

The elastic modulus E must be estimated first, as it defines the material elastic response, 

which is required for the subsequent identification of the yield stress and plastic strain. 

Correctly estimating the elastic modulus is thus very important for accurately defining the 

elasto-plastic material response.
20

 

As suggested in Refs. [20,21], the elastic modulus was estimated by a least squares linear 

fitting on the cyclic stress-strain data recorded at different strain amplitudes and temperatures. 

Since the elastic modulus may vary during the cyclic test,
20

 two different moduli (symbols E1, 

Es) were estimated. The value E1 was determined from the straight line portion of the first 

one-quarter cycle, at the start of the cyclic test. The value Es was estimated from the stabilised 

cycle, which usually occurs approximately at half the number of cycles to failure. The value 

Es was taken as the modulus Eup in the loading portion of the stabilised cycle, since the 

difference between Eup and Edown (value in the unloading portion of the stabilised cycle) was 

less than 10%. Values of E1 and Es measured for each strain amplitude were used in the 

subsequent analysis step to determine the yield stress. 

Table 1 lists the values of E1 and Es estimated from the test data at each temperature and 

strain amplitude (data with an anomalous testing behaviour were excluded, as previously 

highlighted). Within this set, a few values (marked by ‘a’) were not considered in the 

statistical analysis, because they were actually estimated from the second cycle due to some 

disturbance occurring at the beginning of the test.  

For each temperature, the last rows in Table 1 report the mean values, the standard 

deviations and 95% confidence intervals for the mean value, for both parameters of E1 and Es. 

Though unnecessary for the subsequent analysis, a statistical analysis was also performed 

to investigate whether the elastic modulus follows a trend with temperature. The theoretical 

details are not reported here, as they can be found in any introductory statistical textbook (for 

example Ref. [26]). The results are summarised in the Appendix and Table 5. The statistical 

analysis emphasises that both E1 and Es markedly decrease from room temperature to 250 °C, 

whereas they remain almost stable from 250 °C to 300 °C (which may be expected, as these 

temperatures are much closer). 

In the following, the symbols E1,ave, Es,ave are used to indicate the mean values that will be 

used in the numerical simulations. 
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4.2.  Yield stress 

Once the elastic modulus was determined, the yield stress was estimated. There are two 

distinct values: initial yield stress σy0 measured at the first one-quarter cycle, and cyclic yield 

stress σyc measured at the stabilised cycle. The initial and cyclic yield stresses were 

determined for each strain amplitude by considering the corresponding values of E1 and Es, 

respectively. 

From the stress σ and total strain ε recorded in each test, the components of elastic strain 

εel=σ/E and plastic strain εpl=ε−εel were separated. In each measured cycle, the total strain 

amplitude εa was also separated into the elastic εel,a and plastic εpl,a strain components. 

The initial yield stress σy0 corresponds to the onset of plastic strain, i.e. it is the point 

where the stress first deviates from the vertical axis of the stress vs. plastic strain plot, see 

Figure 4(a). The cyclic yield stress σyc was determined by imposing a 0.02% strain offset 

from the tip of the loading portion of the stress vs. plastic strain stabilised cycle. The 

intersection gives 2σyc (i.e. twice the cyclic yield stress), see Figure 4(b). 

Table 2 gathers the yield stresses estimated at each temperature. For each temperature, the 

last rows in Table 2 report the mean values, the standard deviations and 95% confidence 

intervals for the mean value, for both parameters σy0 and σyc. 

The change in yield stress from the first to the stabilised cycle reveals whether the material 

is hardening or softening. Table 2 reveals that σyc<σy0 in all cases examined, which confirms 

that the CuAg alloy softens.  

As for the elastic modulus, a statistical analysis was used to detect if the yield stress also 

follows a temperature trend (see Appendix and Table 5). While σy0 does not seem to be 

influenced by the temperature, the cyclic yield stress σyc decreases from room temperature to 

250 °C. Instead, no marked trend is detected for both σy0 and σyc, when the temperature 

increases from 250 °C to 300 °C. 

In the following, the symbols σy0,ave and σyc,ave are used to indicate the mean values that 

will be used in the numerical simulations. 

4.3.  Kinematic model 

Kinematic parameters were identified from stabilised cycles at various plastic strain 

amplitudes. The parameters obtained thus well represent the material behaviour over a wide 

range of strain amplitudes.  
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The procedure is explained here for the room temperature data. First, the amplitudes of 

stress σa and plastic strain εpl,a were measured for each stabilised cycle available. The 

amplitude of back stress is Xa=∆X/2=σa−σyc where σyc has already been determined. Figure 5 

depicts an example for three cycles. 

The above calculation steps were repeated for each stabilised cycle and resulted in a set of 

pairs (ε
(j)

pl,a, Xa
(j)

) plotted in Figure 6. These data correspond to the tip of each stabilised cycle. 

The experimental points were then fitted by the kinematic model in (7) with one-pair (C1, γ1), 

two-pairs (C1, γ1, C2, γ2), or three-pairs (C1, γ1, C2, γ2, C3, γ3). 

The fitting procedure described above was also applied to the stabilised cycles at 250 °C 

and 300 °C, and resulted in the parameters listed in Table 3.  

Compared to the one-pair model, the two- and three-parameter models best describe the 

experimental point trend in Figure 6 (the three-parameter model actually gives the smallest 

fitting error). 

The validity of the parameters identified was also verified by checking simulations against 

experiments for several stabilised cycles at different temperatures and strain amplitudes. 

Simulations only used a kinematic model with one, two or three pairs (Ci, γi), whose values 

are taken from Table 3. For the elastic modulus and the cyclic yield stress, simulations took 

the average values Es,ave, σyc,ave previously calculated. 

The results in Figure 7 and Figure 8 emphasise that a close agreement with the experiments 

in Figure 6 does not necessarily also imply a close agreement between simulated and 

experimental cycles. 

Figure 7 compares three stabilised cycles with the same strain range εa=0.5%, but with 

different temperatures. Overall, the results of the three-pair seem slightly closer to the 

experiments, although with some deviations. Surprisingly, at all three temperatures, the one-

pair model follows the unloading branch of cycles better than the other two models. The two-

pair model, instead, seems to provide the worst prediction, especially at 250 °C and 300 °C 

where it moves away from the curved branch of experimental cycles. Likewise for all three 

models, the fitting tends to become less satisfactory in the curved branch of each cycle, close 

to the “knee” point dividing the elastic and plastic domains. At the knee point, for example, 

the experimental cycles have a smoother shape than the simulations. In addition, in the curved 

branch, the shape of the simulated cycles is governed by exponential equation (6), thus 

possibly resulting in a poor prediction despite the accuracy of fitting achieved in Figure 6, 

which in fact only refers to the tip of the saturated cycles.  
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Similar considerations also apply to Figure 8, which compares the stabilised cycles at the 

same temperature (RT), but different strain amplitudes εa=0.3%, 0.4%, 0.6%. The average 

values Es,ave=114763 MPa, σyc,ave=86 MPa from Table 1 and Table 2 were used. The observed 

agreement confirms how, regardless of the number of pairs, the kinematic model correctly 

simulates the shape of the stabilised cycles also over a wide interval of strain ranges, at room 

temperature. Similar conclusions also apply to cycles at higher temperatures. 

In conclusion, based on the above comparison, the three-pair model was used as a 

reference in all subsequent simulations using the combined kinematic-isotropic model 

exclusively because it gives the lowest fitting error (see Figure 6). However, simulations with 

models with one, two or three pairs show small differences that would probably be hidden, if 

the scatter among tests at a constant strain range were also taken into account. It can therefore 

be concluded that, in most cases the one-parameter model might be preferable due to its lower 

number of parameters. As a consequence, the model complexity will be reduced and, even if 

only slightly, also the computational time.  

The kinematic model should be adopted to describe the shape of the stress-strain loop and 

the Bauschinger effect, however it does not capture the evolution of cyclic 

hardening/softening. Figure 9 shows a comparison between the experimental (first and 

stabilised) and the first five cycles obtained by the numerical simulation, which exploits a 

three-pair kinematic model with either initial (E1,ave, σy0,ave) or stabilised (Es,ave, σyc,ave) values 

for Young’s modulus and yield stress.  

The kinematic model with initial parameters stabilises over the first two cycles, showing a 

quite good agreement with the first experimental cycle. Nevertheless, it does not further 

evolve toward the stabilised experimental cycle. Similarly, if the stabilised parameters are 

adopted from the beginning of the simulation, the kinematic model overlaps with the 

stabilised experimental loop (as can be deduced from Figure 7). In the case in which strain 

softening occurs, yielding occurs at a lower stress value, thus leading to a greater amount of 

plastic strain. As a result, as also pointed out in [22], when simulating the cyclic response of 

an actual mechanical component, using stabilised parameters in the kinematic model would 

produce plastic deformations in regions which actually should remain elastic without 

exhibiting any softening phenomenon, thus leading to possible mistakes in the final results. In 

order to take the cyclic hardening/softening into account, an isotropic model should then be 

combined with a kinematic one. 
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4.4.  Isotropic model 

The next step is to identify the isotropic parameters. Figure 10 plots the change in the 

maximum stress σmax in each cycle, as a function of the cycle number N, for room temperature 

data at several strain amplitudes. The decreasing trend confirms a softening behaviour for the 

CuAg alloy, which also occurs for data at 250 °C and 300 °C. 

However the CuAg alloy never saturates completely: the maximum stress σmax continues to 

decrease and does not approach any horizontal asymptote at large N. Consequently, the 

minimum value of σmax in the last cycle, which defines the saturated stress σmax,s, needs to be 

interpreted in a conventional way (saturated stress is then identified at half cycles to failure). 

The total excursion of σmax from its first value σmax,1 in the first cycle to the saturated stress 

σmax,s defines the asymptotic drag stress R∞=σmax,1−σmax,s in Eq. (9).  

The second distinctive feature is that, at certain strain amplitudes (for example, εa=0.175% 

at room temperature), the CuAg alloy slightly hardens in the first few cycles, before it starts to 

soften significantly. As a result, the trend of maximum stress is not monotonic. Instead, it first 

increases in the first few cycles so that σmax,i>σmax,1 and negative values result in the left hand 

side in Eq. (10).  

Finally, the data in Figure 10 (as well as those at 250 °C and 300 °C, although not shown 

here) highlight that although the maximum stress σmax increases predictably with strain 

amplitude values, the curves are not simply shifted based on strain amplitudes. Not only are 

such curves characterised by different “shapes” (some are more flat, others more arched), 

some of them also intersect each other. This demonstrates that the curves are not simply 

shifted upward or downward as the strain amplitude increases or decreases. As a result, the 

difference R∞=σmax,1−σmax,s takes dissimilar values for each strain amplitude, as shown in 

Table 4, which also in the last row reports the R∞ averaged over all strain amplitudes, for each 

testing temperature. 

These three distinctive features have important consequences when trying to estimate the 

exponent b of the isotropic model by fitting Eq. (10) to the experiments. This fitting requires 

that the σmax/N curves in Figure 10 are rearranged by drawing the left-hand side in (10) as a 

function of the plastic strain accumulated after N cycles Napl,accpl, 2 εε ∆≅ , where apl,2 ε∆  

approximates the amount accumulated in one cycle. This calculation results in the “s-shaped” 

data in Figure 11. 
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Essentially, Figure 10 and Figure 11 both show the same data, mirrored about a horizontal 

axis and scaled in both the y-axis (dimensionless maximum stress) and x-axis (from N to 

εpl,acc). The data in Figure 11 thus have the same distinctive features already observed in 

Figure 10. 

First, for some plastic strain amplitudes, data take on negative values for an accumulated 

plastic strain in the range 10
-2÷5⋅10

-2
. These negative values are caused by the small 

hardening that occurs over the first 5-10 cycles (just after starting the test), before the material 

starts to soften significantly. Such a small hardening gives a higher maximum stress σmax,i than 

the initial one σmax,1 in the very first cycle, which results in a positive difference σmax,i−σmax,1 

and thus a negative ratio in the left-hand side of Eq. (10).  

Second, the data in Figure 11 do not converge to any horizontal asymptote at large values 

of accumulated plastic strain. They even seem not to converge at all. When approaching large 

values of accumulated plastic strain (around εpl,acc=4÷8), data still increase with a positive 

slope (see, for example, the series at εa=0.175%, 1%, 1.25%). Also in the region at low εpl,acc 

(close to 10
-2

), the data points do not stay horizontal, but increase almost immediately with a 

positive slope (for example, in Figure 11 see series for εa=0.2% and 0.4%).  

However a third aspect is more significant: the curves in Figure 11 depend on the values of 

plastic strain amplitude εpl,a, which contradicts the hypothesis behind Eq. (10) in which 

material softening is assumed to only depend on the accumulated plastic strain, regardless of 

the actual value of plastic strain amplitude. This hypothesis implies that all experimental data 

should collapse into one single curve. In Refs. [3,4,5], this hypothesis is verified against the 

cyclic data of a 316 stainless steel in Ref. [23] (these data can also be found in Refs. [3,4,5]), 

although careful examination would reveal that a slight dependence on strain amplitude also 

characterises this material. A much stronger dependence has been observed, instead, for other 

materials (nickel base superalloy
24

, 42CrMo4 steel
25

) investigated in two independent studies. 

The features mentioned above help to explain why trying to fit expression (10) to the data 

in Figure 11 cannot be fully successful. For example, Eq. (10) presumes that the data do not 

depend on the strain amplitude values, whereas they actually do. This dependence is 

confirmed by the dissimilar values of b in Table 4, which result from fitting Eq. (10) 

separately to data pertaining to different strain amplitudes. These differences then suggest that 

model (8) should be modified to account for plastic strain amplitude explicitly (this, of course, 

falls outside the scope of this article).  
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Fitting also does not seem completely satisfactory when restricted to data at only one strain 

amplitude, as in the examples in Figure 12 for single data series at εa=0.3% and 0.5%. In fact, 

Eq. (10) is always positive and has two horizontal asymptotes at both tails, which is not 

shown in the data. A similar trend is also observed for high temperature data. 

The experimental outcome shows that the CuAg alloy exhibits a variability of such 

parameters over a wide range of strains. Attempting to fit the isotropic model separately to 

data at each strain amplitude would result in the parameters listed in Table 4.  

On the other hand, only one single value of the isotropic parameters is needed in order to 

use the isotropic model in a numerical simulation. In addition, thermo-mechanically loaded 

components usually undergo plastic deformations over a wide range of strains. Therefore, not 

only does the material model to be adopted in simulations need to be calibrated for each strain 

amplitude, but it should also be valid over a wider range of loading conditions. A possible 

compromise could be to take an average value R∞,ave and to estimate a single value ball by 

fitting Eq. (10) to all the experimental data as in Figure 11.  

Note that the value of b governs the speed of stabilisation, but not the final shape of the 

stabilized cycle. In fact, the typical strategy suggested in the literature
22

 to speed up the 

simulation is to increase the value of this parameter. 

4.5.  Combined kinematic and isotropic model 

The final step is to combine the isotropic with the kinematic model in order to verify 

whether numerical simulations can reasonably capture the material softening over cycles.  

For instance, in Figure 13 the combined kinematic-isotropic model is compared to 80 

experimental cycles at room temperature and strain amplitude εa=0.5% (for more clarity, only 

one cycle every five is shown). Simulations used the material parameters presented in Table 3 

and Table 4. Although the parameters are not specifically calibrated on the considered strain 

amplitude, the first and stabilised cycles, as well as the overall cycle evolution, are well 

represented. By contrast, if only one strain amplitude is of interest, the values in Table 4 

permit the isotropic component of the combined model to be calibrated on the desired 

condition.  

5.  Conclusions 

The elasto-plastic cyclic response of a CuAg0.1 alloy for thermo-mechanical applications 

was investigated. Strain-controlled cyclic tests were performed at three different temperatures 
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(room temperature, 250 °C, 300 °C) and at several strain amplitudes. The stress-strain 

responses recorded during tests were used to identify several material parameters: elastic 

modulus and yield stress (initial and stabilised), parameters of non-linear kinematic and 

isotropic models (Armstrong-Frederick, Chaboche, Voce).  

Each first cycle provided the initial yield stress σy0 and the elastic modulus E1, whereas 

stabilised cycles provided the cyclic yield stress σyc and the elastic modulus Es at saturation. 

Stabilised cycles at several strain amplitudes provided the basis for identifying parameters of 

the kinematic model with one, two or three pairs (Ci,γi). The evolution of stress-strain cycles 

until complete stabilisation was used for estimating the isotropic parameters R∞, b. All 

parameters were evaluated from data at each testing temperature. Finally, the validity of all 

the identified material parameters was checked by comparing simulated against experimental 

cycles. 

The kinematic model correctly captured the behaviour of the material in stabilised 

conditions. Although kinematic models with one, two or three pairs showed slight differences, 

the three-pair model was chosen as reference in all simulations, since it gave the lowest fitting 

error. However, as the scatter among tests may be relevant, it can be concluded that the one-

pair model may be preferable due to its lower number of parameters.   

The kinematic model is suitable for describing the shape of the stress-strain loop, but it 

does not capture the evolution of cyclic softening of the CuAg0.1 alloy. Thus, an isotropic 

model was combined with the kinematic one. The attempt to fit this model to the experimental 

data was, however, not as satisfactory as expected, due to some peculiarities of the data. 

Indeed, the decrease in the maximum stress σmax over cycles was shown to be correlated not 

only to the accumulated plastic strain εpl,acc, but also to the strain amplitude εa, thus leading to 

an uncertainty when estimating the speed of stabilisation b. Despite such peculiarities seeming 

to contradict some of the assumptions behind the isotropic model, the combined model 

(kinematic plus isotropic) permits the first and stabilised cycles to be represented quite well. 

The combined model also captures the material softening over cycles with reasonable 

accuracy despite the determination of b parameter being affected by the previously mentioned 

uncertainty.  

The results collected in this work summarise all the necessary data required by a 

commercial finite element code, used to perform cyclic elasto-plastic simulations aimed at 

structural durability analysis. 

Page 27 of 50

Fatigue and Fracture of Engineering Materials and Structures

Fatigue and Fracture of Engineering Materials and Structures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Review Copy

17 

 

6.  Appendix – Statistical analysis of data 

A statistical test based on the analysis of variance (ANOVA) can be performed on the 

experimental data to detect whether the elastic modulus and the yield stress are in some way 

dependent on the temperature. The data in Table 1 and Table 2 are treated as a single-factor 

experiment, in which the factor (temperature) varies at three levels (RT, 250 °C, 300 °C).  

In a single-factor ANOVA, hypothesis testing is performed on a “null hypothesis” H0, 

which assumes that data at different temperatures share the same mean value (i.e. the 

temperature has no effect on data). If the test rejects H0, there is strong evidence that the 

parameter (elastic modulus or yields stress) is actually affected by the temperature.  

The result of the test is summarised by a p-value, which needs to be compared with the 

significance level of the test α (the typical value α=0.01 is selected here). The p-value conveys 

the information on the weight of evidence against H0: if the data return a p-value that is 

considerably smaller than α, then there is strong evidence to conclude that H0 is not true (i.e. 

the data are affected by the temperature). Table 5 reports the p-values resulting from the 

hypothesis testing of the data in Table 1 and Table 2. The analysis compares the data either 

for all three temperatures, or just for 250 °C and 300 °C. 

A dependence on temperature was detected in all the cases examined, except for σy0. This 

dependence is, however, limited to a change in temperature from room condition to 250 °C, 

whereas no appreciable variation occurred from 250 °C to 300 °C (a p-value>α was always 

observed when only data at 250 °C and 300 °C were analysed). 
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TABLES 

Table 1. Elastic modulus estimated from cyclic stress-strain data at different temperatures. For each strain amplitude εa, the elastic modulus 

is estimated from the first cycle, E1, and from the stabilised cycle, Es. The last rows list the mean value, standard deviation and 95% confidence 

interval on the mean.  

 Room temperature 250 °C 300 °C 

εa E1 (MPa) Es (MPa) 
 

E1 (MPa) Es (MPa) 
 

E1 (MPa) Es (MPa) 

0.15%. 122400 116400 106200a 97110 − − 

0.175% 122000 114500 − − 107700a 94000 

0.2% 121500 115900 108200a 99910 100400a 96990 

0.25% − − − − 102600a 92350 

0.3% 119700 116900 108500 93760 105600 97930 

0.35% − − 108600 98530 − − 

0.4% 119900 115900 113400a 98760 104300 98820 

0.5% 118200 113500 105400 90140 101900 95770 

0.6% 117400 110100 − − − − 

0.7% 118800 114900 103900 85100 103400 87690 

Mean value 119988 114763 106600 94759 103800 94793 

Standard deviation 1834 2180 2334 5445 1556 3849 

Confidence interval 118454÷121521 112940÷116585 102886÷110314 89722÷99795 101325÷106275 91233÷98353 

a 
Values estimated on the second cycle and then not included in the statistical analysis 
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Table 2. Yield stress estimated from several stress-strain cycles at different temperatures. For each strain amplitude εa, the table gives the 

initial yield stress σy0 (estimated from the first cycle) and the cyclic yield stress σyc (estimated from the stabilised cycle). The last rows list the 

mean value, standard deviation, and 95% confidence interval on the mean. 

 Room temperature 250 °C 300 °C 

εa σy0 (MPa) σyc (MPa) 
 

σy0 (MPa) σyc (MPa) 
 

σy0 (MPa) σyc (MPa) 

0.15%. 51 73 116a 52 − − 

0.175% 90 74 − − 113 48 

0.2% 96 72 135 55 132
a
 49 

0.25% − − − − 83a 53 

0.3% 122 88 126 60 124 53 

0.35% − − 116 60 − − 

0.4% 139 91 104a 61 103 55 

0.5% 118 84 85 57 116 49 

0.6% 135 89 − − − − 

0.7% 155 114 87 53 82 44 

Mean value 113 86 110 57 108 50 

Standard deviation 33.1 13.8 22.8 3.6 16.2 3.8 

Confidence interval 85.5÷141.0 74.1÷97.2 81.5÷138.1 53.5÷60.2 87.5÷127.7 46.7÷53.6 

a Values estimated on the second cycle and then not included in the statistical analysis 
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Table 3. Kinematic parameters identified from experimental data (values of Ci are in MPa).  

Temperature One pair Two pairs Three pairs 

 C1 γ1 C1 γ1 C2 γ2 C1 γ1 C2 γ2 C3 γ3 

RT 51140 702.4  62500 2051 15060 292.2  25880 1627 24460 1624 15620 315.4 

250 °C 40060 915.8  87650 3437 6070 48.5  31310 1708 10240 343.6 5256 1748 

300 °C 32660 737.3  81650 3191 5502 0  13170 1092 10700 398.2 10650 1155 
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Table 4. Isotropic parameters identified from experiments.  

 Room temperature 250 °C 300 °C 

εa b R∞ (MPa) 
 

b R∞ (MPa) 
 

b R∞ (MPa) 

0.15%. 1.307 -56 4.005 -66 − − 

0.175% 1.197 -71 − − 1.19 -76 

0.2% 3.145 -80 4.169 -84 5.617 -80 

0.25% − − − − 2.915 -81 

0.3% 3.620 -84 1.734 -77 7.393 -82 

0.35% − − 6.175 -77 − − 

0.4% 4.488 -83 5.099 -93 6.123 -76 

0.5% 2.871 -52 5.426 -70 4.917 -64 

0.6% 2.911 -52 − − − − 

0.7% 4.162 -69 1.484 -56 4.15 -81 

Mean value 2.963 -68 4.015 -75 4.165 -77 

Standard deviation 1.201 13.6 1.973 12.1 2.079 6.3 

Confidence interval 1.958÷3.967 -79.7÷ -57.0 1.944÷6.085 -85.9÷ -63.5 2.693÷6.537 -83.0÷ -71.3 

Value on merged data, 

ball 
a
 

2.352 − 3.894 − 5.293 − 

a Parameter ball is estimated considering all data merged together as in Figure 11. 
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Table 5. Results of the analysis of variance on the elastic modulus and yield stress. 

Parameter  p-value  p-value 

 data at RT, 250 °C and 300 °C  data only at 250 °C, 300 °C 

E1  3.6284·10
−09

 (reject H0)  0.09286 (accept H0) 

Es  3.4439·10
−09

  (reject H0)  0.98937 (accept H0) 

σy0  0.93062 (accept H0)  0.86447 (accept H0) 

σyc  4.9161·10−07  (reject H0)  0.86447 (accept H0) 
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FIGURE CAPTIONS 

Figure 1. (a) Specimen geometry; (b) Room temperature test: specimen clamped on the 

testing machine, with extensometer; (c) High-temperature test: water-cooled 

hydraulic grips, heating system (coil), and extensometer. 

Figure 2. Stress-strain cycles (first and stabilised) recorded in tests at different temperatures, 

at strain amplitude εa=0.5%. 

Figure 3. Sketch of combined kinematic and isotropic models in (a) in deviatoric stress space 

and (b) in uniaxial tensile loading. 

Figure 4. Identification of yield stress: (a) initial yield stress σy0 from the first one-quarter 

cycles; (b) cyclic yield stress σyc from the stabilised cycle. 

Figure 5. Identification of cyclic yield stress σyc and plastic strain amplitude εpl,a from 

experimental cycles at three different strain amplitudes at RT. 

Figure 6. Experimental cyclic data at room temperature (markers) and fitted kinematic model 

(solid lines) for one, two or three pairs (Ci, γi) of kinematic variables. 

Figure 7. Comparison between simulated and experimental stabilised cycles at RT, 250 °C, 

300 °C, under the same strain range εa=0.5%. Simulations apply a kinematic model 

with one, two or three pairs (Ci, γi). 

Figure 8. Comparison between simulated and experimental stabilised cycles at RT, under 

different strain amplitudes εa=0.3%, 0.4% and 0.6%. 

Figure 9. Comparison between simulations and experiments: 5 cycles at RT and εa=0.5%. 

Simulations use the three-pair kinematic model with initial and stabilized values of 

E and σy. 

Figure 10. Maximum stress vs. number of cycles, for tests at RT with different strain ranges 

applied.  

Figure 11. Experimental cyclic data at room temperature (markers), fitted by the isotropic 

model in Eq. (10) (line). 
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Figure 12. Isotropic model fitted to room temperature data at strain amplitude: (a) εa=0.3% 

and (b) εa=0.5%. 

Figure 13. Comparison between simulations and experiments: 80 cycles at RT and εa=0.5%. 

Simulations use a combined three-pair kinematic and isotropic model. 

 

Page 37 of 50

Fatigue and Fracture of Engineering Materials and Structures

Fatigue and Fracture of Engineering Materials and Structures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Review Copy

 
(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

Figure 1. (a) Specimen geometry; (b) Room temperature test: specimen clamped on the 

testing machine, with extensometer; (c) High-temperature test: water-cooled hydraulic grips, 

heating system (coil) and extensometer. 
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First cycle Stabilised cycle 

  

  

  

 

 

Figure 2. Stress-strain cycles (first and stabilised) recorded in tests at different temperatures, 

at strain amplitude εa=0.5%.  
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Figure 3. Sketch of combined kinematic and isotropic models in (a) in deviatoric stress space 

and (b) in uniaxial tensile loading. 
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(a) 

 

 

(b) 

 

 

Figure 4. Identification of yield stress: (a) initial yield stress σy0 from the first one-quarter 

cycles; (b) cyclic yield stress σyc from the stabilised cycle. 
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Figure 5. Identification of cyclic yield stress σyc and plastic strain amplitude εpl,a from 

experimental cycles at three different strain amplitudes at RT. 
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Figure 6. Experimental cyclic data at room temperature (markers) and fitted kinematic model 

(solid lines) for one, two or three pairs (Ci, γi) of kinematic variables. 
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Figure 7. Comparison between simulated and experimental stabilised cycles at RT, 250 °C, 

300 °C, under the same strain range εa=0.5%. Simulations apply a kinematic model with one, 

two or three pairs (Ci, γi).  
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Figure 8. Comparison between simulated and experimental stabilised cycles at RT, under 

different strain amplitudes εa=0.3%, 0.4% and 0.6%. 
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Figure 9. Comparison between simulations and experiments: 5 cycles at room temperature 

and εa=0.5%. Simulations use the three-pair kinematic model with initial and 

stabilized values of E and σy. 
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Figure 10. Maximum stress vs. number of cycles, for tests at RT with different applied strain 

ranges. 
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Figure 11. Experimental cyclic data at room temperature (markers), fitted by the isotropic 

model in Eq. (10) (line). 
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Figure 12. Isotropic model fitted to room temperature data at strain amplitude: (a) εa=0.3% 

and (b) εa=0.5%. 
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Figure 13. Comparison between simulations and experiments: 80 cycles at room temperature 

and εa=0.5%. Simulations use a combined three-pair kinematic and isotropic model. 
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