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SOLUTION THEORY TO

SEMILINEAR HYPERBOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

WITH POLYNOMIALLY BOUNDED COEFFICIENTS

ALESSIA ASCANELLI, SANDRO CORIASCO, AND ANDRÉ SÜSS

Abstract. We study mild solutions of a class of stochastic partial differential equations, involving operators with
polynomially bounded coefficients. We consider semilinear equations under suitable hyperbolicity hypotheses on
the linear part. We provide conditions on the initial data and on the stochastic terms, namely, on the associated
spectral measure, so that mild solutions exist and are unique in suitably chosen functional classes. More precisely,
function-valued solutions are obtained, as well as a regularity result.

1. Introduction

The stochastic partial differential equations (SPDEs in the sequel) that we consider in the present paper are
of the general form

(1.1) L(t, x, ∂t, ∂x)u(t, x) = γ(t, x, u(t, x))+ σ(t, x, u(t, x))Ξ̇(t, x),

where L is a linear partial differential operator that contains derivatives with respect to time (t ∈ R) and space
(x ∈ Rd, d ≥ 1) variables, γ, σ are real-valued functions, subject to certain regularity conditions, Ξ is a random
noise term that will be described in detail in Section 2, and u is an unknown stochastic process called solution
of the SPDE. That is, the equations (1.1) are semilinear, in the sense that the only possible non-linearities are
on the right-hand side, and are not present in the operator L. In Subsection 1.1 below we will describe in more
detail the conditions we impose on the operator L, the most important one being (a notion of) hyperbolicity.

Since the sample paths of the solution u are in general not in the domain of the operator L, in view of the
singularity of the random noise, we rewrite (1.1) in its corresponding integral (i.e., weak) form and look for mild
solutions of (1.1), that is, stochastic processes u(t, x) satisfying

(1.2)

u(t, x) = v0(t, x) +

∫ t

0

∫

Rd

Λ(t, s, x, y)γ(s, y, u(s, y))dyds

+

∫ t

0

∫

Rd

Λ(t, s, x, y)σ(s, y, u(s, y))Ξ̇(s, y)dyds,

where:

- v0 is a deterministic term, taking into account the initial conditions;
- Λ is a suitable kernel, associated with the fundamental solution of the linear partial differential equation

(linear PDE in the sequel) Lu = 0;
- the first integral in (1.2) is of deterministic type, while the second is a stochastic integral.

The kind of solution u we can construct for equation (1.1) depends on the approach we employ to make sense of
the stochastic integral appearing in (1.2). Note that both integrals in (1.2) contain a slight abuse of notation, since
Λ(t, s, x, y) is, in general, a distribution (x, y). Given the commonly wide usage of such so-called distributional
integrals, we will also often adopt here this notation in the representation of our class of mild solutions to (1.1).

Classically, there are two main ways to give a meaning to stochastic integrals, like the one appearing in (1.2).
The first approach, the one we are going to deal with in the present paper, consists in associating a Brownian

motion, with values in a Hilbert space, with the random noise. One can then define the stochastic integral
as an infinite sum of Itô integrals with respect to one-dimensional Brownian motions. This leads to solutions
involving random functions taking values in suitable functional spaces, using semigroup theory (see, e.g.,
[19] for a detailed treatment). To our best knowledge, the most general result of existence and uniqueness
of a function-valued solution to hyperbolic SPDEs is given in [28], where the author considers a semilinear
stochastic wave equation having a uniformly elliptic second order operator A in place of the Laplacian, with
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uniformly bounded coefficients depending on x ∈ Rd, d ≥ 1. There, sufficient conditions on the stochastic term
Ξ̇ and on the coefficients of A are given, in order to find a unique function-valued solution. In the present paper
we show existence and uniqueness of a function-valued solution to a wider class of semilinear hyperbolic
SPDEs, with possibly unbounded coefficients depending on (t, x) ∈ [0,T] ×Rd, d ≥ 1.

A disadvantage of the function(al-spaces)-valued solution u of (1.1) sketched above is that, in general, it cannot
be evaluated in the spatial argument (usually, it is a random element in the t (that is, time) parameter, taking
values in a Lp(Rd)-modeled Hilbert or Banach space). Then, an alternative approach focuses instead on the
concept of stochastic integral with respect to a martingale measure. That is, the stochastic integral in (1.2)
is defined through the martingale measure derived from the random noise Ξ̇. Here one obtains a so-called
random-field solution, that is, u is defined as a map associating a random variable to each (t, x) ∈ [0,T0]×Rd, where
T0 > 0 is the time horizon of the equation. For more details, see, e.g., the classical references [10, 17, 34], and the
recent papers [2, 7], where the existence of a random-field solution in the case of linear hyperbolic SPDEs with
(t, x)-dependent coefficients has been shown. On the other hand, a disadvantage of such random-field solution u
of (1.1) is that its construction for non-linear equations is based on the stationarity condition Λ = Λ(t− s, x− y),
which is fulfilled by SPDEs with constant coefficients, but cannot be assumed if we want to deal with more
general linear operators L in (1.1), indeed admitting variable coefficients. Namely, we have shown in [2] how
random-field solutions can be constructed for arbitrary order, linear (weakly) hyperbolic SPDEs, with (possibly
unbounded) coefficients smoothly depending on (t, x) ∈ [0,T] ×Rd.

It is remarkable that, in many cases, the theory of integration with respect to processes taking values in
functional spaces, and the theory of integration with respect to martingale measures, lead to the same solution
u (in some sense) of an SPDE, see [18] for a precise comparison. We conclude the paper showing a result of
that kind, comparing the function-valued solutions to (1.1) obtained in the present paper, in the special case of
the linear equations, with the random-field solutions of the same equation found in [2].

We remark that in the present paper, as well as in [2, 7], the main tools used to construct and study the
solutions, namely, pseudodifferential and Fourier integral operators, come from microlocal analysis. To our
best knowledge, in [7] their full potential has been rigorously applied for the first time within the theory of
random-field solutions to hyperbolic SPDEs. Other applications of these operators in the context of S(P)DEs
can be found in [33], where S(P)DEs are investigated in the framework of function-valued solutions by means
of pseudodifferential operators, and in [25], where a program for employing Fourier integral operators in sto-
chastic structural analysis is described. We are not aware of any other systematic application of microlocal and
Fourier integral operators techniques. In particular, concerning the analysis of (weakly) semilinear hyperbolic
SPDEs with unbounded coefficients, we provide it here. As it is customary for the classes of the associated
deterministic PDEs, we are interested in both the smoothness, as well as the decay at spatial infinity, of the
solutions. Here we prove an analog of such global regularity properties, employing suitable weighted Sobolev
spaces, namely, the so-called Sobolev-Kato spaces.

1.1. The equations we consider. As mentioned above, we study semilinear SPDEs (1.1) whose partial dif-
ferential operators L have coefficients in (t, x) ∈ [0,T] × Rd that may admit a polynomial growth as |x| → ∞.
Namely, we treat hyperbolic equations of arbitrary order m ∈ N of the form (1.1), whose coefficients are defined
on the whole space Rd, with

L = Dm
t −

m∑

j=1

A j(t, x,Dx)D
m− j
t , A j(t, x,D) =

∑

|α|≤ j

aα j(t, x)Dα
x ,(1.3)

where m ≥ 1, aα j ∈ C∞([0,T],C∞(Rd)) for |α| ≤ j, j = 0, . . . ,m, and, for all k ∈ N0, β ∈Nd
0
, there exists a constant

C jkαβ > 0 such that

|∂k
t∂
β
xaα j(t, x)| ≤ C jkαβ〈x〉|α|−|β|,

for all (t, x) ∈ [0,T]×Rd and 0 ≤ |α| ≤ j, 1 ≤ j ≤ m. The hyperbolicity of L means that the symbol Lm(t, x, τ, ξ) of
the SG-principal part of L, defined here below, satisfies

(1.4) Lm(t, x, τ, ξ) := τm −
m∑

j=1

∑

|α|= j

aα j(t, x)ξατm− j =

m∏

j=1

(
τ − τ j(t, x, ξ)

)
,

with τ j(t, x, ξ) real-valued, τ j ∈ C∞([0,T]; S1,1(Rd)), j = 1, . . . ,m. The latter means that, for any α, β ∈Nd
0
, k ∈N0,

there exists a constant C jkαβ > 0 such that

|∂k
t∂
α
x∂

β
ξτ j(t, x, ξ)| ≤ C jkαβ〈x〉1−|α|〈ξ〉1−|β|,
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for (t, x, ξ) ∈ [0,T] × R2d, j = 1, . . . ,m (see Section 3 below for the definition of the so-called SG-classes of
symbols Sm,µ(Rd), (m, µ) ∈ R2, and the corresponding class of pseudodifferential operators). The real solutions
τ j = τ j(t, x, ξ), j = 1, . . . ,m, of the equation Lm(t, x, τ, ξ) = 0 with respect to τ are usually called characteristic
roots of the operator L. We will treat hyperbolic operators of three different types:

(1) strictly hyperbolic,
(2) weakly hyperbolic with roots of constant multiplicities,
(3) weakly hyperbolic with involutive roots,

where (1) ⊂ (2) ⊂ (3). Postponing to Definition 3.14 in Section 3 below their precise characterization, we give
here examples of each one of them.

Example 1.1. A simple example of a strictly hyperbolic operator L is given by the so-called SG-wave operator

L = D2
t − 〈x〉2〈D〉2 = D2

t − (1 + |x|2)(1 − ∆x) = −∂2
t + (1 + |x|2)∆x − (1 + |x|2), x ∈ Rd,

having symbol L(x, τ, ξ) = L2(x, τ, ξ) = τ2 − 〈x〉2〈ξ〉2 and roots τ±(x, ξ) = ±〈x〉〈ξ〉, which are real, distinct, and
separated at every point of [0,T] ×R2d, as well as at infinity. Notice that L = −�g − (1 + |x|2) is a wave operator,

associated with a fixed, suitable Riemannian metric g on Rd, perturbed by a polynomially growing potential,
cfr. [15].

Example 1.2. An example of a weakly hyperbolic operator L with roots of constant multiplicities is given by

L = (D2
t − 〈x〉2〈D〉2)2 = D4

t − 2〈x〉2〈D〉2D2
t + 〈x〉4〈D〉4 +Op(p), x ∈ Rd,

p ∈ S3,3(Rd), where, for c ∈ Sm,µ(Rd), Op(c) denotes the pseudodifferential operator with symbol c, see Section
3. The SG-principal symbol of L is here L4(x, τ, ξ) = (τ2 − 〈x〉2〈ξ〉2)2, with separated roots τ±(x, ξ) = ±〈x〉〈ξ〉, both
of multiplicity 2.

Example 1.3. An example of a weakly hyperbolic operator L with involutive roots of non-constant multiplicities is
given by

L = (Dt + tDx1 +Dx2)(Dt − (t − 2x2)Dx1 ), x ∈ R2,

see [2, 24].

1.2. The results we get. We consider the SPDE (1.1) with L as in (1.3), (1.4) and Ξ an S′(Rd)-valued Gaussian
process with correlation measure Γ and spectral measure µ, see Subsection 2.1 for a precise definition. We
derive conditions on the coefficients of L, on the right-hand side terms γ and σ, and on the spectral measure
µ (hence, on Ξ), such that there exists a unique function-valued (mild) solution to the corresponding Cauchy
problem. Namely, we are going to prove that

(H1) if L is strictly hyperbolic, and sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−1
µ(dξ) < ∞, or

(H2) if L is weakly hyperbolic with constant multiplicities, and sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ) < ∞, where l is

the maximum multiplicity of the characteristic roots,

then, under suitable assumptions on γ, σ and the Cauchy data, there exists a unique function-valued solution
to (1.1). Notice that the more general are the assumptions on L (i.e., the larger is l), the smallest is the class of
the stochastic noises that we can allow to get a function-valued solution.

The main result of the paper is Theorem 4.14 below, which is stated directly under the more general
assumption (H2). This is done in order to keep the paper within a reasonable length, recalling that assumption
(H1) is equivalent to (H2) with l = 1. Theorem 4.14 extends the results of [28] to the case of general higher
order hyperbolic equations with coefficients in (t, x), not uniformly bounded with respect to x and with roots
that may coincide.

We will also formulate an expected result concerning the case of involutive roots, namely:

(H3) if L is weakly hyperbolic with involutive roots and

∫

Rd

µ(dξ) < ∞,

then, under suitable assumptions on γ, σ and the Cauchy data, there exists a unique function-valued solution
to (1.1). Notice that the condition to be satisfied in (H3) corresponds to the limit case l = m of (H2). Notice also
that all the three conditions coincide when m = 1.

Here below we give two examples of diffusion coefficients σ that we can allow, postponing to Section 4 the
precise description of the assumptions on σ.
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Example 1.4. Let σ(t, x, u) = u2. Then, σ is an admissible non-linearity for the equations we consider. More
generally, we allow σ(t, x, u) = un, n ∈N, n > 2.

Example 1.5. A right-hand side explicitly depending on (t, x) ∈ [0,T] ×Rd and u, which is admissible for the
equations we consider, is

σ(t, x, u) = 〈x〉l−m · σ̃(t, u),(1.5)

where l is the maximum multiplicity of the roots and σ̃ is regular in time, satisfies suitable mapping properties
with respect to the Sobolev-Kato spaces, and is (uniformly, locally) Lipschitz-continuous with respect to the
second variable, see Definition 4.8 and Example 4.18 below for the precise conditions.

To our best knowledge, a diffusion coefficient of the rather general form (1.5) has never been sistematically
treated in the literature, except in [30], where, for m = 2, it has been incorporated in a certain model equation
by means of ad-hoc techniques.

Example 1.6. More generally, a routine extension of the theory developed in the present paper allows for a
stochastic term of the very general form

σ(t, x, u,Dxu, . . . ,Dα
x u), |α| ≤ m − 1

in the right-hand side of (1.1). The only difference consists in the form of the lipschitzianity assumptions and
the corresponding mapping properties, see Section 4 below.

1.3. Tools we employ. The main tools for proving existence and uniqueness of solutions to (1.1) will be Fourier
integral operators with symbols in the so-called SG classes. Such symbols classes have been introduced in the
’70s by H.O. Cordes (see, e.g. [12]) and C. Parenti [27] (see also R. Melrose [21]). To construct the fundamental
solution of (1.1) we will need, on one hand, to perform compositions between pseudo-differential operators and
Fourier integral operators of SG type, using the theory developed in [13], and, on the other hand, compositions
between Fourier integral operators of SG type with possibly different phase functions. The latter can be
achieved using the composition results recently obtained in [5], with the aim of applying them in the present
paper. The paper [5] is quite technical, so here we will only recall and make use of the main composition
theorems coming from the theory developed there.

The proof of the main Theorem 4.14 of this paper follows an approach similar to the one adopted for the
applications treated in [5, 14, 16]. This consists in the reduction of equation (1.1) to a corresponding first order
system, by an appropriate change of the unknown, then in the construction of the fundamental solution for the
system, subsequently in coming back to the (formal) solution of the original equation (1.1), and finally in the
application of a fixed point scheme in suitable functional spaces. The associated system inherits the regularity
of the coefficients, so, in the situation examined in the present paper, at worst we are going to obtain hyperbolic
first order systems with distinct and separated eigenvalues, of constant multiplicities, or involutive, cf. [7, 20].

1.4. Organization of the paper. To provide a presentation of our results as self-contained as possible, for the
convenience of the reader, we provide (at different levels of detail) various preliminaries from the existing
literature, as described below.

In Section 2 we recall some notions about stochastic integration with respect to Hilbert space-valued processes
and the corresponding concept of function-valued solution, following [19].

In Section 3 we give a description of the tools coming from microlocal analysis that we use for the construction
of the fundamental solution to an hyperbolic first order system with polynomially bounded coefficients. The
results presented in this section come mainly from [2, 5, 12, 13, 14, 16]. We give a summary of them here, for
the convenience of the reader.

In Section 4 we focus on the semilinear hyperbolic SPDE (1.1), (1.3), (1.4), and in Theorem 4.14 we study
existence and uniqueness of a function-valued solution under the assumption of weak hyperbolicity with
roots of constant multiplicity (3.14). The case of strict hyperbolicity (3.13) reduces to the special case l = 1 of
Theorem 4.14. Moreover we recall the construction of the equivalent system performed in [2, 5, 14, 16] and
of its fundamental solution. The latter are crucial results, since all the three classes of hyperbolic equations
we are going to consider can be reduced to a first order hyperbolic system. We give sufficient conditions on
the coefficients, on the noise and on the right-hand side of (1.1) such that there exists a unique mild function-
valued solution of the corresponding Cauchy problem. The key result to achieve existence and uniqueness of
the solution is Lemma 4.12, which is a further main result in the present paper. We also state and comment a
theorem concerning similar results under the assumption of weak hyperbolicity with involutive roots (3.15).
Finally, we make a comparison between the function-valued solutions obtained here, in the special case of
linear equations, with the random-field solutions found in [2], showing that they actually coincide.
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1.5. Notation. Throughout this article, we let 〈a〉 := (1 + |a|2)1/2 for all a ∈ Rd, and we denote N0 := N ∪ {0},
Rd
∗ := Rd\{0}. Also, α and β will generally denote multiindeces, with their standard arithmetic operations.

As usual, we will denote partial derivatives with ∂, and set D = −i∂, i being the imaginary unit, which is
convenient when dealing with Fourier transformations. We will denote by Cm(X), Cm

0
(X), S(X), D(X), S′(X)

andD′(X), the m-times continuously differentiable functions, the m-times continuously differentiable functions
with compact support, the Schwartz functions, the test functions space C∞

0
(X), the tempered distributions and

the distributions on some finite or infinite-dimensional space X, respectively. Usually, C > 0 will denote a
generic constant, whose value can change from line to line without further notice. When operator composition
is considered, we will usually insert the symbol ◦when the notation Op(b) and/or Opϕ(a), for pseudodifferential

and Fourier integral operators, respectively, are adopted for both factors, as well as in some situations where
parameter-dependent operators occurs, for the sake of clarity. When at least one of the operators involved in
the product of composition is denoted by a single capital letter, and when no confusion can occur, we will,
as customary, omit the symbol ◦ completely, and just write, e.g., PQ, RDt, etc. Finally, A ≍ B means that the
estimates A . B and B . A hold true, where A . B means that |A| ≤ c · |B|, for a suitable constant c > 0.
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2. Stochastic integration.

The mild formulation (1.2) is the way in which we understand the SPDE (1.1). In fact, we call (mild) function-

valued solution to (1.1) an L2(Ω)-family of random variables u(t, x), (t, x) ∈ [0,T] × Rd, jointly measurable,
satisfying the stochastic integral equation (1.2) where the last term in the right-hand side is understood within
the theory of stochastic integrals taking value in Hilbert spaces, which we briefly now recall.

2.1. The stochastic noise. Here we describe the class of stochastic noises that we allow in our framework.
Consider a distribution-valued Gaussian process {Ξ(φ); φ ∈ C∞

0
(R+ × Rd)} on a complete probability space

(Ω,F ,P), with mean zero and covariance functional given by

(2.1) E[Ξ(φ)Ξ(ψ)] =

∫ ∞

0

∫

Rd

(
φ(t) ∗ ψ̃(t)

)
(x) Γ(dx)dt,

where ψ̃(t, x) := ψ(t,−x), ∗ is the convolution operator and Γ is a nonnegative, nonnegative definite, tempered
measure on Rd. Then, Théorème XVIII in [31, Chapter VII] implies that there exists a nonnegative tempered
measure µ on Rd such that F µ = µ̂ = Γ. F and ̂ denote the Fourier transform given, for functions f ∈ L1(Rd),
by

(2.2) (F f )(ξ) = f̂ (ξ) :=

∫

Rd

e−ix·ξ f (x)dx.

In (2.2), x · ξ denotes the inner product in Rd, and the Fourier transform is extended to tempered distributions
T ∈ S′(Rd) by the relation 〈F T, φ〉 = 〈T,Fφ〉, for all φ ∈ S(Rd). By Parseval’s identity, the right-hand side of
(2.1) can be rewritten as

E[Ξ(φ)Ξ(ψ)] =

∫ ∞

0

∫

Rd

[Fφ(t)](ξ) · [Fψ(t)](ξ)µ(dξ)dt.

The tempered measure Γ is usually called correlation measure. The tempered measure µ such that Γ = µ̂ is
usually called spectral measure.
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2.2. Stochastic integral in Hilbert spaces. In this subsection we recall some of the main results of the theory of
stochastic integration with respect to cylindrical Wiener processes. Also, we recall the definition of the Hilbert
space H which will be suitable for our purposes of function-valued solutions to SPDEs. For the latter, we
follow the exposition in [18].

Definition 2.1. Let Q be a self-adjoint, nonnegative definite and bounded linear operator on a separable Hilbert
space H. An H-valued stochastic process W = (Wt(h); h ∈ H, t ≥ 0) is called a cylindrical Wiener process on H on
the complete probability space (Ω,F ,P) if the following conditions are fulfilled:

(1) for any h ∈ H, (Wt(h); t ≥ 0) is a one-dimensional Brownian motion with variance t〈Qh, h〉H;
(2) for all s, t ≥ 0 and g, h ∈ H,

E[Ws(g)Wt(h)] = (s ∧ t)〈Qg, h〉H.
If Q = IdH, then W is called the standard cylindrical Wiener process.

Let Ft be the σ-field generated by the random variables (Wt(h); 0 ≤ s ≤ t, h ∈ H) and the P-null sets. The
predictable σ-field is then the σ-field in [0,T]×Ω generated by the sets {(s, t] × A,A ∈ Ft, 0 ≤ s < t ≤ T}.

We define HQ to be the completion of the Hilbert space H endowed with the inner product

〈g, h〉HQ
:= 〈Qg, h〉H,

for g, h ∈ H. In the sequel, we let (vk)k∈N be a complete orthonormal basis of HQ. Then, the stochastic integral
of a predictable, square-integrable stochastic process with values in HQ, u ∈ L2([0,T]×Ω; HQ), is defined as

∫ t

0

u(s)dWs :=
∑

k∈N
〈u, vk〉HQ

dWs(vk).

In fact, the series in the right-hand side converges in L2(Ω,F ,P) and its sum does not depend on the chosen
orthonormal system (vk)k∈N. Moreover, the Itô isometry

E

[( ∫ t

0

u(s)dWs

)2]
= E

[ ∫ t

0

‖u(s)‖2HQ
ds

]

holds true for any u ∈ L2([0,T]×Ω; HQ). For more on one-dimensional integration, see, e.g., [26].
This notion of stochastic integral can also be extended to operator-valued integrands. Let U be a separable

Hilbert space and define L0
2

:= L2(HQ,U) the set of Hilbert-Schmidt operators from HQ to U. With this we
can define the space of integrable processes (with respect to W) as the set of F -measureable processes in
L2([0,T] ×Ω; L0

2
). Since one can identify the Hilbert-Schmidt operators L2(HQ,U) with U ⊗ H∗

Q
, one can define

the stochastic integral for any u ∈ L2([0,T]×Ω; L0
2
) coordinatewise in U. Moreover, it is possible to establish an

Itô isometry, namely,

E

[∥∥∥∥∥
∫ t

0

u(s)dWs

∥∥∥∥∥
2

U

]
:=

∫ t

0

E

[
‖u(s)‖2

L0
2

]
ds.(2.3)

The stochastic noise introduced in Subsection 2.1 can be rewritten in terms of a cylindrical Wiener process.
The space C∞0 (Rd), with pre-inner product

〈φ,ψ〉H =
∫

Rd

Fφ(ξ)Fψ(ξ)µ(dξ),

can be completed to

H := C∞
0

(Rd)
〈·,·〉H

,

see [18, Lemma 2.4]. Then, (H ; 〈·, ·〉H) is a real separable Hilbert space. We also set

HT := L2([0,T];H ).

Then, [18, Proposition 2.5] states the following result.

Proposition 2.2. For t ≥ 0 and φ ∈ H , set Wt(φ) = W(1[0,t](·)φ(·)). Then, the process W = {Wt(φ), t ≥ 0, φ ∈ H} is a
standard cylindrical Wiener process onH (where we recall that “standard” here means assuming Q = IdH ).
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3. Microlocal analysis and fundamental solution to first order hyperbolic systems with polynomially
bounded coefficients

We first recall some basic definitions and facts about the so-called SG-calculus of pseudodifferential and
Fourier integral operators, through standard material appeared, e.g., in [5] and elsewhere (sometimes with
slightly different notational choices).

The class Sm,µ = Sm,µ(Rd) of SG symbols of order (m, µ) ∈ R2 is given by all the functions a(x, ξ) ∈ C∞(Rd×Rd)
with the property that, for any multiindices α, β ∈Nd

0
, there exist constants Cαβ > 0 such that the conditions

(3.1) |Dα
x D

β
ξ
a(x, ξ)| ≤ Cαβ〈x〉m−|α|〈ξ〉µ−|β|, (x, ξ) ∈ Rd ×Rd,

hold, see, e.g., [12, 21, 27] for details. For m, µ ∈ R, ℓ ∈N0, a ∈ Sm,µ, the quantities

(3.2) ‖a‖m,µℓ = max
|α+β|≤ℓ

sup
x,ξ∈Rd

〈x〉−m+|α|〈ξ〉−µ+|β||∂αx∂
β
ξa(x, ξ)|

are a family of seminorms, defining the Fréchet topology of Sm,µ.
The corresponding classes of pseudodifferential operators Op(Sm,µ) = Op(Sm,µ(Rd)) are given by

(3.3) (Op(a)u)(x) = (a(.,D)u)(x) = (2π)−d

∫
eixξa(x, ξ)û(ξ)dξ, a ∈ Sm,µ(Rd), u ∈ S(Rd),

extended by duality to S′(Rd). The operators in (3.3) form a graded algebra with respect to composition, i.e.,

Op(Sm1,µ1) ◦Op(Sm2,µ2) ⊆ Op(Sm1+m2,µ1+µ2 ).

The symbol c ∈ Sm1+m2,µ1+µ2 of the composed operator Op(a) ◦Op(b), a ∈ Sm1,µ1 , b ∈ Sm2,µ2 , admits the asymptotic
expansion

(3.4) c(x, ξ) ∼
∑

α

i|α|

α!
Dα
ξa(x, ξ) Dα

xb(x, ξ),

which implies that the symbol c equals a · b modulo Sm1+m2−1,µ1+µ2−1.
The residual elements of the calculus are operators with symbols in

S−∞,−∞ = S−∞,−∞(Rd) =
⋂

(m,µ)∈R2

Sm,µ(Rd) = S(R2d),

that is, those having kernel in S(R2d), continuously mapping S′(Rd) to S(Rd). For any a ∈ Sm,µ, (m, µ) ∈ R2,
Op(a) is a linear continuous operator fromS(Rd) to itself, extending to a linear continuous operator fromS′(Rd)
to itself, and from Hz,ζ(Rd) to Hz−m,ζ−µ(Rd), where Hz,ζ(Rd), (z, ζ) ∈ R2, denotes the Sobolev-Kato (or weighted
Sobolev) space

(3.5) Hz,ζ(Rd) = {u ∈ S′(Rn) : ‖u‖z,ζ = ‖〈·〉z〈D〉ζu‖L2 < ∞},
with the naturally induced Hilbert norm. When z ≥ z′ and ζ ≥ ζ′, the continuous embedding Hz,ζ ֒→ Hz′,ζ′

holds true. It is compact when z > z′ and ζ > ζ′. Since Hz,ζ = 〈·〉z H0,ζ = 〈·〉z Hζ, with Hζ the usual Sobolev

space of order ζ ∈ R, we find ζ > k +
d

2
⇒ Hz,ζ ֒→ Ck, k ∈N0.

Remark 3.1. Notice that in [28] the author uses the space

L2
ω := {u ∈ S′(Rd)|

√
ωu ∈ L2(Rd)},

where ω(x) ∈ S(Rd) is a strictly positive even function such that for |x| ≥ 1 we have ω(x) = e−|x|. The weight ω
can be substituted by ω(x) = 〈x〉−2z, z > 0, with corresponding space

L2
ω := {u ∈ S′(Rd)| 〈x〉−zu ∈ L2(Rd)},

coinciding with H−z,0(Rd) in the notation above. In Section 4 we shall use the Hz,ζ(Rd) spaces to get a function-
valued solution to (1.1).

One actually finds

(3.6)
⋂

z,ζ∈R
Hz,ζ(Rd) = H∞,∞(Rd) = S(Rd),

⋃

z,ζ∈R
Hz,ζ(Rd) = H−∞,−∞(Rd) = S′(Rd),
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as well as, for the space of rapidly decreasing distributions, see [6, 31],

(3.7) S′(Rd)∞ =
⋂

z∈R

⋃

ζ∈R
Hz,ζ(Rd).

The continuity property of the elements of Op(Sm,µ) on the scale of spaces Hz,ζ(Rd), (m, µ), (z, ζ) ∈ R2, is
expressed more precisely in the next Theorem 3.2 (see [12] and the references quoted therein for the result on
more general classes of SG-symbols).

Theorem 3.2. Let a ∈ Sm,µ(Rd), (m, µ) ∈ R2. Then, for any (z, ζ) ∈ R2, Op(a) ∈ L(Hz,ζ(Rd),Hz−m,ζ−µ(Rd)), and there
exists a constant C > 0, depending only on d,m, µ, z, ζ, such that

(3.8) ‖Op(a)‖L (Hz,ζ (Rd),Hz−m,ζ−µ(Rd)) ≤ C‖a‖m,µ
[ d

2 ]+1
,

where [t] denotes the integer part of t ∈ R.

Cordes introduced the class O(m, µ) of the operators of order (m, µ) as follows, see, e.g., [12].

Definition 3.3. A linear continuous operator A : S(Rd) → S(Rd) belongs to the class O(m, µ), (m, µ) ∈ R2, of
the operators of order (m, µ) if, for any (z, ζ) ∈ R2, it extends to a linear continuous operator Az,ζ : Hz,ζ(Rd) →
Hz−m,ζ−µ(Rd). We also define

O(∞,∞) =
⋃

(m,µ)∈R2

O(m, µ), O(−∞,−∞) =
⋂

(m,µ)∈R2

O(m, µ).

Remark 3.4. (1) Trivially, any A ∈ O(m, µ) admits a linear continuous extension A∞,∞ : S′(Rd) → S′(Rd).
In fact, in view of (3.6), it is enough to set A∞,∞|Hz,ζ(Rd) = Az,ζ.

(2) Theorem 3.2 implies Op(Sm,µ(Rd)) ⊂ O(m, µ), (m, µ) ∈ R2.
(3) O(∞,∞) and O(0, 0) are algebras under operator multiplication, O(−∞,−∞) is an ideal of both O(∞,∞)

and O(0, 0), and O(m1, µ1) ◦ O(m2, µ2) ⊂ O(m1 +m2, µ1 + µ2).

The following characterization of the class O(−∞,−∞) is often useful, see [12].

Theorem 3.5. The class O(−∞,−∞) coincides with Op(S−∞,−∞(Rd)) and with the class of smoothing operators, that is,
the set of all the linear continuous operators A : S′(Rd)→ S(Rd). All of them coincide with the class of linear continuous
operators A admitting a Schwartz kernel kA belonging to S(R2d).

An operator A = Op(a) and its symbol a ∈ Sm,µ are called elliptic (or Sm,µ-elliptic) if there exists R ≥ 0 such that

C〈x〉m〈ξ〉µ ≤ |a(x, ξ)|, |x| + |ξ| ≥ R,

for some constant C > 0. If R = 0, a−1 is everywhere well-defined and smooth, and a−1 ∈ S−m,−µ. If R > 0, then
a−1 can be extended to the whole of R2d so that the extension ã−1 satisfies ã−1 ∈ S−m,−µ. An elliptic SG operator
A ∈ Op(Sm,µ) admits a parametrix A−1 ∈ Op(S−m,−µ) such that

A−1A = I + R1, AA−1 = I + R2,

for suitable R1,R2 ∈ Op(S−∞,−∞), where I denotes the identity operator. In such a case, A turns out to be a
Fredholm operator on the scale of functional spaces Hz,ζ(Rd), (z, ζ) ∈ R2.

We now introduce the class of SG-phase functions.

Definition 3.6 (SG-phase function). A real valued function ϕ ∈ C∞(R2d) belongs to the class P of SG-phase
functions if it satisfies the following conditions:

(1) ϕ ∈ S1,1(Rd);
(2) 〈ϕ′x(x, ξ)〉 ≍ 〈ξ〉 as |(x, ξ)| → ∞;
(3) 〈ϕ′ξ(x, ξ)〉 ≍ 〈x〉 as |(x, ξ)| → ∞.

For any a ∈ Sm,µ, (m, µ) ∈ R2, ϕ ∈ P, the SG FIOs are defined, for u ∈ S(Rn), as

(Opϕ(a)u)(x) = (2π)−d

∫
eiϕ(x,ξ)a(x, ξ)û(ξ) dξ,(3.9)

and

(Op∗ϕ(a)u)(x) = (2π)−d

"

ei(x·ξ−ϕ(y,ξ))a(y, ξ)u(y) dydξ.(3.10)
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Here the operators Opϕ(a) and Op∗ϕ(a) are sometimes called SG FIOs of type I and type II, respectively, with

symbol a and (SG-)phase function ϕ. Note that a type II operator satisfies Op∗ϕ(a) = Opϕ(a)∗, that is, it is the

formal L2-adjoint of the type I operator Opϕ(a).

The analysis of SG FIOs started in [13], where composition results with the classes of SG pseudodifferential
operators, and of SG FIOs of type I and type II with regular phase functions, have been proved. Also the
basic continuity properties in S(Rd) and S′(Rd) of operators in the class have been proved there, as well as a
version of the Asada-Fujiwara L2(Rd)-continuity, for operators Opϕ(a) with symbol a ∈ S0,0 and regular SG-

phase function ϕ ∈ Pδ, see Definition 3.8. The following theorem summarizes composition results between SG
pseudodifferential operators and SG FIOs of type I that we are going to use in the present paper, see [13] for
proofs and composition results with SG FIOs of type II.

Theorem 3.7. Let ϕ ∈ P and assume b ∈ Sm1,µ1(Rd), a ∈ Sm2,µ2 (Rd), (m j, µ j) ∈ R2, j = 1, 2. Then,

Op(b) ◦Opϕ(a) = Opϕ(c1 + r1) = Opϕ(c1) mod Op(S−∞,−∞(Rd)),

Opϕ(a) ◦Op(b) = Opϕ(c2 + r2) = Opϕ(c2) mod Op(S−∞,−∞(Rd)),

for some c j ∈ Sm1+m2,µ1+µ2(Rd), r j ∈ S−∞,−∞(Rd), j = 1, 2.

To consider the composition of SG FIOs of type I and type II some more hypotheses are needed, leading to
the definition of the classes Pδ and Pδ(λ) of regular SG-phase functions.

Definition 3.8 (Regular SG-phase function). Let λ ∈ [0, 1) and δ > 0. A function ϕ ∈ P belongs to the class
Pδ(λ) if it satisfies the following conditions:

(1) |det(ϕ′′
xξ)(x, ξ)| ≥ δ, ∀(x, ξ);

(2) the function J(x, ξ) := ϕ(x, ξ) − x · ξ is such that

sup
x,ξ∈Rd

|α+β|≤2

|Dα
ξD

β
xJ(x, ξ)|

〈x〉1−|β|〈ξ〉1−|α|
≤ λ.(3.11)

If only condition (1) holds, we write ϕ ∈ Pδ.
Remark 3.9. Notice that condition (3.11) means that J(x, ξ)/λ is bounded with constant 1 in S1,1((2)), the Fréchet
space of symbols a ∈ C∞(Rd×Rd) such that the estimates (3.1) hold for |α+β| ≤ 2 only. Notice also that condition
(1) in Definition 3.8 is authomatically fulfilled when condition (2) holds true for a sufficiently small λ ∈ [0, 1).

For ℓ ∈N0, we also introduce the seminorms

‖J‖2,ℓ :=
∑

2≤|α+β|≤2+ℓ

sup
x,ξ∈Rd

|Dα
ξD

β
x J(x, ξ)|

〈x〉1−|β|〈ξ〉1−|α|
,

and

‖J‖ℓ := sup
x,ξ∈Rd

|α+β|≤1

|Dα
ξD

β
x J(x, ξ)|

〈x〉1−|β|〈ξ〉1−|α|
+ ‖J‖2,ℓ,

cfr. [20]. We notice that ϕ ∈ Pδ(λ) means that (1) of Definition 3.8 and ‖J‖0 ≤ λ hold, and then we define the
following subclass of the class of regular SG phase functions:

Definition 3.10. Let λ ∈ [0, 1), δ > 0, ℓ ≥ 0. A function ϕ belongs to the class Pδ(λ, ℓ) if ϕ ∈ Pδ(λ) and ‖J‖ℓ ≤ λ
for the corresponding J.

The result of a composition of SG FIOs of type I and type II with the same regular SG-phase functions is a SG
pseudodifferential operator, see again [13]. The continuity properties of regular SG FIOs on the Sobolev-Kato
spaces can be expressed as follows, using the operators of order (m, µ) ∈ R2 introduced above.

Theorem 3.11. Let ϕ be a regular SG phase function and a ∈ Sm,µ(Rd), (m, µ) ∈ R2. Then, Opϕ(a) ∈ O(m, µ).

The study of the composition of M ≥ 2 SG FIOs of type I Opϕ j
(a j) with regular SG-phase functionsϕ j ∈ Pδ(λ j)

and symbols a j ∈ Sm j ,µ j(Rd), j = 1, . . . ,M, has been done in [5]. The result of such composition is still an SG-FIO
with a regular SG-phase function ϕ given by the so-called multi-product ϕ1♯ · · · ♯ϕM of the phase functions ϕ j,
j = 1, . . . ,M, and symbol a as in Theorem 3.12 here below.
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Theorem 3.12. Consider, for j = 1, 2, . . . ,M, M ≥ 2, the SG FIOs of type I Opϕ j
(a j) with a j ∈ Sm j ,µ j(Rd), (m j, µ j) ∈ R2,

and ϕ j ∈ Pδ(λ j) such that λ1 + · · · + λM ≤ λ ≤ 1
4 for some sufficiently small λ > 0. Then, there exists a ∈ Sm,µ(Rd),

m = m1 + · · · +mM, µ = µ1 + · · · + µM, such that, setting φ = ϕ1♯ · · · ♯ϕM, we have

Opϕ1
(a1) ◦ · · · ◦OpϕM

(aM) = Opφ(a).

Moreover, for any ℓ ∈N0 there exist ℓ′ ∈N0, Cℓ > 0 such that

(3.12) ‖a‖m,µ
ℓ
≤ Cℓ

M∏

j=1

‖a j‖m j ,µ j

ℓ′
.

Theorem 3.12 is a corollary of the main Theorem in [5]. There, the multi-product of regular SG-phase
functions is defined and its properties are studied, parametrices and compositions of regular SG FIOs with
amplitude identically equal to 1 are considered, leading to the general composition Opϕ1

(a1) ◦ · · · ◦OpϕM
(aM).

In the present paper we only recall this composition result, since it is needed for the determination of the
fundamental solutions of the hyperbolic operators (1.3), involved in (1.1), in the case of involutive roots with
non-constant multiplicities.

Applications of the SG FIOs theory to SG-hyperbolic Cauchy problems were initially given in [14, 16]. Many
authors have, since then, expanded the SG FIOs theory and its applications to the solution of hyperbolic
problems in various directions. To mention a few, see, e.g., M. Ruzhansky, M. Sugimoto [29], E. Cordero, F.
Nicola, L Rodino [11], and the references quoted there and in [5].

In [5], the results in Theorem 3.12 have been applied to study classes of SG-hyperbolic Cauchy problems,
constructing their fundamental solution {E(t, s)}0≤s≤t≤T. The existence of the fundamental solution provides,
via Duhamel’s formula, existence and uniqueness of the solution to the system, for any given Cauchy data in
the weighted Sobolev spaces Hz,ζ(Rd), (z, ζ) ∈ R2. A remarkable feature, typical for these classes of hyperbolic
problems, is the well-posedness with loss/gain of decay at infinity, observed for the first time in [3], and then in [4].

In the present paper we will deal with the following three classes of equations of the form (1.1), and
corresponding operators L:

(1) strictly hyperbolic equations, that is, Lm satisfies (1.4) with real-valued, distinct and separated roots τ j,
j = 1, . . . ,m, in the sense that there exists a constant C > 0 such that

(3.13) |τ j(t, x, ξ) − τk(t, x, ξ)| ≥ C〈x〉〈ξ〉, ∀ j , k, (t, x, ξ) ∈ [0,T] ×R2d;

(2) hyperbolic equations with (roots of) constant multiplicities, that is, Lm satisfies (1.4) and the real-valued,
characteristic roots can be divided into n groups (1 ≤ n ≤ m) of distinct and separated roots, in the sense
that, possibly after a reordering of the τ j, j = 1, . . . ,m, there exist l1, . . . ln ∈ N with l1 + . . . + ln = m and
n sets

G1 = {τ1 = · · · = τl1 }, G2 = {τl1+1 = · · · = τl1+l2}, . . . Gn = {τm−ln+1 = · · · = τm},
satisfying, for a constant C > 0,

(3.14) τ j ∈ Gp, τk ∈ Gq, p , q, 1 ≤ p, q ≤ n⇒ |τ j(t, x, ξ) − τk(t, x, ξ)| ≥ C〈x〉〈ξ〉, ∀(t, x, ξ) ∈ [0,T]×R2d;

notice that, in the case n = 1, we have only one group of m coinciding roots, that is, Lm admits a
single real root of multiplicity m, while for n = m we recover the strictly hyperbolic case; the number
l = max j=1,...,n l j is the maximum multiplicity of the roots of Lm;

(3) hyperbolic equations with involutive roots, that is, Lm satisfies (1.4) with real-valued characteristic roots
such that

[Dt −Op(τ j(t)),Dt −Op(τk(t))] = Op(a jk(t)) (Dt −Op(τ j(t))(3.15)

+ Op(b jk(t)) (Dt −Op(τk(t)))+Op(c jk(t)),

for some a jk, b jk, c jk ∈ C∞([0,T], S0,0(Rd)), j, k = 1, . . . ,m.

Remark 3.13. Recall that roots of constant multiplicities are always involutive, see, e.g., [2] for a proof. The
converse statement is not true in general, as shown in Example 1.3.

Definition 3.14. We will say that the (linear) operator L in (1.3) is strictly (SG-)hyperbolic, weakly (SG-)hyperbolic
with constant multiplicities, or weakly (SG-)hyperbolic with involutive roots, respectively, if such properties are
satisfied by the roots of Lm, as explained above.
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Remark 3.15. The asymmetric case of coefficients satisfying, for constants C jkαβ > 0, |∂k
t∂
β
xaα j(t, x)| ≤ C jkαβ〈x〉mα−|β|

for all (t, x) ∈ [0,T] × Rd and mα ≤ |α|, |α| ≤ j, k ∈ N0, 1 ≤ j ≤ m, is currently under investigation by the
authors. Indeed, in that situation we would obtain real characteristic roots τ j ∈ C∞([0,T]; Sε,1(Rd)), with
ε := max{mα/ j | |α| ≤ j, 1 ≤ j ≤ m} ∈ [0, 1]. The particular case ε = 0 is already known, see [7, 28], while the
symmetric case ε = 1 is the one we focus on in the present paper. The analysis of the general case ǫ ∈ (0, 1) will
appear elsewhere.

The next one is a key result in the analysis of SG-hyperbolic Cauchy problems by means of the corresponding
class of Fourier operators. Given a symbol κ ∈ C([0,T]; S1,1), set ∆T0 = {(s, t) ∈ [0,T0]2 : 0 ≤ s ≤ t ≤ T0},
0 < T0 ≤ T, and consider the eikonal equation


∂tϕ(t, s, x, ξ) = κ(t, x, ϕ′x(t, s, x, ξ)), t ∈ [s,T0],

ϕ(s, s, x, ξ) = x · ξ, s ∈ [0,T0),
(3.16)

with 0 < T0 ≤ T. By an extension of the theory developed in [14], it is possible to prove that the following
Proposition 3.16 holds true.

Proposition 3.16. For any small enough T0 ∈ (0,T], equation (3.16) admits a unique solution ϕ ∈ C1(∆T0 , S1,1(Rd)),
satisfying J ∈ C1(∆T0 , S

1,1(Rd)) and

∂sϕ(t, s, x, ξ) = −κ(s, ϕ′ξ(t, s, x, ξ), ξ),(3.17)

for any (t, s) ∈ ∆T0 . Moreover, for every ℓ ∈ N0 there exists δ > 0, cℓ ≥ 1 and T̃ℓ ∈ [0,T0] such that ϕ(t, s, x, ξ) ∈
Pδ(cℓ|t − s|), with ‖J‖2,ℓ ≤ cℓ|t − s| for all (t, s) ∈ ∆

T̃ℓ
.

Remark 3.17. Of course, if additional regularity with respect to t ∈ [0,T] is fulfilled by the symbol κ in the
right-hand side of (3.16), this reflects in a corresponding increased regularity of the resulting solution ϕ with
respect to (t, s) ∈ ∆T0 . Since here we are not dealing with problems concerning the t-regularity of the solution,
we assume smooth t-dependence of the coefficients of L. Some of the results below will anyway be formulated
in situations of lower regularity with respect to t.

By the hyperbolicity hypotheses (3.13), (3.14), or (3.15), as it will be shown below, to obtain the term v0 and
the kernel Λ, associated with the operator in (1.1), it is enough to know the fundamental solution of certain
first order systems. Namely, let us consider the Cauchy problem

(3.18)


(Dt −Op(κ1(t)) −Op(κ0(t)))W(t) = Y(t), t ∈ [0,T],

W(s) =W0, s ∈ [0,T],

where the (ν × ν)-system is hyperbolic with diagonal principal part, that is:

- the matrix κ1 satisfies κ1 ∈ C∞([0,T], S1,1), it is real-valued and diagonal, and each entry on the principal
diagonal coincides with the value of one of the roots τ j ∈ C∞([0,T]; S1,1), possibly repeated a number of
times, depending on their multiplicities;

- the matrix κ0 satisfies κ0 ∈ C∞([0,T], S0,0).

In analogy with the terminology introduced above, we will say that the system (3.18) is strictly hyperbolic,
or hyperbolic with constant multiplicities, when the elements on the main diagonal of κ1 are all distinct and
satisfy (3.13), or when they satisfy (3.14), respectively. Similarly, we will say that the system is hyperbolic with
involutive roots when they satisfy (3.15). We will also generally assume W0 ∈ Hz,ζ, Y ∈ C([0,T],Hz,ζ), (z, ζ) ∈ R2.

The fundamental solution, or solution operator, of (3.18) is a family {E(t, s) : (t, s) ∈ [0,T0]2}, 0 < T0 ≤ T, of linear
continuous operators in the strong topology of L (Hz,ζ,Hz,ζ), (z, ζ) ∈ R2. In the cases of strict SG-hyperbolicity
or of SG-hyperbolicity with constant multiplicities, such family can be explicitly expressed in terms of suitable
(matrices of) SG FIOs of type I, modulo smoothing terms, see [14, 16] and Section 4.1 below. In the case of
SG-hyperbolicity with variable multiplicities, it is, in general, a limit of a sequence of (matrices of) SG FIOs of
type I. In all three cases, it satisfies

(3.19)


(Dt −Op(κ1(t)) −Op(κ0(t)))E(t, s) = 0, (t, s) ∈ [0,T0]2,

E(s, s) = I, s ∈ [0,T0].

More precisely, E(t, s) has the following properties, see [2], which actually hold true for the broader class of
symmetric first order system of the type (3.18), of which systems with real-valued, diagonal principal part are
a special case, see [12], Ch. 6, §3, and [14].
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Theorem 3.18. Let the system (3.18) be hyperbolic with diagonal principal part κ1 ∈ C1([0,T], S1,1 (Rd)), and lower
order part κ0 ∈ C1([0,T], S0,0(Rd)). Then, for any choice of W0 ∈ Hz,ζ(Rd), Y ∈ C([0,T],Hz,ζ(Rd)), there exists a unique
solution W ∈ C([0,T],Hz,ζ(Rd)) ∩ C1([0,T],Hz−1,ζ−1(Rd)) of (3.18), (z, ζ) ∈ R2, given by Duhamel’s formula

W(t) = E(t, s)W0 + i

∫ t

s

E(t, ϑ)Y(ϑ)dϑ, t ∈ [0,T].

Moreover, the solution operator E(t, s) has the following properties:

(1) E(t, s) : S′(Rd)→ S′(Rd) is an operator belonging to O(0, 0), (t, s) ∈ [0,T]2; its first order derivatives, ∂tE(t, s),
∂sE(t, s), exist in the strong operator convergence of L (Hz,ζ(Rd),Hz−1,ζ−1(Rd)), (z, ζ) ∈ R2, and belong to
O(1, 1);

(2) E(t, s) is bounded and strongly continuous on [0,T]2
ts in L (Hz,ζ(Rd),Hz,ζ(Rd)), (z, ζ) ∈ R2; ∂tE(t, s) and ∂sE(t, s)

are bounded and strongly continuous on [0,T]2
ts in L (Hz,ζ(Rd),Hz−1,ζ−1(Rd)), (z, ζ) ∈ R2;

(3) for t, s, t0 ∈ [0,T] we have

E(t0, t0) = I, E(t, s)E(s, t0) = E(t, t0), E(t, s)E(s, t) = I;

(4) E(t, s) satisfies, for (t, s) ∈ [0,T]2, the differential equations

DtE(t, s) − (Op(κ1(t)) +Op(κ0(t)))E(t, s) = 0,(3.20)

DsE(t, s) + E(t, s)(Op(κ1(s)) +Op(κ0(s))) = 0;(3.21)

(5) the operator family E(t, s) is uniquely determined by the properties (1)-(3) here above, and one of the differential
equations (3.20), (3.21).

Corollary 3.19. (1) Under the hypotheses of Theorem 3.18, E(t, s) is invertible on S(Rd), S′(Rd), and Hz,ζ(Rd),
(z, ζ) ∈ R2, with inverse given by E(s, t), s, t ∈ [0,T].

(2) If, additionally, one assumes κ1 ∈ Cm([0,T], S1,1(Rd)), κ0 ∈ Cm([0,T], S0,0(Rd)), m ≥ 2, the partial derivatives

∂ j
t∂

k
sE(t, s) exist in strong operator convergence of S(Rd) and S′(Rd), and ∂ j

t∂
k
sE(t, s) ∈ O( j+ k, j+ k), j+ k ≤ m.

Moreover, ∂ j
t∂

k
sE(t, s) is strongly continuous on [0,T]2

ts in every L (Hz,ζ(Rd), Hz− j−k,ζ− j−k(Rd)), (z, ζ) ∈ R2,
j + k ≤ m.

In [5] we have proved the next Theorem 3.20, concerning the structure of E(t, s), in the spirit of the approach
followed in [20].

Theorem 3.20. Under the same hypotheses of Theorem 3.18, if T0 is small enough, for every fixed (t, s) ∈ ∆T0 , E(t, s) is
a limit of a sequence of matrices of SG FIOs of type I, with regular phase functions ϕ jk(t, s) belonging to Pδ(ch|t − s|),
ch ≥ 1, of class C1 with respect to (t, s) ∈ ∆T0 , and amplitudes belonging to C1(∆T0 , S

0,0(Rd)).

Indeed, there are various techniques to switch from a Cauchy problem for an hyperbolic operator L of order
M ≥ 1 to a Cauchy problem for a first order system (3.18), see, e.g., [12, 14, 24]. In the approach we follow
here, which is the same used in [16], the key results for this aim are the next Proposition 3.21, an adapted

version of the so-called Mizohata Lemma of Perfect Factorization1, and the subsequent Lemma 3.24. They are
formulated for an hyperbolic operator L with roots of constant multiplicities, and, of course, they hold true
also in the more restrictive case of a strictly hyperbolic operator L, which coincides with the situation where
l = max

j=1,...,n
l j = 1⇔ n = m.

Proposition 3.21. Let L be a hyperbolic operator with constant multiplicities l j, j = 1, . . . , n ≤ m. Denote by θ j ∈ G j,
j = 1, . . . , n, the distinct real roots of Lm in (1.4). Then, it is possible to factor L as

(3.22) L = Ln · · ·L1 +

m∑

j=1

Op(r j(t))D
m− j
t

with

L j = (Dt −Op(θ j(t)))
l j +

l j∑

k=1

Op(h jk(t)) (Dt −Op(θ j(t)))
l j−k,(3.23)

h jk ∈ C∞([0,T], Sk−1,k−1(Rd)), r j ∈ C∞([0,T], S−∞,−∞(Rd)), j = 1, . . . , n, k = 1, . . . , l j.(3.24)

The following corollary is an immediate consequence of Proposition 3.21, and is proved by means of a reordering
of the distinct roots θ j, j = 1, . . . , n.

1See also [20, 22, 23], for the original version of such results.
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Corollary 3.22. Let ̟ j, j = 1, . . . , n, denote the reordering of the n-tuple (1, . . . , n), given, for k = 1, . . . , n, by

(3.25) ̟ j(k) =


j + k − 1 for j + k ≤ n + 1,

j + k − n − 1 for j + k > n + 1,

That is, for n ≥ 2, ̟1 = (1, . . . , n), ̟2 = (2, . . . , n, 1), . . . , ̟n = (n, 1, . . . , n − 1). Then, under the same hypotheses of
Proposition 3.21, we have, for any p = 1, . . . , n,

(3.26) L = L
(p)

̟p(n)
. . .L(p)

̟p(1)
+

m∑

j=1

Op(r
(p)

j
(t))D

m− j
t

with

(3.27) L
(p)

j
= (Dt −Op(θ j(t)))

l j +

l j∑

k=1

Op(h
(p)

jk
(t)) (Dt −Op(θ j(t)))

l j−k,

(3.28) h
(p)

jk
∈ C∞([0,T], Sk−1,k−1(Rd)), j = 1, . . . , n, k = 1, . . . , l j, r

(p)

j
∈ C∞([0,T], S−∞,−∞(Rd)), j = 1, . . . ,m.

Remark 3.23. Of course, for n = 1, we only have the single “reordering” ̟1 = (1), l1 = l = m, and

L = L
(1)
1
+

m∑

j=1

Op(r(1)
j

(t))D
m− j
t

with

L
(1)
1
= (Dt −Op(θ1(t)))m +

m∑

k=1

Op(h(1)

1k
(t)) (Dt −Op(θ1(t)))m−k,

h
(1)

1k
∈ C∞([0,T], Sk−1,k−1(Rd)), k = 1, . . . ,m, r

(1)
j
∈ C∞([0,T], S−∞,−∞(Rd)), j = 1, . . . ,m

With inductive procedures similar to those performed in [8, 9] and [23], respectively, it is possible to prove
the following Lemma 3.24.

Lemma 3.24. Under the same hypotheses of Proposition 3.21, for all k = 0, . . . ,m − 1, it is possible to find symbols
ςkpq ∈ C∞([0,T], Sk−q+lp−n,k−q+lp−n(Rd)), p = 1, . . . , n, q = 0, . . . , lp − 1, such that, for all t ∈ [0,T],

θk =

n∑

p=1




lp−1∑

q=0

ςkpq(t)(θ − θp(t))q


 ·




∏

1≤ j≤n
j,p

(θ − θ j(t))
l j



.

In the case of strict hyperbolicity, or, more generally, hyperbolicity with constant multiplicities, we can ac-
tually “decouple” the equations in (3.18) into n blocks of smaller dimensions, by means of the so-called perfect
diagonalizer, an element of C∞([0,T],Op(S0,0)). Thus, the solution of (3.18) can be reduced to the solution of n
independent smaller systems. The principal part of the coefficient matrix of each one of such decoupled sub-
systems admits then a single distinct eigenvalue of maximum multiplicity, so that it can be treated, essentially,
like a scalar SG hyperbolic equations of first order. Explicitely, see, e.g., [14, 20],

Theorem 3.25. Assume that the system (3.18) is hyperbolic with constant multiplicities ν j, j = 1, . . . ,N, ν1+· · ·+νn = ν,

with diagonal principal part κ1 ∈ C∞([0,T], S1,1(Rd)) and κ0 ∈ C∞([0,T], S0,0(Rd)), both of them (ν × ν)-dimensional
matrices. Then, there exist (ν× ν)-dimensional matrices ω ∈ C∞([0,T], S0,0(Rd)) and κ̃0 ∈ C∞([0,T], S0,0(Rd)) such that

det(ω) ≍ 1⇒ ω−1 ∈ C∞([0,T], S0,0(Rd)), κ̃0 = diag(κ̃01, . . . , κ̃0n), κ̃0 j (ν j × ν j)-dimensional matrix,

and

(3.29) (Dt −Op(κ1(t))−Op(κ0(t)))Op(ω(t))−Op(ω(t))(Dt −Op(κ1(t))−Op(κ̃0(t))) ∈ C∞([0,T],Op(S−∞,−∞(Rd)).
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4. Function-valued solutions for semilinear SPDEs.

In this section we state and prove our main result of existence and uniqueness of a function-valued solution
of the SPDE (1.1), under suitable assumptions of hyperbolicity for the operator L, see (1.3), (1.4). We work here
with a class of operators with more general symbols than the (polynomial) ones appearing in (1.3). Namely,
we consider operators of the form

L = Dm
t −

m∑

j=1

A j(t, x,Dx)D
m− j
t ,(4.1)

where A j(t) = Op(a j(t)) are SG pseudo-differential operators with symbols a j ∈ C∞([0,T], S j, j), 1 ≤ j ≤ m. Notice
that, of course, (1.3) is a particular case of (4.1). The hyperbolicity condition on L becomes

(4.2) Lm(t, x, τ, ξ) = τm −
m∑

j=1

Ã j(t, x, ξ)τm− j =

m∏

j=1

(
τ − τ j(t, x, ξ)

)
,

where Ã j stands for the principal part of A j, with characteristic roots τ j(t, x, ξ) ∈ R, τ j ∈ C∞([0,T]; S1,1).
Let us then consider the Cauchy problem


Lu(t, x) = γ(t, x, u(t, x))+ σ(t, x, u(t, x))Ξ̇(t, x), (t, x) ∈ (0,T] ×Rd

D
j
tu(0, x) = u j(x), x ∈ Rd, 0 ≤ j ≤ m − 1,

(4.3)

where L has the form (4.1), under conditions (4.2) and either (3.13) or (3.14) or (3.15). We also assume that
γ, σ : [0,+∞)×Rd×R −→ R are measurable functions, (at least locally-)Lipschitz-continuous, in our functional
setting, with respect to the third variable, see Definition 4.8 and Theorem 4.14 below for the precise hypotheses.
Here Ξ̇ is the stochastic noise described in Subsection 2.1.

We are interested in finding conditions on L, on the stochastic noise Ξ̇, and on σ, γ, u j, j = 0, . . . ,m − 1, such
that (4.3) admits a unique function-valued solution of the form (1.2), following the stochastic integration theory
presented in Subsection 2.2. To this aim, we need first to construct the distribution kernel Λ that we are going
to deal with. This is performed in Subsection 4.1, through the following steps:

- reduction of the (formal) Cauchy problem


Lu(t) = g(t) t ∈ (0,T]

D
j
tu(0) = u j, 0 ≤ j ≤ m − 1,

(4.4)

where L is the operator in (4.3) and g is a short notation for the right-hand side, to an equivalent first
order system;

- construction of the fundamental solution E(t, s) for the system byTheorem 3.18, and then of its (formal)
solution, following Section 3;

- construction of the distribution kernel Λ and of the (formal) solution to (4.4) thanks to the equivalence
of (4.4) and the corresponding first order system.

For the sake of brevity, we will describe here the reduction procedure only in the case (H2), being (H1) a
simpler subcase of (H2) with l = 1. In the case (H3), we will shortly address some technical points that we are
currently still investigating. Notice that all the results on SG-hyperbolic differential operators recalled in the
previous Section 3, in particular, Proposition 3.21 and Lemma 3.24, still hold true for SG-hyperbolic operators
of the form (4.1). We adopt the same terminology and definitions also for this more general operators, with
straightforward modifications, where needed.

Then, we need to understand the noise Ξ in terms of a canonically associated Hilbert spaceHΞ, so that we
can define the stochastic integral with respect to a cylindrical Wiener process on HΞ. This will be done in
Subsection 4.2.

Finally, in Subsection 4.3 we state and prove the main result of this paper, namely Theorem 4.14. The
conditions on the stochastic noise (explained in Subsection 4.2) will be given on the spectral measure µ
corresponding to the correlation measure Γ related to Ξ̇. The operator L is assumed to be hyperbolic (either
strictly hyperbolic or weakly hyperbolic with constant multiplicity). The main conditions on σ and γ are
Lipschitz continuity assumptions, which are typical in semilinear problems. We will also state in Theorem 4.19
a further result, corresponding to the involutive case (H3), whose detailed proof will be given elsewhere.

Remark 4.1. With respect to the existing literature, in particular [28], we allow here for general hyperbolic
equations of higher orders, coefficients depending both on time and space, and possibly with a polynomial
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growth with respect to x. We remark that in the strictly hyperbolic case we obtain the compatibility condition
(4.21) with l = 1 (set l = 1 in Theorem 4.14), which exactly corresponds, for m = 2, to the one obtained in [28].

The proof of the main Theorem 4.14 starts with the construction of the (formal) solution u to (4.3), and then
deals with existence and uniqueness of u under the assumption (H2) through a fixed point theorem, in view
of the fundamental Lemma 4.12 below, which is the key of the proof of the Theorem and the main result of
Subsection 4.2.

4.1. Reduction to a first order system and construction of the distribution kernel Λ. Let us denote by θ j,
j = 1, . . . , n, the distinct values of the roots τk, k = 1, . . . ,m, and with ̟p, p = 1, . . . , n, the reorderings of the
n-tuple (1, . . . , n) defined in (3.25).

The equivalence of the Cauchy problems for the equation Lu(t) = g(t) and a 1 × 1 system (3.18) is then
trivial for m = 1. For m ≥ 2, we will now define a (nm)-dimensional vector of unknown W and construct a
corresponding linear first order hyperbolic system, with diagonal principal part and constant multiplicities,
equivalent to Lu(t) = g(t).

Let us set, for convenience, with the notation introduced in Corollary 3.22,

l(p,k) =



0, k = 0,∑

1≤ j≤k

l̟p( j), 1 ≤ k ≤ n − 1, if n ≥ 2,

m, k = n,

L(p,k) =


I, k = 0,

L
(p)

̟p(k)
· · ·L(p)

̟p(1)
, 1 ≤ k ≤ n − 1, if n ≥ 2,

p = 1, . . . , n, and define

(4.5) W
(p)

l(p,k)+ j+1
(t) = (Dt −Op(θ̟p(k+1)(t)))

jL(p,k)u(t), p = 1, . . . , n, k = 0, . . . , n − 1, j = 0, . . . , l̟p(k+1) − 1.

Using Lemma 3.24, we can express the t derivatives of u in terms of the components of W from (4.5). In fact:

Lemma 4.2. Under the hypotheses of Lemma 3.24, for all k = 1, . . . ,m − 1, p = 1, . . . , n, it is possible to find symbols

w
(p)

kj
∈ C∞([0,T], S j, j(Rd)), j = 1, . . . , k, such that, with the (nm)-dimensional vector W defined in (4.5),

(4.6) Dk
t u(t) =

k∑

j=1

Op(w
(p)

kj
(t))W

(p)

k− j+1
(t) +W

(p)

k+1
(t).

By the definition (4.5), we find the extension of (4.6) to k = 0 in the form u(t) = W
(p)

1
(t), p = 1, . . . , n. Using

Lemma 4.2 we see that (3.26), (4.5) and (4.6) give rise to a block diagonal linear system in the nm unknown

W
(p)

l(p,k)+ j+1
(t) with blocks labeled by p = 1, . . . , n, of the type

(4.7)



. . . ,

(Dt −Op(θ̟p(1)(t)))W
(p)

j+1
(t) = W

(p)

j+2
(t), j = 0, . . . , l̟p(1) − 2, if l̟p(1) ≥ 2,

(Dt −Op(θ̟p(1)(t)))W
(p)

l(p,1)(t) = −
l̟p (1)∑

k=1

Op(h
(p)

̟p(1)k
(t))W

(p)

l(p,1)−k+1
(t) +W

(p)

l(p,1)+1
(t),

(Dt −Op(θ̟p(2)(t)))W
(p)

l(p,1)+ j+1
(t) = W

(p)

l(p,1)+ j+2
(t), j = 0, . . . , l̟p(2) − 2, if l̟p(2) ≥ 2, n ≥ 2,

(Dt −Op(θ̟p(2)(t)))W
(p)

l(p,2)(t) = −
l̟p (2)∑

k=1

Op(h
(p)

̟p(2)k
(t))W

(p)

l(p,2)−k+1
(t) +W

(p)

l(p,2)+1
(t), if n ≥ 2,

. . . ,

(Dt −Op(τ̟p(n)(t)))W
(p)
m (t) = −

l̟p (n)∑

k=1

Op(h
(p)

̟p(n)k
(t))W

(p)

m−k+1
(t)

−
m−1∑

j=1




m− j∑

q=1

Op(r
(p)

j
(t)) ◦Op(w

(p)

m− j,q
(t))W

(p)

m− j−q+1
(t) +Op(r

(p)

j
(t))W

(p)

m− j+1
(t)




−Op(r
(p)
m (t))W

(p)

1
(t) + g(t),

. . .
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and equivalent, block by block, to the equation Lu(t) = g(t).
As it is very well-known in the usual hyperbolic theory, in the case of weak hyperbolicity the principal

term does not provide enough information, by itself, to imply well-posedness of the Cauchy problem. In other
words, lower order terms are also relevant in this case, and one needs to impose additional conditions on them.
We will then assume that L satisfies the SG-Levi condition

(4.8) h
(p)

jk
∈ C∞([0,T], S0,0(Rd)), p, j = 1, . . . , n, k = 1, . . . , l j,

see Corollary 3.22.

Remark 4.3. Let us observe that, indeed, (4.8) needs to be fulfilled only for a single value of p = 1, . . . , n. Also,
(4.8) is automatically fulfilled when L is strictly SG-hyperbolic. If L satisfies (4.8) we will also say that L is of
Levi type.

It is clear, in view of the calculus of SG pseudodifferential operators, the fact that r
(p)

j
∈ C∞([0,T], S−∞,−∞),

p = 1, . . . , n, and the inclusions among the SG symbols, that the system (4.7) is a hyperbolic first order linear
system of the form (3.18), where:
- the (nm× nm)-dimensional, block-diagonal matrix κ1 ∈ C∞([0,T], S1,1) is given by κ1 = diag(κ11, . . . , κ1n), with
each block defined by

κ1p = diag(θωp(1), . . . , θωp(1)
︸             ︷︷             ︸

lωp(1)
times

, θωp(2), . . . , θωp(2)
︸             ︷︷             ︸

lωp(2)
times

, . . . , θωp(n), . . . , θωp(n)
︸             ︷︷             ︸

lωp(n)
times

), p = 1, . . . , n;

- the (nm× nm)-dimensional, block-diagonal matrix κ0 ∈ C∞([0,T], S0,0) is given by κ0 = diag(κ01, . . . , κ0m) with
suitable matrices κ0p having entries in C∞([0,T], S0,0), p = 1, . . . , n;
- the right-hand side is

Y(t) = (G(t), . . . ,G(t)
︸          ︷︷          ︸

n times

)t, G(t) = ( 0, . . . , 0︸  ︷︷  ︸
m − 1 times

, g(t))t.

The initial data W0 is obtained by W0 = Op(b)U0, with U0 = (u0, . . . , um−1)t and a (mn × m)-dimensional
block-matrix symbol b with the following structure:

(4.9) b =




b(1)

. . .

b(n)




, b(p) =




1 0 0 0 . . .

b
(p)

10
1 0 0 . . .

b
(p)

20
b

(p)

21
1 0 . . .

. . . . . . . . . . . . . . .



, p = 1, . . . , n,

and the (m ×m)-dimensional matrices b(p) satisfying

- if m ≥ 2, b
(p)

jk
∈ S j−k, j−k, j > k, j = 1, . . . ,m − 1, k = 0, . . . , j − 1,

- b
(p)

j j
= 1 ∈ S0,0, j = 0, . . . ,m − 1,

- if m ≥ 2, b
(p)

jk
= 0, j < k, j = 0, . . . ,m − 2, k = j + 1, . . . ,m − 1,

p = 1, . . . ,m.

Remark 4.4. Consider, for instance, the case n = 1, that is, Lm admits a unique real root θ1 = τ1 of maximum
multiplicity l = l1 = m. Then, there is a single “reordering” ̟1 = (1), the vector W has m components,

W = (W(1)
1
, . . . ,W(1)

m ), and (4.7) consists of a single block of m equations. Namely, in view of Corollary 3.22,

assuming n ≥ 2 and dropping everywhere the (1) label, (4.5) reads, in this case,

W1(t) = u(t),

W2(t) = (Dt −Op(τ1(t)))u(t) = (Dt −Op(τ1(t)))W1(t),

. . . ,

Wm(t) = (Dt −Op(τ1(t)))m−1u(t) = (Dt −Op(τ1(t)))Wm−1(t),
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while Lu(t) = g(t) is then equivalent to

(Dt −Op(τ1(t)))mu(t) +

m∑

k=1

Op(h1k(t))(Dt −Op(τ1(t)))m−ku(t) +

m∑

j=1

Op(r j(t))D
m− j
t u(t) = g(t)

⇔

(Dt −Op(τ1(t)))Wm(t) = −
m∑

k=1

Op(h1k(t))Wm−k+1(t)

−
m−1∑

j=1




m− j∑

q=1

Op(r j(t)) ◦Op(wm− j,q(t))Wm− j−q+1(t) +Op(r j(t))Wm− j+1(t)




−Op(rm(t))W1(t) + g(t),

that is, 

(Dt −Op(τ1(t)))W1(t) = W2(t)

. . .

(Dt −Op(τ1(t)))Wm−1(t) = Wm(t)

(Dt −Op(τ1(t)))Wm(t) = −
m∑

k=1

Op(h1k(t))Wm−k+1(t)

−
m−1∑

j=1




m− j∑

q=1

Op(r j(t)) ◦Op(wm− j,q(t))Wm− j−q+1(t) +Op(r j(t))Wm− j+1(t)




−Op(rm(t))W1(t) + g(t),

which has the form (3.18) with Y(t) = (0, . . . , 0︸  ︷︷  ︸
m−1 times

, g(t))t, as claimed, since κ1(t) = diag(τ1(t), . . . , τ1(t)), while the

coefficients of the components of W in the right-hand sides of the equations are all symbols of order (0, 0), since
S−∞,−∞ ⊂ S0,0.

In this situation, by an extension of the results in [14, 16], we can give an explicit form to the fundamental
solution E(t, s) in Theorem 3.20, in terms of (smooth families of) SG FIOs of type I, modulo smoothing remain-
ders. With the results of Theorem 3.25 at hand, we solve, by means of the so-called geometrical optics (or FIOs)
method, the system

(4.10)


(Dt −Op(κ1(t)) −Op(κ̃0(t)))Ẽ(t, s) = 0, t ∈ [0,T0],

Ẽ(s, s) = I, s ∈ [0,T0).

Notice that the approximate solution operator Ã(t, s), (t, s) ∈ ∆T0 , in terms of SG FIOs solves the corresponding

operator problem up to smoothing remainders. Namely, the FIOs family Ã(t, s) solves the system

(4.11)


(Dt −Op(κ1(t)) −Op(κ̃0(t)))Ã(t, s) = R̃1(t, s), (t, s) ∈ ∆T0 ,

Ã(s, s) = I + R̃2(s), s ∈ [0,T0),

where R̃1 and R̃2 are suitable smooth families of operators in O(−∞,−∞), coming from the solution method,

see [12, 13, 14, 16, 20] for more details. It turns out that Ã(t, s) belongs to O(0, 0) for any (t, s) ∈ ∆T0 . Explicitely,

Ã(t, s) = diag(Ã(1)(t, s), . . . , Ã(m)(t, s)),

Ã(p)(t, s) = diag(Opϕ̟p(1)(t,s)(a
(p)

1
(t, s)), . . . ,Opϕ̟p(m)(t,s)(a

(p)
m (t, s))), p = 1, . . . ,m,

with phase functions ϕ j ∈ C∞(∆T0 ,Pδ(λ)), λ = λ(T0) suitably small, solutions of the eikonal equations (3.16)

with τ j in place of κ, and symbols a
(p)

j
∈ C∞(∆T0 , S

0,0), p, j = 1, . . . ,m, see [14]. In fact, in this case, the system

can be diagonalized block by block.
Solving the equations in (4.10) modulo smoothing terms is enough for our aims, as we will see below.

Indeed, we have the following result (see [2] for its proof).
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Proposition 4.5. Under the hypotheses (4.1), (4.2), let A(t, s) = Op(ω(t)) ◦ Ã(t, s) ◦Op(ω−1)(s), with Ã(t, s) solution of
(4.11), (t, s) ∈ ∆T0 , and Op(ω−1)(s) parametrix of the perfect diagonalizer Op(ω(s)), s ∈ [0,T]. Then, the solution E(t, s)
of (3.19) and the operator family A(t, s) satisfy E − A ∈ C∞(∆T0 ,Op(S−∞,−∞(Rd))).

Remark 4.6. Proposition 4.5 means that the Schwartz kernels of E and A differ by a family of elements of
S(R2d), smoothly depending on (t, s) ∈ ∆T0 .

Using Proposition 4.5, by repeated applications of Theorem 3.7, we finally obtain

(4.12) E(t, s) = E0(t, s) + R(t, s), (t, s) ∈ ∆T0 ,

where

- E0 is a (nm × nm)-dimensional matrix of operators in O(0, 0) given by

E0(t, s) =




n∑

p=1

Opϕp(t,s)(epjk(t, s))




j,k=0,...,nm−1

,

with the regular phase-functions ϕp(t, s), solutions of the eikonal equations associated with τp, and

symbols epjk(t, s) ∈ S0,0, j, k = 0, . . . , nm − 1, p = 1, . . . , n, smoothly depending on (t, s) ∈ ∆T0 ;

- R is a (nm×nm)-dimensional matrix of elements in C∞(∆T0 ,Op(S−∞,−∞)), operators with kernel in S(R2d),
smoothly depending on (t, s) ∈ ∆T0 , that is,

R = (Op(r jk(t, s))) j,k=0,...,nm−1,

with symbols r jk ∈ C∞(∆T0 , S
−∞,−∞), j, k = 0, . . . , nm − 1, collecting the remainders of the compositions

in Op(ω) ◦ Ã ◦Op(ω−1) and the difference E − A.

The next Lemma 4.7 from [16], see also [8, 9] and [23], is the key result to achieve, from (4.12) and the expressions
of E0 and R, the correct regularity of u.

Lemma 4.7. There exists a (m × mn)-dimensional matrix Υn ∈ C∞([0,T0], S0,0(Rd) such that the k-th row consists of
symbols of order (l −m + k, l −m + k), k = 0, . . . ,m − 1, and




u(t)
. . .

Dm−1
t u(t)


 = Op(Υn(t))W(t), t ∈ [0,T0].

Now assume for a moment that g ∈ C([0,T],Hz,ζ), (z, ζ) ∈ R2. Then, the Cauchy problem for the first order
system (3.18) with s = 0, equivalent to (4.4), fulfills all the assumptions of Theorem 3.18. An application of
Theorem 3.18, together with (4.12) and Lemma 4.7 initially gives



u(t)
. . .

Dm−1
t u(t)


 = [Op(Υn(t)) ◦ (E0(t, 0) + R(t, 0)) ◦Op(b)]U0 + i

∫ t

0

[Op(Υn(t)) ◦ (E0(t, s) + R(t, s))]Y(s)ds, t ∈ [0,T0].

Then, taking into account that the only non-vanishing entries of Y coincide with g, computations with matrices,
the structure of the entries of Υn and b, and further applications of Theorem 3.7 give

u(t) =

m−1∑

j=0




n∑

p=1

Opϕp(t,0)(c
0
pj(t)) +Op(r0

j (t))


u j + i

∫ t

0




n∑

p=1

Opϕp(t,s)(c
1
p(t, s)) +Op(r1(t, s))


 g(s)ds,

= v0(t) +

∫ t

0

∫

Rd

Λ(t, s, ., y)g(s, y) dyds,

(4.13)

where

- the phase functions ϕp are solution to the eikonal equations (3.16), with θp in place of κ, p = 1, . . . , n;

- c0
pj
∈ C∞([0,T0], Sl−1− j,l−1− j), p = 1, . . . , n, r0

j
∈ C∞([0,T0], S−∞,−∞), j = 0, . . . ,m−1, so that v0 ∈

⋂

j≥0

C j([0,T0],

Hz+m−l− j,ζ+m−l− j);
- Λ ∈ C∞(∆T0 ,S′) is, for any (t, s) ∈ ∆T0 , the Schwartz kernel of the operator

(4.14) El−m(t, s) = i




n∑

p=1

Opϕp(t,s)(c
1
p(t, s)) +Op(r1(t, s))


 ,
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with c1
p ∈ C∞(∆T0 , S

l−m,l−m), p = 1, . . . ,m, r1 ∈ C∞(∆T0 , S
−∞,−∞), so that also

∫ t

0

∫

Rd

Λ(t, s, ., y)g(s, y) dyds ∈
⋂

j≥0

C j([0,T0],Hz+m−l− j,ζ+m−l− j).

Notice the usual abuse of notation, using the kernel Λ(t, s) in the distributional integral in (4.13). By Proposition
3.5, Λ(t, s) differs by an element of C∞(∆T0 ,S) from the kernel of

(4.15) Ẽl−m(t, s) = i

n∑

p=1

Opϕp(t,s)(c
1
p(t, s)).

4.2. Admissible spectral measures for Hilbert space valued stochastic integrals. In this subsection we want
to make sense of the stochastic integral appearing in (1.2) as a stochastic integral with respect to a cylindrical
Wiener process on a Hilbert space, as described in Subsection 2.2. We know from Section 4.1 that, in the
stochastic integral appearing in (1.2), Λ is the kernel of (a linear combination of) FIOs El−m, with amplitudes of
order (l −m, l −m), where l stands for the maximum multiplicity of the characteristic roots (l = 1 in the case of
a strictly hyperbolic operator, 1 < l ≤ m in the constant multiplicities case). To give meaning to

∫ t

0

∫

Rd

Λ(t, s, x, y)σ(s, y, u(s, y))Ξ̇(s, y)dyds =

∫ t

0

El−m(t, s)σ(s, u(s))dΞ(s),(4.16)

we first introduce the so-called Cameron-Martin space associated with Ξ. Given the Gaussian process Ξ
described in Section 2.1, let us define

(4.17) HΞ = {ϕ̂µ : ϕ ∈ L2
µ,s(R

d)},

where µ is the spectral measure associated with the noise Ξ, and L2
µ,s is the space of symmetric functions in L2

µ,

i.e. ϕ̌(x) = ϕ(−x) = ϕ(x), x ∈ Rd, and
∫
Rd |ϕ(x)|2 µ(dx) < ∞. Clearly,HΞ ⊂ S′(Rd). The spaceHΞ, endowed with

the inner product

〈ϕ̂µ, ψ̂µ〉HΞ := 〈ϕ,ψ〉L2
µ
, ∀ϕ,ψ ∈ L2

µ,s(R
d)

with corresponding norm

||ϕ̂µ||2HΞ = ||ϕ||
2
L2
µ

turns out to be a real separable Hilbert space, and it is the so-called ”Cameron-Martin space” of Ξ, see [28,
Propostition 2.1]. Thus, Ξ is a cylindrical Wiener process on (HΞ, 〈·, ·〉HΞ) which takes values in any Hilbert
spaceU such that the embeddingHΞ ֒→U is an Hilbert-Schmidt map.

The following Lemma 4.12 shows that the multiplication operator HΞ ∋ ψ 7→ El−m(t, s)σ(s, u) · ψ is Hilbert-
Schmidt fromHΞ to Hz+m−l,ζ, under suitable assumptions on σ. Therefore, (4.16) is well-defined as stochastic
integral with respect to a cylindrical Wiener process on (HΞ, 〈·, ·〉HΞ) which takes values in Hz+m−l,ζ.

Definition 4.8. The class Lip(z, ζ, r, ρ), for given z, ζ, r, ρ ∈ R, r, ρ ≥ 0, consists of all measurable functions
g : [0,T] × Rd × R −→ C such that there exists a real-valued, non negative, Ct = C(t) ∈ C[0,T], fulfilling the
following:

• for every w ∈ Hz+r,ζ+ρ(Rd), t ∈ [0,T], we have ‖g(t, ·,w)‖z,ζ ≤ C(t)(1 + ‖w‖z+r,ζ+ρ);

• for every w, v ∈ Hz+r,ζ+ρ(Rd), t ∈ [0,T], we have ‖g(t, ·,w)− g(t, ·, v)‖z,ζ ≤ C(t)‖w − v‖z+r,ζ+ρ.

Remark 4.9. In Definition 4.8 we can actually relax the hypotheses, and ask that the stated properties hold for
w, v ∈ U, with U a suitable open subset of Hw,ω(Rd), for some w ≥ z + r, ω ≥ ζ+ ρ (typically, a sufficiently small
neighbourhood of the initial data of the Cauchy problem). In this case, we indicate the corresponding set by
Liploc(z, ζ, r, ρ).

Remark 4.10. Let g : [0,T]×Rd×R −→ R be measurable and ζ = ρ = 0. Assume that there exists a real-valued,
non negative, Ct = C(t) ∈ C[0,T], satisfying

• for every w ∈ R, x ∈ Rd, t ∈ [0,T], we have |g(t, x,w)| ≤ C(t)(|κ(x)|+ |w|), for some κ ∈ Hz,ζ(Rd), and
• for every w, v ∈ R, x ∈ Rd, t ∈ [0,T], we have |g(t, x,w)− g(t, x, v)| ≤ C(t)|w − v|.

Then, g ∈ Lip(z, 0, r, 0). In fact, for some C > 0,

‖g(t, ·,w)‖2z,0 = ‖〈·〉zg(t, ·,w)‖2
L2 ≤ C2

t ‖〈·〉z(|κ| + |w|)‖2L2 ≤ 2C2
t (‖κ‖2z,0 + ‖w‖2z,0) ≤ C2C2

t (1 + ‖w‖z+r,0)2,

and similarly for the Lipschitz continuity with respect to the third variable, cfr. [28].
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Remark 4.11. Let g(t, x,w) = wn, n ∈ N. Then g ∈ Liploc(z, ζ, r, ρ), when z, r, ρ ≥ 0, ζ > d
2 . In fact, when

w ∈ Hz+r,ζ+ρ(Rd) is such that ‖w‖z+r,ζ+ρ ≤ R,

‖wn‖z,ζ ≤ C‖wn‖nz,ζ ≤ C‖w‖nz,ζ ≤ C̃Rn−1‖w‖z+r,ζ+ρ,

for the algebra properties of the Sobolev-Kato spaces, see e.g. [3, Proposition 2.2].

Lemma 4.12. Let El−m(t, s) be a family of FIOs with amplitudes of order (l − m, l − m), 0 ≤ l ≤ m, parametrized by
0 ≤ s ≤ t ≤ T, and σ ∈ Lip(z, ζ,m− l, 0). If the spectral measure satisfies

sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ) < ∞,(4.18)

(cfr (4.21)), then, for every w ∈ Hz+m−l,ζ(Rd), the operator Φ(t, s) = Φl,m,σ,w(t, s) : ψ 7→ El−m(t, s)σ(s,w)ψ belongs to
L2

0
(HΞ,Hz+m−l,ζ(Rd)). Moreover, the Hilbert-Schmidt norm of Φ(t, s) can be estimated by

‖Φ(t, s)‖2
L2

0
(HΞ,Hz+m−l,ζ)

≤ C2
t,s(1 + ‖w‖z+m−l,ζ)

2 sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ),

for some Ct,s > 0.

Remark 4.13. Lemma 4.12 is the key result to prove Theorems 4.14 and 4.19. It is a generalization, for higher
order equations and different functional spaces, of Lemma 2.2 in [28]. There, the author deals with the case
m = 2 and l = 1, related to the wave equation, and works with a multiplication operator by a test function w,
obtaining an estimate of the corresponding Hilbert-Schmidt norm involving a weighted L2 norm of w.

Proof of Lemma 4.12. Let us fix an orthonormal basis {ek}k∈N = { f̂kµ}k∈N of HΞ, where { fk}k∈N is an orthonormal
basis in L2

µ,s. We compute

||Φ(t, s)||2
L0

2
(HΞ,Hz+m−l,ζ)

=
∑

k∈N
||El−m(t, s)σ(s,w) f̂kµ||2Hz+m−l,ζ

=
∑

k∈N
||〈D〉l−m〈D〉m−l〈·〉z+m−l〈D〉ζEl−m(t, s)σ(s,w) f̂kµ||2L2

=
∑

k∈N
||〈D〉l−mẼ(t, s)σ(s,w) f̂kµ||2L2

= (2π)−d
∑

k∈N

∫

Rd

〈ξ〉2(l−m)
∣∣∣∣F

(
Ẽ(t, s)σ(s,w) f̂kµ

)∣∣∣∣
2

(ξ)dξ(4.19)

with Ẽ(t, s) = 〈D〉m−l〈·〉z+m−l〈D〉ζEl−m(t, s) family of FIOs of order (z, ζ).Now, using the well-known fact that the
Fourier transform of a product is the ((2π)−d multiple of the) convolution of the Fourier transforms, the property
fk(−x) = fk(x) (by the definition of L2

µ,s), that { fk} is an orthonormal system in L2
µ, and Bessel’s inequality, we get

(2π)−d
∑

k∈N

∣∣∣∣F
(
Ẽ(t, s)σ(s,w) f̂kµ

)∣∣∣∣
2

(ξ) = (2π)−2d
∑

k∈N
|F

(
Ẽ(t, s)σ(s,w)

)
∗ ̂̂

fkµ|2(ξ)

= (2π)−d
∑

k∈N
|F

(
Ẽ(t, s)σ(s,w)

)
∗ fkµ|2(ξ)

= (2π)−d
∑

k∈N

∣∣∣∣∣
∫

Rd

[
F

(
Ẽ(t, s)σ(s,w)

)]
(ξ − η) fk(η)µ(dη)

∣∣∣∣∣
2

≤ (2π)−d

∫

Rd

∣∣∣∣F
(
Ẽ(t, s)σ(s,w)

)∣∣∣∣
2

(ξ − η)µ(dη).

Inserting this in (4.19), and using the continuity of Ẽ on Sobolev-Kato spaces we finally get:

||Φ(t, s)||2
L0

2(HΞ,Hz+m−l,ζ)
≤ (2π)−d

∫

Rd

∫

Rd

〈ξ〉2(l−m)
∣∣∣∣F

(
Ẽ(t, s)σ(s,w)

)∣∣∣∣
2

(ξ − η)µ(dη)dξ

= (2π)−d

∫

Rd

∫

Rd

〈η + θ〉2(l−m)
∣∣∣∣F

(
Ẽ(t, s)σ(s,w)

)∣∣∣∣
2

(θ)µ(dη)dθ

≤ (2π)−d

(
sup
θ∈Rd

∫

Rd

〈θ + η〉2(l−m)µ(dη)

)∫

Rd

∣∣∣∣F
(
Ẽ(t, s)σ(s,w)

)∣∣∣∣
2

(θ)dθ
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= (2π)−d

(
sup
θ∈Rd

∫

Rd

〈θ + η〉2(l−m)µ(dη)

)
‖F (Ẽ(t, s)σ(s,w))‖2

L2(4.20)

≤
(
sup
θ∈Rd

∫

Rd

〈θ + η〉2(l−m)µ(dη)

)
C2

t,s‖σ(s,w)‖2z,ζ

≤
(
sup
θ∈Rd

∫

Rd

〈θ + η〉2(l−m)µ(dη)

)
C2

t,sC
2
s

(
1 + ‖w‖z+m−l,ζ

)2 ,

where Ct,s stands for the norm in L (Hz,ζ,Hz,ζ) of the FIO Ẽ(t, s)〈D〉−ζ〈x〉−z, which, by Theorem 3.7, has amplitude
of order (0, 0). Since σ ∈ Lip(z, ζ,m− l, 0), Cs is the constant in Definition 4.8. �

4.3. Function-valued solutions for semilinear hyperbolic equations of arbitrary order. We are finally ready
to deal with existence and uniqueness of a function-valued solution for the Cauchy problem (4.3) under
conditions (4.2) and either (3.13) or (3.14) or (3.15).

In Theorem 4.14 we study in parallel the strictly hyperbolic case and the weakly hyperbolic case with roots
of constant multiplicity. In Theorem 4.19 we state a similar result for the involutive case.

Theorem 4.14. Let us consider the Cauchy problem (4.3) for a hyperbolic SPDE (1.1), where the partial differential
operator L of the form (4.1) satisfies (4.2). Moreover, assume that L is weakly SG-hyperbolic with constant multiplcities,
that is, Lm satisfies (1.4) and the characteristic roots τ j, j = 1, . . . ,m, can be divided into n groups, 1 ≤ n < m, of distinct
and separated roots, in the sense that, possibly after a reordering of the τ j, j = 1, . . . ,m, there exist l1, . . . ln ∈ N with
l1 + . . . + ln = m and n sets

G1 = {τ1 = · · · = τν1 }, G2 = {τν1+1 = · · · = τν1+ν2}, . . . Gn = {τm−νn+1 = · · · = τm},
satisfying (3.14) for some constant C > 0. Assume also that L is of Levy type, that is, with the notation of Corollary
3.22, it satisfies (4.8). Suppose that γ, σ ∈ Liploc(z, ζ,m − l, 0), z, ζ ∈ R, in some sufficiently small open subset
U ⊂ Hz+m−1,ζ+m−1(Rd) ֒→ Hz+m−l,ζ(Rd). Finally, assume for the spectral measure that

(4.21) sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ) < ∞,

where l = max j=1,...,n ν j is the maximum multiplicity of the roots of Lm.

Then, there exists a time horizon 0 < T0 ≤ T such that, for any choice of u j ∈ Hz+m−1− j,ζ+m−1− j(Rd), 0 ≤ j ≤ m − 1,

u0 ∈ U, the Cauchy problem (4.3) admits a unique solution u ∈ L2([0,T0] ×Ω,Hz+m−l,ζ(Rd)) satisfying

(4.22) u(t, x) = v0(t, x)+

∫ t

0

∫

Rd

Λ(t, s, x, y)γ(s, y, u(s, y)) dyds+

∫ t

0

∫

Rd

Λ(t, s, x, y)σ(s, y, u(s, y))Ξ̇(s, y) dyds

where Λ(t, s) is obtained in (4.13), the first integral in (4.22) is a Bochner integral, and the second integral in (4.22) is
understood as the stochastic integral of the Hz+m−l,ζ(Rd)-valued stochastic process El−m(t, ·)σ(·, u(·)) with respect to the
stochastic noise Ξ, in the sense explained in Subsection 2.2.

Remark 4.15. Notice that the noise Ξ defines a cylindrical Wiener process on (HΞ(Rd), 〈·, ·〉HΞ(Rd)) with values

in Hz+m−l,ζ(Rd), by Lemma 4.12.

Remark 4.16. Notice that, if the correlation measure Γ is absolutely continuous, then condition (4.21) for l = 1
(i.e., in the strictly hyperbolic case) is equivalent to

(4.23)

∫

Rd

1

(1 + |ξ|2)m−1
µ(dξ) < ∞,

see [28]. Condition (4.23) with m = 2 on the spectral measure is the one needed for the existence and uniqueness
of both a function-valued solution and a random-field solution to a second order SPDE well-known in literature,
namely, the stochastic wave equation.

Moreover, the same condition (4.21), with l = 1. has been found in [7], looking for random-field solutions
to linear strictly hyperbolic equations with uniformly bounded coefficients. The more general condition (4.21)
is exactly the one obtained in [2], looking for random-field solutions to linear hyperbolic SPDEs with possibly
unbounded variable coefficients. Thus, the class of the stochastic noises we can deal with if we want to obtain
either a function-valued or a random-field solution of the Cauchy problem for an SPDE is described by (4.21)
for all SG-hyperbolic operators L. Condition (4.21) can be understood as a compatibility condition between the
noise and the equation: as the order of the equation increases, we can allow for rougher stochastic noises Ξ;
as the maximum multiplicity of the roots decreases (i.e., as the regularity of the operator L increases), we can
allow for rougher stochastic noises Ξ.
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We give here below a couple of examples of right-hand side that we can allow in (4.3).

Example 4.17. Let σ(t, u) = u2. Then, σ satisfies all the conditions required in Theorem 4.14. More generally,
we can allow also σ(t, u) = un, n ∈N, n > 2, see Remark 4.11.

Example 4.18. A class of explicitly (t, x)-dependent nonlinear stochastic coefficients which satisfy the require-
ments of Theorem 4.14 are those of the form

σ(t, x, u) = 〈x〉l−m · σ̃(t, u),(4.24)

where σ̃ ∈ Liploc(z+m− l, ζ, 0, 0). Indeed, the function σ in (4.24) fulfills the assumptions of Theorem 4.14, being
an element of Liploc(z, ζ,m − ℓ, 0). In fact, for every w in a sufficiently small subset U ⊂ Hz+m−l,ζ(Rd), we have

||σ(t, ·,w)||z,ζ = ||σ̃(t, ·,w)||z+m−l,ζ ≤ C(t)
(
1 + ||w||z+m−l,ζ

)
,

and the verification of ||σ(t, ·,w1) − σ(t, ·,w2)||z,ζ ≤ C(t)||w1 − w2||z+m−l,ζ follows similarly.

The proof of Theorem 4.14 consists of the following 4 steps:

(1) factorization of the operator L;
(2) reduction of (4.3) to an equivalent first order system of the form (3.18), with the matrices κ1 and κ0

satisfying the assumptions described in Section 3 above;
(3) construction of the fundamental solution to (3.18), and then (formally) of the solution u to (4.3);
(4) application of a fixed point scheme to obtain that the function-valued solution u of (4.3) is well-defined.

For steps (1), (2) and (3) we can rely on Proposition 3.21, Corollary 3.22 and Lemma 3.24, and on the procedure
explained in [16]. We recall below the main aspects of this microlocal approach, for the convenience of the
reader. A more detailed explanation, where the reduction to a first order system is performed first in the strictly
hyperbolic case m = n = 1 and then in the weakly hyperbolic one can be found in [2].

Proof of Theorem 4.14. We follow the computations of Subsection 4.1. First, we perform a change of variable
defining the (nm)-dimensional vector of unknowns W having entries given by (4.5); our equation Lu(t) = g(t, u),
where formally g(t, u) := γ(t, u) + σ(t, u)Ξ̇(t) is so equivalent to the semilinear hyperbolic system of the first
order (4.7) (with g(t, u) instead of g(t)) in the unknown W. The system in the unknown W (with dimension nm)
has the form

(4.25)


(Dt −Op(κ1(t)) −Op(κ0(t)))W(t) = F(t,W(t))+ G(t,W(t))Ξ̇(t), t ∈ [0,T],

W(0) =W0,

with κ1 ∈ C∞([0,T], S1,1) real-valued and diagonal, κ0 ∈ C∞([0,T], S0,0), and (nm)-dimensional vectors F(t,W(t)),
G(t,W(t)) given by

F(t,W(t)) = (F̃(t,W), . . . , F̃(t,W(t))
︸                     ︷︷                     ︸

n times

)t, F̃(t,W(t)) = (0, . . . , 0︸  ︷︷  ︸
m−1 times

, γ(t,W(1)
1

))t,

G(t,W(t)) = (G̃(t,W), . . . , G̃(t,W(t))
︸                      ︷︷                      ︸

n times

)t, G̃(t,W(t)) = (0, . . . , 0︸  ︷︷  ︸
m−1 times

, σ(t,W(1)
1

))t.

We still have that W0 = Op(b)U0, with a (mn×m)-dimensional block-matrix symbol b with structure analogous
to (4.9) and entries with the same orders, so, by the assumptions of Theorem 4.14, we get W0 ∈ Hz,ζ.

By Theorem 3.18 we can formally construct, via Duhamel’s formula, the “mild solution” to (4.25):

W(t) = E(t, 0)W0 + i

∫ t

0

E(t, s)F(s,W(s))ds+ i

∫ t

0

E(t, s)G(s,W(s))dΞ(s), t ∈ [0,T0],

for a suitable T0 ∈ (0,T]. Now, we go back to the equation (1.1) to get its (formal) solution u. By Lemma 4.7, we
know that u(t) is the first entry of the vector Op(Υn(t))W(t), and that the first row of Υn(t) is a symbol of order
(l −m, l −m). Thus, exactly as in (4.13), we come (formally) to (4.22), that is we get

u(t, x) = v0(t, x)+

∫ t

0

∫

Rd

Λ(t, s, x, y)γ(s, y, u(s, y)) dyds+

∫ t

0

∫

Rd

Λ(t, s, x, y)σ(s, y, u(s, y))Ξ̇(s, y) dyds

= v0(t, x)+

∫ t

0

El−m(t, s)γ(s, u(s))ds+

∫ t

0

El−m(t, s)σ(s, u(s))Ξ̇(s)ds,
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where v0 ∈
⋂

j≥0

C j([0,T0],Hz+m−l− j,ζ+m−l− j) depends on the Cauchy data, andΛ ∈ C∞(∆T0 ,S′) is, for any (t, s) ∈ ∆T0 ,

the Schwartz kernel of the Fourier integral operator family El−m, with amplitudes of order (l − m, l − m). We
then construct the map u→ Tu on L2([0,T0] ×Ω,Hz+m−l,ζ(Rd)), defined as follows:

Tu(t) := v0(t) +

∫ t

0

El−m(t, s)γ(s, u(s))ds +

∫ t

0

El−m(t, s)σ(s, u(s))dBs, t ∈ [0,T0],(4.26)

:= v0(t) + T1u(t) + T2u(t),

where the last integral on the right-hand side is understood as the stochastic integral of the stochastic process
El−m(t, ·)σ(·, u(·)) ∈ L2([0,T0] × Ω,Hz+m−l,ζ) with respect to the cylindrical Wiener process {Wt(h)}t∈[0,T],h∈Hz+m−l,ζ

associated with the random noise Ξ(t), which is well-defined by Lemma 4.12 and takes values in Hz+m−l,ζ.
To prove that the solution (4.22) of the Cauchy problem (4.3) is indeed well-defined, we have to check that

T : L2([0,T0] ×Ω,Hz+m−l,ζ(Rd)) −→ L2([0,T0] ×Ω,Hz+m−l,ζ)

is well-defined, it is Lipschitz continuous on L2([0,T0] × Ω,Hz+m−l,ζ), and it becomes a contraction if we take
T0 small enough. Then, an application of Banach’s fixed point Theorem will provide existence of a unique
solution u ∈ L2([0,T0] ×Ω,Hz+m−l,ζ) satisfying u = Tu, that is (4.22).
To verify that Tu in (4.26) belongs to L2([0,T0]×Ω,Hz+m−l,ζ) for every u ∈ L2([0,T0]×Ω,Hz+m−l,ζ) we notice that:

- v0 ∈
⋂

j≥0

C j([0,T0],Hz+m−l− j,ζ+m−l− j) ⊂ L2([0,T0] ×Ω,Hz+m−l,ζ);

- T1u is in L2([0,T0] × Ω,Hz+m−l,ζ); indeed, T1u(t) is defined as the Bochner integral on [0, t] of the function
s→ El−m(t, s)γ(s, u(s)) with values in L2(Ω,Hz+m−l,ζ), and, by the properties of Bochner integrals, the continuity
of El−m(t, s) on Sobolev-Kato spaces, and the fact that γ ∈ Lip(z, ζ,m − l, 0), we have

‖T1u‖2
L2([0,T0]×Ω,Hz+m−l,ζ)

= E

[∫ T0

0

‖T1u(t)‖2z+m−l,ζdt

]
=

∫ T0

0

E



∥∥∥∥∥∥

∫ t

0

El−m(t, s)(γ(s, u(s))ds

∥∥∥∥∥∥
2

z+m−l,ζ


 dt

≤
∫ T0

0

∫ t

0

E

[∥∥∥El−m(t, s)(γ(s, u(s))
∥∥∥2

z+m−l,ζ

]
dsdt

≤
∫ T0

0

∫ t

0

C2
t,sE

[∥∥∥γ(s, u(s)))
∥∥∥2

z,ζ+l−m

]
dsdt

≤
∫ T0

0

∫ t

0

C2
t,sC

2
sE

[
(1 + ‖u(s)‖z+m−l,ζ+l−m)2

]
dsdt

≤ 2

(
max

0≤s≤t≤T0

C2
t,sC

2
s

)
T0

∫ T0

0

(
1 + E

[
‖u(s)‖2z+m−l,ζ

])
ds

= 2CT0T0(T0 + ‖u‖2L2([0,T0]×Ω,Hz+l−m,ζ)
) < ∞;

- T2u is in L2([0,T0] ×Ω,Hz+m−l,ζ), in view of the fundamental isometry (2.3), Lemma 4.12 and the fact that the
expectation can be moved inside and outside time integrals, by Fubini’s Theorem:

‖T2u‖2
L2([0,T0]×Ω,Hz+m−l,ζ)

= E

[∫ T0

0

‖T2u(t)‖2z+m−l,ζdt

]
=

∫ T0

0

E



∥∥∥∥∥∥

∫ t

0

El−m(t, s)σ(s, u(s))dWs

∥∥∥∥∥∥
2

z+m−l,ζ


 dt

=

∫ T0

0

∫ t

0

E

[
‖El−m(t, s)σ(s, u(s))‖2

L2
0
(HΞ,Hz+m−l,ζ)

]
dsdt

≤
∫ T0

0

∫ t

0

E


C

2
(t,s) (1 + ‖u(s)‖Hz+m−l,ζ)2 sup

η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)


dsdt

=


sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)



∫ T0

0

∫ t

0

C2
(t,s)E

[
(1 + ‖u(s)‖Hz+m−l,ζ )2

]
dsdt

≤ 2


sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)



(

max
0≤s≤t≤T0

C2
(t,s)

)
T0

(
T0 +

∫ T0

0

E

[
‖u(s)‖2z+m−l,ζ

]
ds

)

= 2CT0,m,lT0(T0 + ‖u‖2L2([0,T0]×Ω,Hz+l−m,ζ)
) < ∞.
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Now, we take u1, u2 ∈ L2([0,T0] ×Ω,Hz+m−l,ζ) and compute

‖Tu1 − Tu2‖2L2([0,T0]×Ω,Hz+m−l,ζ)
≤ 2

(
‖T1u1 − T1u2‖2L2([0,T0]×Ω,Hz+m−l,ζ)

+ ‖T2u1 − T2u2‖2L2([0,T0]×Ω,Hz+m−l,ζ)

)

= 2

∫ T0

0

E



∥∥∥∥∥∥

∫ t

0

El−m(t, s)(γ(s, u1(s)) − γ(s, u2(s)))ds

∥∥∥∥∥∥
2

z+m−l,ζ


 dt(4.27)

+ 2

∫ T0

0

E



∥∥∥∥∥∥

∫ t

0

El−m(t, s)(σ(s, u1(s)) − σ(s, u2(s)))dBs

∥∥∥∥∥∥
2

z+m−l,ζ


 dt.(4.28)

In the term (4.27) here above we can move the expectation and the (z + m − l, ζ)−norm inside the integral
with respect to s. Then, by continuity of El−m on Sobolev-Kato spaces, Definition 4.8, and the embedding
Hz+m−l,ζ ֒→ Hz+m−l,ζ+l−m, we obtain

2

∫ T0

0

E



∥∥∥∥∥∥

∫ t

0

El−m(t, s)(γ(s, u1(s)) − γ(s, u2(s)))ds

∥∥∥∥∥∥
2

z+m−l,ζ


 dt

≤ 2

∫ T0

0

∫ t

0

E

[∥∥∥El−m(t, s)(γ(s, u1(s)) − γ(s, u2(s)))
∥∥∥2

z+m−l,ζ

]
dsdt

≤ 2

∫ T0

0

∫ t

0

C2
t,sE

[∥∥∥γ(s, u1(s)) − γ(s, u2(s))
∥∥∥2

z,ζ+l−m

]
dsdt

≤ 2

∫ T0

0

∫ t

0

C2
t,sC

2
sE

[
‖u1(s) − u2(s)‖2z+m−l,ζ+l−m

]
dsdt

≤ 2

(
max

0≤s≤t≤T0

C2
t,sC

2
s

)
T0

∫ T0

0

E

[
‖u1(s) − u2(s)‖2z+m−l,ζ

]
ds

= 2CT0 T0‖u1 − u2‖2L2([0,T0]×Ω,Hz+l−m,ζ)
.

To the term (4.28) we apply, here below, the fundamental isometry (2.3) to pass from the first to the second line,
formula (4.20) of Lemma 4.12 to pass from the second to the third line, Definition 4.8 to pass from the third to
the fourth line, and finally get:

2

∫ T0

0

E



∥∥∥∥∥∥

∫ t

0

El−m(t, s)(σ(s, u1(s)) − σ(s, u2(s)))dBs

∥∥∥∥∥∥
2

z+m−l,ζ


 dt

= 2

∫ T0

0

∫ t

0

E

[
‖El−m(t, s)(σ(s, u1(s)) − σ(s, u2(s)))‖2

L0
2(HΞ,Hz+m−l,ζ)

]
dsdt

≤ 2

∫ T0

0

∫ t

0

E


C

2
t,s‖σ(s, u1(s)) − σ(s, u2(s))‖2

Hz,ζ sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)


 dsdt

≤ 2


sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)



∫ T0

0

∫ t

0

C2
t,sC

2
sE

[
‖u1(s) − u2(s)‖2z+m−l,ζ

]
dsdt

≤ 2CT0 T0


sup
η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)


 ‖u1 − u2‖2L2([0,T0]×Ω,Hz+m−l,ζ)

.

Summing up, we have proved that

‖Tu1 − Tu2‖2L2([0,T0]×Ω,Hz,ζ)
≤ 2CT0T0


1 + sup

η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)


 ‖u1 − u2‖2L2([0,T0]×Ω,Hz+m−l,ζ)

,

that is, T is Lipschitz continuous on L2([0,T0] ×Ω,Hz+m−l,ζ). Moreover, in view of the assumption (4.21), if we
take T0 > 0 such that

2CT0 T0


1 + sup

η∈Rd

∫

Rd

1

(1 + |ξ + η|2)m−l
µ(dξ)


 < 1,(4.29)



SEMILINEAR HYPERBOLIC SPDES WITH POLYNOMIALLY BOUNDED COEFFICIENTS 25

then T becomes a strict contraction on L2([0,T0] ×Ω,Hz+m−l,ζ), and so it admits a unique fixed point u = Tu.
That is, there exists a unique, well-defined solution of (4.3). To prove the estimate (4.29), it is sufficient to take
T0 small enough, since the constant CT0 is continuously dependent on T0. The proof is complete. �

4.4. The weakly hyperbolic case with involutive roots. We conclude the section with the statement of a result
of existence and uniqueness of a solution to the Cauchy problem (4.3) for the SPDE (1.1) in the more general
case of involutive roots, cfr. (3.15). With these even weaker hyperbolicity assumption we can still switch from
(4.3) to an equivalent first order system (3.18), but at the price, as usual, of some further requirement on the
lower order terms of the operator L. Namely, we ask, that L admits a factorization (3.22) with symbols h jk,

j = 1, . . . ,m, k = 1, . . . , l j, such that h jk ∈ C∞([0,T], S0,0). Notice that this is automatically true in the case of
strict hyperbolicity, and that only the request on the order of the symbols h jk has to be fulfilled in the case of
hyperbolicity with constant multiplicities. We say, in the present case, that L satisfies the strong Levi condition,
or, equivalently, that it is of strong Levi type. We state and discuss here below our further result, under the
hypothesis (H3).

Theorem 4.19. Let us consider the Cauchy problem (4.3) for an SPDE (1.1), where the partial differential operator L of
the form (4.1) satisfies the hyperbolicity hypothesis (4.2). Assume that L is SG-hyperbolic with involutive roots, that is,
all the roots of the principal part Lm of L are real-valued and form an involutive system, in the sense of (3.15). Moreover,
assume that L is of strong Levi type. Suppose that γ, σ ∈ Liploc(z, ζ, 0, 0), z, ζ ∈ R, in some sufficiently small open subset
U ⊂ Hz+m−1,ζ+m−1(Rd) ֒→ Hz,ζ(Rd). Finally, assume that the spectral measure satisfies the compatibility condition

(4.30)

∫

Rd

µ(dξ) < ∞.

Then, there exists a time horizon 0 ≤ T0 ≤ T such that for any choice of u j ∈ Hz+m−1− j,ζ+m−1− j(Rd), 0 ≤ j ≤ m − 1,

u0 ∈ U, the Cauchy problem (4.3) admits a unique solution u ∈ L2([0,T0] ×Ω,Hz,ζ(Rd)) satisfying

u(t, x) = v0(t, x) +

∫ t

0

∫

Rd

Λ(t, s, x, y)γ(s, y, u(s, y)) dyds+

∫ t

0

∫

Rd

Λ(t, s, x, y)σ(s, y, u(s, y))Ξ̇(s, y) dyds,

whereΛ(t, s) is obtained through the Schwartz kernels of Fourier integral operators, the first integral is a Bochner integral,
and the second integral is intended to be the stochastic integral of the Hz,ζ(Rd)-valued stochastic process E0(t, ·)σ(·, u(·))
with respect to the stochastic noise Ξ.

Remark 4.20. Ξ defines a cylindrical Wiener process on (HΞ(Rd), 〈·, ·〉HΞ(Rd)) with values in Hz,ζ, by Lemma 4.12.

By the procedure explained in [14], see also [24], the Cauchy problem (4.4) is turned into an equivalent first
order system (3.18) with real-valued, diagonal principal part. However, due to the failure of the ellipticity of
the differences τ j(t, x, ξ)− τk(t, x, ξ), even in the sense of the constant multiplicities, here we have no possibility
to decouple (into blocks) the equations through a perfect diagonalizer Op(ω) as in Theorem 3.25, and directly
proceed, as in the case of scalar equations of order 1, by means of Fourier integral operators.

By Theorem 3.20 from [5], we know that the fundamental solution of (3.18) can be obtained as limit of a
sequence of matrices of Fourier operators. However, if we can write E as a finite-sum expression of FIOs, also in
the case of variable multiplicities and involutive characteristics,we can reduce to a system, construct formally its
solution using its fundamental solution operator, go back to the scalar equation (1.1), apply Banach fixed point
theorem as done in the proof of Theorem 4.14 and get existence of a unique solution u ∈ L2([0,T0]×Ω,Hz,ζ(Rd)).
In [1] we are extending to the SG case a result by Taniguchi [32], which allows to obtain E, in the case of
involutive roots, through a finite sum of FIOs, modulo smoothing terms.

Another difference is that, in this case, we have no improvement in the decay and smoothness order loss,
as it is instead provided by the matrix-valued operators Op(Υ j), j = m or j = n < m, in the cases of strict

hyperbolicity or of constant multiplicities, respectively. So, the symbols c1
p appearing in the expected kernels of

the approximate solution operator in the sense of (4.15) will be of order (0, 0). This explains the more restrictive
condition (4.30), which allows again to go through an argument similar to those in the proof of Theorem 4.14.

The full proof of Theorem 4.19 requires a careful analysis of a number of technical details, to incorporate in
the SG theory the analog of the result by Taniguchi mentioned above, which will be achieved in [1]. In order to
keep the present exposition within a reasonable size, and not to heavily divert from the main objects of interests
treated here, the proof of Theorem 4.19 will then appear elsewhere.
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4.5. Function-valued solutions and random-field solutions in the linear case. Consider now the special
case of (4.3), with a SG-hyperbolic operator L with constant multiplicities, where σ(t, x, u(t, x)) = σ(t, x) and

γ(t, x, u(t, x)) = γ(t, x), γ, σ ∈ C([0,T],Hz,ζ), z ≥ 0, ζ > d
2 , s 7→ F (σ)(s) = νs ∈ L2([0,T],Mb), Mb the space of

complex-valued measures with finite total variation. That is, we look at the Cauchy problem


Lu(t, x) = γ(t, x) + σ(t, x)Ξ̇(t, x), (t, x) ∈ (0,T] ×Rd

D
j
tu(0, x) = u j(x), x ∈ Rd, 0 ≤ j ≤ m − 1,

(4.31)

for the linear SPDEs studied in [2]. Such (more restrictive) hypotheses implyγ, σ ∈ Lip(z, ζ, r, ρ) ⊂ Liploc(z, ζ, r, ρ)
for any r, ρ ≥ 0. In fact, recalling Definition 4.8, trivially:

• for every w ∈ Hz+r,ζ+ρ, t ∈ [0,T], ‖g(t, ·,w)‖z,ζ = ‖g(t, ·)‖z,ζ ≤ C(t)(1 + ‖w‖z+r,ζ+ρ), with C(t) = ‖g(t, ·)‖z,ζ;
• for every w, v ∈ Hz+r,ζ+ρ, t ∈ [0,T], ‖g(t, ·,w)− g(t, ·, v)‖z,ζ ≡ 0 ≤ C(t)‖w − v‖z+r,ζ+ρ.

Applying Theorem 4.14, we obtain the existence and uniqueness of a function-valued solution for the linear
Cauchy problem (4.31), which we here denote by ufv. Since in Theorem 4.12 of [2] we proved the existence and
uniqueness of a random-field solution of (4.31), which we here denote by urf, we now wish to compare it with
ufv.

Remark 4.21. Notice that, in analogy with (4.22), urf satisfies

(4.32) urf(t, x) = v0(t, x) +

∫ t

0

∫

Rd

Λ(t, s, x, y)γ(s, y) dyds+

∫ t

0

∫

Rd

Λ(t, s, x, y)σ(s, y)Ξ̇(s, y) dyds.

While the first two terms in the right-hand side of (4.32) clearly coincide with the first two terms in the
right-hand side of (4.22), the corresponding third, stochastic terms in (4.22) and (4.32) are defined in different
ways.

We now prove that a random-field solution of (4.31) is also a function-valued solution.

Proposition 4.22. Let urf and ufv be the random-field solution and the function-valued solution of (4.31), respectively,

with L SG-hyperbolic with constant multiplicities,γ, σ ∈ C([0,T],Hz,ζ), z ≥ 0, ζ > d
2 , s 7→ F (σ)(s) = νs ∈ L2([0,T],Mb),

Mb the space of complex-valued measures with finite total variation. Then, urf = ufv = u.

Proof. Our analysis in [2] shows thatΛσ ∈ P0, the completion of the classE of simple processes via the pre-inner
product (defined for suitable f , g)

〈 f , g〉0 = E
[ ∫ T

0

∫

Rd

(
f (s) ∗ g̃(s)

)
(x) Γ(dx)ds

]
= E

[ ∫ T

0

∫

Rd

[F f (s)](ξ) · [F g(s)](ξ)µ(dξ)ds
]
.

By Proposition 3.12 in [18], it follows that the stochastic integrals of Λσwith respect to the martingale measure
associated with Ξ̇ (considered in Section 4 of [2]), and with respect to the cylindrical Wiener process considered
in Section 4 are equal. This proves that urf = ufv = u, as claimed. �
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