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Abstract

The seminal paper by Barzilai and Borwein [IMA J. Numer. Anal. 8 (1988)] has given rise
to an extensive investigation aimed at developing effective gradient methods, able to deal
with large-scale optimization problems. Several steplength rules have been first designed
for unconstrained quadratic problems and then extended to general nonlinear problems;
these rules share the common idea of attempting to capture, in an inexpensive way, some
second-order information. Our aim is to investigate the relationship between the steplengths
of some gradient methods and the spectrum of the Hessian of the objective function, in
order to provide insight into the computational effectiveness of these methods. We start
the analysis in the framework of strongly convex quadratic problems, where the role of the
eigenvalues of the Hessian matrix in the behaviour of gradient methods is better understood.
Then we move to general unconstrained problems, focusing on natural extensions of some
steplength rules analysed in the previous case. Our study suggests that, in the quadratic
case, the methods that tend to use groups of small steplengths followed by some large
steplengths, attempting to approximate the inverses of some eigenvalues of the Hessian
matrix, exhibit better numerical behaviour. The methods considered in the general case
seem to preserve the behaviour of their quadratic counterparts, in the sense that they appear
to follow somehow the spectrum of the Hessian of the objective function during their progress
toward a stationary point.
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1. Introduction

Many real life applications lead to nonlinear optimization problems whose very large size
makes first-order methods the most suitable choice. Among first-order approaches, gradient
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methods have widely proved their effectiveness in solving challenging unconstrained and
constrained problems arising in signal and image processing, compressive sensing, machine
learning, optics, chemistry and other areas (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and
the references therein).

These methods underwent a renaissance since the work by Barzilai and Borwein [12],
which showed how a suitable choice of the steplength can significantly accelerate the classical
Steepest Descent method [13, 14]. Since then, several steplength rules have been designed in
order to increase the efficiency of gradient methods, while preserving their simplicity and low
memory requirement. Most of these rules have been first developed for the unconstrained
convex quadratic problem [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], which
is not only of practical importance in itself, but also provides a simple setting to design
effective methods for more general problems. The extension of steplength selection strategies
from convex quadratic to general nonlinear optimization has involved interesting theoretical
issues, leading to the exploitation of line search strategies in order to guarantee convergence
to stationary points [30, 31, 32, 17, 18, 33, 34, 35, 24, 36].

The theoretical convergence results of gradient methods based on the previous steplength
rules do not explain their effectiveness, and a full understanding of their practical behaviour
is still missing. A feature shared by most of these methods consists in exploiting spectral
properties of the Hessian of the objective function through (usually implicit) low cost ap-
proximations of expensive second-order information. This appears to be the main reason for
their good behaviour (see, e.g., [33, 21, 24, 26, 37]); however, a deeper and more systematic
analysis is needed.

The aim of this work is to investigate the relationship between the steplengths exploited
by some well known gradient methods and the spectrum of the Hessian of the objective
function, for convex quadratic and general problems of the form

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable. In this case, the gradient method iteration
reads

xk+1 = xk − αkgk, (2)

where gk = ∇f(xk) and αk > 0 denotes the steplength. Our analysis highlights basic
principles for “capturing” spectral properties of the Hessian matrix and how these princi-
ples have been implemented in recent gradient methods in order to achieve computational
effectiveness.

We first consider the convex quadratic problem

min
x∈Rn

f(x) :=
1

2
xTAx− bTx, (3)

where A ∈ Rn×n is symmetric positive definite and b ∈ Rn. It provides a simple framework
for investigating the role of the eigenvalues of the Hessian matrix in the behaviour of gra-
dient methods; furthermore, convergence results involving the spectrum of the Hessian are
available in this case, which provide a sound basis for our analysis. We deal with a selection
of approaches, representative of a wide class of gradient methods, as explained later in this
paper. We consider the following methods: Barzilai-Borwein and Adaptive Barzilai-Borwein
variants [20, 22], Limited Memory Steepest Descent [24], Steepest Descent with Alignment
and Steepest Descent with Constant (Yuan) steps [26, 27]; we also consider methods such
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that the inverses of their steplengths follow predefined distributions obtained exploiting the
Golden Arcsin rule [38] or the Chebyshev nodes [29]. In the second part of the paper, we deal
with the general unconstrained problem, focusing on gradient methods whose steplengths
are natural extensions of the rules developed for the convex quadratic case, combined with
line search strategies forcing convergence. In particular, we investigate methods based on
the Barzilai-Borwein, the ABBmin Adaptive Barzilai-Borwein [22] and the Limited Memory
Steepest Descent rules. Our analysis is supported by numerical experiments on a variety of
test problems.

The paper is organized as follows. In Section 2, after some preliminary results on gradient
methods applied to strongly convex quadratic problems, we discuss the relationship between
the steplengths and the spectrum of the Hessian in the quadratic case, showing the results
of a set of numerical experiments. This analysis is extended to the non-quadratic case in
Section 3. Some conclusions are provided in Section 4.

2. Convex quadratic problems

We first consider the strongly convex quadratic problem (3), in order to highlight the
strict relationship between the behaviour of gradient methods and the eigenvalues of the
Hessian of the objective function. In particular, we show how some choices of the steplength
exploit spectral properties of the Hessian matrix in order to achieve efficiency in the corre-
sponding methods. We start by giving some preliminary results, which will be useful in our
analysis.

2.1. Notation and preliminaries

Let {λ1, λ2, . . . , λn} be the eigenvalues of the matrix A in (3), and {d1, d2, . . . , dn} a set
of associated orthonormal eigenvectors. The gradient gk can be expressed as

gk =

n∑
i=1

µki di, µki ∈ R, (4)

where µki is called the i-th eigencomponent of gk. The following assumptions are not re-
strictive (see, e.g., [27, Section 1] and [24, Section 2]) and will be considered in the sequel.

Assumption 1. The eigenvalues λ1, . . . , λn are such that

λ1 > λ2 > · · · > λn > 0.

Assumption 2. At the starting point x0,

µ0
1 6= 0 and µ0

n 6= 0.

For any gradient method applied to problem (3),

gk = gk−1 − αk−1Agk−1 =

k−1∏
j=0

(I − αjA)g0, (5)
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and then the eigencomponents of gk satisfy the recurrence formula

µki = µ0
i

k−1∏
j=0

(1− αjλi) = µk−1i (1− αk−1λi). (6)

The previous recurrence allows to analyse the behaviour of gradient methods in terms of the
spectrum of the Hessian matrix A. In particular, the following properties are a straightfor-
ward consequence of (6):

1. if µki = 0 for some i, then µhi = 0 for h ≥ k;

2. if αk = 1/λi, then µk+1
i = 0;

3.
∣∣µk+1
i

∣∣ < ∣∣µki ∣∣ if and only if αk < 2/λi;

4. if αk is sufficiently close to 1/λj , then
∣∣µk+1
i

∣∣ > ∣∣µki ∣∣ for i < j and λi > 2λj .

Thus, small steplengths (say close to 1/λ1) tend to decrease a large number of eigencompo-
nents, with negligible reduction of those corresponding to small eigenvalues. The latter can
be significantly reduced by using large steplengths, but this increases the eigencomponents
corresponding to large eigenvalues, fostering also a nonmonotone behaviour of the sequence
{f(xk)}.

The classical Steepest Descent (SD) method for problem (3) uses the Cauchy steplength

αSD
k = argmin

α>0
f(xk − αgk) =

gTk gk
gTk Agk

, (7)

which guarantees monotonicity of {f(xk)}. It is well known that the SD method has Q-linear
convergence rate which depends on ρ = (λ1− λn)/(λ1 + λn) [14]. Furthermore, equality (5)
implies that SD has finite termination if and only if at some iteration the gradient is an
eigenvector of A.

The convergence behaviour of the SD method has been deeply investigated (see, e.g.,
[14, 39, 26, 28]). Some key theoretical results are summarized next.

Theorem 1. Let Assumptions 1 and 2 hold and let {xk} be a sequence generated by the SD
method applied to problem (3). Then

lim
k→∞

(µk1)2∑n
j=1(µkj )2

=


1

1 + c2
if k odd

c2

1 + c2
if k even

lim
k→∞

(µkn)2∑n
j=1(µkj )2

=


c2

1 + c2
if k odd

1

1 + c2
if k even

lim
k→∞

(µki )2∑n
j=1(µkj )2

= 0, for i = 2, . . . , n− 1,

where

c = lim
k→∞

µ2k
1

µ2k
n

= − lim
k→∞

µ2k+1
n

µ2k+1
1

.
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Furthermore,

lim
k→∞

g2k
‖g2k‖

= p, lim
k→∞

g2k+1

‖g2k+1‖
= p′,

where p, p′ ∈ span{d1, dn} and ‖ · ‖ is the Euclidean norm.

Theorem 1 shows that the SD method tends to reduce the gradient eigencomponents cor-
responding to the largest and smallest eigenvalues more slowly than the other components.
It eventually performs its search in the space spanned by the eigenvectors corresponding to
the largest and smallest eigenvalues of A, with normalized gradient approaching the vectors
p and p′ in a cyclic way. This explains the well-known SD zigzagging behaviour, which
generally yields slow convergence.

A possibility for avoiding the zigzagging pattern of the gradient is to foster the sequence
{1/αk} to sweep all the spectrum of the Hessian matrix. Furthermore, a suitable alternation
of small and large steplengths appears to be a key issue to reduce the gradient eigencom-
ponents in a more balanced way. In the last three decades, several more efficient gradient
methods have been designed whose behaviour can be explained in light of the previous
considerations, as discussed in the next section.

2.2. Steplengths and Hessian eigenvalues

Starting from the seminal work by Barzilai and Borwein [12], there has been a renewed
interest for gradient methods, and many strategies for computing steplengths have been
devised with the objective of overcoming the inherent drawbacks of the SD method. In our
opinion, three main concepts can be identified which underlie most of these strategies:

1. injecting some second-order information into the steplengths;
2. breaking the cycling behaviour of the SD gradients by using special steplengths at

selected iterations;
3. using steplengths following some predefined distribution over [1/λ1, 1/λn].

These ideas are not mutually exclusive and they often give the possibility of interpreting
gradient methods from different points of view. Their application in different methods is
discussed next for the quadratic problem (3). We focus on a selection of gradient methods,
whose behaviours can be considered representative of many gradient methods; therefore, our
discussion is not meant to be exhaustive.

The idea of using steplengths attempting to capture some second-order information
clearly underlies the Barzilai-Borwein (BB) methods, which paved the way for the reinas-
sance of gradient methods. In this case the steplength is defined by a secant condition,
imposing either

αk = argmin
α

∥∥α−1sk−1 − yk−1∥∥ (8)

or
αk = argmin

α
‖sk−1 − αyk−1‖ , (9)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Hence, the BB methods can be regarded
as quasi-Newton methods where the Hessian is approximated by (1/αk)I. The following
steplengths are obtained from (8) and (9), respectively:

αBB1
k =

‖sk−1‖2

sTk−1yk−1
=

gk−1
T gk−1

gk−1TAgk−1
, (10)

αBB2
k =

sTk−1yk−1

‖yk−1‖2
=

gk−1
TAgk−1

gk−1TA2gk−1
,
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which satisfy
1

λ1
≤ αBB2

k ≤ αBB1
k ≤ 1

λn
.

Note that αBB1
k is equal to the Cauchy steplength at iteration k− 1, i.e., αSDk−1, while αBB2

k

is equal to the steplength of the Minimal Gradient method at iteration k − 1, i.e.,

αMG
k−1 = argmin

α>0
‖∇f(xk−1 − αgk−1)‖.

In other words, both BB steplengths can be regarded as the result of exact line searches
applied to sequences with delay 1.

The BB methods applied to strongly convex quadratic problems have R-linear conver-
gence [40], which does not explain why they are in practice much faster than the SD method.
However, it has been experimentally observed in [33] that these methods are able to generate
sequences {1/αk} sweeping the spectrum of A, thus preventing the gradient from asymp-
totically cycling between two fixed directions. It is worth noting that this behaviour of the
BB steplengths may produce significant nonmonotonicity in the sequence {f(xk)}.

Several gradient methods have been proposed which generalise the BB methods. They
are based either on the alternation of Cauchy and BB steplengths or on their cyclic use (see,
e.g., [16, 17, 34]); some of them fit into the framework of Gradient Methods with Retards [15],
which, following the BB methods, use delayed Cauchy steplengths. The convergence rate of
these BB-related methods is generally R-linear, but their practical convergence behaviour is
superior than the SD one, like the original BB methods.

Among these methods we focus on the Adaptive Barzilai-Borwein (ABB) one as originally
formulated in [20], and on its modification ABBmin [22], whose steplenghts are defined by
the following rules:

αABB
k =

 αBB2
k if

αBB2
k

αBB1
k

< τ

αBB1
k otherwise

and

αABBmin

k =

 min
{
αBB2
j : j = max{1, k −ma}, . . . , k

}
, if

αBB2
k

αBB1
k

< τ

αBB1
k , otherwise

(11)

where ma is a nonnegative integer and τ ∈ (0, 1). Both methods tend to compute BB2
steplengths, which are likely to be small, spaced out with some BB1 steplengths, which are
inclined to be large. Adaptive criteria are used to switch between the two steplengths, based
on the value

αBB2
k

αBB1
k

= cos2 ψk−1,

where ψk−1 is the angle between gk−1 and Agk−1. The rationale behind these criteria is
to select αBB1

k when gk−1 is a sufficiently good approximation of an eigenvector of A. In
other words, the methods tend to generate a sequence of (small) BB2 steplengths in order
to foster the BB1 steplength to become a suitable approximation of the inverse of some
small eigenvalue. We note that ABBmin tends to adopt smaller steplengths than ABB. In
conclusion, the steplength rules used by the two methods aim to follow the BB behaviour in
sweeping the spectrum of A, but try to mitigate the nonmonotone behaviour of the objective
function through a “wise” alternation of short and long steps.
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A different approach aimed at using second-order information by capturing the spectrum
of the Hessian is exploited by the Limited Memory Steepest Descent (LMSD) method pro-
posed in [24]. The basic idea is to divide the sequence of LMSD iterations into groups of ms

iterations referred to as sweeps, where ms is a small positive integer, and to compute the
steplengths for each sweep as the inverses of some Ritz values of the Hessian matrix [41],
obtained by exploiting the gradients of the previous sweep. In order to briefly describe the
LMSD method, we consider an iteration k ≥ ms and define the matrices G ∈ Rn×ms and
J ∈ R(ms+1)×ms as follows:

G = [gk−ms , gk−ms+1, . . . , gk−1],

and

J =



1

αLMSD
k−ms

− 1

αLMSD
k−ms

. . .

. . .
1

αLMSD
k−1

− 1

αLMSD
k−1


,

where αLMSD
i is the steplength associated with the gradient gi. Then, the first equality in (5)

can be written in matrix form as
AG = [G, gk]J.

This can be used to compute the tridiagonal matrix T resulting from the application of ms

iterations of the Lanczos process to the matrix A, with starting vector q1 = gk−ms
/‖gk−ms

‖.
This process generates a matrix Q = [q1, q2, . . . , qms

] whose columns are an orthonormal
basis for the Krylov space

span
{
gk−ms

, Agk−ms
, A2gk−ms

, . . . , Ams−1gk−ms

}
,

such that
T = QTAQ.

Since the columns of G can be obtained as suitable combinations of the columns of Q, we
can write G = QR, where R is upper triangular and nonsingular if G is full rank, and hence

T = QTAGR−1 = [R, QT gk]JR−1, (12)

(for now we assume that G is full rank; the case G rank-deficient is addressed later). The
steplengths for the next ms gradient iterations are defined as the inverses of the eigenvalues
θi of T :

αLMSD
k−1+i =

1

θi
, i = 1, . . . ,ms. (13)

The quantities θi are the so-called Ritz values, which belong to the spectrum of A and
provide ms approximations of the eigenvalues of A [41]. Note that for ms = 1 we obtain the
BB method with steplength αBB1

k . As in the BB-like approaches, the sequence {f(xk)} is
nonmonotone.
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So far we have assumed that a group of ms iterations have been performed before starting
a new sweep; nevertheless, the LMSD method can be initialized with a single steplength α0,
as done in other gradient methods. In this case, two initial sweeps of length ms = 1 are
performed, followed by a sweep in which two back gradients can be exploited to define the
steplengths allowing two new iterations; in the next sweep, up to four back gradients can be
exploited, and so on.

Furthermore, equation (12) shows that T can be obtained without involving the matrix A
explicitly; this is useful for generalizing the method to the non-quadratic case (see Section 3).
The use of the matrix Q can be avoided too, by observing that GTG = RTR and then

T = QTAQ = R−TGTAGR−1 = R−TGT [G, gk]JR−1 = [R, r]JR−1, (14)

where the vector r is the solution of the linear system RT r = GT gk. In this way, R can be
obtained from the Cholesky factorization of GTG and the computation of Q is not required.

In our implementation (see Section 2.3) we compute T as in (14). If GTG is (numerically)
indefinite, we eliminate the oldest gradient from G and repeat the Cholesky factorization; in
this case, fewer than ms steplengths are provided for the new sweep and fewer than ms new
gradients are computed. Thus, back gradients from the previous sweep are kept for defining
the ms columns of the next matrix G.
As the BB methods and their aforementioned extensions, the LMSD method has R-linear
convergence [42]. However, an improvement over BB is reported in [24] for ms > 1.

A different philosophy to define the steplengths is behind the SDA and SDC gradient
methods, proposed in [26, 27]. They alternate a number of SD steplengths with a number
of constant steplenghts, computed by using rules that exploit previous SD steplenghts, with
the aim of escaping from the two-dimensional space where the SD method asymptotically
reduces its search. Given two integers h ≥ 2 and mc ≥ 1, the SDA and SDC steplength are
computed as

αk =

{
αSD
k if mod (k, h+mc) < h,
α̂s otherwise, with s = max{i ≤ k : mod (i, h+mc) = h}, (15)

where α̂s is a “special” steplength built at a certain iteration s by using αSD
s−1 and αSD

s .
In other words, the methods make h consecutive exact line searches and then compute a
different steplength, which is kept constant and applied in mc consecutive iterations. In the
SDA method α̂s = αA

s , where

αA
s =

(
1

αSD
s−1

+
1

αSD
s

)−1
,

while in the SDC method α̂s = αY
s , where

αY
s = 2

√√√√( 1

αSD
s−1
− 1

αSD
s

)2

+ 4
‖gs‖2(

αSD
s−1‖gs−1‖

)2 +
1

αSD
s−1

+
1

αSD
s

−1 . (16)

Note that αY
s is the so-called Yuan steplengths [43], used in the Dai-Yuan method. The

latter alternates some Cauchy steplengths with some Yuan steplengths in a way that resem-
bles (15), but recomputes αY

s at each iteration instead of keeping it constant.
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The choice of the steplengths in the SDA and SDC methods is motivated by some
properties of αA

k and αY
k . Specifically, in [26, 27] it is proved that

lim
k→∞

αA
k =

1

λ1 + λn
, (17)

lim
k→∞

αY
k =

1

λ1
. (18)

where αA
k and αY

k are computed by using the sequence {αSD
k } generated by applying the SD

method to problem (3).
Equality (17) and the properties of the SD method suggest that the SDA method com-

bines the tendency of SD to choose its search direction in span{d1, dn} with the tendency
of the gradient method with constant steplength 1/(λ1 + λn) to align the search direction
with dn. This significantly accelerates the convergence with respect to the SD method, as
shown by the numerical results in [26]. Note that the name SDA stands for Steepest Descent
with Alignment, i.e., it refers to the aforementioned alignment property.

In SDC the use of a finite sequence of Cauchy steps has a twofold goal: forcing the
search in span{d1, dn} and computing a suitable approximation of 1/λ1 (see (18)), in order
to drive toward zero the first eigencomponent of the gradient, µk1 . If this eigencomponent
were completely removed, a sequence of Cauchy steplengths followed by constant Yuan
steplengths would drive toward zero the second eigencomponent µk2 , and so on. Thus,
the alternation of Cauchy and constant Yuan steplengths is considered as an attempt to
eliminate the eigencomponents of the gradient according to the decreasing order of the
eigenvalues of A. By the way, we note that the name SDC comes from Steepest Descent
with Constant (Yuan) steps. We also point out that, if the Hessian matrix is ill conditioned,
1/(λ1 + λn) ≈ 1/λ1 and then SDA and SDC are expected to have very close behaviours.

Again, SDA and SDC have R-linear convergence, but in practice are competitive with
the fastest gradient methods currently available [26]. Furthermore, the resulting sequences
{f(xk)} show a nonmonotone behaviour.

Some of the methods considered so far fit into a more general strategy described in [28]:
breaking the cycling behaviour of the SD gradients by periodically enforcing either a very
small or a very large step. Some key observations are made in [28]: first, since large steps
tend to increase the gradient eigencomponents associated with large eigenvalues and may
increase the objective function value (see Section 2.1), very long steps should be performed
after Cauchy steps, which always reduce the function value; second, if small steplengths are
enforced when the eigencomponents associated with the large and “middle” eigenvalues are
already small, then the gradient is dominated by the eigencomponents associated with the
smallest eigenvalues and the next Cauchy steplength becomes large.1 Based on these obser-
vations, the Cauchy-short method and its alternated variant [28] enforce short steplengths
after performing Cauchy steplengths, in order to break the SD cycle. The short steplengths
are Cauchy ones themselves, so that all the steplengths belong to [1/λ1, 1/λn] (see [28] for
details).

1This can be explained by noting that

αSD
k =

gTk gk

gTk Agk
=

∑n
i=1(µki )2∑n

i=1(µki )2λi
.

9



Likewise, the SDA and SDC methods break the SD cycle by suitably alternating Cauchy
steplengths with the small steplenghts αA

k ≈ 1/(λ1 +λn) and αY
k ≈ 1/λ1, respectively. ABB

and ABBmin can be re-interpreted in light of the previous ideas too, since they enforce a
large steplength αBB1

k after short/medium steps of type αBB2
k have been performed to reduce

the eigencomponents associated with the large/medium eigenvalues.
Finally, we briefly describe gradient methods devised with the objective of approaching

the optimal complexity bound for first-order methods applied to stongly-convex quadratic
functions. This goal is achieved by using steplengths that are distributed in [1/λ1, 1/λn]
according to some predefined distribution.

In [23, 25, 38] some gradient methods are proposed which select their steplengths ac-
cording to the following result: if the sequence {1/αk} is asymptotically distributed wih
the arcsin probability density in [λn, λ1], then the asymptotic convergence rate of the corre-
sponding gradient method approaches that of the Conjugate Gradient method [23], which is
the optimal one (see, e.g., [44]). The inverses of the steplengths must be chosen as symmetric
pairs, in the sense that 1/α2k+1 = λ1 + λn − 1/α2k for sufficiently large k. The previous
results have been obtained by looking at the normalized gradients as probability measures
over the eigenvalues of the matrix A, following the approach originally proposed in [14]. We
note that λ1 and λn are usually not known; therefore, practical algorithms based on this
approach must provide estimates of them. Estimates based on the evaluation of moments
of probability measures generated by the gradient methods are analysed in [25].

Next we report a rule for the computation of the steplength, which we refer to as Golden
Arcsine (GA) rule, devised according to the previous ideas [38]:

αGAk =
1

βk
, βk = λk + (λk − λk)zk, (19)

where λk and λk are suitable approximations of the smallest and largest eigenvalues of A,
respectively, and

zk = (1 + cos(πuk))/2, u2j = min(vj , 1− vj), u2j+1 = max(vj , 1− vj), (20)

vj = {φ(j + 1)} , φ =

√
5 + 1

2
, (21)

with {a} denoting the fractional part of a. The number φ is the well-known golden ratio.
The sequence {βk} asymptotically has the arcsin distribution in [λk, λk]. More details are
given in [38].

Another technique to build steplengths such that the corresponding gradient method
approach the optimal complexity is based on the use of the Chebyshev nodes, i.e., the roots
of the Chebyshev polynomial of the first kind. This approach has been developed in [23]
and in [29], by taking different points of view. In [29] it is proved that if the steplengths
are defined as

αCHk = 1/γk, γk =
λ− λ

2
tk +

λ+ λ

2
, k = 0, . . . , N − 1,

where [λ, λ] ⊃ [λn, λ1], tk are the roots of the Chebyshev polynomial of the first kind of
degree N ,

tk = cos
(2k + 1)π

2N
,
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and

N ≈

1

2

√
λ

λ
log

2

ε


(dae denotes the smallest integer ā such that ā ≥ a), then the gradient method reduces the
error in the computed solution by a factor ε in N iterations. The closer the values of λ and
λ to λ1 and λn, respectively, the better the complexity bound is.

An algorithm using αCHk must also provide good estimates of the extremal eigenvalues
of the matrix A. Some techniques to build these estimates are discussed in [23, 25, 29].
It is worth noting that the author of [29] points out that the gradient method described
there is not proposed as a practical algorithm, but only to prove that a complexity bound
is achievable. However, the steplengths αCHk can be exploited to accelerate other gradient
methods, as suggested in [29].

We conclude this section by observing that the previous strategies based on predefined
distributions of the stepengths take into account only the extremal eigenvalues of A; they
also tend to generate more steplengths near the endpoints of the interval [1/λ1, 1/λn]. This
behaviour and its outcome are discussed in the next section.

2.3. Numerical results for quadratic problems

In order to illustrate the effects of the different steplength rules described in the previous
section, we analyse the numerical results obtained by solving some problems of the form
(3) with gradient methods using those rules. For the sake of space, we do not consider all
the methods presented in Section 2.2, but only a selection of them which, in our opinion, is
representative of the approaches analysed there.

Specifically, we discuss the results obtained by running Matlab implementations2 of the
following methods:

• BB, with BB1 steplength (see (10));

• ABBmin, with τ = 0.8 and ma = 5 (see (11));

• LMSD, with ms = 6 (see (13));

• SDC, with h = 3 and mc = 4 (see (15)–(16));

• GA with estimates of the extremal eigenvalues of A (see (19)–(21); we use the im-
plementation available from http://www.i3s.unice.fr/∼pronzato/Matlab/golden
ArcsineQ.m).

The parameters of these methods were chosen on the basis of the literature and our past
numerical experience. In the LMSD method, the Ritz values used within a sweep were
sorted in decreasing order, as proposed in [24], with the aim of applying large steplenghs
after some iterations in which smaller steplengths had reduced the eigencomponents of the
gradient corresponding to large eigenvalues (the ones that are considerably increased by the
large steplengths).

2We used Matlab R2016a on an Intel core i7-3517U.
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Table 1: Number of iterations of the selected gradient methods. The mark ‘—’ indicates that the stopping
criterion (22) has not been satisfied within 1000 iterations.

problem BB1 ABBmin LMSD SDC GA

QP1 173 147 165 149 178
QP2 — 754 — 954 932
QP3 236 199 181 192 246

The following criterion was used to stop the iterations:

‖gk‖ < ε, (22)

where ε = 10−6; a maximum number of 1000 iterations was considered too. We modified the
original GA implementation in order to stop the method as soon as (22) had been satisfied.
For all the methods, the same random vector from a uniform distribution on the unit sphere
was used as starting point.

Following [25, 38, 29], we considered three test problems of dimension n = 103, with
Hessian matrices having different distributions of the eigenvalues. Without loss of generality,
we set

A = diag(λ1, λ2, . . . , λn),

so that di is the i-th vector of the canonical basis of Rn. We chose as optimal solution a
random vector x∗ from a uniform distribution on the unit sphere and set b = Ax∗. The
eigenvalues of A were defined as follows:

QP1: n eigenvalues λi = (λb − λa)/(b − a) + (λ − λ)/(b − a)ξi, where λ = 1, λ = 103,
a = (1 − c)2, b = (1 + c)2, c = 1/2 and the values ξi are distributed according
to the Marčenko-Pastur density pc(x) =

√
(b− x)(x− a)/(2πxc2) (roughly speaking,

this distribution describes the asymptotic behaviour of the eigenvalues of a class of
covariance matrices [45]);

QP2: n eigenvalues in [λ, λ], with λ = λn = 1, λ = λ1 = 104 and λi/λi−1 constant.

QP3: n eigenvalues having a two-block distribution: λi = λ + (λ − λ)sn−i+1, i = 1, ..., n,
where λ = 1, λ = 103 and the values si are generated from a uniform random distri-
bution in (0, 0.2) for i = 1, ..., n/2, and in (0.8, 1) for i = n/2 + 1, . . . , n.

In Figures 1–6 we show, for each problem and each method, the distribution with the
iterations of the inverse of the steplength, 1/αk, the history of the gradient norm, ‖gk‖, and
of the function error, f(xk) − f(x∗). The horizontal lines in the pictures illustrating the
distribution of 1/αk represent 20 eigenvalues of A with linearly spaced indices (these indices
have been computed by using round(linspace(1,n,20))); for problem QP2, a logarithmic
scale has been used on the y axis, in order to better display the eigenvalues. For all the
problems we also report, in Table 1, the number of iterations performed by each method.

From Figures 1–3 we see that the ABBmin and SDC methods behave as described in
Section 2.2: they tend to compute groups of small steplengths, interleaved with some larger
steplengths, thus attempting to reduce first the eigencomponents of the gradient associated
with large eigenvalues and then the remaining eigencomponents. Conversely, BB1 does not
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Figure 1: Test problem QP1. Distribution of 1/αk with the iterations. The horizontal lines correspond to
20 eigenvalues of A with linearly spaced indices.
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Figure 2: Test problem QP2. Distribution of 1/αk with the iterations. The horizontal lines correspond to
20 eigenvalues of A with linearly spaced indices.
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Figure 3: Test problem QP3. Distribution of 1/αk with the iterations. The horizontal lines correspond to
20 eigenvalues of A with linearly spaced indices.
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Figure 5: Test problem QP2. History of gradient norm (left) and function error (right).
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Figure 6: Test problem QP3. History of gradient norm (left) and function error (right).
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appear to foster any order in the decrease of the eigencomponents of the gradient, but seems
to travel in the spectrum of A in a more chaotic way. Concerning the behaviour of LMSD, the
repeated use of the Lanczos procedure provides at most ms Ritz values at each sweep, which
attempt to approximate the extreme eigenvalues and a subset of the interior eigenvalues of A.
The pictures also show that the steplengths of GA, according to their definition, follow a
predefined path, which does not take into account the actual distribution of the eigenvalues
of A in [λn, λ1]. Furthermore, we observe that ABBmin, LMSD and SDC are able to “catch”
the actual distribution of the eigenvalues, as clearly illustrated by Figure 3.

The convergence histories, as well as the numbers of iterations, show that ABBmin and
SDC better adapt to different distributions of the eigenvalues of A. ABBmin is comparable
with SDC on problems QP1 and QP3 and requires fewer iterations on QP2. The performance
of the remaining methods varies with the distribution of the eigenvalues of A: the number of
iterations executed by BB1 and GA on QP1 is slightly larger than the number of iterations
of LMSD and all the three methods appear slower than ABBmin and SDC; BB1 and LMSD
are not able to achieve the required accuracy on QP2, while GA is comparable with SDC
on this problem; finally, BB1 and GA perform more iterations than the remaining methods
on problem QP3, because they do not catch the two-block distribution of the eigenvalues,
while LMSD appears to be the fastest of all methods. We also observe that BB1 and LMSD
produce more oscillating function values than the other methods and GA shows a monotone
behaviour of both the gradient norm and function error.

3. Extension to general unconstrained minimization problems

Among the gradient methods analysed in the previous section, BB1, LMSD and ABBmin

can be extended in a natural way to the general minimization problem (1), using line search
strategies to ensure convergence to a stationary point [30, 46, 24]. In this section, after
describing some generalizations of the aforementioned methods, we study their practical
behaviour on selected test problems, with the aim of understanding if and how the spectral
properties identified in the strongly convex quadratic case are preserved in the general one.

Henceforth the basic gradient iteration (2) is rewritten as follows:

xk+1 = xk − νkgk, (23)

where νk is the line search parameter obtained by reducing, if necessary, the tentative value
αk suggested by an appropriate steplength rule.

3.1. Gradient methods for general minimization problems

The generalizations of the BB1, ABBmin and LMSD methods considered in our analysis
are described in Algorithms 1–3. The tentative steplengths in the BB1 and ABBmin methods
are defined with the same updating rules introduced in the Section 2.2, except in the case
(xk+1 − xk)T (gk+1 − gk) ≤ 0, where the steplength αk+1 = αmax is used. For LMSD, the
strategy for defining Ritz-like values follows the rules described in Section 2.2, but needs
further explanation [24]. For general unconstrained problems, the matrix T in (14) is upper
Hessenberg, but generally not tridiagonal; thus, we compute a symmetric tridiagonal matrix
T by replacing the strictly upper triangle of T by the transpose of its strictly lower triangle
(in Matlab notation T = tril(T ) + tril(T,−1)′). The Ritz-like values θi, i = 1, . . . ,ms,
defining the tentative steplengths for the next sweep via equation (13), are the eigenvalues
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Algorithm 1: BB1 for general unconstrained minimization problems

Initialization: x0 ∈ Rn, 0 < αmin ≤ αmax, α0 ∈ [αmin, αmax], ε > 0,
δ, σ ∈ (0, 1), M ∈ N;

for k = 0, 1, . . .

νk = αk; fref = max{f(xk−j), 0 ≤ j ≤ min(k,M)};
while f(xk − νkgk) > fref − σνkgTk gk (line search)

νk = δνk;

end

xk+1 = xk − νkgk;
if ‖gk+1‖ ≤ ε‖g0‖ stop;

z = −gTk (gk+1 − gk);
if z > 0 (tentative steplength)

αk+1 = max

{
αmin,min

{
νkg

T
k gk
z

, αmax

}}
;

else

αk+1 = αmax;

end

end

of T . The case of non-positive eigenvalues is handled by simply discarding these values,
hence providing fewer than ms steplengths for the next sweep; if no positive eigenvalues are
available, any tentative steplength can be adopted for a sweep of length 1 (e.g., we use the
initial steplength). The presence of non-positive eigenvalues highlights critical situations,
which can originate from either a non-positive curvature or an inadequate approximation of
the eigenvalues of the current Hessian. In this case, in addition to discarding the non-positive
eigenvalues, we find convenient to discard also the oldest back gradients. Furthermore,
regardless of the steplength rule, all the methods keep the sequence of tentative steplengths
{αk} bounded below and above by the positive constants αmin and αmax.

Concerning the line search strategy, our choice is driven not only by the theoretical need
to introduce some form of monotonicity in the sequence {f(xk)}, but also by the purpose
of keeping unchanged as much as possible the steplength provided by the selected rule. To
this end, we exploit the Grippo-Lampariello-Lucidi (GLL) nonmonotone line search [47].
When the tentative steplength is provided by the BB1 or ABBmin rule, we use this line
search strategy with a predefined value for the memory parameter M . In the LMSD case,
following the proposal in [24], we modify the line search strategy by setting fref equal to
the value of the objective function at the beginning of the sweep to which xk+1 belongs;
when a tentative steplength does not produce a sufficient reduction with respect to fref ,
the steplength is adjusted by backtracking and the current sweep is interrupted. As a
consequence, the memory parameter may vary during the sweep, with a maximum value
bounded by ms. As suggested in [24], the sweep is terminated also in the iterations where
the gradient norm increases, since this situation is likely to generate an unproductive new
steplength because of the increasing order in which the tentative steplengths are applied. In
all the situations where a sweep is prematurely ended after l steps, only the most recent l
gradients are kept and a smaller matrix T is computed to generate the next sweep.
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Algorithm 2: ABBmin for general unconstrained minimization problems

Initialization: x0 ∈ Rn, 0 < αmin ≤ αmax, α0 ∈ [αmin, αmax], ε > 0,
δ, σ, τ ∈ (0, 1), M,ma ∈ N;

for k = 0, 1, . . .

νk = αk; fref = max{f(xk−j), 0 ≤ j ≤ min(k,M)};
while f(xk − νkgk) > fref − σνkgTk gk (line search)

νk = δνk;

end

xk+1 = xk − νkgk;
if ‖gk+1‖ ≤ ε‖g0‖ stop;

y = gk+1 − gk;
z = −gTk y;
if z > 0 (tentative steplength)

αBB1
k+1 = max

{
αmin,min

{
νkg

T
k gk
z

, αmax

}}
;

αBB2
k+1 = max

{
αmin,min

{
νkz

yT y
, αmax

}}
;

if
αBB2
k+1

αBB1
k+1

< τ

αk+1 = min
{
αBB2
j : j = max{1, k + 1−ma}, . . . , k + 1

}
else

αk+1 = αBB1
k+1

end

else

αk+1 = αmax;

end

end

Thanks to the line search strategy and the boundedness of {αk}, the gradient methods
considered in this section satisfy a basic convergence result [47, p. 709], which we state in
the following theorem for completeness.

Theorem 2. Assume that Ω = {x ∈ Rn : f(x) ≤ f(x0)} is a bounded set and f is continu-
ously differentiable in some neighborhood of Ω. Let {xk} be the sequence defined by

xk+1 = xk − νkgk,

with νk = αkδ
hk , where αk ∈ [αmin, αmax], 0 < αmin ≤ αmax, δ ∈ (0, 1) and hk is the first

nonnegative integer such that

f(xk − αkδhkgk) ≤ max
0≤j≤m(k)

f(xk−j)− σαkδhk‖gk‖2, (24)

with m(0) = 0, m(k) ≤ min(m(k − 1) + 1,M), k ≥ 1, M ∈ N, σ ∈ (0, 1). Then, either
gj = 0 for some j, or the following properties hold:
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Algorithm 3: LMSD for general unconstrained minimization problems

Initialization: x0 ∈ Rn, 0 < αmin ≤ αmax, α0 ∈ [αmin, αmax], ε > 0,
θ1 = 1/α0, δ, σ ∈ (0, 1), l = 1, ms ∈ N+;

for k = 0, 1, . . .

fref = f(xk);

while l > 0

αk = θ−1
l ; (tentative steplength)

νk = max {αmin,min {αk, αmax}};
xk+1 = xk − νkgk;
if f(xk+1) ≤ fref − σνkgTk gk

l = l − 1;

if ‖gk+1‖ ≥ ‖gk‖
l = 0;

end

else

repeat (line search)

νk = δνk;

until f(xk − νkgk) ≤ fref − σνkgTk gk
xk+1 = xk − νkgk;
l = 0;

end

if ‖gk+1‖ ≤ ε‖g0‖ stop;

end

Compute up to ms new Ritz-like values:

0 < θ1 ≤ θ2 ≤ · · · ≤ θl, l ≤ ms;

end

(i) limk ‖gk‖ = 0;

(ii) no limit point of {xk} is a local maximum of f ;

(iii) if the number of stationary points of f in Ω is finite, then the sequence {xk} converges.

In [46] the R-linear rate of convergence is discussed for nonmonotone line search methods
when f is bounded below, strongly convex and with Lipschitz–continuous gradient. Under
these assumptions, R-linear convergence to a minimum value is established for the sequence
{f(xk)}, where xk is generated by any iterative method of the form xk+1 = xk + νkdk, with
dk such that gTk dk ≤ −c1‖gk‖2 and ‖dk‖ ≤ c2‖gk‖, c1, c2 > 0, equipped with a nonmonotone
line search to update νk. Obviously, the negative gradient direction dk = −gk satisfies the
previous assumptions with c1 = c2 = 1. Furthermore, in [46], with the same assumptions
on f and dk, the conditions are established under which the tentative steplength is always
accepted when suitable parameters are used in the nonmonotone line search. These results
allow to obtain local R-linear convergence of the BB1 method for general objective functions
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when the iterate is close to the solution and a convenient choice of parameters for the
nonmonotone line search is made [40].

Other nonmonotone line search strategies have been proposed besides the classical GLL
one (see, e.g., [32, 48]). However, the performance of these strategies seems to be related to
specific steplength choices; therefore, they do not appear convenient for the analysis which
is the focus of this section. Finally, we recall that when the globalization of the gradient
algorithm is obtained by a simple monotone line search, the convergence of the sequence of
iterates {xk} to a minimizer of f is proved under the assumption that f is bounded below,
convex and continuously differentiable [49, 50]. When ∇f is also Lipschitz-continuous, the
rate of convergence of {f(xk)} to a minimum is O( 1

k ) [51].

3.2. Numerical results for general minimization problems

In order to analyse the practical behaviour of the methods described in Section 3.1, we
applied them to the well known test problems described next.

NQP1: Trigonometric test problem [52]. The objective function is

f(x) = ‖b− (Av(x) +Bu(x))‖2,

where v(x) = (sin(x1), ..., sin(xn))T , u(x) = (cos(x1), ..., cos(xn))T , and A and B are
square matrices of order n with entries generated as random integers in (−100, 100).
A vector x∗ ∈ Rn is computed with entries randomly generated from a uniform distri-
bution in (−π, π) and the vector b is defined so that f(x∗) = 0, i.e. x∗ is a minimum
point. The starting vector is set as x0 = x∗ + 0.1 r, where r ∈ Rn has random entries
from a uniform distribution in [−π, π].

NQP2: Convex2 test problem [30]. The objective function is

f(x) =

n∑
i=1

i

10
(exi − xi);

this is a strictly convex problem, since the Hessian is a diagonal matrix with diagonal
entries equal to i

10e
xi , i = 1, ..., n. The solution x∗ is the zero vector and the minimum

value is f(x∗) = n(n+1)
20 ; the starting vector is x0 = (1, 1, ..., 1)T .

NQP3: Chained Rosenbrock test problem [53]. The objective function is

f(x) =

n∑
i=2

(4ϕi(xi−1 − x2i )2 − (1− xi)2),

where the values ϕi are defined in [53, Table 1] for n = 50. In our experiments we also
consider n = 100, 200 and set ϕi+50 = ϕi, i = 1, ..., 50, for n = 100, and ϕi+50j = ϕi,
i = 1, ..., 50, j = 1, 2, 3, for n = 200. A solution of the problem is x∗ = (1, 1, ..., 1)T ;
the starting vector x0 is the zero vector.

NQP4: Laplace2 test problem [33]. The objective function is

f(x) =
1

2
xTAx− bTx+

1

4
h2
∑
i

x4i ,
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where A is a square matrix of order n = N3, arising from the discretization of a 3D
Laplacian on the unit box by a standard seven-point finite difference formula. The
discretization spacing on each coordinate direction is h = 1

N+1 and the vector b is
chosen so that the entries of the solution x∗ of the minimization problem are

xi ≡ x(kh, rh, sh) = h3krs(kh− 1)(rh− 1)(sh− 1)e−
1
2d

2((kh−d1)2+(rh−d2)2+(sh−d3)2),

where the index i is associated with the mesh point (kh, rh, sh), k, r, s = 1, ..., N . The
parameters d, d1, d2 and d3 are chosen in two different ways:

(a) d = 20, d1 = d2 = d3 = 0.5

(b) d = 50, d1 = 0.4, d2 = 0.7, d3 = 0.5.

In both cases, N = 100 and a starting vector with entries randomly generated from a
uniform distribution in (0, 1) is considered.

The experiments were carried out by using the same setting for the parameters common
to the different methods: δ = 0.5, σ = 10−4, αmin = 10−10, αmax = 105. The remaining
parameters were chosen as follows: M = 9 in BB1 and ABBmin, τ = 0.5 and mα = 5
in ABBmin, ms = 3 and ms = 5 in LMSD. An initial steplength equal to 1 was used by
all the methods; the value of ε in the relative stopping criterion (see Algorithms 1-3) was
set as 10−7 for NQP1, NQP2 and NQP3, and 10−6 for NQP4 and a maximum number of
5000 iterations was considered too. Note that, for all the test problems, the sequence {xk}
generated by each method approached x∗.

A first set of experiments was aimed at evaluating how the sequences {1/νk} generated by
the different methods are distributed with respect to the eigenvalues of the current Hessian.
To this end, we considered small-size instances of NQP1, NQP2 and NQP3, i.e., n = 50
for NQP1 and NQP3, and n = 100 for NQP2. The corresponding values of {1/νk} at
each iteration are shown in Figures 7–9, using a logarithmic scale on the y axis for better
readability. In the pictures, the mark ‘o’ denotes a value of 1/νk obtained by backtracking,
while ‘×’ indicates a value of 1/νk satisfying the nonmonotone sufficient decrease condition
without backtracking. At each iteration, we also depict a subset of the eigenvalues of the
Hessian matrix, by using blue dots. More precisely, at each iteration we sort the eigenvalues
of the Hessian and plot those corresponding to 20 linearly spaced indices, provided that they
take positive values (otherwise, we plot a smaller number of eigenvalues). We also represent
by green squares a subset of the eigenvalues of the Hessian matrix at the solution, selected
with the same procedure.

The figures show a behaviour similar to that observed in the quadratic case. The sequence
{1/νk} generated by BB1 takes values that travel in the spectra of the Hessian matrices in a
chaotic way. ABBmin favours, through the BB2 rule, the computation of steplengths whose
inverse values approximate the largest eigenvalues of the Hessian matrices; when sk−1 and
yk−1 tend to be aligned, the method attempts to catch small eigenvalues by using the BB1
rule. The values of 1/νk generated by LMSD during a sweep attempt to travel in the spectra
of the Hessian matrices corresponding to that sweep; in particular, the extreme Ritz values
obtained in a sweep can be considered as an attempt to approximate the extreme eigenvalues
of the Hessians in that sweep. Nevertheless, as shown in Figure 8, when xk is far from x∗, the
LMSD method with ms = 5 generates some very small steplengths whose inverses fall out of
the spectra of the Hessian matrices; the choice ms = 3 mitigates this drawback, thanks to
the smaller number of previous gradients taken into account. However, as xk approaches x∗,
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Figure 7: Test problem NQP1, n = 50. Distribution of 1/νk with the iterations. (At most) 20 positive
eigenvalues of the Hessian, with linearly spaced indices, are also represented at each iteration.

LMSD shows a behaviour closer to that observed in the convex quadratic case. We also see
that the steplength reduction occurs in a few iterations, especially for ABBmin; in general,
BB1 applies backtracking more often than the other methods, and LMSD with ms = 3 more
often than LMSD with ms = 5.

In Figures 10–12 we show the histories of the gradient norm and the error function for
the previous small-size problems. All the methods have the oscillating behaviour observed
in the quadratic case; furthermore, ABBmin and LMSD appear more effective, according to
their capability of better catching significant information about the spectrum of the Hessian.

Further experiments were performed to confirm the behaviour of the methods as the size
of the problems increases. We run BB1, ABBmin and LMSD, with ms = 3 and ms = 5,
on larger instances of NQP1 (n = 100, 200), NQP2 (n = 10000, 100000) and NQP3 (n =
100, 200), as well as on the NQP4(a) and NQP4(b) test problems. In Tables 2-3 we report
the number, it, of iterations performed by each method, the number, H, of iterations where
the steplength was reduced, and the errors in the computed solution and the associated
function value, errx = ‖xit − x∗‖ and errf = f(xit) − f(x∗). For LMSD, in the column
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Figure 8: Test problem NQP2, n = 100. Distribution of 1/νk with the iterations. (At most) 20 positive
eigenvalues of the Hessian, with linearly spaced indices, are also represented at each iteration.

labelled by it we also report, in brackets, the number of sweeps.
The results confirm that the number of steplength reductions is generally very small

with respect to the total number of iterations; we remark that H takes the smallest value
for ABBmin and is generally smaller for LMSD than for BB1. Except for NQP1, ABBmin

requires fewer iterations than LMSD. Furthermore, the number of iterations of ABBmin

ranges between 27% and 69% of the number of iterations of BB1; on NQP1, the latter
method is not able to achieve the required accuracy within 5000 iterations. The number
of iterations of LMSD is generally a greater percentage of the number of iterations of BB1;
nevertheless, for large problems this may save computing time.
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Figure 9: Test problem NQP3, n = 50. Distribution of 1/νk with the iterations. (At most) 20 positive
eigenvalues of the Hessian, with linearly spaced indices, are also represented at each iteration.
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Figure 10: Test problem NQP1, n = 50. History of gradient norm (left) and function error (right).
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Figure 11: Test problem NQP2, n = 100. History of gradient norm (left) and function error (right).
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Figure 12: Test problem NQP3, n = 50. History of gradient norm (left) and function error (right).
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Table 2: Numerical results for problems NQP1, NQP2, NQP3. The mark ‘—’ indicates that the stopping
criterion has not been satisfied within 5000 iterations.

method it H errx errf

NQP1 – n = 100, ‖g0‖ =1.62e+6, ε =1.00e–7

BB1 — 975 6.40e–2 5.90e–2
ABBmin 2953 24 6.30e–4 2.09e–4
LMSD (ms = 3) 3932 (1340) 496 2.56e–3 9.97e–5
LMSD (ms = 5) 2542 (531) 183 8.38e–4 1.77e–5

NQP1 – n = 200, ‖g0‖ =4.51e+6, ε =1.00e–7

BB1 — 906 4.42e–2 1.86e–2
ABBmin 2316 19 3.46e–3 3.06e–4
LMSD (ms = 3) 3211 (1097) 391 2.19e–2 4.38e–3
LMSD (ms = 5) 2076 (429) 148 8.01e–3 6.42e–4

NQP2 – n = 10000, ‖g0‖ =2.20e+1, ε =1.00e–7

BB1 1533 269 1.38e–3 9.82e–10
ABBmin 410 13 7.94e–4 7.87e–9
LMSD (ms = 3) 706 (268) 98 1.54e–3 1.22e–9
LMSD (ms = 5) 612 (179) 49 1.77e–3 1.68e–9

NQP2 – n = 100000, ‖g0‖ =2.20e+1, ε =1.00e–7

BB1 2615 463 1.85e–2 1.80e–8
ABBmin 729 19 1.21e–2 1.94e–8
LMSD (ms = 3) 2226 (830) 334 5.00e–3 1.30e–9
LMSD (ms = 5) 1864 (506) 124 2.02e–2 2.10e–8

NQP3 – n = 100, ‖g0‖ =1.99e+1, ε =1.00e–7

BB1 147 21 6.83e–7 5.69e–13
ABBmin 102 3 4.00e–6 3.89e–12
LMSD (ms = 3) 175 (61) 24 6.57e–7 1.04e–13
LMSD (ms = 5) 138 (32) 10 1.96e–6 2.19e–13

NQP3 – n = 200, ‖g0‖ =1.99e+1, ε =1.00e–7

BB1 290 43 3.98e–6 1.15e–11
ABBmin 95 4 2.10e–6 2.53e–12
LMSD (ms = 3) 147 (51) 16 5.68e–6 7.74e–12
LMSD (ms = 5) 135 (31) 12 5.02e–6 6.06e–12

4. Conclusions

The analysis of the relationship between the steplengths of some gradient methods and
the spectrum of the Hessian of the objective function seems to provide insight into the
computational effectiveness of those methods. For convex quadratic problems, it is espe-
cially interesting to follow the distribution of the inverse of the steplength with the iter-
ations. This distribution shows that the way the different rules alternate small and large
steplengths strongly affects the effectiveness of the methods. In particular, the methods
that tend to use groups of small steplengths followed by some large steplengths, attempt-
ing to approximate the inverses of some eigenvalues of the Hessian matrix, exhibit better
numerical behaviour. Furthermore, some methods better adapt to different distributions of
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Table 3: Numerical results for problems NQP4(a) and NQP4(b).

method it H errx errf

NQP4(a) – n = 106, ‖g0‖ = 1.87e+ 3, ε =1.00e–6

BB1 1122 217 6.32e–1 5.83e–4
ABBmin 306 9 1.71e–1 5.87e–4
LMSD (ms = 3) 430 (147) 46 6.16e–1 5.51e–4
LMSD (ms = 5) 427 (90) 34 2.08e–1 9.98e–5

NQP4(b) – n = 106, ‖g0‖ = 1.87e+ 3, ε =1.00e–6

BB1 624 114 4.63e–1 3.11e–4
ABBmin 291 9 4.76e–1 3.43e–4
LMSD (ms = 3) 568 (194) 76 1.37e–1 2.73e–5
LMSD (ms = 5) 441 (93) 38 4.00e–1 2.33e–4

the eigenvalues, thus resulting more efficient. For general unconstrained problems, gradient
methods using steplength strategies that are natural extensions of effective rules devised
for the convex quadratic case seem to preserve the behaviour of their quadratic counter-
parts. More precisely, they appear to follow somehow the spectrum of the Hessian of the
objective function during their progress toward a stationary point, achieving a significant
improvement over the standard Barzilai-Borwein approach.
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