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COHOMOLOGY AND COQUASI-BIALGEBRAS IN THE CATEGORY OF
YETTER-DRINFELD MODULES

IVAN ANGIONO, ALESSANDRO ARDIZZONI, AND CLAUDIA MENINI

ABSTRACT. We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property
over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever
the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram
with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in
meaningful examples where the diagram is a Nichols algebra.
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INTRODUCTION

Let A be a finite-dimensional Hopf algebra over a field k of characteristic zero such that the
coradical H of A is a sub-Hopf algebra (i.e. A has the dual Chevalley Property). Denote by
D (A) the diagram of A. The main aim of this paper (see Theorem [.€) is to prove that, if the
third Hochschild cohomology group in YD of the algebra D (A) with coefficients in k vanishes, in
symbols H3,, (D (A4) , k) = 0, then A is quasi-isomorphic to the Radford-Majid bosonization E#H
of some connected bialgebra E in YD with gr (E) = D (A) as bialgebras in £YD.

The paper is organized as follows. Let H be a Hopf algebra over a field k. In Section m we
investigate the properties of coalgebras with multiplication and unit in the category £YD (in
particular of coquasi-bialgebras) and their associated graded coalgebra. The main result of this
section, Theorem @, establishes that the associated graded coalgebra gr@ of a connected coquasi-
bialgebra in gyD is a connected bialgebra in gy’D.
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In Section E we study the deformation of coquasi-bialgebras in ZYD by means of gauge trans-
formations. In Proposition @ we investigate its behaviour with respect to bosonization while in
Proposition with respect to the associated graded coalgebra.

In Section [§ we consider the associated graded coalgebra in case the Hopf algebra H is semisimple
and cosemisimple (e.g. H is finite-dimensional cosemisimple over a field of characteristic zero). In
particular, in Theorem @, we prove that a f.d. connected coquasi-bialgebra () in gyD is gauge
equivalent to a connected bialgebra in ¥ YD whenever H%,D (gr@Q,k) = 0. This result is inspired
by [EG, Proposition 2.3].

In Section [, we focus on the link between HYp, (B,k) and the invariants of H" (B, k), where B is
a bialgebra in HY,;, (B, k). In particular, in Proposition @ we show that HY,p, (B, k) is isomorphic
to H™ (B, k D) which is a subspace of H” (B,k)" = H" (B#H, k), see Corollary [L.3.

Section é is devoted to the proof of the main result of the paper, the aforementioned Theorem

In Section | we provide examples where HYp (B, k) = 0 in case B is the Nichols algebra B(V') of
a Yetter-Drinfeld module V. In particular we show that that HS,,, (B(V),k) can be zero although
H3 (B(V)#H, k) is non-trivial.

PRELIMINARIES

Given a category C and objects M, N € C, the notation C (M, N) stands for the set of morphisms
in C. This notation will be mainly applied to the case C is the category of vector space Vecy over
a field k or C is the category of Yetter-Drinfeld modules 22D over a Hopf algebra H. The set of
natural numbers including 0 is denoted by Ny while N denotes the same set without 0.

1. YETTER-DRINFELD

DEFINITION 1.1. Let C be a coalgebra. Denote by C,, the n-th term of the coradical filtration of
C and set C_1 := 0. For every z € C, we set

|z] :==min{i € No : z € C;} and T i=x+ Clp 1.
Note that, for z = 0, we have || = 0. One can define the associated graded coalgebra

Ci
gre = BieNo 7

with structure given, for every x € C, by
(1) Ago (T) = Zogigm (21 + Ci1) @ (22 + Cly)—i-1)
(2) EgrC (E) = 5|m|,050 (I) .
1.2. For every i € Ny, take a basis {:CZ_J |je Bi} of the k-module C;/C;_1 with xhi 20l for
j # 1 and
}x”’ =1.
Then {:zri’j [0<i<mn,je€ Bi} is a basis of C,, and {:zri’j |ieNy,je BZ—} is a basis of C'. Assume

that C' has a distinguished grouplike element 1 = 1¢ # 0 and take i > 0. If ¢ (:vi’j ) # 0 then we
have that

77— (@)1 =2t
so that we can take 9 — ¢ (27) 1 in place of #. In other words we can assume

(3) € (x”) =0, for every i >0,j € B;.

It is well-known there is a k-linear isomorphism ¢ : C' — grC defined on the basis by ¢ (z%7) := 7.
We compute

egre (277) = ege (a:”) ® 8;0¢ (2%7) ] e (z"7).
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Hence we obtain
(4) EgrCc 0P = E.

Let H be a Hopf algebra. A coalgebra with multiplication and unit in ZYD is a datum
(Q,m,u, A, e) where (Q,A,¢) is a coalgebra in ZYD, m : Q ® Q — Q is a coalgebra morphism
in 2YD called multiplication (which may fail to be associative) and u : k — @ is a coalgebra
morphism in £YD called unit. In this case we set 1¢ = u (1i) .

Note that, for every h € H, k € k, we have

(5) th = hu (1k) =Uu (hl]k) =Uu (E‘H (h) 1]k) =EH (h) u (hk) = EH (h) lQ,
6) (lo)_y @ (o) = (u(lx) ;@ (u(lx))y = (1) 4 ®u((lk)y) = 1u @u(lk) =1 @ lo.

PROPOSITION 1.3. Let H be a Hopf algebra and let (Q,m,u, A, g) be a coalgebra with multiplication
and unit in gyD. If Qo is a subcoalgebra of @ in gyD such that Qo - Qo C Qo, then @, is a
subcoalgebra of Q in BYD for every n € Ng. Moreover Qq - Qp € Qap for every a,b € Ny and the
graded coalgebra gr@, associated with the coradical filtration of Q, is a coalgebra with multiplication
and unit in gyD with respect to the usual coalgebra structure and with multiplication and unit
defined by

(7) Mg (T4 Qa1) ® (Y + Qp=1)) : =2y + Qatp1,
ug (k) = =klg+Q

Proof. The coalgebra structure of ) induces a coalgebra structure on gr@. Since Qg is a subcoal-
gebra of @) in gyD and, for n > 1, one has Q,, = Qn—1 Ag Qo, then inductively one proves that @Q,,
is a subcoalgebra of @ in #YD. As a consequence one gets that gr@) is a coalgebra in ZYD (this
construction can be performed in the setting of monoidal categories under suitable assumptions,
see e.g. [@, Theorem 2.10]). Let us prove that gr@ inherits also a multiplication and unit. Let
us check that Qg - Qp C Qb for every a,b € Ny. We proceed by induction on n =a+b. If n =0
there is nothing to prove. Let n > 1 and assume that Q; - Q; C Q;4; for every 7,5 € Ny such
that 0 < i+ j < n—1. Let a,b € Ny be such that n = a +b. Since A (Qq) € Y i Qi ® Qa—;
and cg g (Qu ® Qu) C Qy ® Qu, where cg, ¢ denotes the braiding in 2 YD, using the compatibility
condition between A and m, one easily gets that A (Q, - Qp) C Quip—1 ® Q + Q @ Qo.
Therefore Qg - Q» C Qa+b- This property implies we have a well-defined map in £YD

ab . Qa Q Qb - Qa-i—b

Q" Qo1 Quo1 Qatb1

defined, for z € @, and y € Qy, by (ﬂ) This can be seen as the graded component of a morphism
in #YD that we denote by mgq : grQ ® grQ — grQ. Let us check that mgq is a coalgebra
morphism in #YD. Consider a basis of @ with terms of the form 2"/ as in [.. Hence we can
write the comultiplication in the form

Yy — : 1 ,
A (z9%) = Zs+t<a Zz . e, gt

Now, using (), one gets that
(8) AgrQ (xaIﬂ) - ZO<i<a Zl m n;lxyuif—i,l,mxi’l ® xa—im,

Using that Aggego = (81Q @ g0 ® grQ) (Agrg @ Agrg) and (), it is straightforward to
check that (Mg ® Merq) AgrQwer@ (x“>“ ® xb—v) = AgrQMgrQ (:v“v“ ® W) .

m

Moreover, since £grQ@grQ = EgrQ®@Egrq, We get that £4,0Mgrg (x“)“ ® xbvv) = E€grQRerQ (:v“v“ ® :vb)”) .

This proves that mgg is a coalgebra morphism in BEyD.
The fact that ugg : k — gr@, defined by ugq (k) := klg + Q-1 is a coalgebra morphism in
YD easily follows by means of (f) and ().
O
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DEFINITION 1.4 ([ABM, Definition 5.2]). Let H be a Hopf algebra. Recall that a coquasi-bialgebra
(Q,m,u,A,e,a) in the pre-braided monoidal category £YD is a coalgebra (Q,A,¢) in YD to-
gether with coalgebra homomorphisms m: Q ® @ — Q and u : k — Q in £YD and a convolution
invertible element o € £YD (Q®3, k) (braided reassociator) such that

(9) a(QeQem)*xame®RQeQ)=(ER@a)*a(QemeQ)x*(a®e),
(10) aQeue@)=a(uee)=a(@Q®Q®u)=cqgq,

(11) m@Qem)sa=axm(meQ),

(12) mue@)=Idg=m(Q®u).

Here * denotes the convolution product, where Q%2 is the tensor product of coalgebras in gy’D
whence it depends on the braiding of this category. Note that in (@) any of the three equalities
such as o (u ® Q ® Q) = eggq implies that « is unital.

THEOREM 1.5. Let H be a Hopf algebra and let (Q,m,u, A,e,w) be a connected coquasi-bialgebra
in EYD. Then grQ is a connected bialgebra in HYD.

Proof. By Proposition B, we know that gr@ is a coalgebra with multiplication and unit in ZYD.
We have to check that the multiplication is associative and unitary.
Given two coalgebras D, E in YD endowed with coalgebras filtration (D("))n €N and (E(n))n €No

in HyD such that D gy and Eq) are one-dimensional, let us check that C, Zogign D@FEm_y

gives a coalgebra filtration on C := D ® F in EYD. First note that the coalgebra structure of C'
depends on the braiding. Thus, we have

Ac(Cimy) = (D®cpp®E)(Ap®Ap) (Z;O D@y ® E(n—z‘))

C (D®cpp®E) (Zi_o > o> P ®Dia) ® Epy @ E(nib))

& Zj 0 Z: 0 - o P@ @cp.e (Dii-a) @ E(v)) ® Eni-s)
& Zj 0 Z: -0 o D (@) ® €D_ ). By (Dii—a) ® Er)) ® E(n—i-t)
= Zn oza o : ;Da>®E<b>®D<z a) ® E(n—i—b)
S Z?:o ZZ —0 Z&f}ii“i Day @ Ep) @ D(i—a) @ En—i-p)
a+b=w
< ZZ:0 Clw) ® Cln—w)-

Moreover, by [@, Proposition 11.1.1], we have that the coradical of C'is contained in D y® E oy and
hence it is one-dimensional.

This argument can be used to produce a coalgebra filtration on C' := Q ® Q ® Q) using as a
filtration on @ the coradical filtration. Let n > 0 and let w € C(,) = ZHJ-JF,CS” Qi®Q; ®Qk. By
[AMS1], Lemma 3.69], we have that

Ac (w) —w® (10)%° — (10)*° ® w € Cl1y) ® Cln_y).-
Thus we get
w1 @ we @ w3 — A (w) ® (1Q)®3 - Ac ((1Q)®3) @w e Ac (C(n—l)) ® O(n—l)

and hence, tensoring the first relation by (1Q)®3 on the right and adding it to the second one, we
get
w Qw2 @wz —w® (19)** @ (19)%° — (10)** @w® (10)** — (10)*° ®w € Cl_1) @ Cln_1)@Cn_1).-

For shortness, we set v, (2) : = m (Q ® m) (2) + Q1 for every z € C. Thus, by applying to the
last displayed relation C(,,_1) ® m (Q ® m) ® C(,,_1y and factoring out the middle term by @, 1,



COHOMOLOGY AND COQUASI-BIALGEBRAS IN THE CATEGORY OF YETTER-DRINFELD MODULES 5

we get

)®3 )®3

w1 @ vy (w2) @ ws —w R vy, ((IQ )®(1Q +
(1% ® v () © (1) = (1) ©va (10%) ®w

Un (O(n—l)) anl
€ Cihn)®@| ———— | ®Clm-1) CClp_1) ®
(n=1) ( On (n=1) € Ctn—1) ® 57—

Thus we can express the first term with respect to the remaining ones as follows

® C(n—l) =0.

w1 @ vy (W) @ ws
= 0w ((19%) 2 (10" + (19 Bva @) 8 19 + (1) P ©va ((10)*) 2w
= w8 (lg+Qu1)®(10)% + (10) @ wa (w) @ (10)** + (10)* ® (Ig + Qn-1) @ w
"2 (19)% @ v (w) @ (1)
We have so proved that for n > 0 and w € Cf,)
(13) w1 @ vy (w2) @ws = (19)%% @ vy (w) @ (10)%°.

The same equation trivially holds also in the case n = 0 as C(,) is one-dimensional.
Let z,y,2€ Q. Thenz®y® 2z € C(WH“UH“ZD so that

((z+ Qaj-1) - (¥ + Quui-1)) - (2 + Qpz-1)
= (@) + Quuiiy1-1) - (2 + Q21
2Y) 2+ Qa|+1y|+]21 -1
W (@ @Y ® 2);) Vsl lyi+12 (2 @Y ® 2))) w (2 ®Y @ 2)3)
wt (lp®1lo®1g) Vgl +|y|+|2| (zRy®2)w(lgelg®1g)
Via|+lyl+z (2@ Y © 2)
T (Yz) + Quaj syl +1z1-1 =T (T Z) .
Therefore the multiplication is associative. It is also unitary as
T-1g=(24Qp-1) 1+ Q1) =710+ Q-1 =T+ Qu—1 =T

and similarly 1g -7 = T for every z € Q. O

@-9)-=

= |

2. GAUGE DEFORMATION

DEFINITION 2.1. Let H be a Hopf algebra and let (Q, m,u, A, &,w) be a coquasi-bialgebra in #YD.
A gauge transformation for @) is a morphism v : Q ® Q@ — k in gyD which is convolution
invertible in gy’D and which is also unitary on both entries.

REMARK 2.2. For « as above, let us check that v~! is unitary whence a gauge transformation too.
First note that for all € Q, by means of () and (f]), one gets

(14) (le@r),@(le®r), = le®r ©lg®r
(15) (z@10); @ (x®1lg), = 1Ol dlg
Thus

T Hlger) =7 (1lg@z)e(r2) =7 (1@ z1)7(le®z2) = (Y ' %7) (lg©@ ) = (z)
and similarly v~ ! (z ® 1) = ¢ (z) .

LEMMA 2.3. Let H be a Hopf algebra and let C be a coalgebra in BYD. Given a map v €
BYD (C,k), we have that vy is convolution invertible in £YD (C,k) if and only if it is convolution
invertible in Vecy (C,k). Moreover the inverse is the same.
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Proof. Assume there is a k-linear map v~! : ¢ — k which is a convolution inverse of v in

Vecy (C,k). By [ABMI, Remark 2.4(ii)], 7! is left H-linear. Let us check that y~! is left
H-colinear:

1@y M (eo) = (1)1 1m @7 ((e1)g) v (c2) v (es)

=(c1)_; (e2) 1 @7 ((c1)o) v ((e2)g) v (e3)
D (e1) @77 (((en)o),) 7 (((en)o)y) 7 (e2)
=(c1)_,® (7_1 *7) ((01)0)7_1 (c2)

= (c1)_y ®ec ((er)g) 7™ (e2

© lp®ec(c1)y " (e2) =1 @y " (c)

where in (*) we used that the comultiplication or the counit of C is left H-colinear. Thus 7 is
convolution invertible in 2D (C,k). The other implication is obvious. 0

PROPOSITION 2.4. Let H be a Hopf algebra and let (Q, m,u, A, e, w) be a coquasi-bialgebra in gyD.
Letv:Q® Q — k be a gauge transformation in 2YD. Then

Q’Y = (Q7 m’Y, u, Aa g, W’Y)

s a coquasi-bialgebra in gyD, where

mY = ysxmxy !

W' = (e@7)*x7(Qem)rwxyT (MO Q)* (YT ®e).

Proof. The proof is analogue to [E, Proposition XV.3.2] in its dual version. We include some
details for the reader’s sake. Note that Q7 has the same underlying coalgebra of @ which is a
coalgebra in £YD. The unit is also the same and hence it is a coalgebra map in #YD. Since m?”
is the convolution product of morphisms in g)}D, it results that m? is in gyD as well.

Since m is a coalgebra map in ZYD and v is convolution invertible with convolution inverse
41, it follows that m? is a coalgebra map in Z£YD.

By means of ([l4) and ([L3), one gets that m? (1g @ z) =z = m" (z ® 1¢).

Let us consider now w?. Since it is the convolution product of morphisms in YD, it results
that w” is in gy’D as well.

Let us check that w? is unitary. Consider the map as : Q ® Q@ — Q ® Q ® @ defined by
s (z®y) =12 ®1g ®y. The equalities ([§) and (f) yield

(a2 (x @), ® (2 (x®y), = a(z1®(@2)_y)©az(22), @ y2)
s ((z® 9)1) ®az ((z® y)z)

so that as is comultiplicative.
Thus
Wag = (e®@7) az *7(Q ®m) ag xwas ¥y (M ® Q) ay * (7_1 ®£) o
and computing the factors of this convolution products one gets

(@) az=e®e, Y(QamM)az =7, war=c®s¢,

T moQaz=7"", (V'®e)ar=c®e

and hence wYag = 7 * y~!

z,y € Q.

Similarly, considering a; : Q®Q — QRQ®Q defined by as (x @ y) = 1Rz ®y, one proves that
W (lg®@z®y)=c(x)e(y). A symmetric argument shows that w? (z @y ® 1g) =€ (z)e (y).

Note that, by Lemma @, w? is convolution invertible in gy’D (D, k) as it is convolution invert-
ible in Vecg (D, k).

Let us check that the multiplication is quasi-associative. By [ABM], Lemma 2.10 formula (2.7)],
we have

m (Qeyrmry) = (e@y)rm (Qem)x(e2y7h),

= £ ® ¢, which means that W (z®1g ®y) = e(x)e(y) for every
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(@7 N *(e®y) = e® (Y '*7) =e®ee,
W ©Q) = m (yrmrr Q) = (y@e) km (mrrl ®Q)
= eeem (meQ)x (vl ee),
(V'ee)x(yee) = ((V'xy)®e)=e®ewe.
By using these equalities one obtains
m’ (QemY)xw? = (5®’y)*7(Q®m)*m(Q®m)*w*yil(m®Q)*(7*1®£),
Wem? (M@ Q) = (@) *y(Q@m)*wrmmeQ)xy " (meQ)* (v ®¢)

so that w? *mY (M" @ Q) =m" (Q @ m") xw7.
It remains to check that w” is a reassociator. By [ABM, Lemma 2.10 formula (2.7)], we have

w"*(Q@Q@*y*m*ﬂy_l) = (5®5®7)*w”(@®@®m)*(6®5®7_1),
W (Yxmxy'eQRQ) = (10w’ (mMeARQ)* (v ' ®ewe),
(1R®eRe)*x(e®e®y) = 707=(eQRe®7)*(Y®eRe).

By using these equalities one obtains

Ww(@®eRem”)xw (m" Qe Q)
(e®e®7y)* (@7 (Q@m))*v(Q®m(Q®m))
= W(QRB®QM)*w(MmMQ Q)
Yt mmeoQ)@Q)x (' (meQ)®e)*x (v R®e®e)

and
(@w)*xw"(Qem’ ®@Q)* (W ®¢)
(e®e®y)x(e®@v(Q@m))*v(Q®@m(Q®m))
= x(eQw)*w(@AmM®Q)* (wRe)
I mmeQ)@Q)x (1 ' (meQ)®e) * (v ' ®ewe)
Therefore

W (QRQEM)*xw (MeQRQ)=(E®wW)*w(Qem’ Q) (W ®e).
O

In analogy to the case of Hopf algebras, one can define the bosonization E#H of a coquasi-
bialgebra in £YD by a Hopf algebra H, see [ABM|, Definition 5.4] for further details on the
structure. The following result was originally stated for £ a Hopf algebra. Yorck Sommerh&user
suggested the present more general form which investigates the behaviour of the bosonization under
a suitable gauge transformation.

PROPOSITION 2.5. Let H be a Hopf algebra and let (E,m,u, A, &,w) be a coquasi-bialgebra in BYD.
Letv: E® E — k be a gauge transformation in £YD. Set

I': (E#H)® (E#H) = k: (a#h) @ ('#1) = v (x @ ha')en (B').
Then T is a gauge transformation and (E#H)F = E74#H as ordinary coquasi-bialgebras.
Proof. By [ABM, Lemma 2.15 and what follows], we have that I is convolution invertible H-bilinear
and H-balanced. Moreover I'"! ((z#h) @ (2'#h')) = v Y (x@ha')ey (B'). If a : (E#H) ®
(E4H) — E#H is H-bilinear and H-balanced, it is easy to check that I'* a x I ~! is H-bilinear

and H-balanced too.
In particular, since

mpesn ((x#h) @ (2'#h")) = m (z @ hiz') @ hol/

we have that mpgp is H-bilinear and H-balanced where E#H carries the left H-diagonal action
and the right regular action over H.
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Thus Mgy )yt = D't mppmp * I'"! is H-bilinear and H-balanced. Moreover, since E7 is also
a coquasi-bialgebra in YD we have that mg-pg : (E#H) ® (E4#H) — E#H is H-bilinear and
H-balanced too.

Therefore, in order to check that m gy gyr = mprxm, it suffices to prove that they coincide on
elements of the form (z#1y) ® (2'#1p) .

Let us consider the multiplication

mpymr (#1n) ® (2'#1m))
= (Dxmppm+T7Y) ((e#10) @ (2'#1n))
U ((@a#1m), @ (@' #10)1) - megn (0#10), © (@' #1m)y) - T ((a#1n)y @ (2'#1m);,) -

Now, from

Apyn (v#h) = Z (l‘(l)#l’@)(_whl) ® (x(2)<o>#h2)

we get
(2#1m), @ (24 lm), @ (2#1H),
= 3 (x<1>#x<2><,1>x<3><,2>) ® (x@) <0>#$<3><71>) ® ($<3> <O>#1H)
so that

mpymr (#1n) @ (2'#1m))
= D((#ln), ® (@'#1n),) -megn (@#1m), ® (@'#1m),) - T (@#1m); © (o'#1n);,)
i Z 1—‘ (w(l)#x(z) <71>./L'(3)<,2> ® xl(l)#x/(z) (71>x/(3)<72>)
= misgn (290 #0) @ 7 g ftr Y )
T (2B ) #1lg © 2'® g #1p)
Z v (w(l) ® $(2) (71)‘/'[:(3) (72>x/(1))
< [t
(@ 0) ® 27 (o)
2D @ 2@, 3 (1)
27 (@ @t ey
= “m x(2) ®x(3) _ x/(z) ®x(3) _ x/(3) _
o o (26 ®)xf<3> o)
B ny(x(l) ®x(2)<71>x(3)<72>$l(1))
= m (2 g @ 2@ )2’ @ (21 gy @2’®) _,
i A (2 ) ® 2’ g))
- L .'7_1 (w(?’) <0> ® x/(?’))

:|®1H-

Now we have
Z (z® y)(l) ®(z® y)(2) _ Z M x(2)<71>y(1) ® x(2)<0> ® y(z)

so that

YeepPerey®e@ey?
=Y (xu) ® $<2><71>w<3><72>y<1>) ® (x(2)<0> ® x<3><,l>y<2>) ® (x(3)<0> ® y<3>) ,
Using this equality we can proceed in our computation:

mpemr (2#1n) ® (2'#1m))
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_ [ S (2 @2 _ya®)_pa'M) } ©1
m (20 @ 2 _1)2" @) 5 "
- {27 ((w ® :E')(l)> “m ((:E ® w')(2)) -yt ((w ® $I)(3)>} #1y
(yem=h) (z@2)) #lu
mer (@) #1y
= mprgn (@#1n) ® (@'#1n)).
Finally Upy ) = UB#H = 1p#1ly = 1pv#1lg = upv4H.

As a coalgebra (E#H)F coincides with E#H and hence with E7#H.
Finally let us check that wpy4n and w gy coincide. To this aim, let us use the maps UF; _

of [ABM], Lemma 2.15]. First note that wp-pgn = UOY g (we~) by [ARBM), Proposition 5.3]. Now
WEaHE = (EE#H ® F) « I (E#H ®mE#H) X WEHH * r—! (mE#H & E#H) * (F_l ® EE#H)
(U}{E (6) ® U%{E (7)) * U%IE (v) (E#H @ mpsn) * U?JE (w)

*O%JE (’771) (mppr @ E#H) * (U%IE (’771) ® O}JE (€))

One easily checks that

= U%{EW@@V)

= U} p (v(E@m)),

Ohpr (Y (Mm@ E)),
(v ee).

U}{E (6)® U%{E (v

Ohp () (E#H @ mpan
Uhp (v7) (mpgn ® E#H
U%IE (7_1) ® U}{E (e

)
)
)
) O%, i
Thus we obtain

WEgpmt = UH By (E®7)* UH g (Y (E®@m)) * U%{E (w) * U?{,EW (v ' (m®E))* U%I,EW (v'®e)
UH)EW [(5@7) v (E®m) *wky ! (m® E) * (7_1 ®8)}

= U%I,E’Y (wEv) = WEY#H-

O

PROPOSITION 2.6. Let H be a Hopf algebra and let (Q,m,u,A,e,w) be a connected coquasi-
bialgebra in HYD. Let v : Q ® Q@ — k be a gauge transformation in LYD. Then gr(Q") and
gr (Q) coincide as bialgebras in BYD.

Proof. By Proposition @, Q" is a coquasi-bialgebra in #YD. Tt is obviously connected as it
coincides with @ as a coalgebra. By Theorem @, both gr@ and gr (Q7) are connected bialgebras
in HyD Let us check they coincide.

Note that, by Remark @, we have that 7! is a gauge transformation, hence it is trivial on
klg ®1g. Let C:=Q ® Q. Let n > 0 and let w € C,,) = Zi-{-jgn Q: ® Q;. By , Lemma

3.69], we have that A¢ (w) —w ® (1Q)®2 - (1Q)®2 ®@w € Crp_1) ® Crp—1). Thus we get
w1 @ wy @ ws — Ac (w) @ (19)%° — Ac ((1Q)®2) @w € Ac (Cln1)) ® Clnon)
and hence
w1 ®wy@ws —we (19)**® (19)** — (10)?@uw® (10)** — (10)** ®w € Clh_1)@Cin_1)®Cin_1).
Since m (C(n—l)) C @Qn_1 we get
wi @m (w2) Qw3 —w@1e@(19)%* —(1g)**@m ()2 (10)* — (1¢)**®w € Cln_1y®Qn-10C(_1)
and hence

(16) wi @ (m (ws) + Qu_1) @ ws = (19)%° @ (m (w) + Qn-1) ® (19)**
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Let z,y € Q. We compute
T7 = (2+Qpu-1) (¥+Qu-1)
(@ y) + Quaf+ly| -1
T((@@y))m(z@y)y) 7" (2@ Y)s) + Qlafjy—1
= 7((z@y)) (M (& ®y),y) + Quajsiy-1) 7' (@ y)3)

) ¥ ((1Q)®2> (m(z©Y) + Qajtiy-1) 7V ((1Q)®2)

= mEy)+ Qulty-1 = (£ Y) + Quuf4yl-1 =TT
Note that Q7 and @ have the same unit so that gr@ and gr@” have. g

3. (CO)SEMISIMPLE CASE

Assume H is a semisimple and cosemisimple Hopf algebra (e.g. H is finite-dimensional cosemisim-
ple over a field of characteristic zero). Note that H is then separable (see e.g. [Bt], Corollary 3.7]
or , Theorem 2.34]) whence finite-dimensional. Let (@, m,u, A, ¢) be a f.d. coalgebra with
multiplication and unit in #YD. Assume that the coradical Qy is a subcoalgebra of Q in ZYD
such that Qo - Qo € Qo. Let y™" with 1 <4 < dim (Q,,/Qn_1) be a basis for Q,,/Q,_1. Consider,
for every n > 0, the exact sequence in gyD given by

0 anl

Now, since H is semisimple and cosemisimple, by [@, Proposition 7] the Drinfeld double D(H)
is semisimple. By a result essentially due to Majid (see [@, Proposition 10.6.16]) and by [@,
Proposition 6], we get that the category gyD = pM is a semisimple category. Therefore
7, cosplits i.e. there is a morphism o, : (Qn/Qn-1) = Qn in g)}D such that 7,0, = Id. Let
Uy, k — @, be the corestriction of the unit u : k — @ and let e, = ElQn ¢ Q.. — k be the counit
of the subcoalgebra @,,. Set

Sn

Qn T Qn 0

/ -—_—
Op i=0p — U, 0ERO Ty
This is a morphism in Z£YD. Moreover

!/
n

Tp OO0, = MpOC, — Ty OlyOEyOdn, nz0 g, /0,_., —0=1dg, /q,_.>
EnO0) = E€,00, —EROUpOE,OTy, =EpROTy —Ep0a,=0.
Therefore, without loss of generality we can assume that €, o 0,, = 0. A standard argument on
split short exact sequences shows that there exists a morphism p,, : @, — Q,—1 in gyD such that
SnPn +0nmp =1dg,,, pnsn, = Idg,_, and p,o, = 0. We set
2=, (y’”) .
Therefore
yn,z = TnOn (ymz) =Tn (:L.nﬂ) =az™" + Qn—l = g™,
These terms ™" define a k-basis for Q. As Q is finite-dimensional, there exists d € Ny such that
Q = Qg; we fix d minimal. For all 0 < a < b, define the maps
Pa,b - Qb — Qau Pa,b = Pa+1 ©Pa+2©° O Pb—1 © Db,
Sba 1 Qa = Qv, Sb,a 1= b O Sp—1 0" 0 Sq42 O Sqt1.
Clearly one has
pa,b @) Sb,a = Ian.
Thus, for 0 <1i,a < b we have
Dib O Sbi ©Sia 1> 0 Sia 1>a
17 ibOSha= ' ’ ’ . = o
( ) P ba { Pi,a © Pa,b © Sb,a 1 S a { Pija S a
Thus we get an isomorphism ¢ : Q — gr@ of objects in £YD given by

@ (r) = po,a (z) + mip1,a (x) + map2a(x) + -+ + Ta—2pa—2,4 (T) + Ta—1Pa—1,4 (z) + 7a ()
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= ZOStSd mpe.a (x), for every z € Q,

where we set
7o = IdQO, pd,d = Ide.
For 0 <n < d, we have

o (@) # (san (27)) = ¢ (50000 (4")) = ZOStSd Teptasan (0n (¥™7))

Zn<t§d Tiprasan (on (§")) + Zogtgn Tepeasdn (on (¥™))

Zn<t<d mistn (o0 (™)) + ZO<t<n Tt (00 (y™)) + Tubnasan (o (y7))
Zn<t<d misti-18i-1n (o (7)) + Zo<t<n TeDtn—1Pn—1.0 (0n (¥™)) +
+7Tnpn:18d,n (Un (ynz)) <

B Zn<t§d Mt5t5t—1,n0n (ym) * ZO§t<n TtPt,n—1Pn0n (ym) + o (ym)

Hence ¢ (z™%) = y™. Since y™" with 1 < i < dim (Qn/Qn—1) =: dy, form a basis for Qn,/Qn_1 we
have that

[[=]
=

. Qn ; ; Qn
hy™t € , n,i ® n,i cH® )
Y O (y )—1 (y )0 On1
Therefore there are x3'; € H* and hy'; € H such that
(18) hy™* = Zl<t<d Xii () y™, (ynﬁi)fl ® (ynﬁi)o = Zl<t<d M @yt
‘We have
!, n,i _ n. / n,s _ n. / n n,t
h(hy ) - Zlgsgdn Xs,z (h)h’y Zlgsgdn Xs,z (h>zlgt§dn Xt,s (h’)y
— n n / n,t
- Zlgsgdn Zlgtﬁdn Xt,s (h) Xs,i (h )y }
Yy = S )y
and hence
X?,i (hh/) = Zlgsgdn X?,s (h) X?,i (hl) .
Moreover
n,g __ n,g __ n n,t
U=yt =30 X () y
and hence

Xti (L) = 0t
We also have

(ym)—l ® ((ynﬁi)o)q ® ((ynﬁi)o)o - Zlgsgdn hils @ (y™*)_y @ (y™*),
Zlgsgdn his ® Zlgtgdn hy @yt
Zlgsgdn Zlgtﬁdn h:l,s ® h?,t ® yn,t7

((yn’i)_l)l ® ((yn’i)_1>2 ® (ym)o = Zlgtﬁdn Am (h?Z) @yt

so that
Ap (h}) = Zl<s<dn hi'y @ he,.
Moreover o
v=en (0 ) 0 = 2 e, o (W) U™
and hence -

EH (h?;z) = 51511'.
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Finally
(hy™)_ ha® (hay™)y = D X () (0™) 1 ha @ (™),

- Z1<s<d Xs,i (h) Zlqun hZ the @ y™*
Z 1<s<dn Z1<t<gl st Xs,i (h1) he ® Y™,
by (y™)_, @ ha (y™"), = Zl<s<d hihi's @ hoy™® = Zlgsgdn hihi, ® Zlgtgdn iy (ha) y™t

Zl<t<d haxis (he) hils ® y™!

Therefore, we get
ZISSSdn Bz () ha = Z1gsgdn fuxi.s (ha) s

‘We have
ha™' = ho, (y*') = o (hy™") = on (Zlgtgdn Xt (h) y"’t) = Zlgtgdn X () 2™,
@), @)y = (00 (7)), (00 0"y = 67)_, 00 (7)) = X, M@ 2™,
£Q (:1:’”) = &, (:1:’”) = £,0n (y“) =0 forn > 0.

If Q is connected, then dy = 1 so we may assume y*? := 15 + Q_1. Since 7o = Idg, we get
oo = Idg, 009 = mp 009 = Idg,
and hence
IO;O =0y (y070) =09 (lQ —+ Qfl) = 1Q
Since, by Proposition , Qo Qur C Qura for every a,a’ € Ny, we can write the product of two
elements of the basis in the form

(19) oy a J Zu<a+a, Z /La JLa l/

We compute
w2 = (2 4 Qa) (57 + Quin )
(xa,z ) 4 Qo
( ) (Zu<a+a’ Z ‘ua La! l ) + QaJra’ 1
(32, matirda ") + Qurar
3 I (6 Qur)

2 : al,a' ' ara o
= Ma—i—a Uxa—i-a'u

which gives
20) T =Y ke T

REMARK 3.1. Let H be a Hopf algebra and let (A, m4,u) be an algebra in ZYD. Let g4 : A — k
be an algebra map in Z£YD. The Hochschild cohomology in a monoidal category is known, see e.g.
[AMSZ. Consider k as an A-bimodule in 2D through 4. Then, following [AMS, 1.24], we can
consider an analogue of the standard complex

0 1 2 3
BYD(k, k) —— FVD(A, k) —— HYD(A%2 k) —— [YD(A%* k) —"— -
Explicitly, given f in the corresponding domain of 9", for n = 0,1, 2, 3, we have

() = f()ea—eaf(1)=0,
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81(f) = f®ea—fma+ea®f,
P(f) = fRea—f(A@mA)+f(ma®@A) —ea® f,
P(f) = fRea—f(ARARIMA)+[(A@MARA) —f(MaARARA) +e4® f.
For every n > 1 denote by
B 7% (A k)
o (A, k) == ker (9"), n (A k) :=TIm (9"} d n (A k) = =XP 2
yD( ) er (0") yD( ) m( ) an yD( ) B@D(A,k)

the abelian groups of n-cocycles, of n-coboundaries and the n-th Hochschild cohomology group in
HYD of the algebra A with coefficients in k. We point out that the construction above works for
an arbitrary A-bimodule M in £YD instead of k.

Next result is inspired by [@, Proposition 2.3]. Two coquasi-bialgebras @ and Q' in YD will
be called gauge equivalent whenever there is some gauge transformation v: Q ® Q — k in 2D
such that Q7 = @’ as coquasi-bialgebras in g)}D, see Proposition E for the structure of Q7.

THEOREM 3.2. Let H be a semisimple and cosemisimple Hopf algebra and let (Q,m,u, A, e, w) be
a f.d. connected coquasi-bialgebra in EYD. If H%,D (er@,k) = 0 then Q is gauge equivalent to a
connected bialgebra in LY D.

Proof. For t € Ny, and x,y, z in the basis of ), we set

Wi (TR YR 2) 1= O)a)4y|+]2| W (TRY® 2).
Let us check it defines a morphism w; : QR Q® Q — k in gyD. It is left H-linear as, by means of
(@), the definition of w; and the H-linearity of w, we can prove that w; (h (3:’” @z ® x"’/*i”)) =

v

ex (h) wy (:En,i ® :Z?"l’i/ ® g
Moreover it is left H-colinear as, by means of ([[§), the definition of w; and the H-colinearity of
w, we can prove that

17

. Ay "1 . s " . Ay "1
(In,z ® P ® L ) ® wy <($n,1 ® Pt ® e ) _ lH ® wy (:En,z ® P ® L ) )
(0)

(-1
Clearly, for z,y, z € @ in the basis, one has
Z w(z@Y®z) = Z Olal+lyl+lztw (ZRYR2) =w (Y ® 2)
teNg teNg
so that we can formally write
(21) w= Z Wi
teNy

Since ¢ is trivial on elements in the basis of strictly positive degree, one gets
(22) Wp=€eReReE.

If w = wp then @ is a (connected) bialgebra in YD and the proof is finished. Thus we can
assume w # wo and set

s : =min{i € N:w; # 0},
Ws © = Ws (90_1 & 90_1 ®(P_1) 5
Q : =gQ.

Note that @ is a morphism in ¥ YD as a composition of morphisms in ZYD.

Let n€Np,let C* =Q®Q®Q®Q and let u € Cfn) =D itihti<n Qi @ Q5 @ Q1 ® Q.

A direct computation rewriting the cocycle condition using (@) peres that, for every n € Ny,
and u € Cgln)

(23) Y wi(@®Qem)xw;(m® Qe Q) (u)

0<itj<n
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= Z [(e®@wa) xwp (QE@M® Q) * (we ®e)] (u).

0<a-+b+c<n
Next aim is to check that [@,] € H3,p, (gr@, k) ie. that
W (m§®@®@) + @, (@@@@ma) = (a§®ws) + @, (©®m§®§) + (ws ®a§) .
This is achieved by evaluating the two sides of the equality above on U := T ® J ® Z ® ¢ where

x,y,z,t are elements in the basis and using () If @ has homogeneous degree greater than
s, then both terms are zero. Otherwise, i.e. if @ has homogeneous degree at most s, one has

W (ma ®Q® @) (W) = ws (Mo ® Q @ Q) (u) and similarly for the other pieces so that one has to
check that
ws (MR Q®Q) (u) +ws (QB®QEm)(u) = (e@ws) (1) +ws (@M Q) (u) + (ws ®e) (u).
This equality follows by using (R9) and the definition of s.

By assumption H%,D (gr@,k) = 0 so that there exists a morphism 7 : Q ® @ — k in YD such
that

T, = 625=5®s§—5(§®m§) +5(m§®@) —e5®T.
Explicitly, on elements in the basis we get
W (TeYRZ)=1TRY)eg () -1@RF 2)+7(T JRZ) -z (@) (7O 7).
Define ¢ : Q ® Q — k on the basis by setting
CTRY) =041y T (TOY).

As we have done for wy, one can check that ¢ is a morphism in AEyD.
Moreover on elements in the basis we get

(0°0) zoy®?)
= (<®5Q) TRYRZ) — C(@@ma) (f®y®z)+2(m§®@) TRYRZ) — (5§®Z) (TRYR?Z)
= (@FeP)g(E) -(@e7-2)+((T 7037 -4 @) ([Fe37).
By using (R0)), one gets
C@OF Z) =04yl +12,s7(TOF Z)  and
By means of these equalities one gets
(%) @RY®Z) = jujtiyl+izls (°0) BRY R Z) = 4| t1y|+|2],sWs (TR YR Z)
Ol +lyl+lz],ss (T B Y ® 2) = Ojatly|+]z],s0]al+]y|+]2],s0 (T Y ® 2)
= Olatlyl+12, @ (T QYR 2) =ws (TRY®2) =W, (TRY V7).
Therefore 9> = @,. This means that we can assume that 7(Z®7Y) = 0 for |z| + |y| # s.
Equivalently
(24) T(T®Y) = Ojg|+|y|,s0 (T®7) for x,y in the basis.
Set

o~

(-F©Z) = bjaf iyl 12,67 (T-T©Z) .

v:i=T0 (PR ) and vi=(e®e)+w
In particular, one gets
(25) V(2 ®Y) = 0lg|4|y,sv (z ®y) for x,y in the basis.

Note also that both v and v are morphisms in ZYD as they are obtained as composition or sum
of morphisms in this category. Let us check that v is a gauge transformation on @ in #yD.

Recall that 299 = 1 is in the basis. For x in the basis, we have v (z ® 1g) = £ (z)+v (z ® 1g) .
Note that

0 = 0,5 (@) = Ojaft(1g] 4105w (T ® 1o ® 10)
= w(@Z®lyely) =w,(TeIlyoly)
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1(@ely 1) +7 (T Ig®Ig) —e5g@7 (I @1g)

® ) —
E®E) ~7(@Te1) +7(T®1q) —eg () djig)+141,s7 (1o @ 1g)
@1

(
so that v(x ® 1g) = 0 and hence v (z ® 1g) = e (z) + v (x ® 1g) = € (z). Similarly one proves
v(lg ® ) = ¢ (x). Hence ~ is unital. Note that the coalgebra C' = Q ® @ is connected as @ is.
Thus, in order to prove that v : Q ® Q — k is convolution invertible it suffices to check (see [@,
Lemma 5.2.10]) that v, gk, 15 convolution invertible. But for k, &’ € k we have

vkl ® K1g) = kk'y (1o ® 1o) = kk'e (19) = kk' = (e ® &) (klg ® K'1¢)

Hence V140114 = (€ @ €)1, @1, Which is convolution invertible. Thus there is a k-linear map

~1:Q ®Q — k and such that

TEY T =e@e=7""x7.

Note that, by Lemma R.3, v € YD implies v~! € £YD.
Therefore 7 is a gauge transformation in £YD. By Proposition @ Q7 is a coquasi-bialgebra
in HyD By Proposition E we have that gr@” and gr@ coincide as bialgebras in HyD Hence
$p (2rQ7, k) = H3,p, (grQ,k) = 0. Therefore Q7 fulfills the same requirement of @ as in the
statement. Let us check that (w?), =0 for 1 <t < s (this will complete the proof by an induction
process as @ is finite-dimensional).
Note that the definition of v and () imply

(26) V(@ ®@Y) =z +1y,07 (T @ Y) + jz41y,s7 (x @ y) for 2,y in the basis.
Let C? = Q ® @ and let C(2n) = itj<n Qi®Q;. Forue C(225_1) we have

e (£ 98) = )] (1) = (£ @) (1) = v () & v () = v (ur) v (u2) B (e @) w).

Therefore [y * ((e @ €) — U)]|022

=(e® 5)‘02 . By uniqueness of the convolution inverse,
s—1) (2s-1)

we deduce
(27) v ) = (e®e) (u) —v(u), forue 0(223—1)-
Let x,y, z be in the basis. Set 1 :=7T®y®Z and v := 2 ® y ® 2. We compute
@) (@) = Oaprpylizl.sw” ()
= Olultlyl+lzls [(E®Y) * 7 (Q@M) x w7 (M® Q) (vt @e)] (w)
Slallyl4lzhs [(E®Y) %7 (Q @ m) * (wo +ws) x 7 (M@ Q) * (v ' ®e)] (u

B [ (8®7)*7(Q®m)*7‘1(m®62) AUBLED RIS
lzlHlylHzls | (e @) x 7 (Q @ m) xws x vy~ (m @ Q) * (vl®e)

_ [ Olal Iyl +l2]s (@) (u1) - ¥ (Q@m) (ug) -7 (m® Q) (us) - (v ! ®e) (ua) +

Slal+lyl+lzls (€ @) (u1) -7 (Q @ m) (ug) - w (ug) -y (M ® Q) (ua) - (v @e) (us)

Now, all terms appearing in the last two lines, excepted wg, vanish out of degrees 0 and s and
coincide with e ® e ® € on degree 0. On the other hand ws vanishes out of s. Since vy := (e ® €) +v
and in view of (£7), the term § |z|+|y|+|z|,s forces the following simplification

(W), (u) = { Ozl +lyl+lzls [(E®@0) (1) + v (Q@m) (u) —v(M® Q) (u) — (v®@e) (u)] + } '

010 +y+12],sWs (1)

Now wg (u) = W (@) while one proves that (¢ ® v) (u) = (5§®5) (@) , 01|+ |y|+|21,s0 (M @ Q) (u) =

|z +|yl+|21,s0 (ma ® Q) (u) and similarly for the other pieces of the equality.

Thus one gets

(W), (u) = [ Ol|+lyl+12l,s KE§®E) () +v (@@ ma) (@) — (m§®@) (@) — (E@) 56) (ﬂ)} .

01| +y|+12],sWs ()

|
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= —Oaltlyl+12,s9°T + Ol jy|+2).sPs (@) = 0.

For 0 <t < s—1, analogously to the above, we compute

W), (@) = Ojaprpyltzw” ()
= Satiyiiize [(E@M*V(QBM) xwxryT Mm@ Q) x (v ®e)] ()

(
= Oaltlyllzle [(E©N *7(Q@m)xwoxy (M@ Q)* (v ' ®e)] (u)
(

E®7) 7(Q® m)xy N meQ)x (v ' ®e)] (u)

[
Olal+lyl+1z],t |
(e@e®e)(u) = (€®€®€)()

= Olg|tlyl+|=lt

Therefore we can now repeat the argument on w? instead of w. Deforming several times we will
get a reassociator, say w’, whose first non trivial component w}, with ¢ # 0, exceeds the dimension
of Q. In other words w’ = w{, which is trivial. Hence @ is gauge equivalent to a connected bialgebra
in HyD O

4. INVARIANTS

Given a k-algebra A, we denote by H” (A, —) the n-th right derived functor of Homy 4 (A4, —) in
the category of A-bimodules. In other words, for every A-bimodule M, H" (A, M) is the Hochschild
cohomology group of A with coefficients in M. Denote by Z" (A, M) and B" (A, M) the abelian
groups of n-cocycles and of n-coboundaries respectively.

Let H be a Hopf algebra, let B be a left H-module algebra and let M be a B# H-bimodule,
where B#H denotes the smash product algebra, see e.g. [Md, Definition 4.1.3]. Then H" (B, M)
becomes an H-bimodule as follows. Its structure of left H-module is given via ey and its structure
of right H-module is defined, for every f € Z" (B, M) and h € H, by setting

[1h =[x (M) (£)]

where, for every k € k,by,...,b, € B, we set
Xh (M) (f) (k) := (1p#S (h1)) f (k) (1p#he) for n = 0 while and for n > 1
X (M) (F) (b @bp @ @bp) == (Lp#S (h)) f (haby ® haby @ -+ @ hny1bn) (Lp#hn2) -
Moreover
(28) 0" 0 X (M) = Xty (M) 00", for every n > 1,

where 9" : Homy (B®™, M') — Homy (B®("+1) , M) denotes the differential of the usual Hochschild
cohomology.
Denote by H™ (B, M) the space of H-invariant elements of H" (B, M).

PROPOSITION 4.1. Let H be a semisimple Hopf algebra and let B be a left H-module algebra.
Denote by A := B#H. Then, for each n € Ny and for every A-bimodule M

H" (B#H, M) =~ H" (B, M)"

Proof. We will apply , Equation (3.6.1)]. To this aim we have to prove first that A/B is
an H-Galois extension such that A is flat as left and right B-module. Now, A = B#:H for
¢:H®H — B defined by ¢ (z,y) = e () eg (y) 1a, cf. [Md, Definition 7.1.1]. Moreover a direct
computation shows that ¢ : B — A : b+ b#1p is a right H-extension where A is regarded as a
right H-comodule via p: A - A® H : b#h — (b#h1) ® ha. Thus, by [@, Proposition 7.2.7], we
know that « : B — A is H-cleft and hence, by [@, Theorem 8.2.4], it is H-Galois. The B-bimodule
structure of A is induced by ¢ so that, explicitly, we have

v (b#th) (b'#15) (bfth) = b'bith,
(b#h) V' = (b#h) (V'#1m) = b(hab') #ho.
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Note that A = B# H is flat as a left B-module as H is a free k-module (k is a field). Now consider
the map o : H ® B — A defined by setting o (h ® b) := h1b ® ha (note that it is defined as the
braiding in #YD). We have
a(h®@bb') =hy (bb') @ hy = (hb) (hat') @ hg = (hib#h2) b = a (h @ b) b’

so that o is right B-linear where H® B is regarded as a right module via (h#b) b’ := h#bl’. Now H is
semisimple and hence separable (see , Corollary 3.7]). Thus H is finite-dimensional and hence it
has bijective antipode Sg. Thus « is invertible with inverse given by a~' (b#h) := ha® Sy;" (h1) b.
Therefore « is an isomorphism of right B-modules and hence A is flat as a right B-module as
H ® B is.

We have now the hypotheses necessary to apply [Btl], Equation (3.6.1)] and obtain

H" (A, M) = Hom_ g (k, H" (B, M)) = Homy, (k, H" (B, M))" = H" (B, M)" .
O

REMARK 4.2. Proposition @ in the particular case when M = k and B is finite-dimensional is
[BM, Theorem 2.17]. Note that in the notations therein, one has E(B) = ®yen, Fn(B, k) where
E,(B,k) = Ext(k,k) = H"(B,k). The latter isomorphism is [CH, Corollary 4.4, page 170].

Let H be a Hopf algebra and let B be a bialgebra in the braided category ZYD. Denote by
A := B#H the Radford-Majid bosonization of B by H, see e.g. [Ra3, Theorem 1]. Note that A
is endowed with an algebra map 4 : A — k defined by e4 (b#h) = ep (b) ey (h) so that we can
regard k as an A-bimodule via £4. Then we can consider H” (B, k) as an H-bimodule as follows.
Its structure of left H-module is given via ey and its structure of right H-module is defined, for
every f € Z" (B,k) and h € H, by setting

[f1h = [fh],
where (fh) (z) = f (hz), for every z € B®". The latter is the usual right H-module structure of
Homy, (B®", k). Indeed, for every n > —1, the vector space Homy (B®™, k) is an H-bimodule with
respect to this right H-module structure and the left one induced by €.

COROLLARY 4.3. Let H be a semisimple Hopf algebra and let B be a bialgebra in the braided
category 2YD. Set A := B#H. Then, for each n € Ny

H" (B#H,k) =~ H" (B,k)”

and the differential 0" : Homy (B®" k) — Homy (B®("+1), k) of the usual Hochschild cohomology
1s H-bilinear.

Proof. In the particular case M = k, the right module H-structure used in Proposition @ simplifies
as follows. It is defined, for every f € Z™ (B,k) and h € H, by setting

[f1h = [xa (k) (f)]

where, for every k € k,by,...,b, € B, we set
xb (k) (f) (k) : =eg (h)f(k) for n =0 while and for n > 1
X (®) (f) (01 ®@b2 @ ®bn) : = f(habi @ habz @ @ hyby).

More concisely x” (k) (f) (z) = f (hz) for every n € Ny and z € B®" i.e. [f]h := [fh] where
Fhi= Xt (0) ().

Now consider the differential 9" : Homy (B®", k) — Homy (B®("+1), k) of the usual Hochschild
cohomology. Note that for each n € Ny, Homy (B®" k) is regarded as a bimodule over H using
the left H-module structures of its arguments. By (Rg), we have

0" x (k) (f) = Xt (k) 0" (f)
Since X" (k) (f) = fh, the last displayed equality becomes 9" (fh) = 0™ (f) hfor every n € Ny.

Thus 9" is right H-linear. Since hf = e (h) f for every f € Homy (B®" k), h € H, we get that
O™ is also left H-linear whence H-bilinear. O
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REMARK 4.4. Note that, in the context of the proof of [@, Proposition 5.1], one has
H? (B (V) #C(Z,].C) = B (B(V),C)"™.
This is a particular case of Corollary [L] where H = C[Z,],V € #YD and B = B(V).

PROPOSITION 4.5. Let C and D be abelian categories. Let r,w : C — D be exact functors such that
r is a subfunctor of w i.e. there is a natural transformation n : r — w which is a monomorphism
when evaluated on objects. If X is a subobject of Y then r(X) = w (X)Nr(Y). Moreover, for
every morphism f: X —Y in C one has

ker (r (f)) r(ker (f)) = w (ker (f)) N7 (X) = ker (w(f)) N7 (X),

Im (r (f)) Im (w (f)) N (V) =7 (Im (f)) .
Proof. The proof is similar to , Proposition 1.7, page 138].

REMARK 4.6. From Corollary @, we have
H* (B,k)" = {If]| f € 2" (B.K),eu () [f] = [f] by for every h € H}
= {lfI1f€Z"(B.k),[en (h) f] = [fh], for every h € H}
where, for every z € B®", we have
(fh)(z) = [ (hz).
Note that, for any H-bimodule M one has
Homy g (H, M) = M = {m € M | hm = mh, for every h € H}.

Note also that H is a separable k-algebra whence it is projective in the category of H-bimodules.
As a consequence Hompy g (H,—) = (—)H : gMy — M is an exact functor (here gy is the
category of H-bimodules and 91 the category of k-vector spaces). By Proposition @ applied to the
case when r := (—)H My — M and w is the forgetful functor, for every morphism f: X — Y

of H-bimodules one has
ker (f7) =ker (f)n X7 = (ker (f))"  and  Im () =Im (/) n Y = (Im (f))" .

Still by Corollary [.3, we know that the differential 0" : Homy (B®", k) — Homy (B®("*Y k) of
the usual Hochschild cohomology is H-bilinear. Thus we can apply the argument above to get

ker ((an)H) = ker (9") N Homy, (B®", k)" = (ker (0"))"  and
m ((@)") = 1w (9") N Hom (B, k)" = (1m (9"71))".
Now Homy, (B®", k)" = Homy _ (B®" k) so that we get
2% noa (Byk) = Z"(B,k)NHomp, — (B®",k) =7" (B,k)"  and
BY a0 (B, k) = B"(B,k) NHomy _ (B®",k) = B" (B,k)".

where Z% y1oq (B, k) and B}, ;.4 (B, k) denotes the the abelian groups of n-cocycles, of n-coboundaries
for the cohomology of the algebra B with coeflicients in k computed in the monoidal category H-
Mod of left H-modules. The corresponding n-th Hochschild cohomology group is

70 g (Bk) 7™ (B, k)Y <Z” (B k))H i
n B,k) := =fMod 0 7 ’ = ’ =H"(B,k)" .
H-Mod ( ) B?I—Mod (B, k) Bn (B, k)H Bn (B, k) ( )

Denote by D (H) the Drinfeld double, see e.g. the first structure of [Ma], Theorem 7.1.1].

PROPOSITION 4.7. In the setting of Corollary @ assume that H is also cosemisimple. Then, for
n € Ny

o (Bk) = 2" (B,k)"") | B, (B,k) =B (B,k)"")  and Hp (B.k) = H" (B,k)"").

where Z™ (B, k) and B™ (B, k) are regarded as D (H)-subbimodules of Homy (B®™ k) whose struc-
ture is induced by the left D (H)-module structures of its arguments.
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Moreover H"™ (B, k)D(H) is a subspace of H™ (B, k)" .

Proof. For shortness, in this proof, we denote D(H) by D. Consider the analogue of the standard
complex as in Remark @

HYD(k, k) "> HYD(B, k) — = HYD(B? k) —F .
where 0™ is induced by the differential 9" : Homy (B®™, k) — Homy (B®("*1 k) of the ordinary
Hochschild cohomology. Now, since H is semisimple, it is finite-dimensional (whence it has bijective
antipode) so that, by a result essentially due to Majid (see [Md, Proposition 10.6.16]) and by [RT],
Proposition 6], we get a category isomorphism gyD & pM. Thus the complex above can be
rewritten as follows

Homp,_ (k, k) -2 Homp,_ (B, k) > Homp, _ (B%?, k) 2> ...

Now, since, for each n € Ny, we have Homp, _ (B®", k) = Homy (B®", k)D , we obtain the complex

Homy, (k, k)P o Homy (B, k) 2 Homy (B®2, k)P 9.

We will write (8”)D instead of 0™ when we would like to stress that the map considered is the one
induced on invariants. Thus we will write equivalently

Gk Rk

62 D
Homy (I, k)® — o Homy (B, k)P — 2+ Homy (B®2, k)P —

Now, assume H is also cosemisimple. Since H is both semisimple and cosemisimple, by ,
Proposition 7] the Hopf algebra D is semisimple as an algebra. Thus, as in Remark @ in case of
H, the functor (—)D : pMp — M is exact (here pMp is the category of D-bimodules and 9 the

category of k-vector spaces). By Proposition [..] applied to the case when r := (=)P :pmp — M
and w is the forgetful functor, for every morphism f : X — Y of D-bimodules one has

ker (fP) =ker (f)N XP = (ker (f))”  and  Im (fP) =Im(f)NnYP = (Im (f))".
In particular we get

ker ((8”)D) ker (0") N Homy (B®", k)D = ker (8™)" and

t ((07)") = 1 (0"") 1 Homy (B, k)" = Tm (9" ")"
and hence
Np(Bk) = Z"(B,k)nHomp,_ (B®" k) =7"(B,k)”  and
“p(B,k) = B"(B,k)NHomp _ (B®" k) =B"(B,k)"
Then we obtain
Hyp (B, k) = Zyp (Bk) _ 2" (B k)~ ~ H" (B,k)".

Byp (B.k)  Br(Bk)”
Let us prove the last part of the statement. The correspondence between the left D-module struc-
ture and the structure of Yetter-Drinfeld module over H is written explicitly in [@, Proposition
7.1.6]. In particular D = H* ® H and given V € ZYD, the two structures are related by the
following equality (f @ h) > v = f ((hl>v)71) (h>w), for every f € H*,h € H,v € V. Thus
(eg ® h)>v = h>v. Moreover H is a Hopf subalgebra of D via h — ey ®h, where D is considered
with the first structure of [Maj, Theorem 7.1.1]. Since the D-bimodule structure of H" (B, k) is
induced by the one of Homy (B®", k) which comes from the left D-module structures of its argu-
ments and similarly for the H-bimodule structure of H" (B,k), we deduce that H" (B, k)" is a
subspace of H™ (B, k)" . O
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EXAMPLE 4.8. In the setting of the proof of [Ax], Theorem 4.1.3], a Nichols algebra B (V') such
that H3 (B (V) ,k)”™ = 0 is considered where k is a field of characteristic zero. By Proposition EA
applied in the case H = kZ,, and B = B (V) we have that H3,p, (B (V) k) = H? (B(V) ,k)”" is
a subspace of H3 (B (V) ,k)" = H3 (B(V),k)”" = 0. Thus we get H3,5 (B(V),k) = 0. Therefore,
in view of Theorem @, if (Q,m,u, A, e,w)isaf.d. connected coquasi-bialgebra in #YD such that
gr@Q = B (V) (as above) as augmented algebras in ZZYD (the counit must be the same in order
to have the same Yetter-Drinfeld module structure on k), then we can conclude that @ is gauge
equivalent to a connected bialgebra in #YD.

REMARK 4.9. Let A be a finite-dimensional coquasi-bialgebra with the dual Chevalley property
i.e. the coradical H of A is a coquasi-subbialgebra of A (in particular H is cosemisimple). Assume
the coquasi-bialgebra structure of H has trivial reassociator (i.e. it is an ordinary bialgebra) and
also assume it has an antipode (i.e. it is a Hopf algebra). Then, by [@, Corollary 6.4], grA is
isomorphic to R#H as a coquasi-bialgebra, where R is a suitable connected bialgebra in £YD.
Note that R#H is the usual Radford-Majid bosonization as H has trivial reassociator, see [@,
Definition 5.4]. Hence we can compute

H? (grA, k) = H® (R#H, k).
Assume further that H is semisimple. Then, by Corollary Q, we have
H" (R#H,k) = H" (R, k)"

so that H? (grd, k) = H3 (R, k)" . Thus, if H? (R, k)" = 0, one gets H3 (grA,k) = 0 which is the
analogue of the condition @, Proposition 2.3] (note that our A is the dual of the one considered
therein) which guarantees that A is gauge equivalent to an ordinary Hopf algebra, if A has an a
quasi-antipode and k = C. Next we will give another approach to arrive at the same conclusion
but just requiring H},, (R, k) = 0. Note that a priori H},, (R, k) = H* (R, k)D(H) is smaller than
H3 (R,k)".

5. DuaL CHEVALLEY

The main aim of this section is to prove Theorem @ Let A be a Hopf algebra over a field
k of characteristic zero such that the coradical H of A is a sub-Hopf algebra (i.e. A has the
dual Chevalley Property). Assume H is finite-dimensional so that H is semisimple. By [,
Theorem 1], there is a gauge transformation ¢ : A ® A — k such that A¢ is isomorphic, as a
coquasi-bialgebra, to the bosonization Q#H of a connected coquasi-bialgebra @ in £YD by H.
By construction ¢ is H-bilinear and H-balanced: this follows from , Proposition 5.7] (note
that gauge transformation vp : B ® B — k, used therein for B := R#:H, is H-bilinear and
H-balanced, as observed in the proof) and the fact that there is an H-bilinear Hopf algebra
isomorphism ¢ : B — A (see , Proof of Theorem I, page 36 and Theorem 6.1] which is
a consequence of [, Theorem 3.64]) where (R,¢) is a suitable connected pre-bialgebra with
cocycle in YD (note that ¢ = vg o (1#71 ® wil)): here by connected pre-bialgebra we mean that
the coradical Ry of R is klg (by the properties of 1x this implies that Ry is a subcoalgebra in
BYD of R). Assume that A is finite-dimensional. Then Q#H and hence @ is finite dimensional.

Thus, by Theorem , if H%,D (gr@,k) = 0, then @ is gauge equivalent to a connected bialgebra
in #yD.

First let us check which condition on A guarantee that Hg,D (er@,k) = 0. Note that by con-
struction @ = RY (see [[ABM], Proposition 5.7]) where v := (€)™, the convolution inverse of A&
and X : H — k denotes the total integral on H. Thus we can rewrite gr (Q) as gr (R").

Moreover vg is given by vg ((r#h) @ (r'#h')) = v (r @ hr') ey (R') for every r,r' € R, h,h' € H.
By , Proposition 2.5], gr (R) inherits the pre-bialgebra structure in 2£YD of R. This is
proved by checking that R; - R; C R;4; for every 4,j € Ny, where R; denotes the i-th term of the
coradical filtration of R. Moreover R; is a subcoalgebra of R in ZyD.
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LEMMA 5.1. Keep the above hypotheses and notations. Then gr (RY) and gr (R) coincide as bial-
gebras in LYD where the structures of gr (R) are induced by the ones of (R,€).

Proof. By Theorem [L.5, gr (R”) = gr (Q) is a connected bialgebras in £ YD.
Note that R and R coincide as coalgebras in 2D so that gr (R¥) and gr (R) coincide as coal-
gebras in gyD. They also have the same unit. It remains to check that their two multiplications

coincide too.

Since £ is unital, by [[AMS]1), Proposition 4.8], we have that v is unital and this is equivalent to

v~! unital (see the proof therein).

Let C:= R® R. Let n > 0 and let w € C,y) = >, ., R ® R;. By [AMS]], Lemma 3.69], we

have that
Ac (w) —we (1r)* — (1r)* @ w € Cu1) @ Clpy).-
Thus we get
w1 @ wy @ wg — Ag (w) ® (1R)®2 — Ac ((1R)®2> Qw € Ao (C(nfl)) ® C(n,l)

and hence
w1 @wa@ws —w® (1r)** @ (17)*? - (1r)** @w® (18)** - (1r)** ®w € Cl_1) @ Cln_1)®Cl1).
Since m (C(,—1)) € Yitjenm (R ® Rj) € Ryoq we get

w1 m (w2)®w3—w®13®(13)®2 — (IR)®2®’ITL (w)®(13)®2— (IR)®3®’LU € O(n—l) R, ®O(n_1)

and hence
(29) wi @ (m (w2) + Rn1) @ wy = (15)*? @ (m (w) + Ro1) ® (1)%°.
Let =,y € R. We compute

Ty = (24 R-1) v (Y+ Ry-1)
(@ v y) + Ria|1yl-1 = m" (2 @ Y) + Rjz|1y|-1
® y)l) m((r® 9)2) vt (r® y)s) + R|w|+|y|—l
¥)1) (m (. ®@y)y) + Rigpgpy—1) v (z @ y)5)
= v( ) m(z@y) + Rigtjy-1) v ((1R)®2>
= m@Y)+ Rgy-1= (2 y) + Rgty-1 =T 7

— v

— v

((=
(z@

The following result is inspired by [, Theorem 3.71].

LEMMA 5.2. Let H be a cosemisimple Hopf algebra. Let C be a left H-comodule coalgebra such
that Cy is a one-dimensional left H-comodule subcoalgebra of C. Let B = C#H be the smash
coproduct of C by H i.e. the coalgebra defined by

(30) Ap(etth) = 3 (e (e2) gy b ) @ ((ea)g) #h2)
ep(c#h) = ec(c)em (h).
Then, for every n € Ny we have B, = C,#H.

Proof. Since Cy is a subcoalgebra of C' in 90 and, for n > 1, one has C,, = C,_1 Ac Cy, then
inductively one proves that C,, is a subcoalgebra of C in #91. Set By = Cp#H for every n € No.
Let us check that B(,) = By by induction on n € Np.

Let n = 0. First note B = Upen, B(m) and, since Ac (Cp) C ZO<i<m C; @ Cp_i, we also have

AB (B(m)) - A m#H ZO<'L<m Z (O # m— Z ( )l) Y ((Om71)<0> # (H)2)
- Zogigm (CZ#H) ( m—i#( )) = Zogigm B(z) (024 B(mfi)'
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Therefore (B(m))mGNo is a coalgebra filtration for B and hence, by [@, Proposition 11.1.1], we
get that Bg) 2 Bp. Since Cj is one-dimensional, there is a grouplike element 1 € Cp such that
Co = klc. Moreover one checks that Cp is a subcoalgebra of C' in #9 implies Y (1c)<_1> ®

(1c) gy =1 ®1c.
Leto: H—> C®H :h— 1c ® h be the canonical injection. We have
Apo(h) = Ap(e®@h) =Y (le# (1) hi) ® ((1o) g #hs)

= Y (le#luh) ® (lo#ths) =Y o () ® o (h2) = (0 ® o) Ay (h),
EBO'(h) = €B (1c®h) =¢&C (10)5‘[{ (h) =€y (h)

so that o is a coalgebra map. Since H is cosemisimple and o an injective coalgebra map we deduce
that also 0 (H) = Cy ® H = B(g) is a cosemisimple subcoalgebra of B whence By C Bo.

Let n > 0 and assume that B; = B for 0 <i <n — 1. Let ) ¢;#h; € B,,. Then
i€l

Ap <Zci#hi> €B,1®B+B®By=C,_1®H®C®H+C®H®Cy® H.
icl
Let p, : C — CQ be the canonical projection. If we apply (pn—1 ® ey @ po @ H) we get

0 = (pn-1®enm®@po®@ H)Ap <Z Ci#hi>

icl

(pnr © e @ po @ H) (Z ((er # ((e)o) -y (hi)y) ® (((ei)a) o # <hi>2)>

iel
= (pn—1®@po®@ H) <Z (€i); ®(¢i)y ® hi) = ((pn—1®po) Ac ® H) (Z Ci#hi> .
iel iel
Thus )7 ci#hi € ker((pn—1 ® po) Ac ® H) = [ker ((pn—1 ® po) Ac)] ® H = C, ® H = By,. Thus

B, C ZEI On the other hand, form A¢x (C,,) C C,,—1 ® C + C ® Cy we deduce
Ap (B<n>) = Ap(C,@H)
C Y (@A (C)o) gy (1)) @ (((Cu)y) gy # (H),)
C Y (Coa# Oy H) @ ((C) #H) + 3 (C# (Co) 1y H) @ ((Co) o, #H)
C (Coa#H)® (C#H) (C#H) ® (Co#H)
— Bin-1)®B+B® By =B, 1@ B+B®B,
and hence B(n) C B,. OJ

DEFINITION 5.3. Let A be a Hopf algebra over a field k such that the coradical H of A is a sub-
Hopf algebra (i.e. A has the dual Chevalley Property). Set G := gr (A). There are two canonical
Hopf algebra maps

og  H—=gr(A):h—h+A_q,
g : gr(A) = H:a+ A,_1+— adn, n € Ng.
The diagram of A (see [ASI], page 659]) is the vector space

D(4)i={degr(4)| > di@rg(d) =d@1y}.

It is a bialgebra in #YD as follows. D (A) is a subalgebra of G. The left H-action, the left
H-coaction of D (A), the comultiplication and counit are given respectively by

hrd —ZO’G dagS(hg) p(d):ZWg(dl)(X)dQ,
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AD(A) (d) = ZdlagSHﬁG (d2)®d3, ED(A) (d):E‘G (d)

Although the following result seems to be folklore, we include here its statement for future
references.

PROPOSITION 5.4. Let A be a Hopf algebra over a field k such that the coradical H of A is a
sub-Hopf algebra. Let A’ be a Hopf algebra over a field k. Let f : A’ — A be an isomorphism of
Hopf algebras. Then H' := f=1(H) = H is the coradical of A’ and it is a sub-Hopf algebra of A’.
Thus we can identify H' with H. Moreover f induces an isomorphism D (f): D(A") — D (A) of
bialgebras in gyD.

PROPOSITION 5.5. Keep the hypotheses and notations of the beginning of the section. Then D (A) =2
D (R#¢H) = gr (R) as bialgebras in 1YD.

Proof. Apply Proposition @ to the canonical isomorphism v : B := R#:H — A that we recalled
at the beginning of the section to get that D (R#¢H) = D (A) . Note that, by H-linearity we have

Y (1r#h) = Y (1r#1m) (1r#h)) = (Ir#1a) h) = (lr#lu) h =h

so that 1 (kl1g ® H) = H and hence H' = ¢~ (H) = k1 z® H with the notation of Proposition .4
Thus By =klg ® H = Ry ® H so that we can identify By with H via the canonical isomorphism
H— Ry®@H :h— 1p®h. Its inverse is Ry @ H — H : 7 @ h + g (r) h. With this identification
and by setting G := gr (B), we can consider the canonical bialgebra maps

og : H—gr(B):hw— lr#h+ (R#H) |,
g : gr(B) = H:r#h+ (R#cH), |+ er(r)hdno, where r#h € (R#:H), ,n € No.
Since the underlying coalgebra of B is exactly the smash coproduct of R by H and (R,§) is a

connected pre-bialgebra with cocycle in ZyD, by Lemma @, we have that B,, = R,, ® H. Let us
compute D := D (B). As a vector space it is

D= {deG|Zd1®wG(d2):d®1H}.

By [AST, Lemma 2.1], we have that D = @,en, D" where D" = DN G" = DN 22— Let d =

By_1°
> ri#h; € D™ where we can assume | r;#h; € B,\B,—1 and, for every i € I, r;#h; € B,\Bn—_1.
iel i€l
Then > r;#h; = Y r;#h; and hence the fact that d is coinvariant rewrites as

iel i€l
(31) Z (ri#thi), @ ma ((ri#tha),) = ZTi#hi ® 1g.
i€l icl
By definition of wg and (fl]), the left-hand side becomes
Z (Ti#hi)l P ve ((Ti#hi)Q) = Z ((ri# (hi)1) + Bn-1) ® (hi),
iel i€l
so that (BI]) becomes
Z ((ra# (hi)y) + Bn-1) ® (hi), = Zﬂ'#hi ® 1y = Z (ri#thi + Bpo1) @ 1y

i€l iel iel

ie.
ST i (hi)y) ® (hi)y — > ridthi ® 1y € Byoy @ H = Ry 1 @ H® H.
i€l il
If we apply R® ey ® H, we get
ZTi ® h; — ZT‘Z'EH (hi)®1g € Ry—1 @ H=B,_1.
icl il

Thus Z ’I”l#hz = E ’I”l#hl = E (Tz#h,l =+ anl) = E (TiEH (hz> ® IH) + anl-
el el i€l i€l




24 IVAN ANGIONO, ALESSANDRO ARDIZZONI, AND CLAUDIA MENINI

Since > r;#h; € B,\B,_1 we get that <Z TiEH (hz)) ® 1y ¢ B,—1 and hence Y. rieg (h;) ¢
i€l i€l i€l
R, _1 and we can write

Zri#hi = (Z Ti€H (hz)> & 1H'

icl iel
Therefore we have proved that the map
R -
Op i —=———=D":T—=r®ly,
n—1
which is well-defined as D" =DNG"=DN ?“ =DnN R"®®H, is also surjective.

It is also injective as ¢,, (T) = ¢,, (3) implies r ® 1y —s® 1y € B,_1 = R,—1 ® H and hence,
by applying R ® cpr, we get r — s € R,_1 i.e. T = 3. Therefore ¢, is an isomorphism such that

> ritthi = ¢, (E Ti€H (hl)> and hence

i€l icl
ot <Z Ti#hi> = ZTiEH (hi).

i€l i€l

Clearly this extends to a graded k-linear isomorphism

p:gr(R)—D.
Let us check that ¢ is a morphism in ZYD. First note that, for every r € R, we have
@(T+Rn*1) = 6\r|,n</7 (T+Rn*1) = 5|r|,n@n (T+Rn*1) = 5|r|,n@n (F)

= T @ 11 = Oy (1 Lis + (RiteH),,_, ) =79 L + (RiteH),,_,
Thus
(32) o(r+Rup_1) =r®@1yg + (R#cH), |, for every r € R,,.

For every r € R,\R,_1, by using (BJ), it is straighforward to prove that h > ¢ ()
Moreover, by applying ([]), (Bd), the definition of 7 and (B2), we get that pp () =
Let us check that ¢ is a morphism of bialgebras in gyD. Fix r € R,\Rn—1.
Using the definition of Ap, (), (Bd), the definition of 7¢, the definition of o¢, (BJ) and ()

again, we obtain Apyp () = (¢ ® @) Ag(r) (T) -
Let us check ¢ is counitary:

=@ (h
(H

1,

epp () = eqp(T)=cq (r®ly) £ dn0ep (roly)

® _
= 0n0ERr (1) = €g(r) (7).
Let us check ¢ is multiplicative. Let s € R,,\Ry,—1. Then, by definition of ¢, of mp and of the
multiplication of R#¢H, we have that

oY) EFRT) = Z (s(1> <(s<2>)<1> r<1>> #¢ <(s<2>)<0> ®r<2>)> + (R#teH),, .\ -

Now write sD @ s = Zogiﬁm si @ s, _, for some s;, s € R; and similarly ZT(l) @ r® —
EOS]‘Sn T @ T‘;l,j for some r;, 7';- € R;. Then

mo(p@9) 0T = > ocicm (5 (stum) 1y 7)) #E ((Shams) oy @iy ) ) + BHH) iy

0<j<n

= Zogz‘gm 5i,m5j,n (Sz ((S;n—i)<,1> Tj) #E ((S:n—i)«)) ® r:z—j)) + (R#ﬁH)m.;_n_l

0<j<n

= Z (Sm ((56)<_1) Tn) #E ((56)(0) ® Té)) + (R#fH)ernfl
fozkin Z Sm ((86)<,1> Tn) #ER ((56)(())) er (rp) 1m + (R#EH)m+n—1
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= Z SmER (56) Tn€R (T(/J) #1H + (R#EH)ernfl

= Zogigm 5i,m5j,n (SiER (S:n—i) Tj€R (T‘;n_j) #1H) + (R#ﬁH)ernfl
0<j<n

= Y ocicm (iR (Sh_y) TR (rh_y) #1m) + (R#teH),,
0<j<n

= Z (5(1)53 (5(2)) rWep (T(2)) #1H) + (R#eH),,

= (sr#ly) + (R#eH),,,, B o+ Roen )

= ¢ ((S + Rmfl) (T + Rnfl)) = PMgy(R) (E ®F) .

Let us check ¢ is unitary. We have

¢ (lam) =¢(Ur+R1)=¢(Ig) =@ 1lg = (1g®1y) + (R#H) |, =1p+ B_ = 1.

Summing up we have proved that

Q) 92 g () = gy () s p (R#teH) Pckd

as bialgebras in {7VD. Therefore H},,, (D (A),k) = 0 (the Hochschild cohomology in J VD of the
algebra D (A) with values in k) if, and only if, H3,;, (grQ,k) = 0. In this case, by the foregoing,
we get that @ is gauge equivalent to a connected bialgebra in £YD.

Now let E be a connected bialgebra in YD and let v: E ® E — k be a gauge transformation
in #YD such that Q = EY. We proved that AS = Q#H = EY#H as coquasi-bialgebras. By
Proposition @, we have that (E#H )F = E74#H as an ordinary coquasi-bialgebras. Recall that
two coquasi-bialgebras A and A’ are called gauge equivalent or quasi-isomorphic whenever
there is some gauge transformation v : Q® — k in Vecy such that A7 = A’ as coquasi-bialgebras.
We point out that, if A and A’ are ordinary bialgebras and A = A’  then 7 comes out to be a
unitary cocycle. This is encoded in the triviality of the reassociators of A and A’.

THEOREM 5.6. Let A be a finite-dimensional Hopf algebra over a field k of characteristic zero
such that the coradical H of A is a sub-Hopf algebra (i.e. A has the dual Chevalley Property). If
H§}D (D(A),k) =0, then A is quasi-isomorphic to the Radford-Majid bosonization E#H of some
connected bialgebra E in 2YD by H. Moreover gr (E) = D (A) as bialgebras in YD.

Proof. By the foregoing AS = Q#H = EY#H = (E#H)F as coquasi-bialgebras. Now A is
quasi-isomorphic to AS which is quasi-isomorphic to E#H so that A is quasi-isomorphic to E# H.
Moreover

gr(E) =gr(E") =gr(Q)=D(A).

where the first equality holds by Proposition E
O

More generally, given A a (finite-dimensional) Hopf algebra whose coradical H is a sub-Hopf
algebra, then if H is also semisimple, we expect that A is quasi-isomorphic to the Radford-Majid
bosonization E#H of some connected bialgebra E in £YD by H. See e.g. [@, Corollary 3.4 and

the proof therein] and [[AAGMV|, for a further clue in this direction.

6. EXAMPLES

We notice that the Hochschild cohomology of a finite-dimensional Nichols algebras has been
computed in few examples. We consider here those Nichols algebras to compute H3,, (B (V) , k).
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6.1. Braidings of Cartan type. Let A = (a;;)1<i j<¢ be a finite Cartan matrix, A the corre-
sponding root system, (o;)1<i<g a set of simple roots and W its Weyl group. Let wg = si; - - iy,
be a reduced expression of the element wy € W of maximal length as a product of simple reflec-
tions, 8; = si, ---si;_, (i), 1 < j < M. Then 3, # B, if j # k and AT = {5,[1 < j < M}, see
[H, page 25 and Proposition 3.6].

Let I be a finite abelian group, I its group of characters. D = (T, (9i)1<i<o, (Xi)1<i<o, A) is a
datum of finite Cartan type [ associated to I' and A if g; € ', x; € f, 1 <4,5 <0, satisfy
Xi(9:) # 1, Xi(95)x;(9i) = X;(gs)* for all i, j. Set q = (qij)1<i,j<0, where gij = x;(g:)-

In what follows V' denotes the Yetter-Drinfeld module over kI', dim V' = 6, with a fixed basis
z1,...,%e, where the action and the coaction over each z; is given by ; and g;, respectively. Then
the associated braiding is c(z; ® xj) = ¢ij2; ® a; for all 4,j. Let By = B(V). The tensor algebra
T(V) is Ng—graded with grading «; for each z;. For g = Zle ajo; € AT, set

98 =91" 95" X = X1 Xg"s a5 = Xx5(98)-
Given a, f € A%, we denote gas = X5(da)-

We assume as in , ] that the order of qi; is odd for all i, and not divisible by 3 for
each connected component of the Dynkin diagram of A of type Ga. Therefore the order of g;; is the
same for all the 7 in the same connected component J. Given 8 € J, we denote by Ng the order
of the corresponding ¢;; in J, which is also the order of gg.

By [ﬂ] there exist homogeneous elements xg of degree 3, 3 € AT, such that the Nichols algebra

By of V is presented by generators x1,...,zg and relations
(ade ;) " x; =0, 1<i#j<0;
N
(Eﬁﬁ = O, B S AJ,_.

Moreover {zj3! ... 23" [0 < n; < Ng,} is a basis of By.
We shall prove that H%,D (Bg,k) = 0. We need first some technical results.

LEMMA 6.1. Let a, 5 € Ay. Then either gagévﬁ *e, or else XaXZBVﬁ #e.

Proof. Suppose on the contrary that gagévﬁ =e, Xaxgﬂ =¢. Then

1, - Ng, N N3
Go=Xa (921) =x5"(95") = q3° =1,
since gg is a root of unity of order Ng. But this is a contradiction, since g, # 1. O

LEMMA 6.2. Let o, 8,7 € A" be pairwise different. Then either gogsg # €, or else XaXgXy 7 €-
Proof. Suppose on the contrary that gngsg, = e and x,Xxzx, = €. Then

(33) o =xa'(92") = X5X4(9897) = 480+08+018> 48 = Qatrlorrar Gy = GadsdaBdBa-

Notice that a, 3,7 belong to the same connected component. Indeed, if v belongs to a different
connected component, then ¢gy¢,8 = qayqya = 1. Thus ¢ = gaqy = qﬂq?y, SO q?y =1, which is a
contradiction. Therefore we may assume that the Dynkin diagram is connected.

One can prove that gy, (o) = ¢a for every a € A. As we observed that At = {;|]1 < j < M},
we deduce that for every 8 € A™ there is some j such that gz = ¢;. One can prove that there is
some ¢ € k such that g, = ¢(**/2 and daryQya = ¢\, where (-,-) is the invariant bilinear form
on the simple Lie algebra g associated with the finite Cartan matrix [@, Ch. VI, §1, Proposition 3
and Definition 3] and the basis of the root systems given in [Bd, Ch. VI, §4] should be normalized
in such a way that ¢ = g5, (6,8) = 2 for each short root § € A. Note that g, = ¢(®*)/2 £ 1 for all
a as (a,«) # 0. Thus

® ¢o = g3 = ¢y = ¢ if the Dynkin diagram is simply laced,
® qu,qs,qy € {q,¢*} if the Dynkin diagram has a double arrow,
® 40,95, ¢y € {q,¢*} if the Dynkin diagram is of type Ga.
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If the Dynkin diagram is simply laced, then, by @), we have ¢syqv8 = GarGya = GaplBa = ¢
Then ¢(*") = ¢—'. Now set n(a, 8) := 2(a, 8)/(8,8) = (a, 8). Then n(a, ) is symmetric whence,
by [%, Ch. VI, §1, page 148] we have (a,) = —1 as the order of ¢ is odd, so a + v € AT,
by [Bd, VI, §1, Corollary, page 149]. Now the same argument we used above shows that also
(o, 8) = —1 = (v,) and hence (a+v,8) = —2,s0 a + + v € AT, since a+ v # —f (as a + v
and 8 are both in AT). But ¢a+s1y = ¢a489+98+9~890~G~vadapdsa = 1, which is a contradiction.

If the Dynkin diagram has a double arrow, then qa, g3, ¢4 € {¢,¢*}. If ¢o = q3 = ¢, then
the proof follows as for the simply-laced case because n(u,v) = n(v,u) for u,v € {a,B8,v}. If
do = q3 = q and gy = ¢*, then ¢s,¢y8 = GaryGra = ¢ 2, and Gapgsa = 1, by (@) Then a simple
calculation yields (8,7) = —2 so that S+~ € AT. One also gets («, 3) = 0 and («,y) = —2 so that
(o, B4+7) = (o, B) + (o, 7) = —2 < 0 by the conditions on the order of ¢, so again «+ 8+~ € A™T;
but again we obtain ga434+~ = 1, which is a contradiction. The proof for ¢, = gg = ¢* and ¢, = ¢
follows analogously.

Finally, if the Dynkin diagram is of type G2, then a similar analysis gives a contradiction. [

For each 1 < k < M, set By(k) as the subspace of B, spanned by {:zrgi . xg’;|0 < n; < Ng,}.
By [@] this gives an algebra filtration, and the graded algebra Gr B, associated to this filtration
is presented by generators xg, § € A", and relations

N
XpXy = (3 XyX3, X'@B =0, B<vyeA;.

n Gr By is viewed as an algebra in £. YD, which (as an algebra) is the Nichols algebra of
Cartan type Ay x - -+ x Ay, M copies, with action and coaction on xz given by x4, gg, respectively.
By , Theorem 4.1], H®*(Gr By, k) is the algebra generated by {4, ng, 8 € AT, where
deg&p = 2, degng = 1, and relations

NgN. N.
£58y = ap) €6, N5€y = Qg E4Mp5 N5My = —4ay1475 B,y € At

As we assume that all the ¢;; have odd order, we deduce in particular from the last equality that

ng =0 for all € AT, As an algebra in {.VD, the action and coaction on &4 is given by X;NB,

g;Nﬂ , while the action and coaction on 7, is given by Xgl, gEl.
THEOREM 6.3. H3,p, (Bq, k) = 0.

Proof. First we will prove that H? (Gr Bq,k)D = 0 for D := D(kI'). Now, the invariants are with
respect to the D-bimodule structure that H? (Gr By, k) inherits from Hom ((Gr B4)®3,k) (this is
a D-bimodule as its arguments are left D-modules). Since the left D-module structure is induced
by the one of k, it is trivial. Thus the invariants of H* (Gr Bq,k) as a D-bimodule reduce to the
its invariants as a right D-module. Since right D-modules are equivalent to left D-modules, via
the antipode of D which is invertible as D is finite-dimensional, the right D-module structure of
H? (Gr By, k) becomes the structure of object in ﬁll:yl) described above. Thus, in order to prove
that H? (Gr Bq,k)D = 0 we just have to check that the invariants of H® (Gr By, k) as a left-left
Yetter-Drinfeld modules are zero.

Now, by the defining relations of H*(Gr Bq,k), a basis B of H?(Gr By, k) is given by {£,n,} U
{namsn,la < B <~} If v € H¥(Gr By, k) is invariant, then v is written as a linear combination of
elements in the trivial component. Indeed, write v = ), 5 ¢, b for some ¢, € k, and let g, x; be
the elements describing the component of b € B. Then

v=g-v :ZbeB g b= ZbeB e Xp(9) b, for all g € T,

1®v:p(v):ZbeBcbp-b:ZbeBcbgb@)b.

If ¢, # 0, then x,(9) =1 for all g € T"so x, =€, and g, = 1. Thus b is invariant. We have so
proved that the existence of v # 0 invariant implies the existence of b € B invariant. Hence, if B
has no invariant element then there is no invariant element at all. Note that, for all h € H, we have

he(ang) = (xa Vx5 ) (R)€ans and p(Eang) = g2 N g5 @€anp so that, by Lemmal.1, the element
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§aMlp is not D-invariant. A similar argument, using Lemma , shows that also 7,747, is not D-

invariant. Thus the elements in B are not D-invariant, so H? (Gr By, k)” = 0. Since the elements in
{aj .. 3|0 < n; < Ng,} are eigenvectors for D, we can mimic the argument in IMPSW, Section
5] by taking into account the spectral sequence associated to the filtration of algebras therein; see for
example [MPSW], Corollary 5.5] for a similar argument. Thus H3,p (B, k) = H? (B, k=0 0O

REMARK 6.4. Notice that H3,, (Bg, k) 2 H? (B, k)" = 0 although H? (B#kT, k) = H? (B, k)"
can be non-trivial, see for example [MPSW|, Example 5.8].

6.2. Braidings of non-diagonal type. For n > 3, FK,, denotes the quadratic algebra @] with
a presentation by generators x(;;), 1 <14 < j < n, and relations

2l =0, 1<i<j<n,
T(ij)T(jk) = T(ik)T(ik) T (k) T(ig) I<i<j<ks=mn,
T (k) T(i5) = T(ik)T(jk) T L (i) T(ik) > I<i<j<k<n,
T T (k1) = T(kl)T (i) #{i,j,k,1} = 4.

According to [MiS] each FK,, is a graded bialgebra in the category of Yetter-Drinfeld modules over
the symmetric group S, generated as an algebra by the vector space V;, with basis {z(;;) | 1 <
i < j < n}. The action is described by identifying (i) with the corresponding transposition in .S,
and then consider the conjugation twisted by the sign, while the coaction is given by declaring .
a homogeneous element of degree o. Then the braiding on V,, becomes

(onr) = {1 o(i) < o), = (ij). i <

C(:EU ® :ET) = X(UaT)xa'Tcr*1 X xq, = .
—1 otherwise,

where ¢ and 7 are transpositions. Moreover FKC,, projects onto the Nichols algebra B(V},). For
n =3,4,5, it is known that FKC,, = B(V},) and has dimension, respectively, 12, 576 and 8294400.
The Hochschild cohomology of FK3 is a consequence of the results in [@] as follows.

THEOREM 6.5. Hyg. \1oq (FK3,k) is isomorphic to the graded algebra
k[X,U,V]/(U*V —VU?), where degU = degV =2, deg X = 4.

Proof. By [@, Theorem 4.19], we have that E(B+#kSs3) is isomorphic to the algebra in the claim,
where B = FK3. By [BM, Theorem 2.17], we know that E(B#kS3) = E(B)*% as graded algebras.
As observed in Remark [L.9, we have that E(B) = H* (B, k). By Remark [1.6, we have H® (B, k)*%® o
HZg, Moa (FK3, k). O

From this result we get Hu?§53-Mod (FKs,k) = 0 so that, by Proposition @ we conclude that

COROLLARY 6.6. H3},, (FKs,k) = 0.
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