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Many models of physics beyond the Standard Model predict the existence of new Abelian forces
with new gauge bosons mediating interactions between “dark sectors” and the Standard Model. We
report a search for a dark boson Z′ coupling only to the second and third generations of leptons in the
reaction e+e− → µ+µ−Z′, Z′ → µ+µ− using 514 fb−1 of data collected by the BABAR experiment.
No significant signal is observed for Z′ masses in the range 0.212− 10 GeV. Limits on the coupling
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parameter g′ as low as 7 × 10−4 are derived, leading to improvements in the bounds compared to
those previously derived from neutrino experiments.

PACS numbers: 12.60.-i, 14.80.-j, 13.66.Hk, 95.35.+d

In spite of the many successes of the Standard Model
(SM), the known particles and interactions are insuffi-
cient to explain cosmological and astrophysical observa-
tions of dark matter. This motivates the possibility of
new hidden sectors that are only feebly coupled to the
SM; by analogy with the SM, such sectors may contain
their own interactions with new gauge bosons (Z ′). In
the simplest case of a hidden U(1) interaction, SM fields
may directly couple to the Z ′, or alternatively the Z ′

boson may mix with the SM hypercharge boson, which
typically results from an off-diagonal kinetic term [1]. In
the latter case, the Z ′ inherits couplings proportional to
the SM gauge couplings; due to large couplings to elec-
trons and light-flavor quarks, such scenarios are strongly
constrained by existing searches [2–8].

When SM fields are directly charged under the dark
force, however, the Z ′ may interact preferentially with
heavy-flavor leptons, greatly reducing the sensitivity of
current searches. Such interactions could account for the
experimentally measured value of the muon anomalous
magnetic dipole moment [9], as well as the discrepancy
in the proton radius extracted from measurements of the
Lamb shift in muonic hydrogen compared to observations
in non-muonic atoms [10, 11]. Direct Z ′ couplings to left-
handed leptons also lead to new interactions involving
SM neutrinos that increase the cosmological abundance
of sterile neutrinos mixing with SM neutrinos, consistent
with the observed dark matter abundance [12].

We report herein a search for dark bosons Z ′ with vec-
tor couplings only to the second and third generations of
leptons [13, 14] in the reaction e+e− → µ+µ−Z ′, Z ′ →
µ+µ−. While such a scenario can be additionally con-
strained by neutrino-nucleus scattering at neutrino beam
experiments, the measurement presented here is also sen-
sitive to models where couplings to neutrinos are ab-
sent, such as a gauge boson coupled exclusively to right-
handed muons [15]. This search is based on 514 fb−1

of data collected by the BABAR detector at the PEP-II
e+e− storage ring, mostly taken at the Υ (4S) resonance,
but also at the Υ (3S) and Υ (2S) peaks, as well as in
the vicinity of these resonances [16]. The BABAR detec-
tor is described in detail elsewhere [17, 18]. Dark boson
masses between the dimuon threshold and 10 GeV are
probed [19]. To avoid experimental bias, the data are
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†Now at: Università di Bologna and INFN Sezione di Bologna,
I-47921 Rimini, Italy
‡Now at: University of Huddersfield, Huddersfield HD1 3DH, UK
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only examined after finalizing the analysis strategy. A
sample of about 5% of the dataset is used to optimize
and validate the analysis strategy, and is then discarded.

Signal events are simulated by MadGraph 5 [20] and
hadronized in Pythia 6 [21] for Z ′ mass hypotheses
ranging from the dimuon mass threshold to 10.3 GeV.
The background arises mainly from QED processes.
The e+e− → µ+µ−µ+µ− reaction is generated with
Diag36 [22], which includes the full set of lowest order
diagrams, while the e+e− → µ+µ−(γ) and e+e− →
τ+τ−(γ) processes are simulated with KK [23]. Other
sources of background include e+e− → qq (q = u, d, s, c)
continuum production, simulated with JETSET [24], and
e+e− → π+π−J/ψ events, generated using EvtGen [25]
with a phase-space model. The detector acceptance and
reconstruction efficiencies are determined using a Monte
Carlo (MC) simulation based on GEANT4 [26].

We select events containing two pairs of oppositely-
charged tracks, where both positively-charged or both
negatively-charged tracks are identified as muons by par-
ticle identification algorithms (PID). Identifying only two
muons maintains high signal efficiency while rejecting al-
most all background sources but e+e− → µ+µ−µ+µ−

events. In addition, the sum of energies of electromag-
netic clusters above 30 MeV not associated to any track
must be less than 200 MeV to remove background con-
taining neutral particles. To suppress background from
the decay chain Υ (3S, 2S) → π+π−Υ (1S), Υ (1S) →
µ+µ−, we reject events taken on the Υ (2S) or Υ (3S)
peaks containing any pair of oppositely charged tracks
with any dimuon invariant mass within 100 MeV of the
nominal Υ (1S) mass.

The distribution of the four-muon invariant mass af-
ter these cuts is shown in Fig. 1 for the data taken at
the Υ (4S) center-of-mass (CM) energy. The background
at low masses is fairly well reproduced by the simula-
tion, while the e+e− → µ+µ−µ+µ− Monte Carlo over-
estimates the full-energy peak by ∼ 30% and fails to re-
produce the radiative tail. This is expected, since Diag36
does not simulate initial state radiation (ISR). We fur-
ther select e+e− → µ+µ−µ+µ− events by requiring a
four-muon invariant mass within 500 MeV of the nominal
CM energy, allowing for the possibility of ISR emission.
The four-muon system is finally fitted, constraining its
CM energy to be within the beam energy spread and the
tracks to originate from the interaction point to within
its uncertainty. This kinematic fit is solely used to im-
prove the Z ′ mass resolution of the bulk of events near
the full-energy peak; no further requirement is imposed
on the fit quality. We do not attempt to select a single
Z ′ → µ+µ− candidate per event, but simply consider all
combinations.

The distribution of the reduced dimuon mass, mR =
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√
m2
µ+µ− − 4m2

µ, is shown in Fig. 2, together with the

predictions of various Monte Carlo simulations. The
reduced mass has a smoother behavior near threshold
and is easier to model than the dimuon mass. The
spectrum is dominated by e+e− → µ+µ−µ+µ− pro-
duction, with additional contributions from e+e− →
π+π−ρ, ρ → π+π−, e+e− → µ+µ−ρ, ρ → π+π−, and
e+e− → π+π−J/ψ, J/ψ → µ+µ− events, where one or
several pions are misidentified as muons. A peak cor-
responding to the ρ meson is visible at low mass; the
second Z ′ candidate reconstructed in these events gen-
erates the enhancement near 9.5 GeV. Other than the
J/ψ , no significant signal of other narrow resonances is
observed.
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FIG. 1: The distribution of the four-muon invariant mass,
m(4µ), for data taken at the Υ (4S) peak together with Monte
Carlo predictions of various processes normalized to data lu-
minosity. The e+e− → µ+µ−µ+µ− Monte Carlo does not
include ISR corrections.

The signal efficiency rises from ∼ 35% at low masses to
∼ 50% around mR = 6 − 7 GeV, before dropping again
at higher masses. The signal efficiencies include a cor-
rection factor of 0.82, which primarily accounts for the
impact of ISR not included in the simulation, as well
as differences between data and simulation in trigger ef-
ficiency, charged particle identification, and track and
photon reconstruction efficiencies. This correction fac-
tor is derived from the ratio of the mR distribution in
simulated e+e− → µ+µ−µ+µ− events to the observed
distribution in the mass region 1–9 GeV, excluding the
J/ψ region (light blue line in Fig. 2). An uncertainty of
5% is propagated as a systematic uncertainty, covering
the small variations between data-taking periods and the
uncertainties on the e+e− → µ+µ−µ+µ− cross-section.

We extract the signal yield as a function of mZ′ by
performing a series of unbinned maximum likelihood fits
to the reduced dimuon mass spectrum, covering the mass
range mR < 10 GeV for the data taken near the Υ (4S)
resonance, and up to 9 GeV for the datasets collected
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FIG. 2: The distribution of the reduced dimuon mass, mR,
together with Monte Carlo predictions of various processes
normalized to data luminosity. Four combinations per event
are included. The fit of the ratio between reconstructed and
simulated events is shown as a light blue dashed line. The
e+e− → µ+µ−µ+µ− Monte Carlo does not include ISR or
other efficiency corrections (see text).

near the Υ (2S) and Υ (3S) resonances. The search is
conducted in varying mass steps that correspond to the
dark boson mass resolution. Each fit is performed over
an interval 50 times broader than the signal resolution
at that mass for mR > 0.2 GeV, or over a fixed interval
0 − 0.3 GeV for mR < 0.2 GeV. We estimate the signal
resolution by Gaussian fits to several simulated Z ′ sam-
ples for the purpose of determining the scan steps, and
interpolate the results to all other masses. The resolution
varies between 1−9 MeV, dominated by experimental ef-
fects. We probe a total of 2219 mass hypotheses. The
bias in the fitted values, estimated from a large ensemble
of pseudo-experiments, is negligible.

The likelihood function, described below, contains
components from signal, continuum background, and
peaking background where appropriate. The signal prob-
ability density function (pdf) is modeled directly from
the signal Monte Carlo mass distribution using a non-
parametric kernel density function. The pdf is interpo-
lated between the known simulated masses using an algo-
rithm based on the cumulative density function [27]. An
uncertainty of 0.1 − 3.2 events associated to this proce-
dure is estimated by taking the next-to-closest mass point
in place of the closest simulated mass point to interpolate
the signal shape. The agreement between the simulated
signal resolution and the data is assessed by fitting the
full-energy peak of the four-muon invariant mass spec-
trum in the range 10.3 − 10.7 GeV with a Crystal Ball
function [28]. The ratio of simulated and reconstructed
peak widths is 1.01±0.04, consistent with unity. The im-
pact of ISR emission on the peak widths are expected to
be small in that mass range. Similarly, the decay width
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of the J/ψ resonance is well reproduced by the simulation
within its uncertainty.

The background is described by a function of the form
arctan(ax + bx2 + cx3) for fits in the low mass region,
where a, b, c are free parameters, and by a second or-
der polynomial above mR = 0.2 GeV. The two methods
give similar signal yields at the transition point. Peaking
contributions from the J/ψ resonance are modeled from
the mass distribution extracted from the corresponding
Monte Carlo, leaving the yield as a free parameter. We
exclude the resonant region from the search, vetoing a
range of ±30 MeV around the nominal J/ψ mass. The
contribution from ρ-meson decay is very wide and eas-
ily absorbed by the background fit in each narrow win-
dow. We estimate the uncertainty associated with the
background model by repeating the fit using a third or-
der polynomial in the high-mass region or a fourth-order
polynomial constrained to pass through the origin in the
low mass range. This uncertainty is as large as 35% of
the statistical uncertainty in the vicinity of the dimuon
threshold and high-mass boundary, but remains at a level
of a few percent outside these regions.

The e+e− → µ+µ−Z ′, Z ′ → µ+µ− cross-section is ex-
tracted for each dataset as a function of the Z ′ mass by
dividing the signal yield by the efficiency and luminosity.
The uncertainties on the luminosity (0.6%) [16] and the
limited Monte Carlo statistics (1–3%) are propagated as
systematic uncertainties. The cross-sections are finally
combined and displayed in Fig. 3. We consider all but
the uncertainties on the luminosity and the efficiency cor-
rections to be uncorrelated. The statistical significance of
each fit is taken as SS = sign(Nsig)

√
2 log (L/L0), where

Nsig is the fitted signal yield, and L (L0) is the maxi-
mum likelihood values for a fit including (excluding) a
signal. These significances are almost Gaussian, and the
combined significance is derived under this assumption.
A large sample of Monte Carlo experiments is generated
to estimate trial factors. The largest local significance
is 4.3σ, observed near mZ′ = 0.82 GeV, corresponding
to a global significance of 1.6σ, consistent with the null
hypothesis.

We derive 90% confidence level (CL) Bayesian up-
per limits (UL) on the cross-section σ(e+e− →
µ+µ−Z ′, Z ′ → µ+µ−), assuming a uniform prior in the
cross-section by integrating the likelihood from zero up
to 90% of its area. Correlated (uncorrelated) systematic
uncertainties are included by convolving the combined
(individual) likelihood with Gaussian distributions hav-
ing variances equal to the corresponding uncertainties.
The results are displayed in Fig. 4 as a function of the
Z ′ mass. The corresponding 90% CL upper limits on the
coupling parameter g′ in the scenario with equal mag-
nitude vector couplings to muons, taus, and the corre-
sponding neutrinos are shown in Fig. 5, together with
constraints derived from neutrino experiments [29]. Up-
per limits down to 7 × 10−4 near the dimuon threshold
are set.

In summary, we report the first search for the di-
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FIG. 3: The measured e+e− → µ+µ−Z′, Z′ → µ+µ− cross-
section together with its statistical significance, SS (see text
for definition), as a function of the Z′ mass. The uncertainty
on each point is shown as light gray error bars. The dark gray
band indicates the region excluded from the analysis.
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the analysis.

rect production of a new muonic dark force boson, pro-
viding a model-independent test of theories with new
light particles coupled to muons. For identical coupling
strength to muons, taus, and the corresponding neutri-
nos, we exclude all but a sliver of the remaining parame-
ter space preferred by the discrepancy between the calcu-
lated and measured anomalous magnetic moment of the
muon above the dimuon threshold [29], and we set the
strongest bounds for nearly all of the parameter space
below ∼ 3 GeV. Because this search relies only on the Z ′

coupling to muons, the result can also be interpreted giv-
ing powerful constraints on other new vectors and scalars
that interact exclusively with muons.
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derived from the production of a µ+µ−pair in νµ scattering
(“Trident” production) [29, 30]. The region consistent with
the discrepancy between the calculated and measured anoma-
lous magnetic moment of the muon within 2σ is shaded in red.
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