# Paving the way for the JWST: witnessing globular cluster formation at $z>3$ 

E. Vanzella ${ }^{1 \star}$, F. Calura ${ }^{1}$, M. Meneghetti ${ }^{1}$, A. Mercurio ${ }^{2}$, M. Castellano ${ }^{3}$, G. B. Caminha ${ }^{4}$, I. Balestra ${ }^{5}$, P. Rosati ${ }^{4}$, P. Tozzi ${ }^{6}$, S. De Barros ${ }^{7}$, A. Grazian ${ }^{3}$, A. D'Ercole ${ }^{1}$, L. Ciotti ${ }^{8}$, K. Caputi ${ }^{9}$, C. Grillo ${ }^{10,11}$, E. Merlin ${ }^{3}$, L. Pentericci ${ }^{3}$, A. Fontana ${ }^{3}$, S. Cristiani ${ }^{12}$, and D. Coe ${ }^{13}$<br>${ }^{1}$ INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy<br>${ }^{2}$ INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli, Italy<br>${ }^{3}$ INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monte Porzio Catone (RM), Italy<br>${ }^{4}$ Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, I-44122 Ferrara, Italy<br>${ }^{5}$ University Observatory Munich, Scheinerstrasse 1, 81679 Munich, Germany<br>${ }^{6}$ INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, I-50125, Firenze, Italy<br>${ }^{7}$ Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290, Versoix, Switzerland<br>${ }^{8}$ Department of Physics and Astronomy, University of Bologna, via Ranzani 1, I-40127, Bologna, Italy<br>${ }^{9}$ Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands<br>${ }^{10}$ Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy<br>${ }^{11}$ Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark<br>${ }^{12}$ INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143, Trieste, Italy<br>${ }^{13}$ Space Telescope Science Institute, Baltimore, MD, USA


#### Abstract

We report on five compact, extremely young ( $<10 \mathrm{Myr}$ ) and blue ( $\beta_{U V}<-2.5$, $F_{\lambda}=\lambda^{\beta}$ ) objects observed with VLT/MUSE at redshift 3.1169, 3.235, in addition to three objects at $z=6.145$. These sources are magnified by the Hubble Frontier Field galaxy clusters MACS J0416 and AS1063. Their de-lensed half light radii $\left(R_{e}\right)$ are between 16 to 140 pc , the stellar masses are $\simeq 1-20 \times 10^{6} \mathrm{M}_{\odot}$, the magnitudes are $m_{U V}=28.8-31.4\left(-17<M_{U V}<-15\right)$ and specific star formation rates can be as large as $\sim 800 \mathrm{Gyr}^{-1}$. Multiple images of these systems are widely separated in the sky (up to $50^{\prime \prime}$ ) and individually magnified by factors $3-40$. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-globular clusters (protoGC) discovered so far. Rest-frame optical high dispersion spectroscopy of one of them at $z=3.1169$ yields a velocity dispersion $\sigma_{v} \simeq 20 \mathrm{~km} \mathrm{~s}^{-1}$, implying a dynamical mass dominated by the stellar mass. Another object at $z=6.145$, with de-lensed $M_{U V} \simeq-15.3\left(m_{U V} \simeq 31.4\right)$, shows a stellar mass and a star-formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at $z=6.145$, with de-lensed $m_{U V} \simeq 32$, a stellar mass of $0.5 \times 10^{6} \mathrm{M}_{\odot}$ and a star formation rate of $0.06 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at $z>3$, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the universe and augment Ly $\alpha$ visibility during reionization. This work underlines the crucial role of JWST in characterizing the restframe optical and near-infrared properties of such low-luminosity high-z objects.


Key words: galaxies: formation - galaxies: starburst - gravitational lensing: strong

[^0]Globular clusters host the most ancient stars in the Uni-
and despite the existence of a large variety of models for their formation, the initial conditions and the physical processes driving their growth and characterising their earliest evolutionary phases are yet to be understood. Nowadays, it has become clear that GC can no longer be regarded as a simple stellar population (SSP), i.e. an assembly of coeval stars sharing identical chemical composition. Over the last decade, substantial evidence has been gathered in favour of the presence of multiple stellar populations within globular clusters (Gratton et al. 2004; Piotto et al. 2007; D'Antona \& Caloi 2008).

On the theoretical side, much effort has been devoted to the development of new models for the formation and evolution of globular clusters. In order to take into account the existence of multiple stellar populations, most popular models for GC formation consider a scenario in which a second generation (SG) of stars forms from the gas ejected by either first generation (FG) asymptotic giant branch (AGB) stars (Cottrell \& Da Costa 1981; D'Antona \& Caloi 2004; D'Ercole et al. 2008), or FG fast rotating massive stars (Prantzos \& Charbonnel 2006; Decressin et al. 2007), as well as massive interacting binaries (de Mink et al. 2009), or even supermassive $\left(M>10^{4} M_{\odot}\right)$ stars (Denissenkov \& Hartwick 2014).

The predominance of SG stars observed today in most GCs implies a problem which is common to all the scenarios invoking a standard stellar initial mass function (IMF) for FG stars, i.e. the so-called 'mass-budget' problem. In fact, for a Salpeter (1955) or a Kroupa (2001) IMF, the gas shed by the massive stars during the H-burning phase, or the gas contained in the envelopes of massive AGBs (D'Antona \& Caloi 2004; D'Ercole et al. 2008; Renzini et al. 2015), is in general too scarce to form a large $S G$ population. One can solve this problem by postulating that the GC precursors are more massive (by factors between 5 and 20) than the objects we observe today (e.g., D'Ercole et al. 2008; Renzini et al. 2015), or alternatively, by invokig a highly nonstandard IMF for the FG, particularly rich in massive stars (D'Antona \& Caloi 2004; Downing \& Sills 2007). The latter scenario, however, faces some serious difficulties when considering the maximum amount of helium which can be produced by a FG of super massive stars (Renzini et al. 2015). A scenario in which proto-GCs are more massive than today GCs opens the interesting possibility to detect and spatially resolve their stellar emission.

The main scenarios proposed so far to explain multipopulation GCs postulate the formation of FG stars at $z>2$ (e.g., Kruijssen 2015; D'Ercole et al. 2016). The formation of GCs has also been studied in the context of cosmological models, which predict their birth within high-density regions of galactic discs at $z>2$ (e.g., Kravtsov \& Gnedin 2005), or envisage that FG stars are formed in an intense burst in the center of a minihalo during major merger events (Trenti et al. 2015), or consider their formation at the center of primordial dwarf galaxies (Ricotti et al. 2016).

The direct observation of the formation of FG stars within high-redshift proto-GCs would provide invaluable clues on how to disentangle such a range of GC formation scenarios.

On the observational side, over the last years many studies have been carried out to derive the faint-end slope of the ultraviolet galaxy luminosity function, its faint-end
cut-off $M_{l i m}$, and the Lyman-continuum photon production efficiency (e.g., Bouwens et al. 2016a). A major uncertainty in the interpretation of these observations is represented by the observed fraction of ionizing radiation that escapes from galaxies and reach the intergalactic and circum-galactic media (see e.g., Grazian et al. 2016; Siana et al. 2015; Vanzella et al. 2012b). Irrespective of the nature of the contributors, the general consensus is that the faintest objects represent the main producers of the ionizing background at high redshift (Wise et al. 2014; Bouwens et al. 2015; Ferrara \& Loeb 2013; Kimm \& Cen 2014). Noteworthy, proto-GCs may also represent good candidates for the sources of radiation which reionized the universe by $z \sim 6$ (e.g., Ricotti 2002; Schaerer \& Charbonnel 2011; Ricotti et al. 2016).

The detection of extremely faint galaxies at high redshift has been reported in the literature, with magnitudes as faint as $M_{U V} \simeq-14$ both at redshift $2-3$ (e.g., Alavi et al. 2014,2016 ) and $6-8$ (e.g., Atek et al. 2015; Livermore et al. 2016; Bouwens et al. 2015; Vanzella et al. 2014; Bouwens et al. 2016c). These systems are characterised by very low stellar masses, of the order of a few $10^{6}$ solar masses (e.g., Karman et al. 2016). A still open question concerns the nature of the objects belonging to this luminosity domain: are we dealing with dwarf galaxies (e.g., Finlator et al. 2017), HII galaxies (e.g., Terlevich et al. 2016), super star-clusters, or extremely compact star clusters or clumps? (i.e., with sizes of the order of a few tens of parsec, Bouwens et al. 2016b; Kawamata et al. 2015; Livermore et al. 2015; Vanzella et al. 2016a; Ellis et al. 2001). In order to answer this question, we need to derive a few basic physical quantities such as the stellar mass, the star-formation rate, as well as the size of these systems.

Currently, deep and gravitationally lensed fields observed with the Hubble Space Telescope offer an opportunity to measure such physical properties, even for extremely faint sources. Much progress has recently being driven by deep observations of massive galaxy clusters, carried out in the context of large HST programs, particulalry the Hubble Frontier Fields (HFF) survey (Lotz et al. 2014, 2016; Koekemoer et al. 2014). Exploting gravitational lensing, cluster cores are used as cosmic telescopes to look deeply into the distant universe. High-precision lens models can be built using a large number of multiply lensed sources spanning a large redshift range, which however need to be spectrosopically identified with ground-based or HST grism observations (Treu et al. 2015). In particular, in combination with the very efficient integral field spectrograph MUSE on the VLT (Bacon et al. 2010) ${ }^{1}$, the identification and characterization of Lyman- $\alpha$ emitting galaxies near the flux limit of the Hubble imaging data, in lensed and blank fields, has become possible (e.g., Karman et al. 2016; Caminha et al. 2016c; Vanzella et al. 2016a).

In this work we study five systems detected behind two Hubble Frontier fields at redshift $3.1169,3.235$ and three at 6.145 extracted from deep MUSE observations of Karman et al. (2016), Vanzella et al. (2016a) and Caminha et al. (2016c). Specifically, we provide novel estimates for the size, dynamical mass and SED-fitting using the full-depth HFF photometry and near-infrared spectroscopy for the ob-

[^1]

Figure 1. The giant Lyman-alpha arc in MACS J0416 ( $45^{\prime \prime}$ wide) formed by the multiple images 2a, 2b and 2c and the second object (D2) at $z=6.145$ are shown in the HST near infrared bands (stellar continuum) and MUSE data-cube (Ly $)$ ). The insets show the one-dimensional Ly $\alpha$ profiles.
ject at $z=3.1169$ behind the galaxy cluster AS1063 (named ID11, also discussed in Vanzella et al. (2016a); Karman et al. (2016)). The redshift of the remaining four objects have been presented in Caminha et al. (2016c) and used to constrain the lens model of MACS J0416. Here we focus on their physical properties. We also explore the possibility that some of these sources may represent proto-GC caught during the formation of their stellar FG. The lens models of the two galaxy clusters discussed in this work have been constrained using dozens of multiple systems spectroscopically confirmed at $3<z<6.5$ with MUSE (Caminha et al. 2016a, c).

The paper is structured as follows: in Sect. 2 the strongly magnified systems are presented together with the lens models and the inferred sizes. Sect. 3 describes the photometry and the SED-fitting used to derive the physical quantities. We discuss the results in Sect. 4 and conclude in Sect. 5.

In this work, we assume a flat cosmology with $\Omega_{M}=$ $0.3, \Omega_{\Lambda}=0.7$ and $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, corresponding to 7650,7560 and 5560 physical parsec for $1^{\prime \prime}$ separation at redshift $3.1169,3.235$ and 6.145 , respectively.

## 2 EXTREMELY SMALL SOURCES IN THE HUBBLE FRONTIER FIELDS

The spatial investigation of extremely compact stellar systems $(<100 \mathrm{pc})$ at $z>3$ is precluded in field surveys (as also demonstrated by dedicated simulations presented in Appendix A, see also Bouwens et al. 2016b). As an example, an object with a proper half light radius of 50 pc at $z=3(6)$ corresponds to $7(9)$ mas in the sky, or 0.30 ( 0.23 ) pixels, assuming 1 pixel $=0.03^{\prime \prime}$ (typically the spatial scale of drizzled HST images). Strong gravitational lensing allows us to probe physical sizes as small as $20-60$ parsec at $z>3$. This is presented in the next sections.

### 2.1 The strongly lensed systems

Over one hundred multiple images have been identified behind the Hubble Frontier Fields galaxy clusters AS1063 and MACS J0416. For the majority of them, the confirmation of their lensing origin has been possible through MUSE observations (Karman et al. 2016; Caminha et al. 2016a, c). In particular MUSE integral field spectroscopy has revealed secure Ly $\alpha$ emission from widely separated multiple images. We focus on three systems of multiple images confirmed at
redshift 3.1169, 3.235 and 6.145. The angular separation of the multiple images in these systems extends to $50^{\prime \prime}, 20^{\prime \prime}$ and $45^{\prime \prime}$, respectively. These systems are selected on the basis of their strong magnification and high signal-to-noise detection in the HST images ( $\mathrm{S} / \mathrm{N}>10-30$ ). This enables a solid characterization of their sizes and a measurement of their physical properties from SED fitting.

Several images appear distorted tangentially by the cluster mass distribution (as shown in Figures 1 and 2), indicating that they are close to the cluster tangential critical lines (see e.g. Kneib \& Natarajan 2011). In this case, the magnification is dominated by the tangential component $\left(\mu_{T}\right)$, defined as
$\mu_{T}=(1-\kappa-|\gamma|)^{-1}$,
where $\kappa$ is the dimensionless surface-density (or convergence) and $\gamma$ is the shear. Thanks to this magnification factor, the sources investigated here are spatially resolved along the tangential direction. On the contrary, the radial component of the magnification,
$\mu_{R}=(1-\kappa+|\gamma|)^{-1}$,
is sub-dominant at the position of the images. The light profile along the radial direction is consistent with the PSF, indicating that the sources are radially un-resolved (or marginally resolved at most). The total magnification is $\mu_{t o t}=\mu_{R} \times \mu_{T}$. The estimated magnifications for the cases studied in this work are reported in Table 1 and discussed in detail below.

To estimate the half light radius of the sources $\left(R_{e}\right)$, we measure the light profiles along the tangential direction. Accounting for the tangential magnification, we derive a de-lensed value of $R_{e}$. In this process, we assume that the sources are intrinsically circular, and that the observed tangential elongation is only due to magnification.

The circularized effective radius is also calculated (when possible) as $R_{c}=R_{e} q^{0.5}$ where $q=a / b$ is the axis ratio between the minor and major axes of the source. Such parameter gives an upper limit when the radial component is not resolved.

In the rest of the work, the effective radii, expressed in parsec, and the physical quantities are always intrinsic (i.e., de-lensed), whereas radii reported in pixels are by definition observed quantities ( 1 pixel corresponds to $0.03^{\prime \prime}$ ).

### 2.2 System ID11 in AS1063 at $z=3.1169$

We revisit here the physical size of the object at $z=3.1169$ studied by Vanzella et al. (2016a) and perform SED-fitting using the full depth HFF photometry. Among the sources presented in this work, this is the system with the highest signal-to-noise ratio in the HFF photometry (ranging between 20 and $>50$ for the three multiple images). While the separation between images $A$ and $C$ is very large $\left(\simeq 50^{\prime \prime}\right)$, images A and B are closer, $\lesssim 10^{\prime \prime}$, and presumably positioned on opposite sides of the cluster tangential critical line (see the white curve in Figure 2). Based on the recent analysis by Meneghetti et al. (2016), it is expected that the uncertainty on the magnification estimated from lens models is a steep function of the magnification itself, being $\gtrsim 50 \%$ for $\mu>10$. Although this condition applies to images A and B, we can obtain a more robust estimate of the magnification
of these two images based on the following considerations. In such a "fold" image configuration, it is expected that the two images have similar magnifications and inverse parity. Indeed, images A and B have very similar shapes and fluxes $\left(f_{B} / f_{A} \simeq 1.1\right)$. Among the three images, the faintest one, C , has the least uncertain magnification factor and flux ratio $f_{B} / f_{C}=4.0 \pm 0.05$. These ratios have been inferred by including all the HST/ACS bands and measuring the average flux ratios among them. In this work, we revise the model of Caminha et al. (2016a) in order to optimally reproduce the observed positions and flux ratios of the three images of ID11. With this model, we infer a a magnification $\mu_{C}=5.0 \pm 0.2$. The magnification of the counter-images A and B is derived from the observed flux ratios between C and images A, B as in Vanzella et al. (2016a). The resulting total magnifications for images A and B are $\mu_{\text {tot }}^{A}=18.2$ and $\mu_{\text {tot }}^{B}=20.0$ respectively, with errors smaller than $10 \%$.

As already stated, the images A and B are dominated by the tangential magnification $\left(\mu_{T}\right)$. Indeed, the radial magnification estimated by the model is quite similar for all three images ( $\mu_{R} \simeq 1.3$ ), while the tangential magnifications are $\mu_{T} \simeq 16$ and 15 for images B and A, respectively. As shown in Fig. 2, the light profile along the radial direction is consistent with the PSF, and it is thus unresolved. On the contrary, we can spatially resolve the core and the light profile of the source in the tangential direction.

In order to measure the intrinsic (i.e. un-lensed) size of ID11, we use the Galfit software (Peng et al. 2002, 2010) to fit the sources in both images in the F814W band (probing $2000 \AA$ rest-frame) and F 160 W band (probing $4000 \AA$ restframe). Then, we use the model magnification to obtain the de-lensed sizes. The relevant parameters are reported in Table 2. The tangentially lensed effective radii measured in the F814W ( $2000 \AA$ ) and F160W ( $4000 \AA$ ) bands turn out to be very similar, $R_{e}(2000 \AA)=3.0 \pm 0.5$ and $R_{e}(4000 \AA)=4.0 \pm 1.0$ pixels, respectively. This corresponds to $R_{e}=43 \pm 7 \mathrm{pc}$ and $57 \pm 14 \mathrm{pc}$, respectively ( $1^{\prime \prime}=7650 \mathrm{pc}$ at $z=3.1169$ ) after de-lensing. The de-lensed circularized effective radius is $R_{c}=R_{e} \times q^{0.5} \simeq 50 \mathrm{pc}$.

Fig. 2 shows that the light profile is far from a simple Gaussian shape, rather it turns out to follow a Sérsic profile with index $n \simeq 4$ (Figure 3). In addition, the light profiles are quite symmetric, despite the gradient of the magnification along the tangential direction is large (being close to the critical line). This further supports the intrinsic compactness of the source. In fact, a lensed, more extended object in the source plane would deviate from the symmetric profile generating a boosted tail in the direction of the critical line, towards which the tangential magnification increases rapidly. In our case, the observed stellar continuum follows a symmetric profile instead, showing that differential magnification across the image is negligible. On the contrary, this effect is detected in the two-dimensional Ly $\alpha$ emissions of images A and B. Figure 2 shows the Ly $\alpha$ emissions averaged over 5 slices in the MUSE data-cube (see also Karman et al. 2015). In this case the asymmetric shape is observed as two "asymmetric-lobes" pointing towards the critical line in the middle (see the inset of Figure 2). This suggests the Ly $\alpha$ emission arises from a region that is larger than the stellar continuum measured in the F814W band, which almost touches the lens caustic on the source plane.

In Appendix A, we describe a set of end-to-end simu-


Figure 2. Multiple images and observed light profiles along tangential and radial directions for two sources at redshift 3.1169 and 3.235 , in AS1063 and MACJ0416, respectively. On the left side the multiple images of each system are shown in the F814W band, including the two-dimensional Ly $\alpha$ emission from VLT/MUSE (insets). The thin white lines represent the critical curves at the redshift of the objects. The zoomed multiple images are also shown in the F 814 W and F 160 W bands. On the right side, the spatial profiles and images are shown for the most magnified images (image 1c, bottom-right, and image B, top-right). The object is well resolved along the tangential direction $(T)$, whereas it is not (or barely) resolved along the radial direction (R).


Figure 3. Galfit fitting of the four compact and most magnified objects in this study: ID11-A and B at $z=3.1169$ (panel 1 ), the system 1c,b at $z=3.235$ (panel 2), and D2 (panel 3) and GC1 (panel 4) at $z=6.145$. The observed images, Galfit models and residuals (observed-models) are shown from left to right for each system. The morphological parameters are reported in Table 2.
lations which validate our method to derive intrinsic radii based mainly on the tangential magnification. Simulations show that the structural properties of the sources are recovered using our procedure and provide further evidence supporting our conclusions on the size and on the brightness profile of ID11.

### 2.3 System 1 in MACS J0416 at $z=3.235$

This strongly lensed object is identified as System (1) (Sys_1) in Caminha et al. (2016c). The bottom-left panel of Figure 2 shows the Ly $\alpha$ emission as a continuous arc-like shape at $z=3.235$, captured in the MUSE data-cube, and the three multiple images $1 \mathrm{a}, 1 \mathrm{~b}$ and 1 c generating such a line emission (extending up to $\simeq 17^{\prime \prime}$ ). Also in this case, all the multiple images are well detected in the HST images with $S / N \simeq 10-50$ and the geometry of the system is very similar to ID11. We focus on the tangential direction which allows us to resolve and extract firm constraints on the physical size of the core of the object. In particular, following the same methodology discussed above, we start from the least magnified image 1a and rescale it to the observed flux ratio $f_{1 c} / f_{1 a}=3.7 \pm 0.1\left(\simeq \mu_{1 c} / \mu_{1 a}\right)$. This ratio was inferred by including all the HST/ACS bands and measuring the average flux ratio among them. While the direct estimates of $\mu_{1 b}$ and $\mu_{1 c}$ are affected by large errors, image 1a is the less magnified and the more stable among the others. From the lens model of Caminha et al. (2016c) we derive $\mu_{1 a}=30 \pm 15$, and from 7 different models available from the HFF lens tool calculator ${ }^{2}$ its median value is $\left\langle\mu_{1 a}\right\rangle \simeq 15$ (all models providing a magnification higher than 10). Therefore, the total $\mu_{1 c}$, after rescaling by the flux ratio ( $\simeq 3.7$ ), ranges between 37 and 110 for values of $\mu_{1 a}$ between 10 and 30 . However, even adopting the lowest $\mu_{1 a}=10$, the resulting total magnification for image 1 c is $\mu_{1 c}>37$. Also in this case, the quite elongated shape visible in the 1c image and the overall Ly $\alpha$ arc suggest that the magnification is mainly tangential. As discussed in the case of ID11, this is evident from the measured $q=b / a=0.10 \pm 0.015$ of the image 1c. The predicted tangential magnification for image 1 c is therefore large and spans the range $\mu_{T}=19-33$, depending on the total magnification assumed ( $37-110$ ) and assuming that the source is circular. Figure 2 and Table 1 show the result of the Galfit fitting, which provides a de-lensed tangential effective radius of $R_{e}=6.6 \pm 2.1$ pixels. This corresponds to a physical size of 45 (80) pc adopting the tangential magnification $\mu_{T}=33(19)$. The object is detected also in the F160W-band and shows an elongated shape, however the inferred $R_{e}$ is strongly affected by the low $\mathrm{S} / \mathrm{N}$ ratio and a tentative estimate ranges between $70-150 \mathrm{pc}$ (see inset of Figure 2, rest-frame $4000 \AA$ ).

### 2.4 System 2 in MACS J0416 at $z=6.145$

### 2.4.1 The giant arc

Figure 1 shows the Ly $\alpha$ emission arising from a giant arc extending for $\sim 45^{\prime \prime}$ on sky and composed by three multiple images 2a, 2b and 2c (system 2 of Caminha et al. 2016c).

[^2]The large extension of the arc and the geometry of the multiple images suggest that the source is near the cusp of the lens tangential caustic and that the tangential magnification is again predominant. As expected in a cusp system, image 2 b is the most magnified among the three images. Its median magnification among the eleven lens models included in the HFF lens tool calculator is $\mu_{t o t} \simeq 30$. The estimates from all models span the interval $10 \leq \mu_{\text {tot }} \leq 80$. However, these models have been generated without including this system (and many others now available from Caminha et al. 2016c) as constraints. As shown in Fig. 24 of Meneghetti et al. 2016, uncertainties on image magnifications are strongly reduced if nearby multiple images are used as constraints for the lens model. Therefore, we use the HFF models only as an estimate of the systematic uncertainties and we adopt the specific modeling presented in Caminha et al. (2016c), in which system 2 has been included and the positions of its multiple images are reproduced. Table 1 reports the total magnifications, together with the tangential and radial components for image 2 b . While $\mu_{R}$ is modest and quite stable among the images ( $\simeq 1.2-1.4$ ) and does not allow us to spatially resolve the emitting sources in the radial direction, the diffuse stellar emission of $2 b$ appears very elongated tangentially, as the Ly $\alpha$ emission detected in the MUSE data-cube (Figure 1).

In the following, we focus on the most magnified of the images, 2b. We identified two distinct (sub)systems in this image, named D1 and GC1, separated by $1.7^{\prime \prime}$. This angular separation corresponds to a physical de-lensed separation of 0.6 kpc . GC1 is the most compact among the two, though slightly spatially resolved along tangential direction (see Figure 1). The two objects are also present in the Astrodeep photometric catalog with IDs 2179 and 2169, respectively (Castellano et al. 2016b). Their physical properties are reported in Table 1 and discussed in Sect. 3. The identification of these two sources in the other multiple images of the arc, 2 a and 2 c , is difficult, since they are very faint (expected to be $\gtrsim 1.0$ magnitudes fainter than 2 b ) and possibly contaminated by lower redshift cluster members. For example the expected magnitudes of images 2 a and 2 c of GC1 are $\gtrsim 29.2$, while D1 is brighter and possibly identified, though contaminated by a galaxy cluster member (see Figure 1).

Given the complex identification of the sub-systems GC1 and D1 in the HST images, we use the Ly $\alpha$ fluxes detected in the MUSE data-cube as a proxy for the relative ratios among magnifications. We assume that the observed multiple Ly $\alpha$ lines arising from 2a, 2b, and 2c (see Figure 1) probe the same lensed structure (e.g., the sum of GC1 and D1). The Ly $\alpha$ flux has been measured on three apertures defined on top of the Ly $\alpha$ emissions ( $2 \mathrm{a}, 2 \mathrm{~b}$ and 2c) following the curvature of the arc and calculated collapsing six spectral elements of $1.25 \AA$ each, as the best $\mathrm{S} / \mathrm{N}$ estimate (and corresponding to $\Delta v \simeq 300 \mathrm{~km} \mathrm{~s}^{-1}$ at $z=6.145$ ). The resulting ratios are $\operatorname{Ly} \alpha(2 \mathrm{~b}) / \operatorname{Ly} \alpha(2 \mathrm{a}) \simeq \operatorname{Ly} \alpha(2 \mathrm{~b}) / \operatorname{Ly} \alpha(2 \mathrm{c}) \simeq 2.5 \pm 0.7$, and provide an estimate of the relative magnifications between 2 b and 2a,c. The lens model of Caminha et al. (2016c) reproduces the positions and magnitudes of the three multiple images. In particular the total and tangential magnifications for objects GC1 and D1 calculated for image 2b (i.e. in the most magnified image) are reported in Table 1. Interestingly, the de-lensed magnitude of GC1 is 31.40 in the F105W band ( $27.88 \pm 0.08$ observed, Castellano et al.

Table 1. Intrinsic physical properties and magnifications predicted for the most magnified image of each system (see text for details). Column 1 shows the typical physical quantities expected from the AGB scenario of GC formation (D'Ercole et al. 2008). Columns $3-7$ report the inferred properties for the five objects considered in this work: GC1, D1, D2 and Sys_1 identified by Caminha et al. (2016c), and ID11 discussed in Vanzella et al. (2016a). In square brackets the $68 \%$ c.l. is reported (additional constraints from the Ly $\alpha$ line can decrease significantly these uncertainties, see Sect. 3). De-lensed apparent and absolute magnitudes are reported. $f(+) / f(-)$ is the flux ratio between the most and the least magnified images within the same system. (*) Astrodeep IDs (Castellano et al. 2016b; Merlin et al. 2016). $\left(^{* *}\right)$ These are half mass radii; they must be reduced by a factor 1.33 to obtain the two-dimensional half light radii (Wolf et al. 2010). The age is the elapsed time since the onset of SF.

|  | Models <br> Proto-GCs | $\begin{gathered} \mathrm{GC} 1(\mathrm{z}=6.145) \\ (*) 2169 \\ 04: 16: 11.56 \\ -24: 03: 44.7 \end{gathered}$ | $\begin{gathered} \mathrm{D} 1(\mathrm{z}=6.145) \\ 2179 \\ 04: 16: 11.48 \\ -24: 03: 43.4 \end{gathered}$ | $\begin{gathered} \text { D2 }(\mathrm{z}=6.145) \\ 2411 \\ 04: 16: 10.31 \\ -24: 03: 25.8 \end{gathered}$ | $\begin{gathered} \text { Sys_1c(z=3.235) } \\ 2268 \\ 04: 16: 11.15 \\ -24: 03: 37.4 \end{gathered}$ | $\begin{gathered} \text { ID11_B }(\mathrm{z}=3.1169) \\ - \\ 22: 48: 41.56 \\ -44: 32: 23.9 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stellar mass $\left[10^{6} M_{\odot}\right]$ <br> SFR $\left[M_{\odot} y r^{-1}\right]$ <br> Age [Myr] <br> E(B-V) <br> $R_{e}$ (UV) [pc] <br> $R_{c}$ (UV) [pc] <br> $\Sigma_{S M D}\left[M_{\odot} p c^{-2}\right]$ <br> $\Sigma_{S F R}\left[M_{\odot} y r^{-1} p c^{-2}\right]$ | $\begin{aligned} & 1,10 \\ & 0.2,2.0 \\ & 5 \\ & \simeq 0 \\ & 16,35(* *) \\ & \prime \prime \\ & 800-1720 \\ & (1.6-3.4) 10^{-4} \end{aligned}$ | $\begin{gathered} 68_{[21,3273]} \mu_{\text {tot }}^{-1} \\ 54_{[1,165]} \mu_{\text {tot }}^{-1} \\ 1.3_{[1,708]} \\ \lesssim 0.15 \\ 16 \pm 7 \\ <30 \\ 1400_{-900}^{+2400} \\ 2.7 \times 10^{-3} \end{gathered}$ | $\begin{gathered} 380_{[368,585]} \mu_{\text {tot }}^{-1} \\ 275_{[131,585]}^{-1} \mu_{\text {tot }}^{-1} \\ 1.4_{[1,3]} \\ 0.10 \\ 140 \pm 13 \\ 150 \pm 20 \\ 295_{-80}^{+100} \\ 2.3 \times 10^{-4} \end{gathered}$ | $\begin{gathered} 16_{[12,1027]} \mu_{\text {tot }}^{-1} \\ 5_{[0.5,48]}^{-1} \mu_{\text {tot }} \\ 3.2_{[1,710]} \\ 0.0 \\ <100 \\ <100 \\ >85 \\ >5.3 \times 10^{-5} \end{gathered}$ |  | $\begin{gathered} \hline 400_{[280,560]} \mu_{\text {tot }}^{-1} \\ 14_{[7,20]} \mu_{\text {tot }}^{-1} \\ 13_{[2,60]} \\ 0.0 \\ 43 \pm 7 \\ \lesssim 50 \\ 1300_{-500}^{+750} \\ 1.2 \times 10^{-4} \end{gathered}$ |
| $\begin{aligned} & \mathrm{m}(1500 \AA) \\ & \mathrm{M}(1500 \AA) \\ & \beta_{U V} \end{aligned}$ | $\begin{aligned} & \simeq 29-32 \\ & >-17 \\ & \lesssim-2.5 \end{aligned}$ | $\begin{gathered} 31.4 \pm 0.2 \\ -15.3 \\ -2.52 \pm 0.36 \end{gathered}$ | $\begin{gathered} 29.7 \pm 0.2 \\ -17.0 \\ -2.40 \pm 0.16 \end{gathered}$ | $\begin{gathered} 29.6 \pm 0.3 \\ -17.1 \\ -2.85 \pm 0.43 \end{gathered}$ | $\begin{gathered} 30.9-32.1 \\ -15.3,-14.1 \\ -2.64 \pm 0.15 \end{gathered}$ | $\begin{gathered} 28.8 \pm 0.1 \\ -17.1 \\ -2.75 \pm 0.20 \end{gathered}$ |
| $\mu_{t o t}$ <br> $\mu_{\text {tang }}$ $f(+) / f(-)$ | - - - | $\begin{gathered} 25.0 \pm 2.5 \\ 17.5 \pm 2.0 \\ \simeq 2.5 \end{gathered}$ | $\begin{gathered} 19.0 \pm 2.0 \\ 13.4 \pm 1.5 \\ \simeq 2.5 \end{gathered}$ | $\begin{aligned} & 3.0 \pm 0.2 \\ & 1.7 \pm 0.1 \end{aligned}$ | $\begin{gathered} 37-110 \\ 19-33 \\ 3.7 \pm 0.1 \end{gathered}$ | $\begin{gathered} 20.0 \pm 2.1 \\ 16.2 \pm 1.6 \\ 4.00 \pm 0.05 \end{gathered}$ |

2016b), the faintest spectroscopically confirmed object currently known at this redshift, and fainter than any source detected in the current deepest fields (e.g., the Hubble Ultra Deep field, Beckwith et al. 2006).

### 2.4.2 A faint and dense stellar system at $z=6$ : GC1

The large tangential magnification allow us to resolve the one-dimensional half-light radius. To this aim, we measure the FWHM of the light profiles in the F105W band (probing the rest-frame $1500 \AA$ ) along the tangential direction, both on the image directly and by using Galfit modeling. Here we focus on GC1, which is the smallest of our objects. It is the faintest object currently confirmed at this redshift with a de-lensed magnitude of 31.4 (at $1500 \AA$ rest-frame) and with a reasonably high $\mathrm{S} / \mathrm{N}$ ratio in the photometry, also showing a rest-frame $\mathrm{Ly} \alpha$ equivalent width of the order of $100 \AA$ (correcting for the UV slope, see Table 1).

The observed spatial tangential profile of GC1 is shown in Figure 4, in which the $50 \%$ of the light is enclosed within $\simeq 5.5-6$ pixels as obtained with Galfit taking into account the PSF. We explored a large grid of the most relevant parameters, the Sérsic index, effective radius, total magnitude, the location of the source, the position angle and the axis ratio $(q=a / b)$. To accomplish this task we have followed two different routes: (1) by allowing Galfit to minimize its internal merit function and (2) following the method described Vanzella et al. (2015), by running Galfit on a large grid of (fixed) values and monitoring the residuals of the "observed-model" image, step by step. While the light profile is not reliably constrained (e.g., we obtain a good fit with both Gaussian and Sérsic $n=4$ profiles, see Figure 3), the
size in all cases is relatively well constrained with $R_{e}$ not greater than 3 pixels (at most). Specifically, the best estimates obtained in the case of a Gaussian $(n=0.5)$ profile is $R_{e}=1.4$ pixels. An estimate of the uncertainties has been obtained by inserting simulated images with sizes and magnitudes similar to those of GC1 (Figure 4), including also the local noise and background gradients due to the galaxy cluster, and analyzed with Galfit following the same procedure used for GC1. All the parameters are well recovered on average, with a scatter that provides the typical statistical error (the results are reported in Figure 4). We conclude that the error associated to the observed effective radius of GC1 is of the order of half a pixel in this specific case. Systematic uncertainties, however, could dominate the error budget, in particular the unknown light profile and total magnitude. For example, we allowed the source to be 0.4 magnitudes brighter (27.50) than the measured F105W flux $(27.88 \pm 0.09)$ and explored Sérsic profiles up to $n=10$. The effective radii are $0.9,1.4$ and 2.1 pixels in the case of magnitude 27.50 and $n=8,4$ and 0.5 (Gaussian), respectively, while it is smaller than 1.2 pixels in all the cases with magnitude 27.80 (the observed value). Examples of Galfit models are shown in Figure 3. We conclude that a plausible estimate of the radius is $R_{e}=1.7 \pm 0.7$ pixels (Figure 4).

At $z=6.145$, with the tangential magnification computed above, $\mu_{T}=17.5$, the inferred radius is $R_{e}=16 \pm 7$ pc. The circularized radius is therefore $R_{c} \simeq 20 \mathrm{pc}$, adopting $q=0.15$.

Even considering conservative estimates for the radius and magnification (i.e., $R_{e}=2.4$ pixels and $\mu_{T}>10$ ) the size still remains remarkably small, $R_{e}<40 \mathrm{pc}$.

Table 2. Observed morphological parameters derived with Galfit for the most magnified images. Morphological parameters have been derived in the F814W and F105W bands for redshift 3 and 6 , respectively, probing $2000 \AA$ and $1500 \AA$. (*) Gaussian fit, object marginally resolved.

| Morph. parameters | GC1 (z=6.145) | $\mathrm{D} 1(\mathrm{z}=6.145)$ | $\mathrm{D} 2(\mathrm{z}=6.145)$ | Sys_1c $(\mathrm{z}=3.235)$ | ID11_B(z=3.1169) |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | 2169 | 2179 | 2411 | 2268 | - |
|  | $04: 16: 11.56$ | $04: 16: 11.48$ | $04: 16: 10.31$ | $04: 16: 11.15$ | $22: 48: 41.56$ |
|  | $-24: 03: 44.7$ | $-24: 03: 43.4$ | $-24: 03: 25.8$ | $-24: 03: 37.4$ | $-44: 32: 23.9$ |
| $R_{e}[\mathrm{pix}]$ | $1.7 \pm 0.7$ | $8.3 \pm 0.5$ | $\lesssim 1.5(*)$ | $6.6 \pm 2.1$ | $3.0 \pm 0.5$ |
| $q=b / a$ | $<0.15$ | $0.20 \pm 0.02$ | $0.3 \pm 0.2$ | $<0.15$ | $0.10 \pm 0.02$ |
| $R_{c}[\mathrm{pix}]$ | $<0.70$ | $3.71 \pm 0.23$ | $\lesssim 1.0$ | $<2.5$ | $0.95 \pm 0.17$ |
| PA [deg] | $-39.0 \pm 3.0$ | $-28.5 \pm 0.6$ | $81 \pm 10$ | $-47.0 \pm 2.0$ | $-49.59 \pm 0.5$ |
| $n$ (Sérsic) | $0.5-8$ | $3.0 \pm 0.3$ | 0.5 | $8.0 \pm 2.0$ | $4.0-5.0$ |
| mag | $>27.3$ | $26.1 \pm 0.2$ | $27.8 \pm 0.8$ | $26.9 \pm 0.1$ | $25.3 \pm 0.1$ |

### 2.4.3 The system D1 and additional extremely faint SF knots

The same Galfit fitting has been performed for D1, the most extended object among those studied in this work and close to GC1, both at $z=6.145$. A clear nucleated starforming region surrounded by a diffuse emission extending approximately $\simeq 200 \mathrm{pc}$ along the tangential component is evident (Figure 5). We obtain an effective radius $R_{e} \simeq 140$ pc, making this object compatible with a forming dwarf galaxy. A morphological decomposition is beyond the scope of the present work, but it is worth noting that the spatial distribution of the nuclear emission is quite symmetric despite the large magnification along the tangential direction (see the 10 -sigma contours in Figure 5). As discussed above, such a symmetric shape implies that the size of the inner part is extremely compact also for D1. The radius of the region enclosed within 10 -sigma from the background is $\sim 0.12^{\prime \prime} \simeq 50 \mathrm{pc}$ suggesting a dense and very nucleated star formation activity.

Looking carefully at the image 2 b , we identify even fainter features. Figure 5 shows the identification of an additional knot between D1 and GC1, identified as ID=22692 in the Astrodeep catalog. Despite the strong lensing magnification, its observed magnitude of $\mathrm{F} 105 \mathrm{~W} \simeq 28.5$, implies a delensed $\mathrm{F} 105 \mathrm{~W} \simeq 32$ (i.e., $M_{U V}=-14.7$, adopting the aforementioned total magnification, 25). From the SED fitting we derive an intrinsic stellar mass of $M \simeq 0.5-0.6 \times 10^{6} M_{\odot}$ and a $S F R \simeq 0.06 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$. Although these measurements are still uncertain, lensed sub-structures like this one provide a first glimpse into a completely unexplored luminosity, mass domain at these redshifts. The Galfit fitting does not provide in this case robust results, though this object appears extremely small, at the level of a few parsec. Understanding the nature of forming knots of this kind will require JWST observations. We also note that another Ly $\alpha$ emitting knot is detected in the MUSE data, denoted as "EM1" in Figure 5, which does not have any counterpart in the HST images, down to magnitude limits of 29.4 (at 3 -sigma level, the HFF depth). If this Ly $\alpha$ emission is produced by an underlying star-formation activity it would imply that the associated source is fainter than magnitude $\simeq 33$ (i.e., fainter than $M_{U V}=-13.7$ ) and the resulting rest-frame Ly $\alpha$ equivalent width larger than $300 \AA$. Alternatively, the Ly $\alpha$ emission may arise from fluorescence induced by, e.g.,

GC1 and/or D1, suggesting the presence of surrounding neutral gas illuminated by close star-forming activity.

### 2.5 The source D2 in MACS J0416 at $z=6.145$

From the MUSE data-cube, we identified another lensed Ly $\alpha$ emission line of an object (named D2) at the same redshift as system $2(z=6.145)$, which is not part of the same galaxy (see Figure 1) and has a rest-frame Ly $\alpha$ equivalent width of $140 \AA$. The optical counterpart is well detected in the HFF deep photometry with a F105W magnitude of $28.33 \pm 0.09$ (Castellano et al. 2016b; Merlin et al. 2016). The object is located at $\simeq 27 \mathrm{kpc}$ from GC1 in the source plane, and is therefore distinct from system 2 but plausibly part of the same environment of GC1 and D1. The source is well fitted with a two-dimensional Gaussian shape and a Sérsic $n=4$ profile, with errors on the morphological parameters dominated by the relatively low $\mathrm{S} / \mathrm{N}$. In practice, the object is not spatially resolved, therefore only an upper limit on the effective radius can be obtained. Using Galfit on a grid of parameters and simulations, as previously done for GC1, we can exclude an effective radius greater than 1.5 pixels. Therefore, adopting $R_{e}<1.5$ pixels and $\mu_{\text {tot }} \simeq 3.0 \pm 0.5$ (in this case $\mu_{T} \simeq \mu_{R}$ ), we obatin an intrinsic size of $R_{e} \simeq R_{c}<150 \mathrm{pc}$.

## 3 PHYSICAL PROPERTIES FROM SED FITTING

Physical properties of the aforementioned sources have been derived from their spectral energy distributions (SED) by means of fits performed with a set of templates from Bruzual \& Charlot (2003), with the addition of nebular continuum and emission lines as described in Castellano et al. (2016b) (see also Schaerer \& de Barros 2009). All the objects lensed by the HFF cluster MACS J0416 benefit from the Astrodeep photometric catalog (Merlin et al. 2016) and the redshift measurements from MUSE observations. SED-fitting of the Astrodeep sources in MACS J0416 was presented in Castellano et al. (2016b) on the basis of photometric redshifts: here we update that analysis by fixing the redshift at the spectroscopic value and allowing also for very young ages (1-10 Myrs) that were not previously considered. The source ID11, behind the galaxy cluster AS1063, has already been analyzed and described in Vanzella et al. (2016a). Here we add the deepest near-infrared photometry that was not available at


Figure 4. Top left: light profiles of the source GC1, at $z=6.145$, along the radial ( R ) and tangential (T) directions. The range including $50 \%$ of the light along T is marked with a gray region, while the profile is consistent with the PSF along R. The radial and tangential directions are shown in the GC1 image to the right, where a slightly elongated shape is evident along T. Bottom: eleven simulated images (1-11) inserted around GC1 (dashed green circle) are shown (left); the Galfit models and residuals are shown in the middle and right panels, respectively. The inset in the middle panel compares the average and standard deviation of the parameters recovered with Galfit (in white) with the real input values (in green).
that time. The resulting SED-fitting for all our objects are shown in Figure 6. The relevant parameters are reported in Table 1, i.e. stellar masses, ages, $\mathrm{E}(\mathrm{B}-\mathrm{V})$, star formation rates along with their $68 \%$ c.l. uncertainties. The observed photometry and SEDs are shown in Fig. 6. It is worth stressing that, despite the extremely faint intrinsic magnitudes involved (between 28.6 and 31.4), the multi-band photometry is robust thanks to long HST exposure times in addition to strong lensing magnification. For the whole sample, typical $\mathrm{S} / \mathrm{N}$ ranges from 10 to $>50$ in the ultraviolet continuum and rest-frame optical wavelengths (for ID11 and Sys_1c). From a linear fit of the observed photometry in the UV rest-frame range (see e.g. Castellano et al. 2012), we measure very blue ultraviolet slopes, ranging between -2.5 and -3.0 , which reflect the typically young ages, very low dust extinction and possibly low metallicities (Castellano et al. 2014). In general, the intrinsic faintness of these sources translates into modest star formation rates, of the order of $0.1-1 \mathrm{M}_{\odot}$ and low stellar masses, ranging between $1-20 \times 10^{6} M_{\odot}$. Such low masses have also been measured by Karman et al. (2016) behind AS1063 (including ID11). In the case of GC1, D2 and Sys_1c, solutions at higher masses and old ages ( $>100 \mathrm{Myr}$ ) are allowed by the fit due to larger uncertainties in the Ks and IRAC fluxes. This has been verified by ap-
plying the photometric errors of GC1 to the D1 object. This affects mainly the optical rest-frame part of the SED, the Ks and IRAC bands. The solutions from the SED fitting of D1 show similar degeneracies as observed for GC1, confirming that optical rest-frame photometry is critical when inferring the ages and stellar masses. Older and more massive solutions are reported in Figure 6 (red and magenta lines), in addition to the best fit solutions (blue lines). However, the Ly $\alpha$ flux measured from MUSE spectroscopy allows us to strengthen the constraints on physical parameters for the two systems at $z=6.145$. Following Schaerer (2003) and assuming Salpeter IMF and metallicity $Z=0.004$, the observed Ly $\alpha$ luminosity of GC1 and D2 can be converted into a lower limit ${ }^{3}$ of $\mathrm{SFR}=4 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ and $2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$, respectively. With these additional constraints, no solutions older than 9 Myrs are found for GC1 such that the upper limit on its stellar mass is reduced by a factor $\sim 20$ from $3.3 \times 10^{9}$ to $1.6 \times 10^{8} M_{\odot}$ (observed). Similarly, the maximum age allowed for D2 decreases from 710 to 100 Myrs with a maximum stellar mass of $2.3 \times 10^{8} M_{\odot}$ (observed). An example of the aforementioned degeneracy among stel-

3 The Ly $\alpha$ emission can be partially attenuated by a small amount of dust and by the presence of the intergalactic medium.


Figure 5. A zoomed view of the Ly $\alpha$ emission (MUSE) of GC1 and D1 (marked with a blue ellipse) at $z=6.145$. The cutouts are shown in the F105W, F125W, F140W and F160W bands at the HFF depth (magnitude limit 29.4 at 3- $\sigma$ within $0.4^{\prime \prime}$ diameter aperture). The red contours show 2, 4 and 10-sigma level above the background. D1 shows a clear nucleated core and an elongated emission along the tangential direction, suggesting it is compact in the inner part with an underlying distorted shape (modulated by the magnification). The $10-\sigma$ contour of the core of D1 appears symmetric despite the large tangential magnification, suggesting it is significantly compact. A possible stellar stream linking D1 and GC1 is present, traced by the 2 -sigma contour. Another knot, marked with ID \#22692 (Astrodeep, Castellano et al. 2016b; Merlin et al. 2016), is detected in the F105W and F125W bands, and barely in the F160W (top panels) suggesting a steep ultraviolet slope. A Ly $\alpha$ emission feature without any HST counterparts is shown in the bottom panels (EM1, green circle). The Ly $\alpha$ profiles for both GC1 + D1 sources (blue line) and EM1 (green line) are shown to the right. The observed line fluxes are $(3.0 \pm 0.1) \times 10^{-17}$ within a polygonal aperture and $(0.6 \pm 0.2) \times 10^{-17} \mathrm{cgs}$ within a circular aperture of $1.6^{\prime \prime}$ diameter. The de-lensed magnitudes of each object are shown in red in the F105W images.
lar mass, age and star-formation rate is shown in Figure 7 for GC1, the smallest of our objects. A main "cloud" of solutions is visible and spans the intervals $1-10 \mathrm{Myr}$ and $10^{7.3-8.3} \mathrm{M}_{\odot}$ (observed). A second "cloud" at high masses and older ages is also apparent, however it is disfavoured if the star-formation rate derived from the Ly $\alpha$ emission is considered $\left(\mathrm{SFR}(\mathrm{Ly} \alpha)>4 \mathrm{M}_{\odot} \mathrm{yr}^{-1}\right)$. It is also worth stressing that solutions with larger masses would also imply stellar mass densities more than 10 times larger than the best-fit values reported in Table 1. Therefore our objects are fully consistent with solutions favoring very young ages, low stellar masses and low amount of dust. The combination of the sizes and the physical quantities described above allow us to estimate the surface densities of star-formation and stellar mass for the objects of our sample. A consequence of the inferred stellar mass and star formation rate estimates is the very large specific star formation rate $\left(s S F R=S F R / M_{\star}\right)$, a quantity that does not depend on the magnification. Specifically, we derive sSFR spanning the interval 30-800 $\mathrm{Gyr}^{-1}$, as expected for young, low mass object in which a burst of star formation is ongoing (e.g., Karman et al. 2016). In particular, the object GC1 shows a sSFR $\simeq 800 \mathrm{Gyr}^{-1}$ and will double its stellar mass in $\lesssim 5 \mathrm{Myr}$.

Overall, it is also worth noting that a significant contribution from the nebular emission lines $[\mathrm{O}$ III] $\lambda \lambda 4959,5007$, $\mathrm{H} \beta$ and $\mathrm{H} \alpha$ is expected in the Ks or IRAC bands, at the level of several hundreds or thousands $\AA$ of equivalent width (rest-frame). In particular, the nebular contribution in the Ks-band for ID11 has been well measured with VLT/XShooter, allowing us to derive robust estimates of its physical properties from SED fitting (Vanzella et al. 2016a). Similarly, X-Shooter observations of Sys_1 at $z=3.235$ are under acquisition. For the objects at $z>6$ presented in this work there is a clear signature of nebular line contribu-
tion ( $[\mathrm{O}$ III $] \lambda \lambda 4959,5007, \mathrm{H} \beta$ and $\mathrm{H} \alpha$ ) in the IRAC $3.6 \mu \mathrm{~m}$ and $4.5 \mu \mathrm{~m}$ channels. The precise intensity and line ratios at $z>6$ will only be measurable in the future when JWST NIRSpec spectroscopy will become available. The rest-frame optical stellar continuum will also be observable with JWST NIRCam.

## 4 DISCUSSION

### 4.1 Proto-Globular Clusters

Current scenarios for the formation of multi-population GCs include a massive first generation (FG) of stars forming at redshift $z>2$ (e.g., Kruijssen 2015; Renzini et al. 2015). At the present time, little is known about the physical conditions characterising the stellar FG. From the population of GC present in the Milky Way, we know that in general and in terms of mass, present-day GCs have sub-dominant FG populations with respect to second generation (SG), with a very few exceptions (Bragaglia et al. 2015). Current theoretical multi-population scenarios for GC formation do not focus much on the events originating the FG. The most popular scenarios, i.e. the AGB and the fast rotating massive stars scenarios, generally start keeping track of the evolution of the system after a FG is already in place, generated by a single, instantaneous burst of star formation occurred at high redshift ( $z>2$, e.g., Renzini et al. 2015; Kruijssen 2015). In both scenarios the SG of stars forms out of the gas shed by FG stars. As the mass return from aging stellar populations is in general too scarce to form a large $S G$ population (assuming a standard IMF; e.g., Calura et al. 2014; Renzini et al. 2015), in order to account for the present-day mass and predominance of SG stars as observed in GCs, the FG has to be substantially more massive than present-day GCs,


Figure 6. SED fitting for each system in MACS J0416, based on the Astrodeep photometric catalog (Castellano et al. 2016b; Merlin et al. 2016). The physical quantities derived from SED fitting of ID11 have already been discussed in Vanzella et al. (2016a) and updated here with the deepest HFF photometry. The photometric redshift and the stellar emission including nebular prescription (Castellano et al. 2016b) reproduce well the observed magnitudes. The physical properties are summarized in Table 1. Best-fit solutions are shown in blue (see Table 1) and when present, old and more massive solutions are reported with red and magenta lines ( 300 and 700 Myr old, respectively). The ultraviolet slopes $\beta$ are shown along dashed green lines. De-lensed F105W and F814W magnitudes are shown in red in each panel.
by a factor ranging between 5 and 20 (D'Ercole et al. 2008; Renzini et al. 2015). Most of this massive FG has then to be lost via dynamical processes, such as evaporation and tidal interactions. Regarding this aspect, it is noteworthy that a system like CG1 presents hints for a dynamical interaction with the massive companion D1, and for a possible stellar stream between these two objects. This could indicate an already on-going stellar stripping, as expected in GC scenarios soon after the formation of the FG (e.g., D'Ercole et al. 2008).

The fast-rotating massive stars (FRMS) scenario (Decressin et al. 2007) assumes an initially highly concentrated cluster with a small half-mass radius, typically of the order of a few pc (Decressin et al. 2010; Krause et al. 2012), with initial total mass densities comparable to the central densities of the most massive clusters observed today ( $\sim 10^{5} \mathrm{M}_{\odot}$ $\mathrm{pc}^{-3}$, Renzini et al. 2015). The expulsion of the residual gas is assumed to occur on a relatively short time-scale, faster than the crossing timescale (Decressin et al. 2010), soon after the cease of type II SN explosion as due to a sudden accre-
tion onto the dark remnants (Krause et al. 2012). The loss of the gas causes a sudden change of gravitational potential, which is then able to unbind a large fraction of first generation low-mass stars sitting initially in the GC outskirts (Decressin et al. 2010).

The AGB scenario assumes a GC which forms within the disc of a high-redshift galaxy (D'Ercole et al. 2008, 2016). A natural outcome of the AGB scenario is a FG characterised by a flatter density profile than the second generation. This is due to the fact that after the explosion of all the SNe of the FG, the gas shed by the AGB stars originates a cooling flow directed towards the centre of the cluster. As the SG forms out of this gas mixed with some pristine gas (D'Ercole et al. 2016), its distribution will be much more concentrated than the one characterising the FG (D'Ercole et al. 2008).

A key element which differentiates the AGB and the FRMS scenarios is the size assumed for the stellar FG. The initial size and concentration of the FG is a crucial quantity regulating the subsequent mass loss experienced by the


Figure 7. The degeneracy among stellar mass, age and SFR is shown in the case of the SED-fitting of GC1. All the solutions within the $68 \%$ interval are shown. The reported quantities are derived from the observed photometry, i.e., they are not de-lensed (intrinsic values of the SFR and stellar mass are obtained dividing by $\mu_{t o t}=25$, see Table 1). The SFR is color-coded and indicated on the right of the figure. The minimum SFR inferred from the Ly $\alpha$ emission $\left(>4 \mathrm{M}_{\odot} \mathrm{yr}^{-1}\right)$ favors the solutions at low masses $\left(10^{7.3-8.3} \mathrm{M}_{\odot}\right.$ observed, corresponding to $10^{5.9-6.9} \mathrm{M}_{\odot}$, de-lensed) and young ages, $1-10 \mathrm{Myr}$. See the best solutions in Figure 6.
cluster in the remainder of its history. D'Ercole et al. (2008) study two different models characterised by a FG of mass $10^{7}$ and $10^{6} \mathrm{M}_{\odot}$, which correspond to GCs of present-day masses of $10^{6}$ and $10^{5} \mathrm{M}_{\odot}$, respectively. In both cases, the distribution of the FG follows a King (1962) radial profile, with a half-mass radius of 35 pc and 16 pc for an initial mass of $10^{7}$ and $10^{6} \mathrm{M}_{\odot}$, respectively. For each model, the truncation radius of the profile corresponds to the tidal radius at a distance of 4 kpc from the Galactic Centre. This results from the assumption that the GC is placed on a circular orbit located at this galactocentric distance and with an external, galactic tidal field modelled as a Keplerian potential generated by a point mass of $M_{g} \sim 4 \times 10^{10} \mathrm{M}_{\odot}$. These assumptions ensure a significant mass loss of FG stars due to the external potential. If the energy injected by the FG stellar winds and SNe is sufficient to expel the SN ejecta and the residual gas (Calura et al. 2015), the stellar FG can expand beyond its tidal limit in response to this substantial gas loss and be prone to efficient stellar mass loss due to the external field (D'Ercole et al. 2008). Clearly, the efficiency of this mechanism is sensitive to the parameters regulating the initial FG distribution, as more concentrated stellar distributions will give place to smaller amounts of mass lost via tidal stripping (e.g., Vesperini \& Heggie 1997).

Beside supporting a preferential loss of FG stars, the natural prediction of the AGB scenario of a a more concentrated SG is also in agreement with observations of GCs, showing that red stars (generally identified with SG) are always more centrally concentrated than blue stars (generally identifiend with FG stars; Lardo et al. 2011). These aspects
outline another key difference between the AGB and FRMS scenario, i.e. that in order to explain the different proportions and radial distributions of FG and SG stars, the latter has to postulate that the SG was formed close to the massive stars in a mass-segregated star cluster (Decressin et al. 2010).

The ab-initio study of GC formation of Nakasato et al. (2000) starts from a metal-free proto-GC cloud of a few $\sim 100 \mathrm{pc}$, in which a first population of $10^{2} \mathrm{M}_{\odot}$ of metal-free stars originate, enriching the cloud with heavy elements and whose self-generated emission of photo-dissociative photons stops the early, nearly instantaneous burst. In the polluted gas, density perturbations are allowed to grow via thermal instability (see also Fall \& Rees 1985), and radiative processes lead to a strong condensation in the cloud which causes a burst of star formation, which in $\sim 10 \mathrm{Myr}$ produces a stellar population of $10^{5} \mathrm{M}_{\odot}$. The stellar mass profile calculated at $\sim 10 \mathrm{Myr}$ is characterised by a half-mass radius of $\sim 30 \mathrm{pc}$, i.e. consistent with the values assumed in the AGB scenario.
The compact systems GC1 and ID11 present stellar densities, stellar masses and half-light radii consistent with the FG stellar masses and half-mass radii expected from the AGB scenario, and radii also compatible with the expectations of Nakasato et al. (2000).

It is worth stressing that the half-light radii are determined from 2D light distributions and should be regarded as underestimates of the 3D half-mass radii (typically of a factor $\sim 3 / 4$ for a Sérsic profile), with a weak dependence on the Sérsic index, see Wolf et al. (2010). Our study shows the existence of very compact stellar objects in a redshift range in which GCs should be actively forming. Beside the sizes, in at least two cases (GC1 and ID11), also the ages of the stars are compatible with those expected for GCs caught during the formation of their stellar FG.

### 4.2 The chance to observe a forming GC

It may be useful to determine what is the probability to observe a GC in its forming phase (hereafter active GC). The physics of GC formation is quite uncertain (e.g., Renzini et al. 2015); in this work, we adopt a conservative approach by making plausible assumptions. To this aim, we consider two cases studied in the local Universe: the Milky-Way and the giant elliptical galaxy M87. This choice is due to the fact that MW-like mass star-forming galaxies might be rather common at high redshift and visible as Ly $\alpha$ emitters (see e.g., Dayal \& Libeskind 2012). On the other hand, owing to its large stellar mass ( $\sim 7 \times 10^{11} \mathrm{M}_{\odot}$, Forte et al. 2012) and to the presence of thousands of GCs (Bellini et al. 2015) M87 should be regarded as an extreme case and at high redshift it will be much rarer than MW-like mass galaxies.

It is known that the MW is surrounded by $N \simeq 150 \mathrm{GCs}$ (Harris 1996), whereas Bellini et al. (2015) have identified almost $N \simeq 2000 \mathrm{GCs}$ in the core of M87. In our calculation we assume that in a generic GC the first star formation event lasts $\Delta T_{G C}=5 \mathrm{Myrs}$. This time scale corresponds to the typical age of local young massive clusters, which are known to be able to retain their gas for only a few Myr after the formation of their stars (e.g., Bastian et al. 2013), either because of a particularly strong feedback favouring gas


Figure 8. Two plots are shown in the same panel: the thick label in the Y-axis corresponds to the thick lines and the thin label to the thin curves. In particular, the thick black and red lines represent the probability $P(K)$ that K GCs are simultaneously active (i.e. in a star-forming phase) at $z>3$ in a MW-like and in a M87-like galaxy, respectively. For example the probability $P(K)$ that $1(5)$ GCs are forming in the MW-like or M87-like galaxies is $26 \%$ and $18 \%$, respectively. The thin black and red lines are instead the probability $\left.(P \geq 1, M)\right|_{K}$ that K simultaneously active GCs are present in at least one galaxy in a sample of M MW-like and M87-like galaxies, respectively. The quantity ( $P \geq$ $1, M)\left.\right|_{K}$ is computed for $\mathrm{M}=1,5,10,30$ and 100 . For example the probability that $5(=\mathrm{K})$ GCs are active in one galaxy out of a sample of $10(=\mathrm{M})$ observed M87-like galaxies $\left.(P \geq 1, M)\right|_{K}$ is $85 \%$. By definition $\int_{0}^{\infty} \mathrm{P}(\mathrm{K}) d K=1$.
expulsion, or because at least all the strongly gravitationally bound gas is converted into stars (Charbonnel et al. 2014).

The second assumption is that a GC formed sometime within the first two Gyrs after the Big-Bang, corresponding to $z>3$ or $\Delta T_{\text {epoch }} \simeq 2 \mathrm{Gyr}$.

We make the further conservative assumption that the formation epoch follows a flat distribution. Clearly, the assumption of a formation epoch peaking at some particular cosmic time would increase significantly the probability of catching an active GC around that cosmic time.

As we also ignore the original spatial distribution of proto-GCs, we assume that all GCs formed in the vicinity of the dark matter halo hosting the main galaxy, such that a typical observed field of view probes a sufficiently large volume to spatially include all the proto-GCs. In other words, we neglect if a GC has been acquired or formed "insitu" (Katz \& Ricotti 2014). This assumption is corroborated by cosmological simulations indicating that proto-GCs from within a distance of tens of kpc proper from the main dark matter halo in which they are embedded, a volume well sampled by the observations (e.g., Kravtsov \& Gnedin 2005; Ricotti et al. 2016).

Under these simple hypotheses, the probability (P) to observe at a given cosmic time (at $z>3), K($ or $\geq K)$ active GCs in a sample of $N(>K)$ GCs is:

$$
\begin{equation*}
P(K)=\binom{N}{K} p^{K}(1-p)^{N-K} ; \quad P(\geq K)=\sum_{i=k}^{N} P(i) ; \tag{3}
\end{equation*}
$$

where the probability $p$ of the single case is $\mathrm{p}=\Delta T_{G C}$ $/ \Delta T_{\text {epoch }}=0.0025$ (as mentioned above by assuming a flat distribution). The probability that at least 1(5) out of $N$ GCs is caught during their formation is $\sim 30(56) \%$ in the case of MW(M87), sometime at $z>3$. Clearly these probabilities increase (decreases) if $\Delta T_{G C}$ decreases (increases) or $N$ increases (decreases). It is worth stressing that if a nonflat formation history was assumed for proto-GCs, then we would have a specific cosmic epoch in which the frequency of simultaneously active GCs would be particularly high. In this respect, the probabilities computed with the assumptions described above should be regarded as conservative.

If we perform the same exercise by assuming a sample of $M$ galaxies, the probability will obviously increase. The probability that an event (with probability $\mathrm{P}(\mathrm{K})$ ) occurs in at least one of the observed galaxies is $1-[1-P(K)]^{M}$.

The probabilities that 1,2 , or 3 GCs are active in a MW-like galaxy are $P(K)=25.8,4.8$, and $0.6 \%$, respectively. Moreover, the probabilities to observe 1,2 , or 3 active GCs in at least one out of ten $(M=10) M W$-like galaxies at $z>3$ are $84.6 \%, 16.4 \%$, and $1.2 \%$. In the case of M87-like galaxies these numbers increase significantly, although such massive objects are rarer. Figure 8 shows the probability $P(K)$ as a function of $K$ calculated for various values of the sample size $M$ under the aforementioned hypotheses. In the same figure, the black and red thick lines show the probabilities $\mathrm{P}(\mathrm{K})$ as calculated from Eq. 3 for MW and M87, respectively, whose underlying area is one by definition. The thin lines show the probability that in at least one galaxy out of M there are K active GCs, for a given $P(K)\left(P \geq 1,\left.M\right|_{K}\right)$.

At the current stage, it is very difficult to compare the quantities shown in Fig. 8 with any of the observable properties discussed in the current work. To perform such a task, calculations of simultenously active GCs per unit volume would be required, where number densities need to be extracted from cosmologically-based models computing detailed merging trees, as performed e.g., in Ricotti (2002). The calculation described in this section shows that current surveys of lensed fields likely contain many active GCs, and that the probability to observe a few of them simultaneously in a star-forming, active phase is quite high. A more detailed comparison between expected frequency and observed number of star-forming proto-GCs is postponed to the future, when larger samples of similar objects will become available. In the next section the observability of such faint objects is discussed.

### 4.3 Can we observe active GCs?

Despite the current GC formation scenarios are still uncertain (e.g., Renzini et al. 2015), we report in Table 1 the possible ranges of a few relevant quantities expected during the formation of the first generation stars in GCs of two different masses and within the AGB scenario (D'Ercole et al. 2008, 2016). D'Ercole et al. (2008) study the formation of one proto-GC of stellar mass $10^{6} \mathrm{M}_{\odot}$ and half-mass radius of 16 pc and another more massive one, characterised by a stellar mass $10^{7} \mathrm{M}_{\odot}$ and an half mass radius of 35 pc . They assume a FG of stars already in place and focus mostly on the star formation history of SG stars. Assuming for the FG a constant SFR occurring on a timescale of 5 Myr as adopted in Sect. 4.2, we obtain for the low mass and high
mass GC SFR values of 0.2 and $2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively. The two systems present stellar mass surface densities of 800 and $1700 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$ for the less and the more massive cases, respectively. By means of the Starburst99 models (Leitherer et al. 2014) we have calculated the expected monochromatic luminosity at $1500 \AA$ in the case of an instantaneous burst for the two stellar masses reported above and at an age of $\sim 5 \mathrm{Myr}$ after the burst. The result depends weakly on the adopted initial mass function and metallicity. The expected apparent magnitude at $1500 \AA$ rest-frame are 30.5 and $\simeq 28$ at $z>3$ for the less massive and more massive cluster, respectively. This corresponds to absolute magnitudes fainter than $M_{U V}=-17$ (consistently with estimates by Schaerer \& Charbonnel 2011). Clearly these values are elusive in the deepest non-lensed fields, such as the Hubble Ultra Deep Field (Beckwith et al. 2006), particularly at magnitudes fainter than 29.5. However, as demonstrated in the previous sections, observations at the HUDF-depth in regions of the sky magnified by lensing galaxy clusters (HFFs) have allowed us to probe extremely compact stellar systems ( $<100$ pc) at $z \simeq 3-6$.

In addition, the expected Ly $\alpha$ line flux of proto-GCs is consistent with the observed values. The Ly $\alpha$ flux emerging from a proto-GC can be estimated by assuming the case B recombination and the SFRs reported in Table 1, yielding $0.5-3 \times 10^{-19} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ (Schaerer 2003). Ly $\alpha$ line emission at these flux levels is in principle accessible in the deepest fields observed with MUSE (e.g., HDF-S, Bacon et al. 2015, see also Figure 6 in Vanzella et al. 2016c). However, the detection of the continuum at magnitudes fainter than 30 is out of reach or at the very limit (1-2 sigma detection) of the current deepest field surveys. This work demonstrates that strong gravitational lensing in deep fields allow us to overcome these limitations.
Finally, a previous study presenting considerable analogies with the current one and which is worth to mention is described in Ellis et al. (2001). Also in that case, a blind spectroscopic mode search was performed of objects lying nearby the critical line of the lensing cluster Abell 2218. A multiplylensed, intrinsically faint ( $I \sim 30$ ), compact ( $<150 \mathrm{pc}$ ) system was found at $z \sim 5.6$ and with a very small stellar mass ( $\sim 10^{6} M_{\odot}$ ). A young age for such a system $(<2 M y r)$ was inferred from an upper limit on the stellar continuum, with the SFR deduced from its Ly $\alpha$ emission. As the pioneering work of Ellis et al. (2001) shows several parallels with the one described here, it can be regarded as a remarkable forerunner of our results.

### 4.4 Extremely faint, compact and dense forming objects

The most compact objects, ID11 and GC1, show physical properties that are not far from those expected for protoGCs. Before discussing this topic, we briefly report on their environment.

Object ID11 lives in a group of star-forming galaxies lying at the same redshift as confirmed by MUSE (Karman et al. 2016), including a Ly $\alpha$ nebula described by Caminha et al. (2016b) located at $\simeq 100 \mathrm{kpc}$ from ID11. Similarly, GC1 is part of a system including D1 and D2 at the same redshift, $z=6.145$. Also System 1 in MACS J0416 (at $z=3.235$ ) is possibly part of a group of galaxies at similar redshift ( $\Delta z<$
0.05 ), though in the current MUSE data no other galaxies have been confirmed at the same redshift (Caminha et al. 2016c). Therefore, our young, compact and low-mass objects are possibly sharing the same environment of (slightly) more massive and older systems. It is not clear if GC1 or ID11 will eventually merge with other systems or will remain bound after the gas is removed (i.e., will maintain their identity) until the present days. This is reminiscent of the present day old dwarfs and GCs (older than 10 Gyr ) surrounding the local galaxies (including the MW) and implying their ancestors were rapidly forming stars on a short time-scale (as we are observing here). Our objects might be the youngest counterparts of the extremely old systems observed today.

It is worth stressing that the intrinsic (de-lensed) magnitudes of the object discussed in this work span the range 29.0 - 31.4. In particular GC1 with its intrinsic magnitude of 31.4 is a clear example of what is currently missed in the deepest surveys in the field, such as the Hubble Ultra Deep Field (whose magnitude limit at 1 -sigma is $\simeq 30.5$ ). In this respect, the sources reported here open a new window to a very low-mass/luminosity regime that unavoidably will need JWST and subsequently the Extremely Large Telescopes for the characterization of their physical properties, especially for what concerns the absorption line science.

### 4.4.1 Dynamical mass of ID11

It is worth noting that ID11, the object with the best photometric measurements $(S / N>30)$ and with optical rest-frame spectroscopy, shows extremely narrow emission lines, both the high ionization ultraviolet lines (e.g., Civ $\lambda 1548,1550$, Heir $\lambda 1640$, OIII] $\lambda 1661,1666$, CiII] $\lambda \lambda 1907,1909)$ and the optical lines (e.g., $[\mathrm{O}$ III $] \lambda \lambda 4959,5007$ ). In particular, the oxygen (optical) lines [ $\left.\mathrm{O}_{\mathrm{III}}\right] \lambda \lambda 4959,5007$ are well detected $(S / N=12-33)$ and barely resolved in our near-infrared X-Shooter spectrum ( $R \simeq 5000$ ), implying a very low velocity dispersion $\sigma_{v} \lesssim 20 \mathrm{~km} \mathrm{~s}^{-1}$ (see Vanzella et al. 2016a), and also a low dynamical mass. Following Maseda et al. (2013), we determine the dynamical mass using the virial relation:
$M_{d y n}=C \frac{R_{e} \sigma_{v}^{2}}{G}$
where $R_{e}$ is the effective radius (assumed here to be the virial radius), $\sigma_{v}$ is the velocity dispersion (e.g., Rhoads et al. 2014; Maseda et al. 2014).

In general, it is well known that the coefficient $C$ is weakly dependent on the density profile when the velocity dispersion is measuread over large apertures (in principle, over all the object), and independent of orbital anisotropy (e.g., see Ciotti 1991, 1994). In particular, for values of the Sérsic index of $n \simeq 4-5$ as found for this system, $C$ varies between 4.65 and 3.67 (Bertin et al. 2002).

As discussed in Maseda et al. (2013), there are several potential systematic effects that may affect these estimates, including the fact that the measured half-light radius is not necessarily equal to the virial radius and that the dynamical structure might be irregular and not virialized. ID11 does not show an irregular morphology (plausibly close to spherical) and is well fitted by a single component profile, at least along the tangential direction.

Assuming the above relation applies to ID11 and adopting $C=4$ as for the Green Pea galaxies (Maseda et al. 2014; Erb et al. 2014), the comparison with the stellar mass gives $M_{d y n} / M^{\star} \simeq 1$. Given the uncertainties in the estimation of $R_{e}$ and the stellar mass, the ratio is fully consistent with a value of $\sim 1$.

Currently, there is no evidence that local GCs possess DM halos (Heggie \& Hut 1996, but see also Ibata et al. 2013). It is possible that GCs were originally embedded in DM halos which have then be stripped by the tidal field of the host galaxy (Mashchenko \& Sills 2005), or that DM may be still present in the outer regions of the clusters (Bekki \& Yong 2012; Ibata et al. 2013). Our results obtained for ID11 imply a dynamical mass dominated by the stellar mass. Clearly, our result does not exclude the presence of DM on larger scales. In the future, it will be crucial to extend the study described in this Section to larger samples, possibly comparing the results obtained using different emission lines to estimate the velocity dispersion $\sigma_{v}$.

### 4.5 Low-mass objects as contributors to cosmic reionization

### 4.5.1 Low-mass object might have large Lyman continuum leakage: the need for rest-frame optical spectroscopy

As recent hydrodynamical simulations of proto-GCs have shown (Calura et al. 2015), the feedback of the stellar winds and SNe belonging to the FG can produce large and elongated hot cavities along which their interstellar gas is able to escape. In principle, these channels may also represent viable escape routes for ionizing photons. However, in order to assess whether proto-GCs might be important reionizing sources, an estimate of the time span over which their ISM remains rarefied and ionized is required, as well as the covering factor of the hot cavities and its evolution with time. Currently, work is in progress to investigate these aspects. On the observational side, the ionizing radiation emitted by faint objects as well as their opacity at the Lyman continuum (LyC, $\lambda<912$ ) can be investigated only by pushing observations towards lower and lower luminosity regimes. While at relatively bright luminosities $\left(L>0.5 L^{\star}\right)$ the escape of ionizing radiation is not favoured, at least as far as observations at $z<4$ indicate (e.g., Vanzella et al. 2016b; Izotov et al. 2016; Shapley et al. 2016) and in general very modest (e.g., $<1-10 \%$, Vanzella et al. 2010, 2012b; Grazian et al. 2016; Guaita et al. 2016; Bridge et al. 2010; Siana et al. 2010, 2015), in the low-luminosity domain it is still poorly explored.

Strong lensing magnification has allowed us to detect very faint sources (de-lensed $m_{1500} \gtrsim 29-30$ ) observed at $m_{1500} \gtrsim 26-27$ (implying magnification factors higher than 15). In order to possibly detect the Lyman continuum emerging from the same objects, we would need observations $\gtrsim 3$ magnitudes deeper at $900 \AA$ than at $1500 \AA$ to probe an escaping radiation of $20 \%$, i.e. magnitudes of the order of 29-30 in the Lyman continuum are still needed even in strongly lensed fields (e.g., Vanzella et al. 2012a).

In this challenging scenario, and since during the reionization epoch $(z>6)$ the Lyman continuum is not detectable owing to cosmic opacity, we must rely on indirect probes of Lyman continuum leakage, possibly calibrated on refer-
ence samples of Lyman continuum sources at $z<4$, when the IGM still allows us to directly detect the ionizing radiation. In this regard, recent progress has been made in the field of photo-ionization modeling (Jaskot \& Oey 2013; Nakajima \& Ouchi 2014; Zackrisson et al. 2016; Inoue 2011), subsequently confirmed by observations (e.g., de Barros et al. 2016; Vanzella et al. 2016b; Verhamme et al. 2016). In particular, line ratios in the rest-frame optical band like the O32 index ([Oiir $] \lambda 5007 /[\mathrm{Oir}] \lambda 3727)$ and specific properties of the Ly $\alpha$ profile (Behrens et al. 2014; Verhamme et al. 2015; Dijkstra et al. 2016) can provide valuable indirect probes of the physical state of the interstellar medium and of the column density of neutral gas (e.g., density-bounded or ionization-bounded), as well as the connection with the ultraviolet spectral slope, the Balmer emission lines and the Lyman continuum leakage (Zackrisson et al. 2013, 2016).

In Karman et al. (2016) a few lensed sources were already identified presenting a low column density of neutral gas $\left(<10^{18} \mathrm{~cm}^{-2}\right)$, possibly compatible with a Lyman continuum leakage (but still not confirmed directly). In particular, in the case of ID11, the VLT/X-Shooter near infrared spectroscopy will reveal remarkable properties never observed before in such a faint and distant object (see Vanzella et al. 2016a). ID11 is a young, low-metallicity and dust-free object possibly captured during its first burst of star formation and confined in a small volume, surrounded by a shell of expanding gas. It also shows a low column density of neutral gas $\left(<10^{18.5} \mathrm{~cm}^{-2}\right.$, though not necessarily optically thin to Lyman continuum) and a large O32 index ( $>10$ ) compatible with a density-bounded condition in the ISM.

Therefore, rest-frame optical spectroscopy is crucial in this line of research. VLT/X-Shooter observations for System 1 at $z=3.235$ are on going (P.I. Vanzella) and will provide unique information at rest-frame optical wavelengths and at twice the spectral resolution of MUSE (as we did for ID11). It will also be essential to improve the dynamical mass estimate.

At $z=6.145$, the access to rest-frame optical nebular lines like $[\mathrm{OiI}] \lambda 3727,3729, \mathrm{H} \beta,[\mathrm{O}$ III $] \lambda \lambda 4959,5007$ and $\mathrm{H} \alpha$ (just to mention the most relevant ones) requires the NIRSpec instrument on JWST, as well as NIRCam for optical rest-frame morphology at $3-5 \mu \mathrm{~m}$. The comparison of the ISM properties derived using the same spectral diagnostics (i.e. at the same rest-frame wavelengths) for these low-mass and extremely young star-forming objects will be crucial, especially in cases where a leakage of ionizing radiation is confirmed for sources at $z<4$. This will eventually represent a unique training set for the identification of the sources responsible for the reionization of the universe.

### 4.5.2 Lya nebulae as possible indirect signature of multiple proto-GCs ionization power

Using the (Schaerer 2002, 2003) stellar population models and assuming a constant star-formation rate of $1 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$, after $\sim 3 \mathrm{Myr}$ the expected Ly $\alpha$ luminosity is $10^{42} \mathrm{erg} \mathrm{s}^{-1}$. If we rescale this value to our SFRs $\left(0.1 \mathrm{M}_{\odot} \mathrm{yr}^{-1}\right)$, we obtain a Ly $\alpha$ luminosity of the order of $10^{41} \mathrm{erg} \mathrm{s}^{-1}$. As discussed earlier in Sect. 4.2 , the probability that at least 10 proto-GCs are active at the same time in M87-like galaxies observed at $z>3$ is not negligible $(>10 \%)$. Therefore, assuming 10 proto-GCs simultaneously in place and emitting Ly $\alpha$ pho-
tons, their contribution to a diffuse Ly $\alpha$ emission might be relevant. In addition, assuming in each one of them an escape fraction of ionizing radiation higher than zero (e.g., $>30 \%$, Howard et al. 2016), they could contribute to induce fluorescence in the surrounding medium, generating diffuse Ly $\alpha$ nebulae. Clearly, this cannot be regarded as the only mechanism responsible for the Ly $\alpha$ nebulae detected so far. However, a significant contribution from proto-GCs or dwarf galaxies cannot be excluded, especially if their stellar emission is not detectable even in the deepest field surveys (such as, e.g., our GC1 source with magnitude 31.4). For instance, the origin of some of the Ly $\alpha$ nebulae discussed in Vanzella et al. (2016c) is not well identified. Interestingly enough, a dozen proto-GC in action associated with a few high-z galaxies can produce $\simeq 20 \%$ of the total Ly $\alpha$ luminosity observed in that case. Similarly, the clustering of faint objects around the main galaxy might also increase the Ly $\alpha$ visibility during the reionization epoch (Castellano et al. 2016a).

Are some of the Ly $\alpha$ nebulae observed so far an indirect signature of the integrated contribution from elusive protoGCs? Again, JWST can investigate this issue by providing deeper images than what available now, possibly revealing a multitude of currently undetected objects.

## 5 CONCLUSIONS

Deep observations provided by the Hubble Frontier Fields and deep VLT/MUSE integral field spectroscopy, coupled with high-precision lens models (based on tens of spectroscopic multiply imaged systems at $3<z<6$ ), have allowed us to identify extremely faint objects within the first two billion years after the Big-Bang, in a still unexplored region of stellar mass and luminosity domains. These new regimes of mass and luminosity are relevant for our understanding of the physics of dwarf and globular cluster formation at high redshift, as well as for the identification of sources possibly dominating the ionizing background (e.g., Yue et al. 2014; Wise et al. 2014).

The main results are the following:

- By taking advantage of (1) MUSE deep spectroscopy, (2) a detailed analysis of lensing magnification maps, (3) the spatial shapes of these selected sources (validated with lensing simulations), and (4) exploiting the Astrodeep HST photometry and SED fitting that includes nebular emission, we studied the faintest and most compact stellar systems at redshift $\sim 3$ and $\sim 6$ currently known $\left(-14>M_{U V}>\right.$ $-17)$, which are characterised by stellar masses in the range $10^{6} \mathrm{M}_{\odot}<\mathrm{M}<20 \times 10^{6} \mathrm{M}_{\odot}$ and effective radii spanning the interval $\simeq 16-150 \mathrm{pc}$.
- Two of our sources, GC1 and ID11, show stellar masses and star-formation rate densities consistent with the values expected in multi-population formation scenarios for GCs. In particular, ID11 also shows a dynamical mass (derived from optical rest-frame spectroscopy) similar to the stellar mass, suggesting a negligible dark matter content in this system. In addition, the detection of high ionization lines like Civ $\lambda 1548,1550$ and Heiı $\lambda 1640$ (with a velocity dispersion of $\sigma_{v} \simeq 20 \mathrm{~km} \mathrm{~s}^{-1}$ ) suggests that hot stars are present, with an outflowing gas with velocity $\simeq 50 \mathrm{~km} \mathrm{~s}^{-1}$ measured from line velocity offsets (Vanzella et al. 2016a). The same object also shows a low column density of neutral gas, lower than
$10^{18.5} \mathrm{~cm}^{-2}$ (see Vanzella et al. 2016a). The other compact and dense object discovered at $z=6.145, \mathrm{GC} 1$, is perhaps the most intriguing source among those presented in this work, with an effective radius of $\simeq 20 \mathrm{pc}$ and an intrinsic stellar mass of $2-4 \times 10^{6} M_{\odot}$. Its properties are very close to those expected for a proto-GC.
- We have also detected extremely faint knots in the system at redshift 6.145, whose de-lensed magnitudes are fainter than 32. They are among the faintest objects at $z \sim 6$ ever found in any strongly lensed field. The very nature of these extremely faint star-forming regions will be better assessed with JWST and the extremely large telescopes.

The determination of sizes and physical properties (such as the stellar mass) of large number of systems at $4 \leq z \lesssim 8$ will be greatly improved by means of JWST observations, that will perform rest-frame optical spectroscopy and imaging with the NIRSpec and NIRCam instruments, respectively. In addition, the rest-frame near-infrared wavelengths will be accessible with the JWST/MIRI camera. ${ }^{4}$ Following the study of ID11 at $z=3.1169$ by means of VLT/X-Shooter near infrared observations (see Vanzella et al. 2016a), JWST spectroscopy will allow us to:
(1) investigate the nature of the ionizing source from optical oxygen and Balmer lines ratios, in combination with ultraviolet features,
(2) investigate the status of the interstellar medium through line ratios in the optical and ultraviolet rest-frame (e.g., by calculating the O32 index, and looking for density and/or ionization-bounded signatures),
(3) look for the presence of outflows possibly from the nebular emission of high ionization lines (as we first attempted for ID11 with the Civ $\lambda 1548,1550$ doublet),
(4) perform direct estimates of the ionizing production rate from the Balmer lines, as well as to investigate the escaping ionizing radiation through indirect diagnostics calibrated at lower redshift (Vanzella et al. 2016b), specifically proposed for the characteristics of JWST (e.g., Zackrisson et al. 2013, 2016). It is worth noting that the current identification of photometric signatures of such nebular lines imprinted in the Spitzer/IRAC bands is even more complicated by the fact that at $5.5 \lesssim z \lesssim 6.6$ both the $3.6 \mu \mathrm{~m}$ and $4.5 \mu \mathrm{~m}$ bands are polluted by Oxygen and $\mathrm{H} \alpha$ lines, respectively, introducing a degeneracy that prevents any clear measure of their equivalent widths (Smit et al. 2015). JWST/NIRSpec spectroscopy will remove this degeneracy.

Moreover, rest-frame optical and near infrared imaging with NIRCam and MIRI will provide accurate estimates of the stellar masses and sizes (now inferred from the ultraviolet light at $z \sim 6$ ). The system at $z \sim 6$ also represents an ideal target for integral filed spectroscopy with JWST. In particular, the $3^{\prime \prime} \times 3^{\prime \prime}$ field of view provided by NIRSpecIFU will produce a cube of 900 spaxels which contain GC1, D1 and $\# 22692$ sources in a single shot, as well as the possible stellar stream connecting all these features, enabling kinematics studies in the optical rest-frame by using prominent lines such as $[\mathrm{OiI}] \lambda 3727,3729,\left[\mathrm{O}_{\mathrm{III}}\right] \lambda \lambda 4959,5007, \mathrm{H} \beta$ and $\mathrm{H} \alpha$.

However, the study of ultraviolet absorption lines will require a good detection of the continuum $(S / N>5)$,

[^3]achievable (thanks to gravitational lensing) for objects brighter than 28 at $1500 \AA$ rest-frame and addressable with future extremely large telescopes (e.g. E-ELT).

## ACKNOWLEDGMENTS

The referee, Richard Ellis, is acknowledged for several constructive comments which significantly improved the presentation of the results. We thank Alvio Renzini, F. Ferraro and E. Dalessandro for several useful discussions. C.G. acknowledges support by VILLUM FONDEN Young Investigator Programme through grant no. 10123. K.C. acknowledges funding from the European Research Council through the award of the Consolidator Grant ID 681627BUILDUP. Based on observations collected at the European Southern Observatory for Astronomical research in the Southern Hemisphere under ESO programmes P095.A-0653, P094.A-0115 (B) and ID 094.A-0525(A). MM, AM and PR acknowledge the financial support from PRIN-INAF 2014 1.05.01.94.02. MM acknowledges support from the Italian Ministry of Foreign Affairs and International Cooperation, Directorate General for Country Promotion. We also thank Wouter Karman for enlightening discussions over the last years.

## REFERENCES

Alavi, A., Siana, B., Richard, J., et al. 2014, ApJ, 780, 143
Alavi, A., Siana, B., Richard, J., et al. 2016, arXiv:1606.00469
Atek, H., Richard, J., Jauzac, M., et al. 2015, ApJ, 814, 69
Bacon, R., Accardo, M., Adjali, L., et al. 2010, Proc. SPIE, 7735, 773508
Bacon R., et al., 2015, A\&A, 575, 75
Bastian, N., Cabrera-Ziri, I., Davies, B., Larsen, S. S., 2013, MNRAS, 436, 2852
Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729
Behrens, C., Dijkstra, M., \& Niemeyer, J. C. 2014, A\&A, 563, A77
Bekki, K., Yong, D., 2012, MNRAS, 419, 2063
Bellini, A., Renzini, A., Anderson, J., et al. 2015, ApJ, 805, 178
Bertin, G., Ciotti, L., \& Del Principe, M. 2002, A\&A, 386, 149
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Caruana, J., Holwerda, B., Smit, R., Wilkins, S., 811, 140
Bouwens, R. J., Oesch, P. A., Illingworth, G. D., Ellis, R. S., \& Stefanon, M. 2016, arXiv:1610.00283
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2016, arXiv:1608.00966
Bouwens, R. J., Smit, R., Labbé, I., et al. 2016, ApJ, 831, 176
Bragaglia, A., Carretta, E., Sollima, A., et al. 2015, A\&A, 583, A69
Bridge, C. R., Teplitz, H. I., Siana, B., et al. 2010, ApJ, 720, 465
Bruzual, G., \& Charlot, S. 2003, MNRAS, 344, 1000
Calura, F., Ciotti, L., \& Nipoti, C. 2014, MNRAS, 440, 3341
Calura, F., Few, C. G., Romano, D., \& D'Ercole, A. 2015, ApJ, 814, L14
Caminha, G. B., Grillo, C., Rosati, P., et al. 2016, A\&A, 587, A80
Caminha, G. B., Karman, W., Rosati, P., et al. 2016, A\&A, 595, A100
Caminha, G. B., Grillo, C., Rosati, P., et al. 2016, arXiv:1607.03462
Castellano, M., Fontana, A., Grazian, A., et al. 2012, A\&A, 540, A39
Castellano, M., Sommariva, V., Fontana, A., et al. 2014, A\&A, 566, A19

Castellano, M., Amorín, R., Merlin, E., et al. 2016b, A\&A, 590, A31
Castellano, M., Dayal, P., Pentericci, L., et al. 2016a, ApJ, 818, L3
Charbonnel, C., Chantereau, W., Krause, M., Primas, F., \& Wang, Y. 2014, A\&A, 569, L6
Ciotti, L. 1991, A\&A, 249, 99
Ciotti, L. 1994, Celestial Mechanics and Dynamical Astronomy, 60, 401
Cottrell, P. L., \& Da Costa, G. S. 1981, ApJ, 245, L79
Cristiani, S., Serrano, L. M., Fontanot, F., Vanzella, E., \& Monaco, P. 2016, MNRAS, 462, 2478
D'Antona, F., \& Caloi, V. 2004, ApJ, 611, 871
D'Antona, F., \& Caloi, V. 2008, MNRAS, 390, 693
Dayal, P., \& Libeskind, N. I. 2012, MNRAS, 419, L9
de Barros, S., Vanzella, E., Amorín, R., et al. 2016, A\&A, 585, A51
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., \& Ekström, S. 2007, A\&A, 464, 1029
Decressin, T., Baumgardt, H., Charbonnel, C., \& Kroupa, P. 2010, A\&A, 516, A73
Dijkstra, M., Gronke, M., \& Venkatesan, A. 2016, ApJ, 828, 71
de Mink, S. E., Pols, O. R., Langer, N., \& Izzard, R. G. 2009, A\&A, 507, L1
Denissenkov, P. A., \& Hartwick, F. D. A. 2014, MNRAS, 437, L21
D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S. L. W., \& Recchi, S. 2008, MNRAS, 391, 825
D'Ercole, A., D'Antona, F., \& Vesperini, E. 2016, MNRAS, 461, 4088
Downing, J. M. B., \& Sills, A. 2007, ApJ, 662, 341
Ellis, R., Santos, M. R., Kneib, J.-P., \& Kuijken, K. 2001, ApJ, 560, L119
Erb, D. K., Steidel, C. C., Trainor, R. F., et al. 2014, ApJ, 795, 33
Fall, S. M., \& Rees, M. J. 1985, ApJ, 298, 18
Ferrara, A., \& Loeb, A. 2013, MNRAS, 431, 2826
Finlator, K., Prescott, M. K. M., Oppenheimer, B. D., et al. 2017, MNRAS, 464, 1633
Forte, J. C., Vega, E. I., \& Faifer, F. 2012, MNRAS, 421, 635
Giallongo, E., Grazian, A., Fiore, F., et al. 2015, A\&A, 578, A83
Gratton, R., Sneden, C., \& Carretta, E. 2004, ARA\&A, 42, 385
Grazian, A., Giallongo, E., Gerbasi, R., et al. 2016, A\&A, 585, A48
Guaita, L., Pentericci, L., Grazian, A., et al. 2016, A\&A, 587, A133
Harris, W. E. 1996, AJ, 112, 1487
Heggie, D. C., \& Hut, P. 1996, Dynamical Evolution of Star Clusters: Confrontation of Theory and Observations, 174, 303
Howard, C. S., Pudritz, R. E., \& Klessen, R. S. 2016, arXiv:1611.02708
Inoue, A. K. 2011, MNRAS, 415, 2920
Ibata, R., Nipoti, C., Sollima, A., et al. 2013, MNRAS, 428, 3648
Izotov, Y. I., Schaerer, D., Thuan, T. X., et al. 2016, MNRAS, 461, 3683
Jaskot, A. E., \& Oey, M. S. 2013, ApJ, 766, 91
Karman, W., Caputi, K. I., Grillo, C., et al. 2015, A\&A, 574, A11
Karman, W., Caputi, K. I., Caminha, G. B., et al. 2016, A\&A, accepted, arXiv:1606.01471
Katz, H., \& Ricotti, M. 2014, MNRAS, 444, 2377
Kawamata, R., Ishigaki, M., Shimasaku, K., Oguri, M., \& Ouchi, M. 2015, ApJ, 804, 103

Kimm, T., \& Cen, R. 2014, ApJ, 788, 121
King, I. 1962, AJ, 67, 471
Koekemoer, A. M., Avila, R. J., Hammer, D., et al. 2014, American Astronomical Society Meeting Abstracts \#223, 223, 254.02

Kneib J.-P., Natarajan P., 2011, A\&ARv, 19, 47

Krause, M., Charbonnel, C., Decressin, T., et al. 2012, A\&A, 546, L5
Kravtsov, A. V., \& Gnedin, O. Y. 2005, ApJ, 623, 650
Kroupa, P. 2001, MNRAS, 322, 231
Kruijssen, J. M. D. 2015, MNRAS, 454, 1658
Lardo, C., Bellazzini, M., Pancino, E., et al. 2011, A\&A, 525, A114
Larson, R. B. 1969, MNRAS, 145, 405
Leitherer, C., Ekström, S., Meynet, G., et al. 2014, ApJS, 212, 14
Livermore, R. C., Jones, T. A., Richard, J., et al. 2015, MNRAS, 450, 1812
Livermore, R. C., Finkelstein, S. L., \& Lotz, J. M. 2016, arXiv:1604.06799
Lotz, J., Mountain, M., Grogin, N. A., et al. 2014, American Astronomical Society Meeting Abstracts \#223, 223, 254.01
Lotz, J. M., Koekemoer, A., Coe, D., et al. 2016, arXiv:1605.06567 Madau, P., \& Haardt, F. 2015, ApJ, 813, L8
Maseda, M. V., van der Wel, A., da Cunha, E., et al. 2013, ApJ, 778, L22
Maseda, M. V., van der Wel, A., Rix, H.-W., et al. 2014, ApJ, 791, 17
Mashchenko, S., \& Sills, A. 2005, ApJ, 619, 243
Meneghetti M., et al., 2008, A\&A, 482, 403
Meneghetti M., Rasia E., Merten J., Bellagamba F., Ettori S., Mazzotta P., Dolag K., Marri S., 2010, A\&A, 514, A93
Meneghetti, M., Natarajan, P., Coe, D., et al. 2016, arXiv:1606.04548
Merlin, E., Amorín, R., Castellano, M., et al. 2016, A\&A, 590, A30
Nakajima, K., \& Ouchi, M. 2014, MNRAS, 442, 900
Nakasato, N., Mori, M., \& Nomoto, K. 2000, ApJ, 535, 776
Peng, C. Y., Ho, L. C., Impey, C. D., \& Rix, H.-W. 2002, AJ, 124, 266
Peng, C. Y., Ho, L. C., Impey, C. D., \& Rix, H.-W. 2010, AJ, 139, 2097
Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJ, 661, L53
Prantzos, N., \& Charbonnel, C. 2006, A\&A, 458, 135
Renzini, A., D'Antona, F., Cassisi, S., et al. 2015, MNRAS, 454, 4197
Rhoads, J. E., Malhotra, S., Richardson, M. L. A., et al. 2014, ApJ, 780, 20
Ricotti, M. 2002, MNRAS, 336, L33
Ricotti, M., Parry, O. H., \& Gnedin, N. Y. 2016, ApJ, 831, 204
Robertson, B. E., Ellis, R. S., Furlanetto, S. R., \& Dunlop, J. S. 2015, ApJ, 802, L19
Salpeter, E. E. 1955, ApJ, 121, 161
Schaerer, D. 2002, A\&A, 382, 28
Schaerer, D. 2003, A\&A, 397, 527
Schaerer, D., \& de Barros, S. 2009, A\&A, 502, 423
Schaerer, D., \& Charbonnel, C. 2011, MNRAS, 413, 2297
Shapley, A. E., Steidel, C. C., Strom, A. L., et al. 2016, ApJ, 826, L24
Siana, B., Teplitz, H. I., Ferguson, H. C., et al. 2010, ApJ, 723, 241
Siana, B., Shapley, A. E., Kulas, K. R., et al. 2015, ApJ, 804, 17
Smit, R., Bouwens, R. J., Franx, M., et al. 2015, ApJ, 801, 122
Terlevich, R., Melnick, J., Terlevich, E., et al. 2016, A\&A, 592, L7
Trenti, M., Padoan, P., \& Jimenez, R. 2015, ApJ, 808, L35
Treu, T., Schmidt, K. B., Brammer, G. B., et al. 2015, ApJ, 812, 114
Vanzella, E., Giavalisco, M., Inoue, A. K., et al. 2010, ApJ, 725, 1011
Vanzella, E., Nonino, M., Cristiani, S., et al. 2012, MNRAS, 424, L54
Vanzella, E., Guo, Y., Giavalisco, M., et al. 2012, ApJ, 751, 70
Vanzella, E., Fontana, A., Zitrin, A., et al. 2014, ApJ, 783, L12

Vanzella, E., de Barros, S., Castellano, M., et al. 2015, A\&A, 576, A116
Vanzella, E., Balestra, I., Gronke, M., et al. 2016c, arXiv:1607.03112
Vanzella, E., de Barros, S., Vasei, K., et al. 2016b, ApJ, 825, 41
Vanzella, E., De Barros, S., Cupani, G., et al. 2016a, ApJ, 821, L27
Verhamme, A., Orlitova, I., Schaerer, D., et al. 2016, arXiv:1609.03477
Verhamme, A., Orlitová, I., Schaerer, D., \& Hayes, M. 2015, A\&A, 578, A7
Vesperini, E., \& Heggie, D. C. 1997, MNRAS, 289, 898
Wise, J. H., Demchenko, V. G., Halicek, M. T., et al. 2014, MNRAS, 442, 2560
Wolf, J., Martinez, G. D., Bullock, J. S., et al. 2010, MNRAS, 406, 1220
Yue, B., Ferrara, A., Vanzella, E., \& Salvaterra, R. 2014, MNRAS, 443, L20
Zackrisson, E., Inoue, A. K., \& Jensen, H. 2013, ApJ, 777, 39
Zackrisson, E., Binggeli, C., Finlator, K., et al. 2016, arXiv:1608.08217

## APPENDIX A: SIMULATING ID11

We have assessed the robustness and uncertainties of the structural parameters reported above by performing end-to-end image simulations with the software SkyLens (Meneghetti et al. 2008, 2010). As outlined also by Meneghetti et al. (2016), this code can be used to simulate HST observations, including the lensing effects produced by matter distributions along the line-of-sight to distant sources. In the simulations presented here, we use our lens model of AS1063 to lens some template sources placed at the redshift and predicted position of ID11. In the following tests, we make the simplified assumption that the sources have circular shape.

We begin by performing simulations without including lensing effects. Since the light profile and the size of the sources is known, we can test if our method to measure these properties using the fitting software Galfit is robust. We generate source templates assuming Sérsic profiles with index in the range [0.5-10] and effective radius in the range [20-640] pc. ${ }^{5}$ We assume that the apparent magnitude of these sources in the F 814 W band is $m_{A B}=22.7$, which is chosen to provide an high $\mathrm{S} / \mathrm{N}$. We use Galfit to retrieve the structural properties of the sources from the simulated observations, finding that profiles, radii, and magnitude are correctly recovered only in the case of sources with $R_{e}=640,320$ and 160 pc , the latter radius corresponds to 0.7 pixels at the redshift of ID11. When a smaller $R_{e}$ is used, the profile parameters are only marginally recovered, showing the limits of the PSF de-convolution implemented by Galfit. This latter cases ( $R_{e}<100 \mathrm{pc}$ ) corresponds to $R_{e}<0.5$ pixels. Peng et al. (2010) shows that objects with $R_{e}$ smaller than half a pixel are not spatially resolved and severe systematics errors dominate any fit ${ }^{6}$.

5 The following values have been used: $20,40,60,80,160,320$, 640 parsec.
${ }^{6}$ Clearly this depends also on the $\mathrm{S} / \mathrm{N}$ of the image to fit and the quality of the PSF used. We limit our analysis to our PSF and for a bright object with magnitude 22.7, implying that for fainter not resolved objects the systematic errors are even more severe.


Figure A1. Simulated multiple images for ID11 are shown on the left side ( $4 \times 3$ panels) by adopting different light profiles (Sérsic, Gaussian) in the source plane and four effective radii ( $20,40,60,80 \mathrm{pc}$ ). In the first two rows a Sérsic index $\mathrm{n}=4$ and $\mathrm{n}=5$ are adopted, while in the bottom row a two dimensional Gaussian is assumed. On the right side the F814W band image is shown. All the images have been smoothed with a Gaussian filter with a radius of 3 pixel to highlight the tails of the elongated images. Sérsic indexes $n \simeq 4-5$ and $R_{e} \simeq 40-50 \mathrm{pc}$ well reproduce the data (see text for details). The top-right table compares the input radii and Sérsic index (only the $n=4$ case shown) of simulated images in the source plane with those retrieved by performing Galfit fitting on the lensed simulated images.

Then, we repeat the above experiment by simulating the lensing effects produced by AS1063. Figure A1 compares the results of the simulations with the real images of ID11 observed in the F 814 W band. While a Gaussian profile (Sérsic index $n=0.5$ ) is clearly inconsistent with the morphology of the images A and B of ID11 for any value of $R_{e}$, source models assuming Sérsic profiles with larger $n$ reproduce remarkably well the observed distortions, both in terms of their amplitude (i.e. the magnification) and direction. In particular the best agreement is found for sources with $n \sim 4-5$ and $R_{e} \sim 40-60 \mathrm{pc}$ (see again Figure A1).

Galfit fitting is performed on all the simulated images and the recovered parameters are compared to those of the input sources. In this specific case, the presence of two multiple images with very similar magnification (A and B) allow us to further check the variation in the Galfit measurements. In the cases $n=4$ and effective radii [20 80] pc we recover all the input parameters reasonably well. For example, in the case of the smallest source, $R_{e}=20$ pc, the measured effective radius is $R_{e}=1.28 \pm 0.25$ pixels (in the tangential direction), that corresponds to $R_{e}=$ $1.28 \times 0.03 \times 7650 / \mu_{T}=18.1 \mathrm{pc}$. Similarly, the measured structural properties are consistent with the input source models for the other values of $n$ and $R_{e}$ (see the summary table in Figure A1). We can therefore conclude that: (1) simulations validate the adopted method to infer the half
light radii and (2) objects with effective radii as small as 20 pc are recoverable, assuming they are tangentially magnified consistently to images A and B of ID11.


[^0]:    * E-mail: eros.vanzella@oabo.inaf.it

[^1]:    1 www.eso.org/sci/facilities/develop/instruments/muse.html

[^2]:    2 https://archive.stsci.edu/prepds/frontier/lensmodels/

[^3]:    ${ }^{4}$ https://jwst.stsci.edu/instrumentation

