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ABSTRACT 

Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older 

than 50 years in Western countries. To shed light onto the genetic background 

influencing susceptibility for GCA, we performed a genome-wide association screening 

in a well-powered study cohort. After imputation, 1,844,133 genetic variants were 

analysed in 2,134 cases and 9,125 unaffected controls from ten independent 

populations of European ancestry. Our data confirmed HLA class II as the strongest 

associated region (independent signals: rs9268905, P = 1.94E-54, per-allele OR = 

1.79; and rs9275592, P = 1.14E-40, OR = 2.08). Additionally, PLG and P4HA2 were 

identified as GCA risk genes at the genome-wide level of significance (rs4252134, P = 

1.23E-10, OR = 1.28; and rs128738, P = 4.60E-09, OR = 1.32, respectively). 

Interestingly, we observed that the association peaks overlapped with different 

regulatory elements related to cell types and tissues involved in the pathophysiology of 

GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, 

suggesting a high relevance of these processes for the pathogenic mechanisms 

underlying this type of vasculitis.  

 



Introduction 

During the last decade, genome-wide association studies (GWAS), in which 

common genetic variation across the whole genome is interrogated in a hypothesis-

free fashion, were a breakthrough in biomedical research methodology and have led to 

the identification of thousands of robust genetic associations within a wide spectrum of 

complex human diseases 1. However, some diseases of low prevalence have received 

less attention due to the difficulty in recruiting well-powered study cohorts, even though 

rare diseases result in a significant disease burden. An example is giant cell arteritis 

(GCA [MIM 187360]), the most common form of vasculitis in Western countries in 

people over 50 years old. GCA is characterised by chronic inflammation of large 

arteries, such as the aorta, the carotid arteries and its extracranial branches, which 

may lead to severe clinical sequelae if not treated promptly, including visual loss, scalp 

and tongue necrosis, aortic dissection/rupture or cerebral infarction 2-4. Although the 

genetic component of GCA has previously been investigated following a candidate 

gene approach, most of the described genetic associations were based on 

underpowered analyses and usually failed to be replicated in independent populations 

5. 

Recently, an international collaborative effort involving different European and North 

American research consortia has made possible the conduct of more powerful studies, 

including an Immunochip study, that have identified firm risk signals for GCA 

predisposition, such as HLA molecules and key genes of the immune response like 

protein tyrosine phosphatase, non-receptor type 22 (PTPN22 [MIM 600716]) and 

interleukin 17A (IL17A [MIM 603149]) 6-8. Taking advantage of the large sample 

collection that this collaboration has enabled, comprising ten independent populations 

of European ancestry that cover the whole gradient for prevalence of the disease, we 

performed an agnostic genetic study in GCA at the genome-wide level. 



Subjects and Methods 

Study population 

This study included a total of 2,134 GCA cases and 9,125 unaffected controls from 

ten independent populations of European ancestry: Spain (805 cases and 1,323 

controls), United Kingdom (352 cases and 2,965 controls), Italy (271 cases and 960 

controls), North America (176 cases and 1,181 controls from The United States of 

America and Canada), Germany (160 cases and 667 controls), France (114 cases and 

488 controls), Norway (104 cases and 121 controls), The Netherlands (69 cases and 

638 controls), Switzerland (46 cases and 500 controls) and Ireland (37 cases and 282 

controls). The diagnosis of GCA was established according to the 1990 American 

College of Rheumatology classification criteria for this disease 9. In addition, the 

diagnosis was subsequently confirmed by either a biopsy of the temporal artery 

(89.83%) or arterial imaging (10.17%) consistent with GCA. A detailed description of 

the main clinical characteristics of the different case cohorts is provided in Table S1. All 

participants signed an informed consent form before being enrolled in the study. The 

procedures followed were in accordance with the ethical standards of the responsible 

committee on human experimentation (institutional and national) of all participant 

centres. 

Genotyping and quality controls 

Genomic DNA from peripheral blood samples of all GCA cases as well as the 

Spanish and Irish controls were screened using the GWAS platform “Infinium® 

HumanCore Beadchip" in an iScan System and the Genotyping Module (v.1.9) of the 

GenomeStudio software (Illumina, Inc). The genotyping was conducted in the 

Genomics and Genotyping Unit of the Pfizer-University of Granada-Junta de Andalucía 

Centre for Genomics and Oncological Research (GENYO, Granada, Spain), following 

the manufacturer’s protocol. Single-nucleotide polymorphisms (SNP) with a cluster 

separation <0.4 were removed after the calling. 



Genotyping data from the remaining control population were obtained from 9 cohorts 

of geographically matched European ancestries included in previous studies 10-17 

(Table S2). 

All studies were subjected to stringent quality-control measures separately based on 

the same analytical protocol using PLINK v.1.07 18. Specifically, we filtered out SNPs 

with call rates <0.98, minor allele frequencies (MAF) <0.01, and those that deviated 

from Hardy-Weinberg equilibrium (HWE; P<0.001 in both cases and controls). 

Similarly, samples with less than 95% of successfully called SNPs, and one subject per 

pair of first-degree relatives (identity by descent > 0.4) were removed. Sex 

chromosomes were also excluded from the analysis. 

Finally, to check the consistency of the results, we re-genotyped the Spanish 

samples for the associated signals using predesigned TaqMan® 5’ SNP genotyping 

assays (assay IDs: C__16222465_10, C__25614474_20, and C___2397211_10) in a 

7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, California, 

USA), and compared the TaqMan types with the corresponding imputed data. 

Imputation methods 

After applying the QC filters, whole-genome SNP genotype imputation was carried 

out with IMPUTE v.2 19 using the combined 1000 Genome Project Phase III (1KGPh3) 

data as reference panel, which includes 2,504 individuals 20. In brief, for each individual 

dataset, the strand orientation, chromosome position, and SNP identification were 

updated in PLINK to match the build 37 (HG19) of the 1KGPh3. Next, PLINK-formatted 

files were converted to the appropriate format with GTOOL and the genotyping data 

were split into chunks of 50,000 Mb covering whole-genome regions. Imputation was 

done separately for each study. To ensure quality of imputed SNPs, the most likely call 

was used for merging genotypes, but only if the most likely call exceeded a probability 

threshold of 0.9 (the genotype was set to missing otherwise). As the individual 

imputation of each case/control set could lead to stratification, imputed data were also 



subjected to rigorous quality filters in PLINK, including removal of SNPs with call rates 

<0.98, MAFs <0.01, and those that were not in HWE (P<0.001). Moreover, after 

merging case/control sets, singleton SNPs and those showing strong evidence of 

discordance in the genotype distribution between cases and controls due to possible 

miscalling were removed using an in-house Perl script. Finally, principal component 

(PC) analyses were conducted to control for possible population stratification using 

PLINK and the GCTA64 and R-base software under GNU Public license v2. For that, 

we calculated and plotted the ten first PCs of each individual and those samples 

located at >4 standard deviations from the cluster centroids of each cohort were 

considered outliers and, consequently, excluded from the analyses. 

The final numbers of individuals and SNPs that remained in the filtered datasets are 

shown in Table S2. 

Statistical analyses 

Table S3 shows the estimation of the overall statistical power of this study 

accordingly with the CaTS Power Calculator for Genetic Studies software, which 

implements the methods described in Skol et al. assuming an additive genetic model 

21. 

PLINK was used to conduct all the case/control analyses. First, the genotype 

frequencies of all markers were compared between cases and controls of every 

individual dataset by logistic regression on the best-guess genotypes (>0.9 probability) 

assuming an additive model and using the ten first study-specific PCs and the gender 

as covariates. Next, a combined analysis of all studies was performed using the 

inverse variance weighted meta-analysis under a fixed effects model. In order to 

maximise the total number of SNPs analysed without compromising the consistency of 

the results, we tested all SNPs present in the largest GCA sample set (Spain) and in 

one or more additional studies (i.e. ranging from 2 to 10 studies but including always 

the Spanish set). A total of 1,844,133 were evaluated in the meta-analysis. To identify 

independent effects across associated regions, dependency analyses at the cohort 



level genome-wide scans were conducted in PLINK by step-wise logistic regression 

with adjustment for the most associated signals in the common set of SNPs, following 

by inverse variance weighted meta-analysis under a fixed effects model. The 

heterogeneity of the odds ratios (OR) across the different studies was estimated using 

both I2 and Cochran’s Q tests. The Manhattan plots were obtained with an in-house R 

script, and the zooms of the associated regions were obtained with LocusZoom v1.1 22. 

Functional annotation of associated variants 

We evaluated the putative functional implications of the GCA risk loci by 

implementing our data with publicly available functional annotation data. 

Despite the high efficiency of the imputation process, it was not possible to obtain 

imputed types for every known polymorphism. Therefore, in a first step, we identified all 

the SNP taggers (r2>0.8) of the associated signals of our GWAS using the 1KGPh3 

data for the European populations and PLINK. All taggers were considered equally as 

candidates for prioritising casualty or hypothesising possible molecular causes of the 

observed associations in the subsequent bioinformatic approaches. Then, we explored 

whether the taggers of each GWAS signal had possible functional implications. The 

tools PolyPhen-2 23 and Combined Annotation Dependent Depletion (CADD) 24 were 

used to evaluate possible damaging effects on the protein sequence of coding non-

synonymous SNPs. Regarding the intronic and intergenic variants, we explored 

whether they lay within known or predicted regulatory DNA elements (including regions 

of DNAase hypersensitivity, binding sites of transcription factors, promoter regions, 

chromatin marks, etc.) and whether they had predictive effects on clinical phenotypes 

using the online tools for exploring annotations of the noncoding genome RegulomeDB 

25 and HaploReg v4.1 26. Source of these databases includes public datasets from the 

projects Gene Expression Omnibus (GEO), the Roadmap Epigenomics, the 

Encyclopedia of DNA Elements (ENCODE), and 1KGPh3, as well as published 

literature. 



In addition, to provide an illustrative picture of the current knowledge on the GCA 

genetics, we conducted a molecular pathway enrichment analysis, considering both 

previously suggested GCA genes and those showing an association with disease 

susceptibility in this study, using the tool for that purpose of the Gene Ontology (GO) 

reference genome project 27; 28, powered by the Protein Analysis Through Evolutionary 

Relationships (PANTHER) Classification System 29. Biological pathways showing P-

values lower than 0.05 after Bonferroni correction were considered associated with the 

disease. Finally, predictive protein-protein relationships amongst these same genes 

were also tested using the Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING) database 30. Only candidate genes that showed statistically significant 

signals after correction for multiple testing (which was performed with a previously 

validated method to control the genome-wide type 1 error rate at 0.05 31) were included 

in the above analyses. 



Results 

Testing for association with disease susceptibility 

Three genomic regions contained association signals at the genome-wide level of 

significance in the overall meta-analysis: human leukocyte antigen (HLA) class II, 

plasminogen (PLG [MIM 173350]), and prolyl 4-hydroxylase subunit alpha 2 (P4HA2 

[MIM 600608]) (Table 1, Figure 1 and Table S4). 

Within the HLA region, the top hit was rs9268905 (P = 1.94E-54, OR = 1.79, 95% CI 

1.67-1.93), located between HLA-DRA [MIM 142860] and HLA-DRB1 [MIM 142857]. 

Dependence analyses suggested a possible independent effect on disease 

susceptibility within the HLA-DQA1 [MIM 146880] / HLA-DQA2 [MIM 613503] genomic 

region after controlling for the rs9268905 signal (lead SNP = rs9275592, adjusted P = 

1.78E-10, OR = 1.48, 95% CI 1.31-1.66). No association at the genome-wide level of 

significance remained within the HLA after conditioning on both rs9268905 and 

rs9275592 (Table S5 and Figure S1). 

Outside the HLA region, rs4252134, located in an intron of PLG at chromosome 6, 

represented the most strongly associated variant (P = 1.23E-10, OR = 1.28, 95% CI 

1.19-1.39, Figure 2). Although some heterogeneity was observed between studies 

(I2=48.8), consistent OR directions of the minor allele (towards risk) were observed in 

all sets (Table 1, Table S4 and Figure S2). Other SNPs within the gene (both intronic 

and exonic) also showed significant P-values, but their statistical significance was lost 

when conditioned on rs4252134 (Table S6 and Figure S3). Finally, another intronic 

SNP of P4HA2 at chromosome 5, rs128738, surpassed the statistical threshold (P = 

4.60E-09, OR = 1.32, 95% CI 1.20-1.45). This genomic region also showed additional 

suggestive signals, but none of them was significant at the genome-wide level (Figure 

2). 

To confirm the above results, we obtained direct genotypes of the whole Spanish 

cohort using TaqMan probes for rs128738 and two perfect proxies (r2 = 1) of 



rs4252134 and rs9268905 (rs4252125 and rs2395185, respectively). The overall 

concordance reached after comparing TaqMan types with the corresponding imputed 

data was 99.94% for rs128738, 99.81% for rs4252134/rs4252125, and 99.94% for 

rs9268905/rs2395185”. 

Functional annotations of proxies of the non-HLA hits 

To prioritise variants that could drive the observed non-HLA associations, we 

identified all the SNPs in high linkage disequilibrium (LD, r2 > 0.8) with the lead signals 

in the European populations of 1KGPh3 (Tables S7, S8), and used public online 

annotation tools to evaluate their possible functional implications. One PLG 

polymorphism (rs4252125) was annotated as missense in the dbSNP database. 

However, this variant was predicted to be benign according to PolyPhen-2, and 

showed no evidence of being potentially pathogenic after scoring the deleteriousness 

with CADD (raw score = -0.63, PHRED-like scaled C-score = 0.104). Then, using 

RegulomeDB, we identified those SNPs overlapping with known and predicted DNA 

elements with a higher probability of regulatory effects (score ≤ 3) (Tables S7, S8), and 

performed a detailed functional annotation of these tagger variants and the lead SNPs 

using HaploReg (Table 2 and Tables S9-S11). Most of them overlapped with DNase 

hypersensitivity sites and histone marks enriched at promoters and enhancers (Table 

2). Interestingly, some of these annotations were related to cell types and tissues 

involved in GCA pathophysiology. For example, PLG rs4252135 co-localised with 

DNase peaks in different immune cell lines and had a predicted enhancer chromatin 

state in lymphoblastoid cells (Tables S9, S10). A higher enrichment of promoter and 

enhancer epigenetic marks in these tissues was observed for the prioritised P4HA2 

variants (Table S9). Specifically, the lead signal rs128738 overlapped with enhancer 

histone marks in immune cells and with the imputed Transcription 3' Enhancer mark in 

the aorta (Table S10). Additionally, P4HA2 rs156023 showed evidence of influencing 



enhancer activity in hematopoietic stem cells and neutrophils as well as promoter 

activity in mononuclear cells and monocytes (Tables S9, S10). 

In addition, key regulatory proteins (some of them related to the immune response) 

bound by ChIP-seq experiments as well as relevant motif disruptions were reported in 

most cases (Table 2). 

Consequently, most prioritised SNPs also correlated with eQTL effects in peripheral 

blood monocytes and lymphoblastoid cells (Table 2 and Table S11). Interestingly, 

rs101194 and rs152054 were reported to affect P4HA2 expression in arterial tissues in 

the Genotype-Tissue Expression (GTEx) study 32, with rs101194 specifically acting as 

cis-eQTL in the aorta (Table S11). 

Candidate genes and pathway analysis 

We also checked the statistical significance in our GWAS of previously described 

GCA-associated genomic regions (± 100 Kbp 3’ and 5’ of the reported gene) through 

candidate gene and Immunochip studies 5; 8. Significant associations after controlling 

for multiple testing were observed across most of the analysed regions, with the 

myeloperoxidase (MPO [MIM 606989]), tumor necrosis factor (TNF [MIM 191160]), 

interleukin 6 (IL6 [MIM 147620]), nitric oxide synthase 2 (NOS2 [MIM 163730]), and 

PTPN22 regions harbouring the strongest non-HLA hits (MPO rs10853005, P = 7.19E-

05, OR = 0.84; TNF rs4959077, P = 2.08E-04, OR = 1.42; IL6 rs77741999, P = 2.17E-

04, OR = 1.20; NOS2 rs4255826, P = 5.75E-04, OR = 0.87; and PTPN22 rs2476601, P 

= 7.88E-04, OR = 1.24) (Tables S12, S13). Subsequently, we accomplished a protein-

protein interaction (PPI) and biological pathway enrichment analysis with those 

candidate hits showing statistically significant signals after correction for multiple 

testing in our GWAS (Table S13). The molecular network of the selected proteins had 

significantly more interactions than expected (number of nodes: 13, number of edges: 

14, average node degree: 2.15, clustering coefficient: 0.851, expected number of 

edges: 3, PPI enrichment P = 1.13E-06; Figure 3). Interestingly, PLG represented a 



relevant node showing evidence of interaction with different proteins (e.g. NOS3, IL-6, 

and TNF) (Figure 3). Regarding the functional enrichments of the network, the most 

significantly associated GO processes were those related to regulation of both cell-cell 

adhesion and the immune/inflammatory response (Table S14). 



Discussion 

This study represents an unbiased screening of genetic variation in GCA at the 

genome-wide level. GCA was one of the few types of vasculitis in which GWAS data 

were not available. Therefore, the results presented here may help to better 

understand the pathogenic mechanisms underlying this condition and its genetic 

similarities with other vasculitides. In this sense, our data reinforces the idea of GCA as 

an archetypal HLA class II disease mediated by an antigen-driven immune response 33, 

which is in contrast not only to Takayasu’s arteritis (TAK [MIM 207600]), another large-

vessel vasculitis, but also to other forms of vasculitis associated with class I molecules 

like Behçet’s disease [MIM 109650] 34. 

Two independent association signals with GCA predisposition were observed within 

the HLA region, one located between the HLA-DRA and HLA-DRB1 genes and another 

one between HLA-DQA1 and HLA-DQA2. This is consistent with the amino acid model 

that we proposed using imputed Immunochip data to explain the HLA class II 

association with GCA, which comprised the positions 13 and 56 of the DRβ1 and DQα1 

molecules, respectively 8. Indeed, the strongest hit in the Immunochip study (which had 

partial overlap of the sample collections with this one) was an SNP that tagged the 

model (rs477515) in high LD with the two independent HLA lead SNPs that we 

observed in our GWAS (rs9268923: r2 = 0.84, D’ = 0.95; rs3957146: r2 = 0.23, D’ = 

0.99). 

Regarding the non-HLA associations, several variants within the PLG gene were 

firmly associated with risk to develop GCA at the genome-wide level of significance in 

this study, although they all were in high LD and represented a single signal according 

to the dependence analysis. This gene encodes a secreted blood zymogen that can be 

converted through a complex conformational modification into two different active 

proteins, plasmin and angiostatin 35. The plasminogen system has an important role in 

a wide spectrum of physiological processes, including wound healing, fibrinolysis, 



angiogenesis, and lymphocyte recruitment and inflammation via production of 

cytokines and reactive oxygen species 36; 37, all of them relevant processes in GCA 38. 

Considering the opposite roles of plasmin and angiostatin in the induction of pro-

angiogenic processes 36; 37, we hypothesise that the PLG risk alleles could unbalance 

the metabolism of its encoded protein leading to the characteristic pro-inflammatory 

phenotypes of GCA, although there is a lack of experimental support for this 

assumption. Interestingly, anti-plasminogen antibodies have been correlated with 

systemic disease activity in ANCA-associated vasculitis [MIM 608710] 39, a type of 

vasculitis involving small- to medium-sized blood vessels that is also strongly 

associated with HLA class II molecules 40. In addition, PLG has been shown to be a 

shared risk gene for coronary artery disease [MIM 608320] and periodontitis [MIM 

260950], characterised by chronic inflammation 41, and multiple sclerosis [MIM 

126200], which is also an immune-mediated condition 42. Future studies aimed at 

improving the understanding of the zymogen activation may shed light into the PLG 

association with GCA. 

P4HA2 represents the second non-HLA hit in our GWAS. This gene encodes an 

isoform of the alpha subunit of the collagen prolyl 4-hydroxylase, which catalyses the 

formation of 4-hydroxyproline from proline residues that is essential for collagen 

biosynthesis, as it is required for the proper three-dimensional folding of newly 

synthesized procollagen chains 43. P4HA2 is considered an important hypoxia 

response gene and its expression is regulated by hypoxia-inducible factor-1 (HIF-1) 44. 

Other relevant HIF-1-induced genes include serpin family E member 1 (SERPINE1 

[MIM 173360], which is the principal inhibitor of the plasmin activation), and genes that 

have been previously associated with GCA risk through candidate gene studies, such 

as vascular endothelial growth factor A (VEGFA [MIM 192240], a potent endothelial 

growth factor), matrix metalloproteinase 9 (MMP9 [MIM 120361], involved in the 

breakdown of extracellular matrix), and IL6 (a pro-inflammatory cytokine) 5; 45; 46. 

Indeed, the hypoxic induction of all these HIF-1 target genes (and, indirectly, the 



inhibition of plasmin formation) is also related to the typical processes involved in the 

lesions of GCA individuals, i.e. fibrosis, inflammation, destruction of the internal elastic 

lamina, and vascular remodelling, with proliferation and migration of medial 

myofibroblasts and neoangiogenesis 38; 45. The prioritised P4HA2 SNPs proposed here 

correlated with cis-eQTLs in immune cells and arterial tissues. In particular, expression 

data indicate that rs101194 may influence P4HA2 expression in whole blood, 

lymphoblastoid cells, and the aorta, which is one of the most severely affected vessels 

in GCA 32; 38; 47-49. 

Overall, our results are consistent with the currently accepted understanding of the 

pathophysiology of GCA, in which vascular remodelling and angiogenesis, either under 

hypoxic conditions or by dysregulation of hypoxia-sensitive genes, are critical to the 

development of the clinical presentations 50. Future analysis of the genetic overlap 

between GCA and other forms of vasculitis using GWAS data may help to elucidate 

whether these pathogenic processes are a common feature in vasculitides, and to 

identify other relevant pathways for the development of GCA. 

To summarise, through the analysis of common variation across the whole genome, 

we have identified PLG and P4HA2 as the main non-HLA genetic factors underlying 

GCA predisposition. Their crucial role in neoangiogenesis highlights the high relevance 

of this process in the pathogenic mechanisms leading to this form of vasculitis. 
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Figure legends. 

Figure 1. Manhattan plot representation of the GWAS results. The -log10 of the 

inverse variance-weighted meta-analysis P-values are plotted against their physical 

chromosomal position. The red line represents the genome-wide level of significance 

(P < 5E-08). The most relevant associations are highlighted. 

 

  



 

Figure 2. Regional plots of the associated loci with GCA outside the HLA Region in the 

overall meta-analysis. (A) Plasminogen (PLG) region. (B) prolyl 4-hydroxylase subunit 

alpha 2 (P4HA2) region. Lead variants are highlighted in violet. 

 

  



Figure 3. Interaction network formed for GCA risk loci. GWAS genes of this study and 

those previously identified through Immunochip and consistent candidate gene studies 

were included in the analysis. STRING database was used to look for both direct and 

indirect interactions amongst selected genes. The width of the blue lines indicates the 

reliability of each interaction. 

 

 

 



Table 1. Independent association signals with giant cell arteritis susceptibility at the genome-wide level of significance. 

 

 

META-ANALYSIS MINOR ALLELE FREQUENCY (GCA/CTRL)a 

SNP 
Location 
(GRCh37) Locus Change P-value OR [CI 95%] P(Q) I2   Spain 

United 
Kingdom Italy 

North 
America Germany France Norway Netherlands Switzerland Ireland 

rs9268905 6:32432077 HLA-DRA / 

HLA-DRB1 

C<G 1.94E-54 1.79 [1.67-1.93] 0.75 0  0.46/0.32 0.52/0.37 0.33/0.23 0.48/0.32 0.39/0.28 0.48/0.29 0.47/0.33 0.37/0.28 0.42/0.34 0.45/0.34 

rs9275592 6:32680620 HLA-DQA1 / 

HLA-DQA2 
T<G 1.14E-40 2.08 [1.87-2.32] 0.98 0  0.15/0.08 0.18/0.11 0.09/0.05 0.20/0.09 0.18/0.10 0.18/0.10 0.28/0.16 0.18/0.10 0.19/0.11 0.15/0.10 

rs4252134 6:161153527 PLG C<T 1.23E-10 1.28 [1.19-1.39] 0.04 49   0.33/0.29 0.36/0.28 0.36/0.33 0.32/0.30 0.32/0.28 0.34/0.33 0.38/0.23 0.38/0.28 0.47/0.28 0.41/0.30 

rs128738 5:131540875 P4HA2 T<G 4.60E-09 1.32 [1.20-1.45] 0.49 0   0.19/0.14 0.22/0.17 0.16/0.14 0.17/0.16 0.20/0.17 0.18/0.16 0.22/0.18 0.23/0.15 0.18/0.16 0.16/0.18 

GCA, giant cell arteritis; CTRL, controls; GRCh37, genome reference consortium human genome build 37; OR, per-allele odds ratio for the minor allele; CI, confidence interval; Q, Cochran's Q test. 
a
N (GCA/CTRL): Spain = 805/1,323, United Kingdom = 352/2,965, Italy = 271/960, North America = 176/1,181, Germany = 160/667, France = 114/488, Norway = 104/121, Netherlands = 69/638, 

Switzerland = 46/500, Ireland = 37/282, Combined = 2,134/9,125. 
  



Table 2. Prioritised variants of the giant cell arteritis-associated non-HLA regions accordingly to the functional annotations of the lead signals and their proxies using ENCODE 
data. Chromatin marks in blood tissues are highlighted in bold. 

 
Regulatory chromatin marks Protein binding and regulatory motifs GRASP QTL and eQTL annotations 

SNP  
Location 
(GRCh37) Locus 

Distance 
from hit 
(bp) r2 

RDB 
score 

Promoter 
histone 
marks 

Enhancer 
histone 
marks 

DNase 
hypersens
itivity   

Proteins bound 
(ChIP-seq) 

Regulatory motifs 
altered (PWM)   GRASP QTL traits P-value Ref (PMID) 

eQTL 
hits 

rs4252134 6:161153527 PLG 
(intronic) 

0 - 6 - - -   - -   Gene expression of DDR1 in 
peripheral blood monocytes. 

3.31E-06 20502693   

rs4252126 6:161152294 PLG 
(intronic) 

1,233 0.995 1f YES - YES   CTCF Pax-6           

rs4252135 6:161154232 PLG 
(intronic) 

705 1.000 1f YES YES YES   CTCF, RAD21, 
SMC3, ZNF143, 
NFKB, FOXA1, 
FOXA2, ZNF263 

COMP1   Gene expression of DDR1 in 
peripheral blood monocytes. 

2.92E-06 20502693   

rs34126283 6:161130002 PLG 
(intronic) 

23,525 0.920 3a YES YES YES   GATA2 Cdc5, E2F, Evi-1, 
HDAC2, PLZF, 
Pou2f2, TATA  

          

rs4252125 6:161152240 PLG 
(missense) 

1,287 0.995 3a YES - YES   CTCF, RAD21 AP-3   Gene expression of UNQ9391 
in liver. 

4.09E-14 22006096   

rs128738 5:131540875 P4HA2 
(intronic) 

0 - ND YES YES -   - BDP1         24 

rs101194 5:131515413 P4HA2 
(intergenic) 

25,462 0.901 3a YES YES YES   GATA2, P300 CEBPB   Gene expression of P4HA2 in 
lymphoblastoid cell lines. 

2.00E-07 17873874 30 

                          Gene expression of SLC22A5 in 
peripheral blood monocytes. 

1.16E-08 20502693   

rs152054 5:131519540 P4HA2 
(intergenic) 

21,335 0.967 3a YES YES YES   CFOS BAF155, BCL, Egr-1, 
Ets, FEV, GATA, 
NERF1a, Nrf-2, 
PU.1, Pax-5, 
SETDB1, SIX5, Tel2, 
Znf143 

        25 

rs152051 5:131539025 P4HA2 
(intronic) 

1,850 1.000 3a YES YES YES   YY1, NFKB AIRE, Foxa, GR, 
VDR 

  Gene expression of P4HA2 in 
CEU-CHB-JPT-YRI 
lymphoblastoid cell lines. 

4.66E-09 17873874 28 

rs156023 5:131545168 P4HA2 
(intronic) 

4,293 0.967 3a YES YES -   - AIRE, LBP-1, LBP-9         22 

SNP, single nucleotide polymorphism; GRCh37, genome reference consortium human genome build 37; bp, base pair; RDB, Regulome database; PWM, position weight matrix ID; GRASP, 
genome-wide repository of associations between SNPs and phenotypes; PMID, PubMed identifier; eQTL, expression quantitative trait loci. 

RDB scores: 1f, eQTL + TF binding / DNase peak; 3a, TF binding + any motif + DNase peak; 6, other. ND, no data. 

 



Supplemental Figure 1. Manhattan plot representation of the step-wise conditional logistic regression of the HLA 
class II region. (A) Unadjusted test. (B) Results of the dependence analysis after adjusting for rs9268905. (C) Results 
of the dependence analysis after adjusting for rs9268905 and rs9275592. Lead variants are highlighted in violet. The 
red inset in (A) represents the scale in (B) and (C). 

 



Supplemental Figure 2. Forest plot representations of the meta-analyses of the lead variants associated with giant cell arteritis in this study. (A) HLA-DRA / HLA-DRB1 
rs9268905. (B) HLA-DQA1 / HLA/DQA2 rs9275592. (C) PLG rs4252134. (D) P4HA2 rs128738. Odds ratios with their 95% confidence intervals are shown for each individual 
population as well as for the overall meta-analysis. 
 

 
 



Supplemental Figure 3. Manhattan plot representation of the step-wise logistic regression of the plasminogen region. 
(A) Unadjusted test. (B) Results of the dependence analysis after adjusting for rs4252134. Lead variants are 
highlighted in violet. 

 

 

 


