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Abstract 

In this paper, we theoretically study the influence of a non-magnetic spacer between ferromagnetic 

dots and ferromagnetic matrix on the frequency dispersion of the spin wave excitations in two-

dimensional bi-component magnonic crystals. By means of the dynamical matrix method we 

investigate structures inhomogeneous across the thickness represented by square arrays of Cobalt or 

Permalloy dots in a Permalloy matrix. We show that the introduction of a non-magnetic spacer 

significantly modifies the total internal magnetic field especially at the edges of the grooves and 

dots. This permits the manipulation of the magnonic band structure of spin waves localized either at 

the edges of the dots or in matrix material at the edges of grooves. According to the micromagnetic 

simulations two types of end modes were found. The corresponding frequencies are significantly 

influenced by the end modes localization region. We also show that, with the use of a single 

ferromagnetic material, it is possible to design a magnonic crystal preserving properties of bi-

component magnonic crystals and magnonic antidot lattices. Finally, the influence of the non-

magnetic spacers on the technologically relevant parameters like group velocity and magnonic band 

width are discussed.  

 

 

I. Introduction 

 

    Spatial periodicity in a ferromagnetic material modifies spin wave (SW) dispersion relation and results in 

the formation of magnonic bands and band gaps. Magnetic materials with periodic modulation are called 

magnonic crystals (MCs) 1,2,3. Presently, MCs get particular interest due to the possibility of tailoring 

frequency spectra of SWs at the nanoscale; as a consequence, it is possible to understand magnetization 

dynamics and: a) to design metamaterial devices4,5, b) to transduce and transmit signals6,7,8, c) to realize 

magnonic transistors9,  d) to make logic operations10,11,12. 

    Among the possible geometries of MCs, the planar MCs are the most often investigated. This is due to the 

feasibility of fabrication of regular patterns and easy access to characterize magnetic properties, to measure 

SW dispersion relation and dynamics in time domain and to visualize SW excitations13,14. In standard SW 

transmission measurements microwave transducers (microstripes or coplanar waveguides) are used. They 

allow for effective excitation of SWs with long wavelengths. In this limit the magnetostatic interactions are 

important and propagation of SWs in nanostructures is usually investigated in the direction perpendicular to 

the external magnetic field, i.e., in the Damon-Eshbach (DE) geometry, where even at zero wavenumber the 

relatively high group velocity is present.   
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    Among planar MCs, the one- and two-dimensional (2D) MCs, i.e., with periodicity along one and two 

directions, respectively, can be distinguished.  The three main groups of 2D MCs are: arrays of dots, antidot 

lattices and bi-component MCs (BMC). The first consists of regular arrays of thin ferromagnetic dots, the 

second of negative arrays of the former, i.e., arrays of holes in thin ferromagnetic film. The last group can be 

regarded as a superposition of both, i.e., the antidot lattices with holes filled with a different ferromagnetic 

material. These three groups present distinct features in the SW propagation. The collective magnetization 

dynamics in an array of dots is solely due to dynamic dipole coupling between resonant excitations of the 

dots, however its properties are also influenced by static demagnetizing effects15. In the case of weak 

coupling (large separation between dots with respect to their thickness and width), the magnonic spectra 

consist of flat bands with frequencies related to the eigenmode excitations of the isolated dot16. By increasing 

the dynamic dipole coupling, e.g., by decreasing separation between dots, collective SW excitations with 

finite band width and preserving properties of the magnetostatic waves appear. The widening of the bands 

depends on the dipolar coupling strength and on the stray magnetic field17. However, the dynamic dipole 

interaction is effective especially for eigenmodes having the largest total dynamic magnetization (averaged 

over the whole dot), viz. mainly for the fundamental mode18, but also for end modes or low-order backward-

like magnetostatic modes19. In antidot lattices, the low frequency part of SW spectra is influenced by the 

inhomogeneous static demagnetizing field created by the edges of the holes. The presence of holes leads to 

the formation of wells of the total magnetic field where magnetization dynamics mainly concentrate20,21. 

Indeed, in antidot lattices end modes localized at the edges of the holes and SWs concentrated in channels 

between holes were found22,23. These effects disappeared at sufficiently small lattice constants, where the 

exchange interactions starts to prevail over the dipole interactions. Recently, also the effect of magnetization 

pinning on spin-wave dispersion has been theoretically studied in Permalloy (Py) antidot waveguides by 

introducing a surface anisotropy at the ferromagnetic/air interface24. Moreover, it has been shown that 

structural changes in antidot waveguides breaking the mirror symmetry of the waveguide can close 

bandgaps25. 

     It is also well known from the literature that the Dzyaloshinskii–Moriya interaction induces the tilting of 

the magnetic moments at the edges and leads to the formation of a non-collinear structure26 acting as a 

scattering barrier for spin excitations27 and partly contributes to the formation of end modes along the barrier. 

The transition from quantized to propagative regime of SWs (end modes and fundamental mode) can be 

controlled e.g., by the magnetic field orientation or by the separation between holes28,29,30. In addition to the 

demagnetizing effects, also the shape and size of holes in the antidot lattices influence the SW spectrum. 

This effect dominates for exchange SWs, i.e., at high frequencies or when the lattice constant is small31. In 

bi-component MCs the inhomogeneous demagnetizing field is still present, however its amplitude depends 

on the difference between the magnetic properties of the constituent materials. Thus, its influence on SW 

dynamics is weaker than in antidot lattices and valuable for the low-frequency modes only.  

    Recently, a bi-component MC composed of Co circular dots embedded in a Py (Ni80Fe20) matrix was 

investigated theoretically and experimentally14,32,33,34. The Brillouin light scattering (BLS) measurements 

showed the existence of two types of SW excitations concentrated in regions perpendicular to the external 

magnetic field containing Co dots and in Py matrix between the Co dots32. Theoretical studies have 

confirmed that the separation of frequencies of these SWs is due to a magnetostatic effect33,34 and the 

splitting of the magnonic band at the boundary of the Brillouin zone (BZ) is connected to the periodicity of 

the magnetic system14. However, the full magnonic band gap in bi-component MCs has not yet been 

investigated in detail. Changes of dot or antidot shape, their rotation with respect to the crystallographic axes, 

imperfections in their shape or at their edges can further modify SW spectra35,36,37. Thus, the large variety of 

shapes for dots or antidots and of their arrangements together with magnetic configurations which can be 

realized in MCs38,39,40,41, makes magnonics an inexhaustible and intriguing topic of research. More 

specifically, no enough attention has been given to the study of collective dynamics in bi-component MCs 

where a non-magnetic spacer separates the two magnetic materials. The aim of this paper is thus to 

theoretically investigate the effect of a non-magnetic spacer in 2D MCs on the dispersions of the relevant 

SWs according to a micromagnetic approach named Dynamical Matrix Method (DMM). This is done to 

investigate the important spin dynamics effects due the significant spatial variations experienced by the total 

inhomogeneous magnetic field because of the non-magnetic material at the interface between the two 

ferromagnetic materials. In this respect, it is studied the dynamics in square lattice 2D MCs with square 
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antidots partially filled with different magnetic materials but the obtained results can be easily generalized to 

other geometries. This is achieved by putting the non-magnetic spacer around the dots embedded in antidot 

lattices. In this study two types of separation between dots and Py matrix are considered: a) with the non-

magnetic spacer located only below the dot, and b) with the spacer fully around the dot. It is shown that these 

separations create an inhomogeneous static demagnetizing field which allows for the formation of end modes 

in the matrix (characteristic for the antidot lattices) and end modes in the dots (characteristic for the array of 

dots) which were not yet found in the previous studies14,34. Moreover, it is shown that similar properties can 

be achieved using a single ferromagnetic material, i.e., in single component 2D MC. This study focuses on 

the important part of magnetism devoted to SW phenomena in composite structures, which is almost 

unexplored yet in the case of large scale 2D bi-component nanopatterned systems. This investigation is also 

of interested for technological applications in the area of magnonics, magnetic memories and metamaterials. 

    The paper is organized as follows. In the next section the structures and the theoretical method used in the 

investigations are described. Then, in Sec. III, the results of calculation of SW spectra showing the influence 

of non-magnetic spacers on the magnonic dispersions are presented. In Sec. IV the results obtained are 

discussed and the influence of the inhomogeneity of the total magnetic field is analyzed. Then, in Sec. V, the 

effect of the non-magnetic spacer on the group velocity and magnonic band width is investigated. Finally, 

conclusions are drawn in Sec. IV. 

 

II. Structure and method 

 

    In order to study the dynamical properties of 2D MCs connected with the non-magnetic spacers between 

ferromagnetic materials, the dispersion relations of SWs for five systems have been calculated. The magnetic 

systems are composed of Py, Co and non-magnetic material. All geometries investigated here are based on 

square lattice and square magnetic dots, the lattice constant being a = 400 nm. MCs are supposed to be 

infinite in plane (along x and y). These five systems are depicted in Fig. 1: (a) System 1 (S1): bi-component 

MC composed of 30 nm thick Py film with an array of 20 nm deep square grooves of 200 nm size. In the 

bottom of grooves there is 10 nm of non-magnetic material and then Co dots (20 nm thick) partially 

immersed into the grooves. The Co dots are in direct contact with Py only at lateral edges of the dot. (b) 

System 2-Co (S2Co): bi-component MC similar to S1 but with 10 nm width spacer around the Co dots (200 

nm wide). In S2Co, Co dots and Py matrix are separated by a non-magnetic spacer. (c)  System 2-Py (S2Py): 

one component MC with the same geometry of S2Co but with Py dots. (d) MC composed of square Py dots 

(10 nm thick and 200 nm wide) surrounded by non-magnetic spacer and fully immersed in the Py matrix. 

This is system 3 (S3). (e) An array of squared Co dots (20 nm thick and 200 nm wide) constitutes the system 

4 (S4). All parameters used in the simulations are typical parameters for Py and Co materials42,43 : saturation 

magnetization for Py MS,Py = 750 emu/cm3 and for Co MS,Co = 1200 emu/cm3, exchange constants APy = 1.3  

10-6 erg/cm and ACo = 2.0  10-6 erg/cm, gyromagnetic ratios Py/2 = 2.96 GHz/kOe and Co/2 = 3.02 

GHz/kOe.  

    The static and dynamic properties of these magnetic systems have been investigated by means of two 

micromagnetic codes: Object Oriented MicroMagnetic Framework (OOMMF) code42 and DMM 

program34,44. The ground-state magnetization was determined by using OOMMF with 2D periodic boundary 

conditions; then this magnetic configuration was used as input to DMM. The DMM with implemented 

boundary conditions, a finite-difference micromagnetic approach first implemented for isolated 

ferromagnetic elements and extended to MCs composed by two ferromagnetic materials34, is applied to study 

the spin dynamic properties in bi-component systems where the two ferromagnetic materials are separated by 

a non-magnetic spacer. Since our results do not focus on dissipation properties of collective modes, the 

dynamics is studied in the purely conservative regime, hence no Gilbert damping energy density contribution 

is included in the equations of motion. For our purposes, in the DMM two indexes are used: 1) an index k to 

label micromagnetic cells, with k = 1,2,… N,  where N is the total number of micromagnetic cells in the 

primitive cell; 2) an index  j = Py, Co indicating the ferromagnetic material. The number of micromagnetic 
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cells assigned to the j-th ferromagnetic material is Nj such that NPy + NCo = N. For each micromagnetic cell 

the  magnetization in reduced units takes the form / sMk
k k
m M  with k

M  the magnetization in the k-th 

cell and  sM k  the saturation magnetization depending on the ferromagnetic material through the index k. 

Hence, in a polar reference frame the magnetization can be written in form:                              

(sincos,sinsin,cos),  
k kkkkk
       m                                           (1) 

where k
  ( k

 ) is the azimuthal (polar) angle of the magnetization; for the sake of simplicity the  time 

dependence is omitted. The total energy density 
E

E =
V

 , with E  the energy and V the volume of the system, 

respectively, depends on the polar and azimuthal angle in each micromagnetic cell, k
  and k

 . The total 

energy E is the magnetic Hamiltonian and the DMM was developed to study conservative systems 

corresponding to a purely precessional dynamics. In explicit form, for the systems under study, the energy 

density reads:  

 E = Eext+ Eexch + Edmg                   (2) 

with Eext the Zeeman, Eexch the exchange, Edmg the demagnetizing, respectively. Specifically: 
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     The first term of the Eq. (3) corresponds to the Zeeman energy density, where H indicates the external 

magnetic field. The second term of Eq. (3) is the exchange energy density expressed by means of two sums: 

the first sum runs over the N micromagnetic cells and is indexed by k whereas the second sum indexed by n 

ranges over the nearest neighbouring (n.n.) micromagnetic cells of the kth micromagnetic cell that can 

belong to a different ferromagnetic material. Aexch is the exchange stiffness constant and is related to the 

ferromagnetic materials through the indexes k and n, respectively, while kna  denotes the distance between 

the centers of two adjacent micromagnetic cells of indexes k and n , respectively. When the kth 

micromagnetic cell is on one of the edges (vertices) of the proper primitive cell, the interaction with the 

micromagnetic cells belonging to the correct nearest supercell (primitive cell) must be taken into account. 

The last term of Eq. (3) is the demagnetizing energy density where N  is the demagnetizing tensor and 

expresses the interaction among micromagnetic cells within the primitive cell and belonging to different 

primitive cells. Note that, unlike the bi-component system studied34 in S2Co the intermaterial exchange 

contribution is set equal to zero, because in the primitive cell the Co dot and the Py matrix are separated. 

Instead, in the S1, the exchange contribution at the interface between the two ferromagnetic materials is set 

equal to  Py-Co
Py Coexch

/2A A A   because Py matrix and Co dots are in contact. Note that in Eq. (2) the thermal 

contribution related to the thermal field is not included. Indeed, the studied dynamics is purely deterministic 

and not stochastic. Actually, the equations of motion within the DMM correspond to the deterministic 

Landau-Lifshitz equations and not to the stochastic Langevin or Fokker-Planck equations45.  

     The dynamic magnetization ( )m r of each collective mode fulfils the generalized Bloch theorem 

depending on the Bloch wave vector K and on the two-dimensional lattice vector of the periodic system R. 

For each micromagnetic cell ( )m r  is expressed in polar coordinates depending on the angular deviation 

from the equilibrium position of the azimuthal and polar angles ,k k  . In a compact form, the complex 

generalized Hermitian eigenvalue problem takes the form  

                                                                 (4) A Bv v,  
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where the eigenvalue 
1

 
ω

   with ω the angular frequency of the given collective mode which is in turn 

described by the eigenvector v = ( ,k k  ). The Hermitian matrix A  depends on saturation magnetization of 

the two ferromagnetic materials and on the corresponding gyromagnetic ratios. The Hessian matrix B  is 

expressed in term of the second derivatives of the energy density with respect to the azimuthal and polar 

angular deviations and k k   calculated at equilibrium. For further technical details  of the DMM applied to 

several materials see Ref. 34.  

     The use of the DMM for calculating the spectrum of collective spin wave modes is preferred with respect 

to the Fourier analysis of OOMMF because it has several computational advantages. Among them, just to 

mention a few: a) the system under study does not need to be excited by any magnetic field pulse, b) the 

spin-wave modes frequencies and eigenvectors of any symmetry are determined  by means a single 

calculation, c) the spatial profiles of the spin-wave modes are directly connected to the calculated 

eigenvectors allowing to accurately classify each collective excitation, d) the spectrum is computed directly 

in the frequency domain, e) the mode degeneracy is completely taken into account, f) the differential 

scattering cross-section associated to each spin-wave mode can be computed accurately starting from the 

corresponding eigenvectors. The size of the micromagnetic cells used in the static and dynamic simulations 

is 5  5  10 nm along x, y and z, respectively. 

 

 

Fig. 1. (a) System 1: Top view of the primitive cell and its perpendicular cross-section in a bi-component MC consisting 

of Co square dots in square array partially immersed in Py. Non-magnetic spacer (white area) of 10 nm thick separates 

the bottom of Co dots from Py. (b) System 2-Co: similar to S1 but with full separation of Co dots (200 nm wide) from 

Py (10 nm of non-magnetic spacer from the bottom and lateral sides of Co). (c) System S2-Py: one component MC with 

geometry equals to S2Co but with Py dot. (d) System 3: MC created by square array of square grooves in Py film 

partially filled with Py dots. Dots are separated from the matrix by 10 nm thick non-magnetic spacer. (e) System 4: 

square array of square Co dots. Red-dashed lines in the perpendicular cross-sections point at the planes (z = 5 and 25 

nm) used in Figs. 2(a), 2(b), 2(c), 2(d)  and 2(e) to visualize the spatial profiles of SW modes.  

 

    In order to investigate the propagation properties of SWs in MCs, the systems have been studied in the DE 

geometry, i.e., with the external magnetic field (H) of magnitude fixed at 2000 Oe parallel to the y-axis and 

the Bloch wave vector (k) parallel to the x-axis. 
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III. Spin wave excitations in MCs 

 

     In 2D antidot lattices and bi-component MCs a full magnonic spectra is very rich with plenty of SW 

excitations33. As an example, the differential scattering cross-section computed at the center of the BZ is 

displayed in Fig. 2 for S1. It can be seen that there is a large number of spin wave modes resulting from the 

calculation. However, for the purposes of this study focused on the dispersion behavior in the first BZ only 

three modes belonging to the lowest frequency part of the spectrum, namely the ones exhibiting an 

appreciable differential scattering cross-section, have been selected in S1. Nevertheless, note that there are 

also other collective modes in the highest frequency part of the spectrum having a non-negligible differential 

scattering cross-section, but in higher BZs. The same conclusions on the differential scatting cross-section 

can be drawn also for the other systems. The dispersion relations shown in Fig. 3 are the ones measured in a 

typical BLS experiment32,46. 
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Fig. 2. Differential scattering cross-section calculated for S1 at the center of the BZ. The arrows label the modes with 

the highest scattering cross section in the center of the first BZ investigated in this paper. 

 

    The dispersion relations of SWs in S1 are shown in Fig. 3(a). We classify the collective modes by taking 

into account the region inside the primitive cell where they have the maximum amplitude. In this respect, we 

named them: 1) end mode of the dot (EMd) (where the subscript “d” labels dot) mainly localized at the 

borders of the dots, 2) Damon-Eshbach-like mode in horizontal rows (DEHR) where the superscript “HR” 

means horizontal rows and 3) Damon-Eshbach-like (DE) mode; they have frequencies 9.94, 12.89 and 14.06 

GHz, respectively. The modes 2) and 3) are called Damon-Eshbach-like because they exhibit nodal planes 

parallel to the local static magnetization in the higher BZs and no nodal planes in the center of the BZ (see, 

Fig. 4(a)). This is in accordance to the classification of collective modes given for binary magnonic 

crystals34. In the center of the BZ, the DEHR and DE are the resonance modes called fundamental modes. The 

DEHR mode is localized in the horizontal rows containing the square dots (with amplitude concentrated 

mainly in Py), while the DE mode has the maximum amplitude in Co dots and non-negligible amplitude in 

the Py film. We point out that the end mode detected here has been previously found only in one component 

MCs47,48.  
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    The appearance of the end mode and the different SW amplitude distribution between Py and Co of DE 

and DEHR modes marks the difference between the S1 and the Co/Py bi-component MC investigated in Refs. 

[14,34]. We remark that these differences with respect to previous studied systems are mainly due to: a) the 

10 nm thick non-magnetic spacer between Co dots and Py matrix placed at the bottom of the dots, and b) the 

dot shape (these effects will be discussed in the next paragraph). Next, we study the effect of a full separation 

of Co dots from Py matrix on magnonic spectra. In Fig. 3(b), the dispersion curves for S2Co are presented. By 

looking at Fig. 3(b) we can see the appearance of two new modes, i.e. the end mode of Py film (EMf) at 11.9 

GHz (where the subscript “f” labels film) localized at the border of Py film and the backward-like mode 

(BAHR) at 13.86 GHz mainly concentrated in the horizontal rows. BAHR mode has nodal planes perpendicular 

to the local static magnetization (see, Fig. 4(b) for profiles of the modes). The frequency of the BAHR in S2Co 

is higher than the frequency of DEHR. This might be attributed to the strong localization feature of the BAHR 

in the region filled by Co dots having higher values of the magnetic parameters. By comparing frequency at 

the center of the BZ passing from S1 to S2Co, we observe a significant decrease of the EMd frequency from 

9.94 GHz to 5.47 GHz and a slight increase of the DE (DEHR) frequencies from 14.06 GHz (12.89 GHz) to 

14.67 GHz (13.48 GHz). The presence of five dispersion curves in S2Co is attributed to the fact that the 

differential scattering cross-section is comparable for the five SW excitations at the BZ center. 

    In order to study the effect of the Py matrix on the SW excitation in Co dots, we calculate the dispersion 

curves of S4 [Fig. 1 (e)], array composed of square Co dots. By inspection of Fig. 3(e) we note that the 

frequency of the EMd in S4 (3.5 GHz) is about 6 GHz lower than in S1 and 2.5 GHz lower as compared to 

the corresponding one in S2Co. Instead, the frequency of the DE mode (18.4 GHz) is 4 GHz higher than the 

one in S1 and 3.5 GHz higher than the one in S2Co.  Therefore, the effect of Py matrix is to lower the 

frequencies of the DE mode and to raise the frequencies of the EMd. This behavior can be understood by 

taking into account the variation of the magnitude of the interdot dipolar dynamic coupling and of the static 

demagnetizing field passing from an array of dots (S4) to a MCs (S1 and S2Co) composed by two 

ferromagnetic materials.  

    To study the effect of dot material and thickness in a Py matrix, we calculate the SW spectra of 2D MCs 

composed of Py dots in a Py matrix. It is important to underline that S2Py and S3 are neither a bi-component 

MC nor antidot lattices, but these structures preserve properties of both with the use of a single 

ferromagnetic material. The kind of modes found in S2Py and S3 is similar to the one found in S2Co. In S2Py, 

the EMd (8.92 GHz) is the lowest frequency mode as in S2Co. In S2Py the EMf (10.46 GHz) has a dispersion 

curve similar to that of EMd. The DE mode has a frequency of 12.8 GHz at the center of the BZ. The 

frequencies of BAHR mode (13.8 GHz) is lower than the ones of the DEHR mode (14.12 GHz). We observe 

that in S2Py the frequency sequence of DE, DEHR and BAHR modes is different with respect to the one in S1 

and S2Co (see Figs. 3(a) and 3(b)). In particular, the DE mode frequencies are lower than the DEHR mode ones 

as in the case of 2D one component antidot lattices47,48 (for further discussion see Section IV).  

   In order to understand the effect of the thickness of Py dots we compute the dispersion curves for S3 

shown in Fig. 3(d). In S3, the EMf (8.92 GHz) is the lowest frequency mode of the spectrum. The EMd 

frequency at the center of the BZ (12.84 GHz) is larger than the one of the DE mode (12.36 GHz), however 

the corresponding dispersion curves have a similar behavior. This frequency inversion as compared to S2Py is 

not surprising because the total magnetic field experienced by the EMd is higher with respect to the field felt 

by the DE. The DEHR and BAHR have frequencies 14.68 and 14.12 GHz at the center of the BZ, respectively. 

Comparing the dispersion curves in S2Co and S3, we observe that the order of DE and DEHR frequency 

modes in S3 is interchanged with respect to the ones in S2Co. Moreover, also the frequency order of the EMf 

and the EMd is interchanged with respect to the one in S2Py and S2Co. This interchange can be attributed to 

the effect of the reduction of the dot thickness that induces a lowering of the total magnetic field in the Py 

film where the EMf is localized. The intensities of the differential scattering cross-section of the DE, EMd, 

EMf and BAHR modes are comparable but are 40% lower than that of DEHR. 
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Fig. 3. Dispersion relation in the first BZ along the direction perpendicular to the external magnetic field. (a) Dispersion 

relation of the most relevant modes in S1: end mode of the dot (EMd), Damon-Eshbach-like mode (DE) and DE-like 

mode in horizontal rows (DEHR) are shown. (b) Dispersion relation in S2Co. The additional dispersion relation of the end 

mode in Py film (EMf) and backward-like volume SW (BAHR) are shown. (c) Dispersion relation of the most relevant 

modes in S2Py. (d) Dispersion relation in S3. (e) Dispersion relation in the array of Co dots (S4). The black dashed lines 

in Figs. 3(b), (c) and (d) mark dispersion relation of DE mode in homogeneous Py film of 10 nm thickness calculated 

according to Ref. 49. 
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Fig. 4. Spatial profiles (real part of the out-of-plane component of the dynamic magnetization vector) for SWs with 

large differential scattering cross-section in the center of the Brillouin zone. The spatial profiles of SW modes from the 

bottom part of the Py film (in the plane z = 5 nm in left column) and in the plane crossing dots (for z = 25 nm in right 

column) are shown in 3×3 primitive cells, i.e., on the planes marked in Fig. 1 with red dashed lines. (a) Spatial profiles 

of EM, DEHR and DE modes in S1. (b) Spatial profiles of EMd, EMf, DEHR, BAHR and DE modes in S2Co. (c) Spatial 

profiles of EMd, EMf, DE, BAHR and DEHR modes in S2Py. (d) Spatial profiles of EMf, DE, EMd, BAHRand DEHR modes 

in S3. (e) Spatial profiles of EM and DE modes in S4. 

 

    In Fig. 4 we show the spatial profiles of the real part of the out-of-plane component of the dynamic 

magnetization for the main modes at the center of the BZ of the systems studied. The spatial profiles are 

presented at planes z = 5 nm and z  = 25 nm, left and right column of each panels respectively, along the 

cross-sections indicated in Fig. 1 with red-dashed lines. Looking at Fig. 4(a) we can see that the EMd is 

strongly localized at the border of Co dots and its amplitude decreases at z = 5 nm where only Py is present 

with respect to z = 25 nm. The presence of the Co dots in S1 induces a strong DEHR amplitude decrease 

inside the region containing the Co dots: indeed, for z < 10 nm the amplitude of the DEHR mode is uniform in 

the whole rows, while for 20 nm < z < 30 nm its amplitude decreases in the Co dots region. By contrast, for 

the EMd the square Co dots induce an opposite behavior. The amplitude distribution of the DE mode takes 

contribution from both Co dots and Py matrix through its whole thickness. The DE is also the mode with 

largest differential scattering cross-section. Its intensity at kx is three times larger than that of the EMd or 

the DEHR mode (see Fig. 2). Fig. 4(b) displays the spatial profiles of the characteristic SW modes of S2Co. 

The presence of the non-magnetic spacer around the Co dots induces the appearance of the EMf that is 

strongly localized at the border of the Py matrix close to the non-magnetic spacer. The amplitude of this 

mode is almost uniform along the thickness, while that of the EMd decreases by decreasing z. The DEHR, 

BAHR and DE modes have uniform amplitude in the region of Py matrix along the thickness. On the other 

hand, in the region filled by Co dots their amplitude strongly decreases for z > 20 nm.   

     In Fig. 4(c) we show the spatial profiles of the collective excitations in S2Py. The amplitude variation of 

the EMd, DE, BAHR and DEHR modes as a function of z is the same as that in S2Co. Moreover, in S2Py the 

amplitude of EMf  decreases by decreasing z following a trend similar to that of the EMd. The amplitude of 

SW modes of S3 are illustrated in Fig. 4 (d). Similarly to what occurs in S2Co and S2Py, the SW amplitude of 

the DE mode is almost homogeneous across the thickness of the whole structure and larger in the rows 

between dots. The DEHR and BAHR modes amplitude is almost uniform along z in the Py matrix but decreases 

for z > 20 nm in the region filled by Py dots. In Fig. 4(e) are depicted the spatial profiles of collective modes 

in S4. In this system there is only Co along z and the amplitudes of EM and DE mode are uniform along the 

thickness.  

 

 

IV. Total magnetic field analysis 

 

     In order to understand the dispersion curves of the investigated structures, we calculate the in-plane 

components of the total (effective) magnetic field at different values of z. The total static magnetic field, 

which is the sum of the exchange field, the demagnetizing field and the Zeeman field, calculated for each 

micromagnetic cell by the OOMMF code, is averaged along the x direction for different values of z and y. 

The behavior of the total magnetic field is strictly related to the orientation of the static magnetization in the 

magnetic system. In Fig. 5 four regions along the thickness are taken into account: a) 0 nm ≤ z ≤ 10 nm 

where only Py is present; b) 10 nm < z ≤ 20 nm where there are Py and non-magnetic spacer; c) 20 nm < z ≤ 

30 nm where in S1 there are Py and Co, in S2Co there are Py, non-magnetic spacer and Co, in S2Py and S3 are 

present Py and non-magnetic spacer; d) 30 nm < z ≤ 40 nm where in S1 and S2Co there is Co, in S2Py is 

present Py.In particular, the presence of a well or a wall in the total magnetic field (see Fig. 5) is due to the 
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saturation magnetization contrast present at interfaces between two different materials. Moreover, in MCs 

showing magnetization inhomogeneities across the thickness, the total magnetic field at interfaces between 

two materials, present for 10 nm < z < 30 nm, influences also collective excitations in the homogeneous part 

of the structure (for 0 nm < z < 10 nm).  

 

 

Fig. 5. The y component of the total magnetic field calculated for (a) S1, (b) S2Co, (c) S2Py and (d) S3 along the y-axis 

and averaged along x, for four different values of z: z = 5 nm (in full Py film, black dot-dashed line), z = 15 nm 

(crossing Py and spacer below the dots, red dashed line), z = 25 nm (crossing Py matrix and middle of dots, green 

dotted line) and z = 35 nm crossing Co dots (only in S1 and S2Co, blue solid line). The gray vertical rectangles mark the 

non-magnetic spacer which separate the dot from the matrix. The insets on the top show a sketch of MCs with lines 

along which the total magnetic field is calculated. 

 

    The appearance of end modes in MCs is related to the presence of a strong inhomogeneity of the total field 

resulting in deep wells close to the border of the dots and the matrix. This feature of the total magnetic field 

in 2D bi-component MCs depends on two main factors: the shape of the dot and the contrast between the 

saturation magnetization of the different materials. In particular, the magnetization saturation contrast 

enhanced by the presence of the non-magnetic spacer leads to the formation of an inhomogeneous 

demagnetizing field and, as a consequence, to strong inhomogeneities of the total magnetic field at the 

border between two materials (Co/Py, Co/non-magnetic spacer and Py/non-magnetic spacer). Therefore, the 

presence of a thin non-magnetic spacer between two ferromagnetic materials not only influences 
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significantly the SW spectra but can also be an end mode’s creating factor. We underline that this important 

feature, namely the appearance of end modes, either as EMf or EMd, does not depend on the dot shape or on 

the ferromagnetic material for MCs having geometric parameters in the range of the ones typical of the 

recently studied bi-component systems. Hence, this picture is different from the one occurring in bi-

component systems14,34 where a crucial rule to determine the appearance of end modes was played by a 

specific combination of the magnetization saturation contrast and the dot shape. As an example, in a bi-

component MC composed of circular Co (Py) dots in direct contact with a Py (Co) matrix, the end mode is 

present when |MS| = |MS,Co - MS,Py| > 250 emu/cm3, but disappears when |MS| = 200 emu/cm3. Instead, if 

the bi-component system is composed of square Co (Py) dots in direct contact with Py (Co) matrix, an end 

mode is present when |MS| > 200 emu/cm3. Therefore, a thin non-magnetic spacer between the two 

ferromagnetic components of MCs not only influences significantly the SW spectra but also is an end 

mode’s creating factor. We underline this important feature, namely the appearance of end modes, either as 

EMf or EMd, does not depend on the dot shape or on the ferromagnetic material. In the following, we discuss 

the shape of the total magnetic field in 2D bi-component MCs introduced by non-magnetic spacers around 

dots and its relation to the end modes.Fig. 5(a) shows the total magnetic field calculated for S1 vs. y for 

different values of z. Two deep wells are present inside the region of the Co dot above the Py matrix 

corresponding to z > 30 nm. The two wells are still present for 20 nm < z < 30 nm, although with decreasing 

depth. The two wells disappear for z < 20 nm, however the walls appear in this range. For this reason the 

EMd is strongly localized in the well of the total magnetic field at the border of Co dot for z > 20 nm and 

disappears in the homogeneous part of the system where there is the Py matrix (z < 20 nm) [see Fig. 4(a)].  

    In Fig. 5(b) it is displayed the total magnetic field calculated for S2Co as a function of y for different values 

of z. It can be seen that the positions of the minima of the total magnetic field depend on z. In particular, the 

total magnetic field has its minimum value in the Py region for z < 20 nm, while in the Co region for  z > 20 

nm. These two wells close to the border between Py and the non-magnetic spacer and the non-magnetic 

spacer and Co give rise to the two localized modes EMf and EMd, respectively. Thus, the presence of these 

two end modes is strictly related to the non-magnetic material that surrounds the Co dots responsible for the 

appearance of the two minima in the total magnetic field.  

    Comparing the profiles of the total field at z =15 nm and z = 25 nm (red dashed and green dotted line in 

Figs. 5(a) and 5(b)), an increase of the depth of the magnetic wells can be noted in S2Co with respect to the 

one in S1. This explains the decrease of the frequency of the EMd in S2Co as compared to the one in S1. 

Moreover, the wells of the total field corresponding to the region filled by the Py matrix close to the non-

magnetic spacer at z =15 nm, although less deep than the ones in the Co dot, are deep enough to permit 

localization of the EMf. 

    By looking at Fig. 5(a) it is also possible to understand that the variation of the total magnetic field due to 

the non-magnetic spacer induces a change of DEHR and DE mode profiles as a function of z. We observe that 

the uniform amplitude of DEHR in the horizontal rows (see Fig. 4(a)) is due to the trend of the total magnetic 

field. Indeed, by looking at Fig. 5(a) (black dot-dashed line), we note that the total magnetic field does not 

present significant inhomogeneities along the y direction at z = 5 nm. Instead, at z = 25 nm the DEHR mode is 

localized only in the Py region (see Fig. 4(a)) and its amplitude vanishes inside the Co dot. On closer 

inspection of the corresponding total magnetic field [Fig. 5(a) green dotted line] we note the presence of a 

high wall at the border between Py and Co that prevents the spreading of DEHR inside the Co dot. The DE 

mode has higher frequency than DEHR and its amplitude spreads also in Co dot for z > 20 nm. In S2Co, there 

is an increase of the total magnetic field inhomogeneity as compared to S1 for each value of z, apart from z > 

30 nm where there is a small reduction [see Figs. 5(a) and (b)]. This results in an increase of the frequencies 

of the DE and DEHR modes.  

     In Fig. 5(c) we plot the total magnetic field for S2Py in order to investigate the effect of the change of the 

material filling the dots. There are two minima of the total magnetic field: the absolute minimum is located 

in the Py matrix for 10 nm < z < 20 nm and the other minimun is placed in the Py dot for 30 nm < z < 40 nm. 

In corrispondence of the above mentioned minima, also in S2Py there is the appearance of the EMd  and of the 

EMf, respectively. By looking at Figs. 5(b), (c) and (d), we can note a qualitative similarity of the behavior of 
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the total magnetic field as a function of y in S2Co, S2Py and S3, respectively. In Fig. 5(d),  where the Py dot 

thickness is 10 nm, the magnetic field well in the dot is less deep than the one in S2Py, while in the Py matrix 

it has a significant minimum (green dotted line, z = 25 nm). This explains the interchange of the frequencies 

of the EMf and EMd modes found in S3 with respect to the ones in S2Co and S2Py.  Detailed inspection of the 

total magnetic field profiles shown in Fig. 5 (b), (c) and (d) allows to notice also the relative change of the 

magnetic field values among S2Co, S2Py and S3 in the channels parallel to the x-axis containing dots [i.e., area 

of the DEHR mode, for 100 nm <  y < 300 nm in Fig. 5] and lying between the dots [i.e., area of the DE mode 

for 0 nm < y < 90 nm and 310 nm < y  < 400 nm]. In the middle part of these areas the average value of the 

total magnetic field is almost constant across the full thickness. In S2Co the values of the field are 2.06 and 

1.85 kOe in center of the areas of DE and DEHR mode, respectively, while in S3 the respective values are 

1.82 and 2.1 kOe. This behavior of the field can explain the frequency exchange of the DE and DEHR modes 

between S2Co, S2Py and S3 in Fig. 3 (b), (c) and (d), respectively. 

 

V. Features of the dispersion relation 

 

     In order to fully understand the effect of different position and size of the non-magnetic spacer on the 

propagation of SWs, we compute the group velocity and the band width for the most relevant modes. The 

group velocity is important e.g. in the transmission measurements with the use of coplanar waveguide 

transducers, where SW with low wavenumber are usually excited7. A wide band width is important in order 

to accommodate incoming and transmitted signal; moreover, it can be used as an indicator of the interaction 

strength in the MC. The group velocity (vg) in the DE geometry has been calculated for selected modes close 

to the center of the BZ, as: 

x

g
k

v






2 ,             (5) 

where  is the change of the SW frequency due to the change of the wavevector along the x-axis, kx (in 

calculations we set kx = 0.05 /a). The band width for selected mode has been calculated as a change of its 

frequency between BZ center and BZ border, bw = |(kx = /a) – (kx = )|. The group velocity and the 

band width of the investigated SW excitations (EMd, EMf, DE and DEHR) are calculated and collected in 

Table I. 

Table I. Group velocity vg in the BZ center and band width for EMd, EMf, DE and DEHR modes in the MCs investigated 

in the paper. The two largest group velocities and band widths are emphasized in bold. 
 

 

S1 S2Co S2Py S3 S4 

vg 

[m/s] 

Band 

width 

[MHz] 

vg 

[m/s] 

Band 

width 

[MHz] 

vg 

[m/s] 

Band 

width 

[MHz] 

vg 

[m/s] 

Band 

width 

[MHz] 

vg 

[m/s] 

Band 

width 

[MHz] 

EMd 64 162  48 154 0 21  48 446 40 154 

DEHR 144 750  368 272 160 1378  160 668 - - 

DE 256 355  522 810 256 1097  152 410 68 203 

EMf - -  80 226 48 49  48 173 - - 
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    By looking at Tab. 1 we can see that for vanishing wave vector, the DE and DEHR modes in S2Co exhibit 

the largest group velocities. These larger values of vg can be attributed to a combination of higher contrast 

between Co and non-magnetic spacer and Py and non-magnetic spacer and to a higher Co gyromagnetic 

ratio. This is an interesting result as S2Co can be regarded as the most disruptive structure with respect to a 

homogeneous thin film. The DEHR modes in S1, S2Py and S3 have similar group velocities, while the DE 

mode of S3 has a group velocity smaller than the ones of the DE modes in S1 and S2Py. The decrease of the 

group velocity in S3 can be due to the thickness reduction of the Py dots. These group velocities can be 

compared to that of the DE magnetostatic SW in homogeneous Py film of 10 nm thickness calculated 

according to Eq. (5). In this special case the latter turns out to be 880 m/s, a value larger than the ones of the 

systems studied as expected. The dispersion relation of the DE magnetostatic SW is superimposed in Figs. 

3(b), (c) and (d) with black dashed line. We can see that it matches very well with the DE mode in S2Co and 

the DEHR modes in S2Py and S3. This shows that the DE and DEHR modes, in S2Co, S2Py and S3 respectively, 

propagate in a way similar to that of the DE magnetostatic SW in homogeneous Py film and they travel 

mainly in the lower part of the structure where the dots influence on the internal field is smallest, 

nevertheless it changes the group velocity and band width.  

    Comparing the group velocities of DE and DEHR modes of S1, S2Co, S2Py, S3 and S4 with the one of the 

DE magnetostatic SW mode in homogeneous Py film, it can be noted that the presence of two different 

magnetic materials and a non-magnetic spacer reduces the speed of propagation in the BZ center. This is 

probably due to the presence of different magnetic material and non-magnetic spacer that induce the SW 

confinement in particular regions of the primitive cell.  

   The DE and DEHR mode of S2Py have the largest band width. It is interesting to note that also the end 

modes with higher frequency, EMf and EMd in S2Co and S3 have a band width comparable to that of the 

propagative DEHR and DE modes. This means that also the localized modes can propagate in this kind of 

MCs and their properties can be exploited for transmitting signal.  

 

 

V. Conclusions 

 

    Detailed theoretical investigations of the spin wave spectra in two-dimensional bi-component MCs with 

the DMM, in order to identify the influence of a non-magnetic spacer on the magnonic band structure have 

been performed. Square arrays of square grooves in thin Py film filled (or partially filled) with Co or Py 

square dots have been studied. The conclusions drawn for these kind of MCs can be generalized to other kind 

of 2D  lattices and of different dot shapes in the nanometric range. The non-magnetic spacer breaks exchange 

interactions between the magnetic materials of the matrix and the dot. However, most importantly, this non-

magnetic spacer strongly modifies the total magnetic field, especially also at the dot edges. Due to these 

changes of the magnetic field, two types of end modes appear in the same structure. These are the end mode 

localized in the dot and that localized in the matrix. Their frequencies strongly depend on the magnetization 

of the matrix and of the dot material. Moreover, we have shown that, by employing a single material (Py in 

our case), it is possible to design a MC preserving the main properties of bi-component MCs and magnonic 

antidot lattices. 

     We have also shown that the introduction of a non-magnetic spacer and the change of the magnetic dot 

material allow to tailor in different ways the SW spectra in MCs. This includes even the interchange of the 

SW frequency order. This property can be further exploited for modeling the magnonic band structure and 

magnonic band gaps towards the properties desired for practical applications. Moreover, the non-magnetic 

spacer breaks the exchange interaction at the border between the two ferromagnetic materials and allows the 

fabrication of structures where magnetization reversal of the dots can take place at magnetic field values 

different from those causing magnetization reversal in the matrix (due to different shape or crystalline 
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magnetic anisotropy). Here, there are more possibilities than in 1D re-programmable structures50,51, because 

the anisotropy axis (and the magnetization) of the dots can be in an oblique direction with respect to the 

magnetization of the matrix.  

     The results of this study are interesting also for the investigation of the dynamical properties of bi-

component MCs composed of hard and soft ferromagnetic materials, where stray magnetic field originating 

from the dots (made of hard ferromagnetic material) influences formation of the domain pattern52 but SW 

dynamics has not been investigated so far in such structures.  
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