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24 Abstract 

25 A better understanding of the microalgal basic biology is still required to improve the feasibility 

26 of algal bio-products. The photosynthetic capability is one of the parameters that need further 

27 progress in research. A superior PSII activity was previously described in the green alga 

28 Neochloris oleoabundans. In this study, N. oleoabundans was grown in a glucose-supplied culture 

29 medium, in order to provide new information on the organisation and interaction of thylakoid 

30 protein complexes under mixotrophy. Fluorescence measurements suggested a strong association 

31 of light harvesting complex II (LHCII) to PSII in mixotrophic samples, confirmed by the lack of 

32 LHCII phosphorylation under growth light and the presence of PSI-PSII-LHCII megacomplexes 

33 in Blue-Native gel profile. The chloroplast ultrastructure was accordingly characterised by a higher 

34 degree of thylakoid appression compared to autotrophic microalgae. This also affected the 

35 capability of mixotrophic microalgae to avoid photodamage when exposed to high-light 

36 conditions. On the whole, it emerged that the presence of glucose affected the photosynthetic 

37 performance of mixotrophic samples, apparently limiting the dynamicity of thylakoid protein 

38 complexes. As a consequence, PSII is preserved against degradation and the PSI:PSII is lowered 

39 upon mixotrophic growth. Apparent increase in PSII photochemical activity was attributed to a 

40 down-regulated chlororespiratory electron recycling.

41

42 Key words: Neochloris oleoabundans, mixotrophy, Photosystem II, thylakoid protein complexes, 

43 photosynthetic performance, Blue-Native PAGE, fluorescence measurements.

44

45

46
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47 Introduction 

48 Photosynthesis supports almost all life on Earth and involves several light-dependent reactions, 

49 which start with the absorption of light energy for the synthesis of NADPH and ATP (Geider and 

50 MacIntyre, 2002), used during the Calvin-Benson cycle for CO2 fixation (Falkowski and Raven, 

51 2007). Important features of the light reactions of photosynthesis are: collection of photons by 

52 light-harvesting antennae, migration of excitation energy to the reaction centers, electron transfer 

53 from H2O to NADP+, and ATP generation (Geider and MacIntyre, 2002). Light-harvesting 

54 pigment-protein complexes (LHC) deliver the absorbed light energy to the reaction centers of 

55 Photosystem II (PSII) and Photosystem I (PSI) (Minagawa and Takahashi, 2004). The major LHC 

56 of PSII, LHCII, is also essential for maintaining thylakoid membranes stacked and promoting 

57 distribution of absorbed light energy between photosystems (Tikkanen et al., 2008; Nevo et al., 

58 2012). PSII transfers electrons from water to plastoquinone (PQ) using light energy as a driving 

59 force (Chow et al., 1990; Minagawa and Takahashi, 2004; Daniellson et al., 2006). The electrons 

60 from plastohydroquinone reach PSI via Cytochrome (Cyt) b6f complex and plastocyanin. PSI is 

61 involved in a light-dependent electron transport to ferredoxin and to NADP+ (Chow et al., 1990). 

62 ATP synthase (ATPase) is the highly-conserved complex that catalyses ATP synthesis using the 

63 trans-membrane proton gradient created during the electron flow (Nelson and Ben-Shem, 2004). 

64 Important for understanding the molecular basis of the photosynthetic process is a detailed 

65 knowledge of the structure of its components (Barber, 2002; Dekker and Boekema, 2005; Nelson 

66 and Yocum, 2006). All protein complexes are composed of several protein subunits coordinating 

67 a large number of cofactors, which show a tendency to form higher-order associations, the so-

68 called supercomplexes (Dekker and Boekema, 2005; Caffarri, 2009; Minagawa, 2009; Croce and 

69 van Amerongen, 2011; Suorsa et al., 2015). The dynamic organisation of the pigment-protein 

70 complexes in the thylakoid membrane plays important roles in maintaining an optimal 

71 photosynthetic efficiency under several conditions, including different light regimes, temperature 
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72 and nutrient supply (Chow et al., 1990; Anderson et al., 1995). In green microalgae, whose cell 

73 volume is mainly occupied by the chloroplast, the photosynthetic efficiency is an indicator of their 

74 wellness conditions (White et al., 2011). This is an important factor to be taken into account, 

75 considering the importance of green microalgae for biotechnological purposes (Chisti, 2007; 

76 Borowitzka, 2013). In this scenario, mixotrophic microalgae have been largely investigated for 

77 their capability to highly increase their biomass content, benefitting from the exogenous organic 

78 carbon source assimilation together with light harvesting and CO2 fixation for growth (Lee, 2001; 

79 Xu et al., 2006; Scott et al., 2010; Stephens et al., 2010). However, there are few works concerning 

80 the interaction between photosynthetic complexes in thylakoid membranes during the assimilation 

81 of organic carbon by microalgae; in general, a specific reduction in PSII photochemistry was 

82 observed (Valverde et al., 2005; Oesterhelt et al., 2007; Liu et al., 2009). Very differently, 

83 mixotrophy promoted a very high PSII maximum quantum efficiency in the Chlorophyta 

84 Neochloris oleoabundans (Baldisserotto et al., 2014; Giovanardi et al., 2014). In this work, the 

85 effects of glucose supplied in the culture media of N. oleoabundans were assessed in order to 

86 provide new information on the photosynthetic metabolism and to understand the interaction of 

87 the different pigment-protein complexes during the organic carbon source assimilation. 

88 Immunodetection of different subunits of thylakoid multi-protein complexes was employed to 

89 identify differences in their relative abundance between autotrophic and mixotrophic samples, 

90 whereas Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) was employed to obtain 

91 information on native interactions of photosynthetic protein complexes in thylakoids (Hippler et 

92 al., 2001; Rokka et al., 2005). In parallel, chlorophyll (Chl) fluorescence measurements were 

93 performed in vivo on freshly-collected samples to identify differences in photosynthetic electron 

94 transport in autotrophic and mixotrophic cells.

95

96
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97 Materials and methods

98 Algal strain and culture condition

99 The Chlorophyta Neochloris oleoabundans UTEX 1185 (syn. Ettlia oleoabundans, 

100 Sphaeropleales, Neochloridaceae) was obtained from the Culture collection of the University of 

101 Texas (UTEX, USA; www.utex.org). Cells were grown and maintained in axenic liquid BM 

102 medium (Baldisserotto et al., 2012) in a growth chamber (24 ± 1 °C temperature, 80 µmolphotons 

103 m-2 s-1 PAR and 16:8 h of light-darkness photoperiod), without shaking and external CO2 supply. 

104 For experiments, cells were inoculated at least in triplicate at a density of 0.6 ± 0.1 x 106 cells mL-1 

105 in BM medium containing 0 (autotrophic cells) or 2.5 gL-1 of glucose and grown in 500 mL 

106 Erlenmeyer flasks (300 mL of total volume) in the growth chamber described above, with 

107 continuous shaking at 80 rpm. The glucose concentration of 2.5 gL-1 was selected in previous 

108 experiments in which the microalga was grown in the presence of increasing concentrations of 

109 glucose from 0 to 30 gL-1, comparing among them growth rates, cell morphology, glucose 

110 consumption and lipid accumulation inside cells, as reported in Giovanardi et al. (2014).  Growth 

111 was estimated measuring the optical density at 750 nm with a Pharmacia Biotech Ultrospec®2000 

112 UV–vis spectrophotometer (1 nm bandwidth; Amersham Biosciences, Piscataway, NJ, USA) and 

113 counting cells with a Thoma’s  haemocytometer under the light microscope (Zeiss, Axiophot, Jena, 

114 DE), on 1 mL of culture samples at days 0, 2, 3, 4, 7, 9, 11. 

115  Fluorescence measurements

116 Modulated chlorophyll fluorescence: slow kinetics.

117 In vivo Chla fluorescence was determined from liquid cultures at the late exponential phase of 

118 growth, i.e. at the 6th day from the inoculum, harvested by centrifugation to contain 15 μg mL-1 

119 Chl. Chlorophyll quantification was performed according to Wellburn (1994). Cell suspensions 
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120 were pre-incubated in darkness for 10 min and samples were subsequently exposed to actinic blue 

121 light. The following program was triggered: 90 µmolphotons m-2s-1, 11 min; dark, 11 min; 1000 

122 µmolphotons m-2s-1, 15 min; dark, 5 min. Light saturating pulses (0.6 s) were given every 40 s. Initial 

123 fluorescence F0 and maximum fluorescence FM after dark incubation were used to calculate the 

124 maximum quantum yield of PSII (FV/FM ratio), according to Lichtenthaler et al. (2005). Time 

125 course of Chl fluorescence parameters FM’, i.e. the maximum fluorescence in the light-adapted 

126 state measured applying the pulse, and Ft, i.e. the steady-state fluorescence yield, were determined 

127 with a DUAL-PAM-100 (Walz, Germany). 

128 The effects of far red light on PSII fluorescence were determined using an ODC OS1-FL portable 

129 fluorimeter (ADC Bioscientific Ltd, Hoddesdon, Hertfordshire, UK) on cell pellets prepared as 

130 described in Ferroni et al. (2011). Measurements were performed on 10 min dark-adapted samples. 

131 Cells were excited with far red light (740 nm) for 10 min. After that, recovery was followed for 

132 10 min in darkness. During the experiment, light saturating pulses were given every minute during 

133 the far red light exposure and at times 1, 2, 5 and 10 min during dark relaxation. The FM’/FM ratio 

134 was calculated and used to determine variations of PSII fluorescence. 

135 Fast chlorophyll fluorescence.

136 QA
- reoxidation kinetics was determined by flash-induced Chl fluorescence relaxation kinetics. 

137 The single turnover flash-induced increase in Chla fluorescence yield and its subsequent relaxation 

138 in darkness (FF-relaxation) were measured with a double-modulation fluorimeter (Photon System 

139 Instruments, Brno, Czech Republic). For analyses, 1 mL of samples containing 8 μg mL-1 Chl was 

140 incubated in darkness for 10 min and then QA
- reoxidation kinetics was recorded, after a single-

141 saturating flash (10 μs) provided by red LED, in the 150 μs - 100 s time range. Analyses were 

142 carried out either in the presence or absence of 5 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

143 (DCMU) (Allahverdiyeva et al., 2007). For easier comparison, the fluorescence relaxation curves 
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144 were averaged and normalised to the same amplitude. The relative QA
- concentration was estimated 

145 according to the model of Joliot (Joliot and Joliot, 1964). Multicomponent deconvolution of the 

146 relaxation curves was performed according to Vass and colleagues (1999).  

147 77K fluorescence emission spectra

148 Fluorescence emission spectra measured in vivo from samples containing 8 μg mL-1 Chl were 

149 recorded at 77 K using a diode array spectrophotometer (S2000; Ocean Optics, Dunedin, FL, 

150 USA) equipped with a reflectance probe as described in Keranen et al. (1999). The spectra were 

151 obtained by excitation with light at 440 nm, defined using LS500S and LS700S filters (Corion, 

152 Holliston, MA, USA) placed in front of a slide projector, whereas the emission between 600 and 

153 800 nm was recorded. For each biological replicate, at least 3 measurements were recorded. 

154 Thylakoid isolation 

155 Thylakoid membranes were isolated according to Järvi et al. (2011), with modifications. For 

156 extraction, 300 mL of cultures in late-exponential phase of growth were harvested by 

157 centrifugation at 600 g for 10 min. Pellets were transferred to an ice-cold mortar containing sand 

158 quartz. The extraction was performed grinding cells with liquid N2, then the lisate lysate was 

159 resuspended in a grinding buffer (330 mM sorbitol, 50 mM Tricine-NaOH pH 7.5, 2 mM 

160 Na2EDTA, 1 mM MgCl2, 5 mM ascorbate, 0.05% bovine serum albumin, 10 mM NaF) and 

161 transferred to 15 mL tubes. Samples were centrifuged at 300 g for 5 min at 4°C and then at 700 g 

162 for 5 min at 4°C, to remove sand quartz and cell debries. Pellets were discarded and the thylakoids 

163 present in the supernatant were collected by centrifugation at 7000 g for 10 min at 4°C. The 

164 supernatant was discarded and thylakoids were resuspended in 1 mL of shock buffer (5 mM 

165 sorbitol, 50 mM Tricine-NaOH pH 7.5, 2 mM Na2EDTA, 5 mM MgCl2, 10 mM NaF) and 

166 centrifuged at 7000 g for 10 min at 4°C. After that, the supernatant was removed and around 100 

167 µL of storage buffer (100 mM sorbitol, 50 mM Tricine1-NaOH pH 7.5, 2 mM Na2EDTA, 5 mM 
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168 MgCl2, 10 mM NaF) were added to the pellet. Thylakoid samples were rapidly frozen in liquid 

169 nitrogen and stored at -80°C until further analyses. Manipulation was always performed on ice and 

170 in very dim safe light. Quantification of Chl and proteins in thylakoid samples was performed 

171 according to Porra et al. (1989) and Lowry (1951), respectively. Before extraction, autotrophic 

172 and mixotrophic cultures were incubated in darkness for 1 h or maintained in growth light (80 

173 µmolphotons m-2 s-1) inside the growth chamber. 

174 SDS-PAGE and immunoblotting

175 Thylakoid proteins were separated by SDS-PAGE according to Laemmli (1970) on a 15% 

176 acrylamide resolving gel containing 6 M urea. After electrophoresis, proteins were visualised by 

177 Coomassie staining overnight, followed by destaining for 5 h, or blotted onto a polyvinylidene 

178 difluoride membrane (Millipore, Watford, Hertforshire, U.K.). Western blotting was performed 

179 with standard techniques using protein-specific antibodies. For the detection of D1-DE loop of D1 

180 protein, PsaB subunit of PSI and ATP-β subunit of ATPase, the antibodies were obtained from 

181 Agrisera (www.agrisera.com), whereas for the detection of the entire LHCII complex the antibody 

182 was kindly provided by L. Zhang. Before immunodetection, membranes were blocked with 5% 

183 milk (www.bio-rad.com) in TBS buffer (Tris-HCl 10 mM pH 7.4 and NaCl 1.5 M). For the 

184 detection of phosphoproteins, a polyclonal anti-phosphothreonin antibody was used (Zymed, 

185 www-invitrogen.com) and membranes were blocked with 1% BSA in TBS buffer. Horseradish 

186 peroxidase-linked secondary antibody in conjunction with chemiluminescent agent (GE heathcare, 

187 www.gehealthcare.com) was used for protein detection. Protein band intensity was quantified with 

188 Image J freeware (National Institutes of Health, Bethesda, MD, USA).

189  BN-PAGE and second dimension (2D) electrophoresis

190 BN-PAGE was performed according to Järvi et al. (2011) with minor modifications. Thylakoids 

191 (8 µg Chl) were solubilised on ice for 15 min with dodecyl β-D-maltoside (Sigma) at a final 
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192 concentration of 1.5% (w/v), followed by centrifugation at 18000 g at 4°C for 15 min. 

193 Electrophoresis was performed with a Hoefer Mighty Small system (Amersham Biosciences) at 

194 0°C for 3.5 h by gradually increasing the voltage from 75 to 200 V. For comparison, thylakoids 

195 from Arabidopsis thaliana were included in the analyses. Quantification of band volume was 

196 performed with Image J software. After BN-PAGE, the lanes were cut out and incubated in 10% 

197 SDS Laemmli buffer (Laemmli, 1970) containing 5% (v/v) β-mercaptoethanol for 1.5 h, followed 

198 by separation of the protein subunits of the complexes in the 2D with SDS-PAGE (12% 

199 polyacrylamide and 6 M urea). After electrophoresis, proteins were visualised by silver or SYPRO 

200 Ruby staining, according to the manufacturer’s instructions (www.invitrogen.com). The intensity 

201 of every spot in SYPRO- stained gels was determined with ProFinder 2D, version 2005 (Nonlinear 

202 Dynamics). 

203 Transmission electron microscopy (TEM)

204 For transmission electron microscopy, autotrophic and mixotrophic cells were harvested after 6 

205 days of growth and prepared as previously reported (Baldisserotto et al., 2007; Baldisserotto et al., 

206 2016). 

207 Statistical analyses

208 For each analysis, at least three biological replicates for each sample were set up. Elaboration of 

209 data was carried out with Origin Pro 2015 software (OriginLab, Northampton, MA, USA). To 

210 compare autotrophic and mixotrophic samples, Student’s t test was used. For statistical comparison 

211 of data obtained by SYPRO Ruby staining, one-way analysis of variance (ANOVA) was used. 

212

213

214
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215 Results

216 Growth kinetics of autotrophic and mixotrophic N. oleoabundans cells

217 Cell density of autotrophic and mixotrophic cultures during the experiment is reported in 

218 Supplementary Figure S1. As expected, cell densities were comparable with those observed in 

219 previous works (Giovanardi et al., 2014; Baldisserotto et al., 2016). Autotrophic and mixotrophic 

220 cells grew with no differences during the first 2 days, after that a significant cell density 

221 enhancement was observed in cells grown in presence of glucose starting from the 3rd day (p<0.01 

222 at day 3, p<0.001 at the following times). At the 7th day, both autotrophic and mixotrophic samples 

223 entered the stationary phase. Between day 2 and 7, an increase in PSII maximum quantum yield 

224 FV/FM occurred in mixotrophic cells. Analyses were subsequently performed on cells sampled at 

225 the 6th day of growth, period in which mixotrophic cells, still having high FV/FM values, also 

226 showed the maximum cell density value before entering the stationary phase of growth. 

227 In vivo fluorimetric analyses of autotrophic and mixotrophic N. oleoabundans

228 Slow kinetics of Chla fluorescence 

229 In order to clarify the effects of glucose on the dynamics of photosynthetic electron transfer in N. 

230 oleoabundans, Pulse Amplitude Modulated (PAM) fluorescence trace was monitored in freshly-

231 collected samples of autotrophic and mixotrophic cultures, measuring the time-course of Chl 

232 fluorescence parameters FM’ and Ft. Samples were pre-incubated in darkness for 10 min for 

233 determination of the initial F0 and FM values before triggering the measuring routine. A 90 

234 µmolphotons m-2s-1 irradiance was meant to reproduce a growth light condition, while a 1000 

235 µmolphotons m-2s-1 represented a condition of high light stress. In Fig. 1 representative Chla 

236 fluorescence kinetics are shown for autotrophic (Fig. 1A) and mixotrophic (Fig. 1B) cells. On the 

237 whole: i) no differences in the minimal level of fluorescence F0 were observed before turning on 

238 the actinic light; ii) during the 90 µmolphotons m-2s-1 - darkness sequence of the triggered program, 
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239 FM’ increased over the initial FM in autotrophic cells (Fig. 1A). On the other hand, the FM’ increase 

240 effect in the light was not always observed in mixotrophic samples and, when it occurred, the 

241 fluorescence increase was not as marked as in cells grown in the absence of glucose (Fig. 1B). In 

242 the light of these results, maximum quantum yield of PSII was re-calculated for both samples 

243 considering the real maximum FM value, i.e. FM’ at the end of 90 µmolphotons m-2s-1 irradiance, 

244 hereafter named FMtrue. The obtained FV/FMtrue ratio revealed no differences between autotrophic 

245 and mixotrophic cells in the maximum photochemistry quantum yield (Table 1). Same result was 

246 obtained calculating the FtLL/FMtrue ratio, where FtLL was the basal fluorescence at the end of the 

247 90 µmolphotons m-2s-1 exposure period (Table 1); iii) when cells were exposed to 1000 µmolphotons m-

248 2s-1, an initial rise in the basal fluorescence Ft was observed in autotrophic cells, followed by a 

249 strong decrease. These two phases were less evident in mixotrophic samples because of a less 

250 marked fluorescence rise as compared to autotrophic cells at the beginning of the high-light 

251 exposure period. Interestingly, the calculated FtHL/FMtrue ratio, where FtHL was the basal 

252 fluorescence at the end of the 1000 µmolphotons m-2s-1 exposure period, was significantly lower in 

253 autotrophic (-41%, p<0.01) than in mixotrophic cells (Table 1), suggesting a more reduced state 

254 of plastoquinone in mixotrophic cells after a prolonged exposure to high-light conditions; iv) when 

255 cells were finally exposed to darkness, maximum fluorescence FM’ gradually increased with no 

256 differences between samples. 

257

258

259

260

261

262
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263

Autotrophic 

N. oleoabundans

Mixotrophic 

N. oleoabundans

F
V
/F

Mtrue 0.708 ± 0.018 0.704 ± 0.044

F
t
LL/F

Mtrue 0.409 ± 0.076 0.374 ± 0.042

F
t
HL/F

Mtrue 0.303 ± 0.046 0.510 ± 0.125**

264

265 Table 1. PSII fluorescence ratios in autotrophic and mixotrophic N. oleoabundans. Values were obtained 

266 from Chla fluorescence kinetics traces reported in Fig. 1. Values are means of n≥3 ± standard deviation. 

267 **: p < 0.01 according with Student’s t test.

268

269 Effect of far red exposure on PSII photochemistry 

270 In order to investigate the reason for the increase in FM’ beyond FM during the exposure of 

271 autotrophic cells to growth light conditions, dark-adapted samples were exposed to far red light 

272 (740 nm), which selectively excites PSI and promotes the association of LHCII to PSII. Chla 

273 fluorescence, recorded as FM’ and normalised on the initial fluorescence FM, gradually and 

274 significantly increased in autotrophic samples to a maximum value of 1.78 after 9 min of far red 

275 exposure (p<0.05 at times 1, 5-9 min; p<0.01 from the 10th min) (Fig. 2). Conversely, in 

276 mixotrophic samples Chla fluorescence increased during the first 3 min, but subsequently 

277 stabilized at values of about 1.3 during far red exposure, indicating that LHCII relocation to PSII 



13

278 in mixotrophic cells was less inducible by far red treatment. During the subsequent dark relaxation, 

279 Chla fluorescence rapidly decreased in both samples, even though the autotrophic cells maintained 

280 values higher (around 1.1) than initial fluorescence value, whereas mixotrophic samples showed 

281 values around 0.9 (p<0.01).

282 Effects of mixotrophy on reoxidation kinetics of QA

283 The effects of mixotrophy on the activity of both quinone components of the quinone-iron acceptor 

284 complex, QA and QB, can be studied by measuring flash-induced changes in the yield of Chl 

285 fluorescence (Vass et al., 2002). The reduction of QA upon flash excitation results in a prompt 

286 increase in Chl fluorescence yield, which is followed by a dark decay in the range of 100 μs – 100 

287 s, a time range allowing the reoxidation of QA through various pathways (Vass et al., 2002). The 

288 fluorescence relaxation is dominated by a fast component (few-hundred μs), arising from QA
- to 

289 QB electron transfer in the RCII that had an oxidised or semi-reduced PQ molecule in the QB pocket 

290 at the time of flashing. The middle phase (few ms) arises from QA
- reoxidation in centers in which 

291 QB site in darkness is empty and PQ has to be bound from the pool. Finally, the slow phase of 

292 flash-induced fluorescence relaxation curve (few s) shows the recombination of the S2 state of the 

293 water oxidising complex with QB
- via the QA

-QB  QAQB
- equilibrium (Vass et al., 1999; Vass et ↔

294 al., 2002; Allahverdiyeva et al., 2005). Analyses of the kinetics of the flash-induced fluorescence 

295 relaxation showed no differences between autotrophic and mixotrophic samples, suggesting that 

296 the presence of glucose in the cultivation medium did not affect the forward electron transfer 

297 through the PQ pool (Fig. 3; Table 2). The kinetics was dominated by the fast phase of decay 

298 (around 560 µs; 85%), followed by a middle phase of around 10 ms time of decay with 7.7% 

299 amplitude and a slow phase of around 2 s with 7% amplitude. Despite mixotrophic samples showed 

300 a tendency to accelerated time of decay during the middle phase (around 30% less), the results 

301 were not statistically significant compared to autotrophic samples (p=0.42). In the presence of 

302 DCMU, which blocks the reoxidation of QA
- by forward electron transfer, the fluorescence 



14

303 relaxation indicates the status of the PSII donor side as revealed by recombination of QA
- with 

304 donor side components. In a functional PSII complex, the recombination partner of QA
- is the S2 

305 state of the water oxidising complex (Allahverdiyeva et al., 2005). As is shown in Fig. 3 (insert), 

306 QA
-
 reoxidation kinetics in the presence of DCMU appeared slowed-down in mixotrophic samples. 

307 This might reflect a defect in the assembly of the oxygen evolving complex (Allahverdiyeva et al., 

308 2013).

309

Sample 
Total 

Amp (%)

Fast phase

T/Amp (ms/%)

Middle phase

T/Amp (ms/%)

Slow phase 

T/Amp (s/%)

A 100
0.568 ± 0.081 / 

85.825 ± 2.597

13.500 ± 4.759 / 

7.694 ± 1.300

2.066 ± 0.665 / 

 6.480 ± 1.369

M 100
0.553 ± 0.116 /

 84.835 ± 4.471 

9.414 ± 1.960 / 

7.891 ± 2.187

1.806 ± 0.577 / 

 7.275 ± 2.335

310

311 Table 2. Characteristics of flash-induced Chl fluorescence relaxation in autotrophic (A) and mixotrophic 

312 (M) N. oleoabundans cells. Values are time of decay (T) and relative amplitudes (Amp) in percent of total 

313 variable fluorescence obtained after the fired flash. Values are means of n ≥ 3 ± standard deviation.

314

315

316

317
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318 Chl-protein complexes in thylakoid membranes of autotrophic and mixotrophic N. 

319 oleoabundans exposed to different light

320 Chl and protein quantification 

321 Quantification of Chl and protein amounts in thylakoids of autotrophic and mixotrophic N. 

322 oleoabundans are reported in Table 3. Total Chl quantified in thylakoids was compared with the 

323 protein amount, to obtain Chl/protein ratios. Interestingly, in the mixotrophic cultures, Chl/protein 

324 was halved as compared to autotrophic samples, because of a halved concentration of pigments 

325 upon an unchanged amount of proteins. This result was clearly visible also observing Coomassie-

326 stained SDS-PAGE (Fig. 4). About the Chla/Chlb molar ratio, instead, higher values were 

327 calculated in mixotrophic samples than in the autotrophic, suggesting a different distribution in the 

328 proportion of Chla and Chlb between samples (Table 3). Some of the key proteins which belong 

329 to major thylakoid complexes were detected and quantified by immunoblot analyses (Fig. 5A). 

330 Interestingly, lower amounts of PsaA (Supplementary Figure S2) and PsaB were detected in 

331 mixotrophic samples (-42.4% as compared to autotrophic cells). A slight decrease in the amount 

332 of ATP-β and LHCII protein was also observed with the addition of glucose upon growth, but it 

333 was not significant. Conversely, D1 protein was detected in higher amounts in 2.5 gL-1 of glucose-

334 grown cells (+47% as compared to autotrophic samples). 

335 To support the belief that autotrophic and mixotrophic cells had a different PSI:PSII stoichiometry, 

336 77K spectra were recorded in vivo from aliquots of samples containing 8 µg mL-1 Chl, frozen and 

337 maintained in liquid N2 before analyses (Fig. 5B). As clearly visible in mixotrophic samples, the 

338 peak at around 684 nm was attributed to PSII, while the peak at 714 nm was attributed to PSI-

339 LHCI (Ferroni et al., 2011). Moreover, a broad shoulder between 692 and 703 nm was observed. 

340 Emission around 700 nm can be attributed to LHCII aggregates (Horton et al., 1991). When 

341 mixotrophic were compared to autotrophic samples, spectra, normalized at the PSII emission 
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342 region, appeared very different (Fig. 5B). In fact, peaks were slightly shifted in control, at 683 nm 

343 for PSII and 713 nm for PSI-LHCI. Moreover, the shoulder at 692-703 nm was not observed 

344 between PSII and PSI emission regions. It is possible that this emission was not evident because 

345 of the higher emission from PSI-LHCI in autotrophic samples, confirming, then, the decrease in 

346 the PSI amount over PSII in mixotrophic vs autotrophic cells observed by immunoblot reactions.

347

348

Sample 
Chlorophylls

(μg μL-1)

Proteins

(μg μL-1)
Chl/proteins Chla/Chlb

A 3.38 ± 0.19 24.30 ± 1.53 0.139 ± 0.014    3.47 ± 0.10

M     1.65 ± 0.23 *** 25.77 ± 1.79     0.064 ± 0.011 **    4.09 ± 0.03***

349

350 Table 3. Chl amounts, protein amounts and corresponding ratios in thylakoids extracted from N. 

351 oleoabundans grown with 0 (A) and 2.5 gL-1 (M) of glucose. n≥3 ± standard deviation. **: p < 0.01; ***: 

352 p < 0.001, according with Student’s t test.

353

354 Organisation of thylakoid complexes 

355 In order to obtain the separation of the thylakoid membrane complexes from autotrophic and 

356 mixotrophic N. oleoabundans, a BN-PAGE system was optimised. In a first analysis, the pattern 

357 of protein complexes in autotrophic N. oleoabundans was compared to that of A. thaliana. 
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358 (Supplementary Figure S3), whose BN-PAGE profile was structured as previously described (Aro 

359 et al., 2005; Caffarri, 2009; Croce and van Amerongen, 2011). In the BN-PAGE of autotrophic N. 

360 oleoabundans, only some protein complexes corresponded to those separated in A. thaliana. 

361 Autotrophic N. oleoabundans lacked the LHCII assembly complex. Moreover, LHCII monomers 

362 were extremely abundant as compared to LHCII trimers. The following bands with higher 

363 molecular mass were identified: band I, apparently corresponding to PSII monomer; region II, 

364 which comprised all the smearing profile between band I and the following more intense band; 

365 band III and band IV, which had a mass similar to C2S supercomplexes of A. thaliana.

366 In a subsequent step, membrane protein complexes from autotrophic and mixotrophic N. 

367 oleoabundans were solubilized with dodecyl β-D-maltoside and separated by BN-PAGE with the 

368 same procedure (Fig. 6). Before thylakoid extraction, autotrophic and mixotrophic cells were 

369 exposed in parallel to darkness (dark autotrophic-DA and mixotrophic-DM samples) or maintained 

370 in growth light for 1 h (light autotrophic-LA and mixotrophic-LM samples), in order to detect 

371 differences in the protein-complexes organisation of photosynthetic membranes between samples 

372 and after a dark-light transition. BN-PAGE of the thylakoid protein complexes demonstrated a less 

373 abundant band of LHCII trimers in mixotrophic samples compared to the autotrophic ones (Fig. 

374 6), but the light-dark differences were not evident in BN-PAGE in the first dimension. 

375 Subsequently, each stripe from the BN-PAGE was analysed by SDS-PAGE in the 2D, enabling 

376 the separation of different protein complexes into constituting subunits (Fig. 7). In 2D silver-

377 stained gel of dark and light autotrophic cells (Fig. 7A), the first conspicuous band from right to 

378 left was identified as the LHCII monomers. The subsequent band corresponded to LHCII trimers. 

379 Two different series of LHCII protein spots were resolved, indicating the co-existence of two types 

380 of LHCII trimers with slightly different molecular mass. The more evident BN-PAGE band above 

381 LHCII trimers, the above-mentioned complex I, comprised a small amount of Psa A/B subunits 

382 co-migrating with all the subunits of PSII monomer. Just below band I, a very faint band, indicated 
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383 as I’, was shown to contain PSII monomer subunits, except CP47. Interestingly, different spots 

384 corresponding to Psa A/B subunits characterized the series of complexes having increasing 

385 molecular mass in the so-called region II. Band III, fainter than band I, comprised Psa A/B subunits 

386 of PSI co-migrating with CP43, CP47, D1 and D2 subunits of dimeric PSII. In this complex, small 

387 amounts of LHCII were also observed. Based on the comparison with A. thaliana profile 

388 (Supplementary Figure S3), band III was interpreted as the result of the co-migration of two 

389 independent complexes, PSII-LHCII (C2S) and PSI-LHCII (state-transition-like complex). Finally, 

390 in band IV Psa A/B subunits of PSI were observed associated to noticeable amounts of LHCI and 

391 LHCII complexes, but only negligible amount of PSII. Interestingly, despite silver-stained gels are 

392 not precisely quantitative, two aspects were noteworthy in autotrophic samples: 1) the amount of 

393 LHC associated with PSI in band IV decreased during the dark-light transition of the microalga, 

394 suggesting a stronger affinity of the subunits which compose this complex in darkness; 2) PSI 

395 subunits of thylakoids extracted from samples maintained in growth light were more evenly 

396 distributed from lower to higher molecular mass complexes as compared to thylakoids extracted 

397 from cells incubated in the dark. About the 2D BN/SDS-PAGE silver-stained image of 

398 mixotrophic samples (Fig. 7B), no major differences were observed in the general thylakoid 

399 protein pattern by comparison with autotrophic samples, except for the presence of a region above 

400 band IV, indicated as “megacomplexes”, which was resolved in the 2D gel in subunits belonging 

401 to PSII and PSI. In dark-acclimated mixotrophic samples, only Psa A/B subunits were clearly 

402 detectable in the band, whereas in light-acclimated mixotrophic samples CP47, CP43, D2, D1 and 

403 LHC proteins were also resolved. As compared to the autotrophic samples, in the mixotrophic 

404 cells: 1) PSI was mainly concentrated in band IV independent of the dark/light incubation; 2) band 

405 IV was shown to also contain PSII, i.e. presumably a C2S LHCII-PSII supercomplex with higher 

406 molecular mass than the C2S PSII complex in band III; 3) PSI and PSII tended to associate into 

407 stable large megacomplexes with LHCII, especially in light conditions.
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408 Quantification of spot density of thylakoid proteins was performed staining the 2D BN/SDS-

409 PAGE gels with SYPRO® Ruby dye. Psa A/B and CP43 were used to quantify the relative amounts 

410 of PSI and PSII, respectively. LHC proteins generated too intense signal to give reliable results in 

411 a gel-stained protein quantification. PSI and PSII distribution in thylakoid complexes was 

412 compared between light and dark autotrophic and mixotrophic samples (Fig. 8). When PSII 

413 distribution was examined among the different thylakoid complexes (Fig. 8A), the majority was 

414 found as a monomer (band I). In particular, autotrophic samples showed a higher proportion (> 

415 80% of total PSII) than mixotrophic cells (around 72% in both samples). On the contrary, PSII of 

416 band III (putative C2S) was more abundant in mixotrophic cells, irrespective of dark-light 

417 acclimation (+ 60%, as compared to the corresponding autotrophic samples). In band IV, LA 

418 showed a negligible percentage of PSII, despite no significant differences were observed with DA, 

419 as well as between autotrophic and mixotrophic samples incubated in darkness. As seen in silver-

420 stained gels, PSII did not characterize the region II and indeed its presence was not determined. 

421 Thus, it can be concluded that, irrespective of the light exposure before extraction, mixotrophic 

422 samples showed more abundant PSII in the dimeric, LHCII associated, forms as compared to the 

423 autotrophic samples. This tendency of PSII to organise more stably with LHCII was in line with 

424 the occurrence of megacomplexes. 

425 Regarding the relative protein amount of PSI, the transition from dark to light did not induce a 

426 different distribution in the bands III and IV in autotrophic samples (Fig. 8B). Instead, in region 

427 II, PSI proportion decreased by 45% upon light exposure. On the contrary, PSI became more 

428 represented in the lighter form, co-migrating with PSII monomer in band I. In mixotrophic 

429 samples, the dark-to-light transition did not change PSI distribution among complexes. 

430 Interestingly, in those samples a lower proportion of PSI was found in complex III compared to 

431 autotrophic samples (about 65% less). As observed previously for PSII distribution, the presence 

432 of megacomplexes occurred only in mixotrophic samples (Fig. 8B). 
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433 The distribution of PSII and PSI in mixotrophic samples conveyed a picture of low dynamism of 

434 thylakoid protein complexes, which was expected to have an impact on the thylakoid architecture. 

435 In fact, TEM images showed in both autotrophic and mixotrophic cells a similar thylakoid system, 

436 except for the very high degree of appression in the latter, even leading to a virtual absence of the 

437 thylakoid lumen (Fig. 9). 

438 Detection of thylakoid phosphoproteins

439 The determination of in vivo thylakoid phosphoproteins was important to understand the role of 

440 band IV and megacomplexes detected in 2D/BN-SDS PAGE. In particular, the strength of LHCII-

441 PSII and LHCII-PSI association is usually linked to LHCII phosphorylation levels (Mekala et al., 

442 2015). The detection was obtained with anti-phosphothreonine (Fig. 10A). Coomassie-stained 

443 SDS-PAGE of a replicate gel was performed to confirm the efficiency of the electrophoretic race 

444 (Fig. 10B). In all the samples, the major phosphoproteins were identified as CP43, D2 and two 

445 different proteins of LHCII (Fig. 10A), i.e. two less abundant subunits with high molecular mass 

446 (Fig. 10B). LHCII phosphorylation was observed at basal levels when thylakoids were extracted 

447 from dark-incubated autotrophic samples. As expected, a strong increase in the phosphorylation 

448 level of LHCII proteins was very evident in LA. Intrinsic antenna CP43 and protein subunit D2 of 

449 PSII core were not affected by the transition from dark to growth light and remained 

450 phosphorylated at basal levels. When DM samples were considered, only CP43 appeared slightly 

451 phosphorylated, whereas other phosphoproteins were barely detectable. Moreover, very 

452 surprisingly, the extent of light-induced phosphorylation was very limited. The phosphorylation 

453 levels were even lower than those observed in dark-acclimated autotrophic cells (Fig. 10A).

454

455
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456 Discussion 

457 In N. oleoabundans, only limited information concerning its photosynthetic metabolism is 

458 available. Recent works (Baldisserotto et al., 2014;  Giovanardi et al., 2014; Sabia et al., 2015, 

459 Baldisserotto et al., 2016) have proved that the assimilation of organic carbon in this microalga 

460 interferes with the photosynthetic performance in a contrasting manner compared to other green 

461 microalgae, in which mixotrophy induces a down-regulation of photosynthesis (Oesterhelt et al., 

462 2007; Liu et al., 2009). In order to explore the mechanisms involved during the mixotrophic 

463 growth, and understanding how the interaction between Chl-protein complexes are modified by 

464 the glucose assimilation and how light irradiance affects the photosynthetic apparatus, detailed 

465 analyses were performed on N. oleoabundans cultivated in the presence of 2.5 gL-1 of glucose, 

466 which promoted growth and FV/FM, consistent with previously published results (Supplementary 

467 Figure 1S; Giovanardi et al., 2014). 

468 Higher FV/FM in mixotrophic than in autotrophic cells is due to down-regulated chlororespiration

469 Measurements of Chla fluorescence induction were performed on dark-adapted cells. This 

470 condition is meant to fully oxidise the PQ pool, leading to a complete opening of PSII. However, 

471 PQ reduction can partially occur in the dark in different organisms because of chlororespiratory 

472 pathways, which allow dissipating the excess of reducing power in the stroma by the ultimate 

473 reduction of O2 (Bennoun, 1994; Feild et al., 1998; Hoefnagel, 1998; Hill and Ralph, 2008; Cruz 

474 et al., 2011). As a consequence of PQ reduction in darkness, the phosphorylation of LHCII and its 

475 migration to PSI is promoted (Krause and Weiss, 1984; Finazzi et al., 1999; Houille-Vernes et al., 

476 2011), whereas when low actinic light is triggered, FM’ values gradually increase and exceed FM 

477 (Cruz et al., 2011; Houille-Vernes et al., 2011). This is exactly observed in autotrophic N. 

478 oleoabundans cells (Fig. 1A). Very surprisingly, instead, mixotrophic cells did not appear much 

479 affected by chlororespiration in darkness, and, when samples were exposed to growth light 
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480 conditions, FM’ only slightly exceeded FM values (Fig. 1B). It has been suggested that, if 

481 chlororespiration occurs, the maximum FM’ value measured under low actinic light (FMtrue) should 

482 be used instead of the dark-acclimated FM (Serôdio et al, 2006). Then, if the FV/FMtrue ratio was 

483 used instead of FV/FM, the same maximum photochemical activity was determined in autotrophic 

484 and mixotrophic cells (Table 1). 

485 Further evidence for the fact that in autotrophic samples a dark incubation determines a partial 

486 association of LHCII with PSI was provided by illumination the cells with far red light (Fig. 2), 

487 which selectively excites PSI, promoting the maximum oxidation of the PQ pool and of the inter-

488 system electron transport chain (Lokstein et al., 1994; Schansker and Strasser, 2005; Hill and 

489 Ralph, 2008). In autotrophic cells, the gradual rise in FM’/FM during far red light treatment 

490 indicated a gradual increase in the LHCII proportion serving the PSII core. On the contrary, in 

491 mixotrophic cells the ratio soon reached a plateaux, suggesting that most LHCII was already linked 

492 to PSII in dark-acclimated samples. 

493 In the light of above results, it emerges that the higher FV/FM ratio characterising  mixotrophic N. 

494 oleoabundans actually occurred because the FM levels of autotrophic samples were underestimated 

495 (Hill and Ralph, 2008; Giovanardi et al., 2014). Therefore, the glucose-grown samples did not 

496 hold an improved maximum photosynthetic efficiency of PSII, but rather they might have 

497 experienced important effects on the reduction state of the photosynthetic electron transport chain 

498 (Baker, 2008; Roach et al., 2013). On the other hand, the availability of oxidized PQ did not seem 

499 to be much influenced by the addition of glucose in the culture medium (Fig. 3), as previously 

500 shown also in Chlamydomonas reinhardtii (Roach et al., 2013). However, it is noteworthy that in 

501 green microalgae, the fast reoxidation phase appears much more conspicuous compared to those 

502 measured in higher plants and cyanobacteria (Allahverdiyeva et al., 2013; Volgusheva et al., 2013; 

503 Deák et al., 2014). This reflects a faster and more efficient forward electron transfer from QA
- to 

504 the QB present in the QB pocket of PSII as compared to other photosynthetic organisms, but, as a 
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505 side effect, it can also hide differences in the amplitudes and times of decay of the subsequent 

506 middle and slow phases of Chl fluorescence. The addition of DCMU, for instance, revealed a 

507 probable defect in the assembly of the oxygen evolving complex, despite incipient, in mixotrophic 

508 cells. A similar effect was also previously observed in mixotrophic C. reinhardtii (Roach et al., 

509 2013). This defect may be negligible in growth-light conditions, but could become relevant if cells 

510 were exposed to high light.

511

512 Mixotrophic cells are more sensitive to high-light exposure than autotrophic cells

513 Differences in properties of the electron transport pathways in mixotrophic and autotrophic growth 

514 conditions were not detectable under growth light conditions. This light regime, indeed, did not 

515 influence the FtLL/FMtrue ratio (Table 1) and, thus, did not provoke an electron overloading of the 

516 thylakoid membrane. However, the capability to avoid photodamage under high light exposure 

517 was strongly affected in mixotrophic cells, as showed by the lower FtHL/FMtrue ratio than in 

518 autotrophic samples. In the latter cells, according to Tikhonov (2015), when actinic high light was 

519 switched on, the gradual, sensible increase in Ft reflected the rapid reduction of the intermembrane 

520 PQ pool (Fig. 1). Subsequently, its decrease was linked to the activation of the Calvin-Benson 

521 cycle and concomitant acceleration of electron outflow from PSI, with the consequent PQH2 pool 

522 reoxidation (Tikhonov, 2015). The mixotrophic samples reached in a very short time the maximum 

523 level of reduced PQ pool as compared to cells grown autotrophically. This led to the less evident 

524 peak of Ft observed in mixotrophic conditions. The subsequent decrease in the Ft values was 

525 likewise less evident. Accordingly, a slower electron flow in mixotrophy during high light 

526 exposure might be linked to a reduced activity of the Calvin-Benson cycle and a lower proportion 

527 of PSI in the thylakoid membrane (Tikhonov, 2015). 

528
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529 PSII complexes become less dynamic in mixotrophic cells

530 The redox state of the electron transport components influences not only the LHCII association to 

531 PSII and PSI, but also the relative abundance of both photosystems (Kováks et al., 2000). In this 

532 work, mixotrophic samples were mainly characterised by a decrease in the amount of PSI and an 

533 increase in the amount of PSII (Fig. 5A, B). Furthermore, Chla/Chlb ratio was significantly higher 

534 in cells grown with glucose. As Chlb is mostly located in LHCII complexes (Anderson et al., 

535 1995), and immunodetection did not reveal differences in the amount of LHCII between 

536 autotrophic and mixotrophic cells (Fig. 5A), this result further supported a relative increase in PSII 

537 reaction centres when cells were grown under mixotrophy. The analyses of supramolecular 

538 organisation of thylakoid complexes allowed detection of a major difference in the amount of 

539 trimeric LHCII, higher in cells grown autotrophically, in particular in DA samples, as compared 

540 to mixotrophic samples. Free LHCII trimers are considered the only LHCII complexes involved 

541 in state transition-like processes (Ünlü et al., 2014). This confirms that autotrophic cells can rely 

542 on a greater capability to modulate LHCII association with a better efficiency. More detailed 

543 analyses of the supramolecular organisation of photosystems by 2D silver-stained SDS-PAGE and 

544 corresponding quantitative distribution of PSI and PSII among the different major complexes 

545 revealed the specificity of the pigment-protein complexes of each sample.

546 In all thylakoid samples, PSII was mostly monomeric. For many years, there has been a long-

547 standing discussion about the assembly of PSII components into functional multimeric protein 

548 complexes in green algae and higher plants (Minagawa and Takahashi, 2004; Dekker and 

549 Boekema, 2005). Currently, it is widely accepted that functional PSII is normally organised as a 

550 dimer and concentrated in the stacked, appressed regions of thylakoids, whereas PSII monomer 

551 units are usually found in the unstacked thylakoid membranes, where the PSII repair cycle occurs 

552 (Kruse et al., 2000; Minagawa and Takahashi, 2004; Dekker and Boekema, 2005; Daniellson et 

553 al., 2006). However, in some cases, PSII monomers were shown to be fully active and also located 
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554 both in grana cores and margins (Dekker and Boekema, 2005; Daniellson et al., 2006; Takahashi 

555 et al., 2009). Moreover, Järvi et al. (2011) discovered that in the absence of an external charge in 

556 BN/PAGE, PSII complexes were mainly found in the monomeric form. The debate is still open, 

557 but what clearly emerged in N. oleoabundans was that PSII was more distributed in higher forms 

558 of association in mixotrophic than in autotrophic samples, preferring the maintenance of PSII as a 

559 dimer and even in megacomplexes together with PSI. In megacomplexes, there is a stable and 

560 advantageous association between PSI and PSII that promotes photoprotective energy spillover 

561 towards PSI (Grieco et al., 2015; Yokono et al., 2015; Ferroni et al., 2016). The strong interaction 

562 between PSII and PSI limits also the necessity of D1 protein subunit of PSII to be replaced after 

563 photodamage events. On the opposite, a fluent electron transfer through the thylakoid membranes, 

564 as well as the maintenance of an excitation balance between PSII and PSI, is fundamental for an 

565 efficient use of light for photochemistry (Mekala et al., 2015). 

566 On the whole, in autotrophic N. oleoabundans, then, the photosynthetic membrane is regulated as 

567 expected. In darkness, chlororespiratory electron recycling is active and PQ pool is partially 

568 reduced, as also demonstrated by the presence of phosphorylated LHCII and PSII subunits (Fig. 

569 10). During the initial exposure to growth light conditions, the electron transfer components turn 

570 at the oxidised state and maximum PSII quantum efficiency is reached. The role of LHCII 

571 phosphorylation is mainly the balancing of energy excitation between PSII and PSI (Tikkanen and 

572 Aro, 2012), and at low irradiances, maximal phosphorylation is induced in chloroplast in vivo 

573 (Rintämaki et al., 2000). Under a steady-state low-growth light conditions, maximum PSII core 

574 and LHCII phosphorylation is then achieved in autotrophic cultures and ensures an even excitation 

575 distribution between PSII and PSI (Tikkanen and Aro, 2012). This represents for the cells a highly 

576 fluid condition of thylakoid complexes, which allows extensive, though labile, interactions 

577 between photosystems and LHCII (Mekala et al., 2015). 
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578 In dark-adapted mixotrophic N. oleoabundans, chlororespiration appears to be down-regulated and 

579 LHCII is mainly associated to PSII, sustained by the absence of phosphorylation of PSII core and 

580 LHCII (Fig. 10). Furthermore, the very weak phosphorylation even at growth light conditions, the 

581 poorness of free LHCII trimers, the very strong PSII-LHCII association of complexes and PSI-

582 PSII-LHCII megacomplexes suggest a very low dynamicity of thylakoid protein complexes in 

583 mixotrophic cells. This is reflected also by a visibly higher appression degree of thylakoids in 

584 mixotrophic cells, presumably sustained by very low levels of protein phosphorylation (Fig. 9; 

585 Fristedt et al., 2009). Some hypotheses might be advanced to explain this behaviour. The 

586 exogenous glucose - uptaken with such a high efficiency that results even in the accumulation of 

587 starch granules (Baldisserotto et al., 2016) - might have contributed to an excess of available 

588 reducing power through respiration. This could have promoted the maintenance of plastid 

589 thioredoxins at the reduced state, leading to the inhibition of LHCII phosphorylation and thus to 

590 the promotion of PSII-LHCII association (Rintamäki et al., 2000). Moreover, a higher respiration 

591 rate in mixotrophic cells can result in a high availability of ATP, with a consequent down-

592 regulation of Calvin-Benson Cycle and of PSI. A lower PSI:PSII stoichiometry may depend also 

593 on incapability of proteolitic enzymes to degrade PSII subunits (Chow et al., 1990). In fact, it was 

594 demonstrated that PSII is less accessible to degradation when associated in megacomplexes 

595 (Tikkanen and Aro, 2012). The low PSII core protein phosphorylation, as observed in mixotrophic 

596 microalgal thylakoids, limits the fluidity of the thylakoid membrane and cooperates in hindering 

597 the disassembly of PSII supercomplexes, affecting also the oligomerisation of PSII and the 

598 regulation of D1 protein degradation. This event impacts on the capability of mixotrophic samples 

599 to react to photodamage when cells are exposed to prolonged high-light conditions (Figure 1B; 

600 Tikkanen et al., 2008; Tikkanen and Aro, 2012). 

601

602



27

603 Conclusions

604 In conclusion, contrary to what previously hypothesised, the supply of glucose to N. oleoabundans 

605 cells does not induce an emphasised photosynthetic activity compared to autotrophic cultures, but 

606 rather provokes a decreased dynamicity of PSII assembly. Ultimately, the effect of such a low 

607 dynamicity is the preservation, or a delayed degradation, of PSII, in spite of the mixotrophic mode 

608 of growth. 
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844 Figure captions 

845 Fig. 1. Representative curves of slow Chla fluorescence kinetics in response to changing light 

846 intensities in N. oleoabundans at the 6th day of cultivation. A) cells grown with 0 gL-1 of 

847 glucose. B) cells grown with 2.5 gL-1 of glucose. The measurements were started after 10 min of 

848 incubation in darkness by turning on the actinic light, the fluorescence parameters FM’ and Ft were 

849 monitored triggering the samples with different light intensities. FMtrue is maximum fluorescence 

850 measured at the end of the exposure to 90 µmolphotons m-2s-1; FtLL and FtHL are steady-state 

851 fluorescence values measured at the end of the exposure to 90 µmolphotons m-2s-1 and 1000 

852 µmolphotons m-2s-1, respectively. 

853 Fig. 2. Representative curves of Chla fluorescence kinetics during exposure to far red light.  

854 Excitation of autotrophic (filled circles) and mixotrophic (empty circles) N. oleoabundans cells 

855 with far red light for 10 min (purple diagram) and subsequent dark relaxation (dark diagram). n≥3 

856 ± standard error. p < 0.05 at times 1, 5-9. p < 0.01 at times 10, 11, 12, 15, 20, according with 

857 Student’s t  test. 

858 Fig. 3. Relaxation of the flash-induced fluorescence in N. oleoabundans cells grown with 0 

859 (filled circles) and 2.5 (empty circles) gL-1 of glucose. In the insert, relaxation kinetics as 

860 occurring in presence of 5 μM DCMU. Curves are average of at least 3 different biological 

861 replicates and are normalised to the same amplitude. Arrows: saturating-light pulse.
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862 Fig. 4. Coomassie-stained SDS-PAGE of thylakoids extracted from autotrophic and 

863 mixotrophic N. oleoabundans. On each lane, 2 μg of Chl (A) or 20 μg of proteins (B) were loaded. 

864 For comparison, three different amounts of thylakoids from autotrophic sample were loaded. 

865 Molecular weight marker is reported on the left side in each gel. 

866 Fig. 5. Western blot detection Detection of thylakoid protein amount of in autotrophic and 

867 mixotrophic N. oleoabundans cells. A) Immunoblot detection of ATPβ (3 µg of Chl loaded in 

868 each lane), PsaB (0.5 µg of Chl loaded in each lane), D1-DE loop (0.5 µg of Chl loaded in each 

869 lane) and LHCII (0.25 µg of Chl loaded in each lane) in thylakoid membranes of N. oleoabundans 

870 grown with 0 (A), and 2.5 (M) gL-1 of glucose. For comparison, three different amounts of 

871 thylakoids from control sample were loaded. Molecular weight marker is reported on the left. B) 

872 77K Fluorescence emission spectra recorded from autotrophic (black line) and mixotrophic (grey 

873 line) N. oleoabundans cells. For easier comparison, spectra were normalized to their maximum 

874 peak, corresponding to PSII emission region. Spectra are averages of at least 3 replicates for each 

875 biological sample.

876 Fig. 6. Representative BN-PAGE profiles of thylakoids from N. oleoabundans. DA: dark 

877 autotrophic cells; LA: light autotrophic cells; DM: dark mixotrophic cells; LM: light mixotrophic 

878 cells. For each lane, 8µg Chl were loaded. The position of major complexes is indicated by labels. 

879 Fig. 7. 2D-BN/SDS-PAGE of protein complexes in thylakoid membranes from N. 

880 oleoabundans. A) comparison between autotrophic cells incubated in darkness (DA) or maintained 

881 in growth light (LA) before thylakoid extraction. B) comparison between mixotrophic cells  

882 incubated in darkness (DM) or in growth light (LM) before thylakoid extraction. The BN-PAGE 

883 strips were loaded horizontally on the SDS-PAGE. The highlighted silver-stained spots correspond 

884 to Psa A/B subunits of PSI, CP47, CP43, D1 and D2 subunits of PSII, and LHCII subunits. Two 
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885 different types of LHCII trimer are indicated by yellow arrows. Marker molecular weight of 

886 proteins is reported on the left. 

887 Fig. 8. Relative amounts of PSII (A) and PSI (B) in thylakoids extracted from autotrophic 

888 (A) and mixotrophic (M) N. oleoabundans cells incubated in darkness  (DA - DM) or 

889 maintained in growth light  (LA – LM) before extraction. Black: DA; line pattern: LA; diamond 

890 pattern: DM; white: LM.  Data are means of 4 replicates ± standard deviation and are obtained by 

891 spot densitometry of 2D/BN-PAGE gels stained by SYPRO Ruby dye. Differences are not 

892 significant (p>0.05) for groups with the same superscript using ANOVA comparison of means.

893 Fig. 9. TEM images of autotrophic (A-B) and mixotrophic (C-D) N. oleoabundans cells after 

894 6 days of cultivation. Asterisks indicate starch granules, arrows highlight thighly-appressed 

895 thylakoids in mixotrophic cells.

896 Fig. 10. Detection of phosphorylated thylakoid proteins in autotrophic (A) and mixotrophic 

897 (M) N. oleoabundans cells. A) phosphorylation of thylakoid proteins of N. oleoabundans cells 

898 incubated in darkness (DA-DM) or maintained in growth light (LA-LM) before extraction. 

899 Phosphoproteins were detected by immunoblotting using an anti-phosphothreonine antibody. 

900 LHCII, D2 and CP43 are indicated as major phosphoproteins. Molecular weights are expressed in 

901 kDa. B) Coomassie-stained SDS-PAGE of thylakoids incubated in darkness (DA-DM) or 

902 maintained in growth light (LA-LM) before extraction. Bands corresponding to LHCII subunits are 

903 indicated. Dashed lines include phosphorylated subunits after immunoblotting. 
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24 Abstract 

25 A better understanding of the microalgal basic biology is still required to improve the feasibility 

26 of algal bio-products. The photosynthetic capability is one of the parameters that need further 

27 progress in research. A superior PSII activity was previously described in the green alga 

28 Neochloris oleoabundans. In this study, N. oleoabundans was grown in a glucose-supplied culture 

29 medium, in order to provide new information on the organisation and interaction of thylakoid 

30 protein complexes under mixotrophy. Fluorescence measurements suggested a strong association 

31 of light harvesting complex II (LHCII) to PSII in mixotrophic samples, confirmed by the lack of 

32 LHCII phosphorylation under growth light and the presence of PSI-PSII-LHCII megacomplexes 

33 in Blue-Native gel profile. The chloroplast ultrastructure was accordingly characterised by a higher 

34 degree of thylakoid appression compared to autotrophic microalgae. This also affected the 

35 capability of mixotrophic microalgae to avoid photodamage when exposed to high-light 

36 conditions. On the whole, it emerged that the presence of glucose affected the photosynthetic 

37 performance of mixotrophic samples, apparently limiting the dynamicity of thylakoid protein 

38 complexes. As a consequence, PSII is preserved against degradation and the PSI:PSII is lowered 

39 upon mixotrophic growth. Apparent increase in PSII photochemical activity was attributed to a 

40 down-regulated chlororespiratory electron recycling.

41

42 Key words: Neochloris oleoabundans, mixotrophy, Photosystem II, thylakoid protein complexes, 

43 photosynthetic performance, Blue-Native PAGE, fluorescence measurements.
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47 Introduction 

48 Photosynthesis supports almost all life on Earth and involves several light-dependent reactions, 

49 which start with the absorption of light energy for the synthesis of NADPH and ATP (Geider and 

50 MacIntyre, 2002), used during the Calvin-Benson cycle for CO2 fixation (Falkowski and Raven, 

51 2007). Important features of the light reactions of photosynthesis are: collection of photons by 

52 light-harvesting antennae, migration of excitation energy to the reaction centers, electron transfer 

53 from H2O to NADP+, and ATP generation (Geider and MacIntyre, 2002). Light-harvesting 

54 pigment-protein complexes (LHC) deliver the absorbed light energy to the reaction centers of 

55 Photosystem II (PSII) and Photosystem I (PSI) (Minagawa and Takahashi, 2004). The major LHC 

56 of PSII, LHCII, is also essential for maintaining thylakoid membranes stacked and promoting 

57 distribution of absorbed light energy between photosystems (Tikkanen et al., 2008; Nevo et al., 

58 2012). PSII transfers electrons from water to plastoquinone (PQ) using light energy as a driving 

59 force (Chow et al., 1990; Minagawa and Takahashi, 2004; Daniellson et al., 2006). The electrons 

60 from plastohydroquinone reach PSI via Cytochrome (Cyt) b6f complex and plastocyanin. PSI is 

61 involved in a light-dependent electron transport to ferredoxin and to NADP+ (Chow et al., 1990). 

62 ATP synthase (ATPase) is the highly-conserved complex that catalyses ATP synthesis using the 

63 trans-membrane proton gradient created during the electron flow (Nelson and Ben-Shem, 2004). 

64 Important for understanding the molecular basis of the photosynthetic process is a detailed 

65 knowledge of the structure of its components (Barber, 2002; Dekker and Boekema, 2005; Nelson 

66 and Yocum, 2006). All protein complexes are composed of several protein subunits coordinating 

67 a large number of cofactors, which show a tendency to form higher-order associations, the so-

68 called supercomplexes (Dekker and Boekema, 2005; Caffarri, 2009; Minagawa, 2009; Croce and 

69 van Amerongen, 2011; Suorsa et al., 2015). The dynamic organisation of the pigment-protein 

70 complexes in the thylakoid membrane plays important roles in maintaining an optimal 

71 photosynthetic efficiency under several conditions, including different light regimes, temperature 
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72 and nutrient supply (Chow et al., 1990; Anderson et al., 1995). In green microalgae, whose cell 

73 volume is mainly occupied by the chloroplast, the photosynthetic efficiency is an indicator of their 

74 wellness conditions (White et al., 2011). This is an important factor to be taken into account, 

75 considering the importance of green microalgae for biotechnological purposes (Chisti, 2007; 

76 Borowitzka, 2013). In this scenario, mixotrophic microalgae have been largely investigated for 

77 their capability to highly increase their biomass content, benefitting from the exogenous organic 

78 carbon source assimilation together with light harvesting and CO2 fixation for growth (Lee, 2001; 

79 Xu et al., 2006; Scott et al., 2010; Stephens et al., 2010). However, there are few works concerning 

80 the interaction between photosynthetic complexes in thylakoid membranes during the assimilation 

81 of organic carbon by microalgae; in general, a specific reduction in PSII photochemistry was 

82 observed (Valverde et al., 2005; Oesterhelt et al., 2007; Liu et al., 2009). Very differently, 

83 mixotrophy promoted a very high PSII maximum quantum efficiency in the Chlorophyta 

84 Neochloris oleoabundans (Baldisserotto et al., 2014; Giovanardi et al., 2014). In this work, the 

85 effects of glucose supplied in the culture media of N. oleoabundans were assessed in order to 

86 provide new information on the photosynthetic metabolism and to understand the interaction of 

87 the different pigment-protein complexes during the organic carbon source assimilation. 

88 Immunodetection of different subunits of thylakoid multi-protein complexes was employed to 

89 identify differences in their relative abundance between autotrophic and mixotrophic samples, 

90 whereas Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) was employed to obtain 

91 information on native interactions of photosynthetic protein complexes in thylakoids (Hippler et 

92 al., 2001; Rokka et al., 2005). In parallel, chlorophyll (Chl) fluorescence measurements were 

93 performed in vivo on freshly-collected samples to identify differences in photosynthetic electron 

94 transport in autotrophic and mixotrophic cells.
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97 Materials and methods

98 Algal strain and culture condition

99 The Chlorophyta Neochloris oleoabundans UTEX 1185 (syn. Ettlia oleoabundans, 

100 Sphaeropleales, Neochloridaceae) was obtained from the Culture collection of the University of 

101 Texas (UTEX, USA; www.utex.org). Cells were grown and maintained in axenic liquid BM 

102 medium (Baldisserotto et al., 2012) in a growth chamber (24 ± 1 °C temperature, 80 µmolphotons 

103 m-2 s-1 PAR and 16:8 h of light-darkness photoperiod), without shaking and external CO2 supply. 

104 For experiments, cells were inoculated at least in triplicate at a density of 0.6 ± 0.1 x 106 cells mL-1 

105 in BM medium containing 0 (autotrophic cells) or 2.5 gL-1 of glucose and grown in 500 mL 

106 Erlenmeyer flasks (300 mL of total volume) in the growth chamber described above, with 

107 continuous shaking at 80 rpm. The glucose concentration of 2.5 gL-1 was selected in previous 

108 experiments in which the microalga was grown in the presence of increasing concentrations of 

109 glucose from 0 to 30 gL-1, comparing among them growth rates, cell morphology, glucose 

110 consumption and lipid accumulation inside cells, as reported in Giovanardi et al. (2014).  Growth 

111 was estimated measuring the optical density at 750 nm with a Pharmacia Biotech Ultrospec®2000 

112 UV–vis spectrophotometer (1 nm bandwidth; Amersham Biosciences, Piscataway, NJ, USA) and 

113 counting cells with a Thoma’s  haemocytometer under the light microscope (Zeiss, Axiophot, Jena, 

114 DE), on 1 mL of culture samples at days 0, 2, 3, 4, 7, 9, 11. 

115  Fluorescence measurements

116 Modulated chlorophyll fluorescence: slow kinetics.

117 In vivo Chla fluorescence was determined from liquid cultures at the late exponential phase of 

118 growth, i.e. at the 6th day from the inoculum, harvested by centrifugation to contain 15 μg mL-1 

119 Chl. Chlorophyll quantification was performed according to Wellburn (1994). Cell suspensions 
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120 were pre-incubated in darkness for 10 min and samples were subsequently exposed to actinic blue 

121 light. The following program was triggered: 90 µmolphotons m-2s-1, 11 min; dark, 11 min; 1000 

122 µmolphotons m-2s-1, 15 min; dark, 5 min. Light saturating pulses (0.6 s) were given every 40 s. Initial 

123 fluorescence F0 and maximum fluorescence FM after dark incubation were used to calculate the 

124 maximum quantum yield of PSII (FV/FM ratio), according to Lichtenthaler et al. (2005). Time 

125 course of Chl fluorescence parameters FM’, i.e. the maximum fluorescence in the light-adapted 

126 state measured applying the pulse, and Ft, i.e. the steady-state fluorescence yield, were determined 

127 with a DUAL-PAM-100 (Walz, Germany). 

128 The effects of far red light on PSII fluorescence were determined using an ODC OS1-FL portable 

129 fluorimeter (ADC Bioscientific Ltd, Hoddesdon, Hertfordshire, UK) on cell pellets prepared as 

130 described in Ferroni et al. (2011). Measurements were performed on 10 min dark-adapted samples. 

131 Cells were excited with far red light (740 nm) for 10 min. After that, recovery was followed for 

132 10 min in darkness. During the experiment, light saturating pulses were given every minute during 

133 the far red light exposure and at times 1, 2, 5 and 10 min during dark relaxation. The FM’/FM ratio 

134 was calculated and used to determine variations of PSII fluorescence. 

135 Fast chlorophyll fluorescence.

136 QA
- reoxidation kinetics was determined by flash-induced Chl fluorescence relaxation kinetics. 

137 The single turnover flash-induced increase in Chla fluorescence yield and its subsequent relaxation 

138 in darkness (FF-relaxation) were measured with a double-modulation fluorimeter (Photon System 

139 Instruments, Brno, Czech Republic). For analyses, 1 mL of samples containing 8 μg mL-1 Chl was 

140 incubated in darkness for 10 min and then QA
- reoxidation kinetics was recorded, after a single-

141 saturating flash (10 μs) provided by red LED, in the 150 μs - 100 s time range. Analyses were 

142 carried out either in the presence or absence of 5 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

143 (DCMU) (Allahverdiyeva et al., 2007). For easier comparison, the fluorescence relaxation curves 
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144 were averaged and normalised to the same amplitude. The relative QA
- concentration was estimated 

145 according to the model of Joliot (Joliot and Joliot, 1964). Multicomponent deconvolution of the 

146 relaxation curves was performed according to Vass and colleagues (1999).  

147 77K fluorescence emission spectra

148 Fluorescence emission spectra measured in vivo from samples containing 8 μg mL-1 Chl were 

149 recorded at 77 K using a diode array spectrophotometer (S2000; Ocean Optics, Dunedin, FL, 

150 USA) equipped with a reflectance probe as described in Keranen et al. (1999). The spectra were 

151 obtained by excitation with light at 440 nm, defined using LS500S and LS700S filters (Corion, 

152 Holliston, MA, USA) placed in front of a slide projector, whereas the emission between 600 and 

153 800 nm was recorded. For each biological replicate, at least 3 measurements were recorded. 

154 Thylakoid isolation 

155 Thylakoid membranes were isolated according to Järvi et al. (2011), with modifications. For 

156 extraction, 300 mL of cultures in late-exponential phase of growth were harvested by 

157 centrifugation at 600 g for 10 min. Pellets were transferred to an ice-cold mortar containing sand 

158 quartz. The extraction was performed grinding cells with liquid N2, then the lysate was 

159 resuspended in a grinding buffer (330 mM sorbitol, 50 mM Tricine-NaOH pH 7.5, 2 mM 

160 Na2EDTA, 1 mM MgCl2, 5 mM ascorbate, 0.05% bovine serum albumin, 10 mM NaF) and 

161 transferred to 15 mL tubes. Samples were centrifuged at 300 g for 5 min at 4°C and then at 700 g 

162 for 5 min at 4°C, to remove sand quartz and cell debries. Pellets were discarded and the thylakoids 

163 present in the supernatant were collected by centrifugation at 7000 g for 10 min at 4°C. The 

164 supernatant was discarded and thylakoids were resuspended in 1 mL of shock buffer (5 mM 

165 sorbitol, 50 mM Tricine-NaOH pH 7.5, 2 mM Na2EDTA, 5 mM MgCl2, 10 mM NaF) and 

166 centrifuged at 7000 g for 10 min at 4°C. After that, the supernatant was removed and around 100 

167 µL of storage buffer (100 mM sorbitol, 50 mM Tricine1-NaOH pH 7.5, 2 mM Na2EDTA, 5 mM 
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168 MgCl2, 10 mM NaF) were added to the pellet. Thylakoid samples were rapidly frozen in liquid 

169 nitrogen and stored at -80°C until further analyses. Manipulation was always performed on ice and 

170 in very dim safe light. Quantification of Chl and proteins in thylakoid samples was performed 

171 according to Porra et al. (1989) and Lowry (1951), respectively. Before extraction, autotrophic 

172 and mixotrophic cultures were incubated in darkness for 1 h or maintained in growth light (80 

173 µmolphotons m-2 s-1) inside the growth chamber. 

174 SDS-PAGE and immunoblotting

175 Thylakoid proteins were separated by SDS-PAGE according to Laemmli (1970) on a 15% 

176 acrylamide resolving gel containing 6 M urea. After electrophoresis, proteins were visualised by 

177 Coomassie staining overnight, followed by destaining for 5 h, or blotted onto a polyvinylidene 

178 difluoride membrane (Millipore, Watford, Hertforshire, U.K.). Western blotting was performed 

179 with standard techniques using protein-specific antibodies. For the detection of D1-DE loop of D1 

180 protein, PsaB subunit of PSI and ATP-β subunit of ATPase, the antibodies were obtained from 

181 Agrisera (www.agrisera.com), whereas for the detection of the entire LHCII complex the antibody 

182 was kindly provided by L. Zhang. Before immunodetection, membranes were blocked with 5% 

183 milk (www.bio-rad.com) in TBS buffer (Tris-HCl 10 mM pH 7.4 and NaCl 1.5 M). For the 

184 detection of phosphoproteins, a polyclonal anti-phosphothreonin antibody was used (Zymed, 

185 www-invitrogen.com) and membranes were blocked with 1% BSA in TBS buffer. Horseradish 

186 peroxidase-linked secondary antibody in conjunction with chemiluminescent agent (GE heathcare, 

187 www.gehealthcare.com) was used for protein detection. Protein band intensity was quantified with 

188 Image J freeware (National Institutes of Health, Bethesda, MD, USA).

189  BN-PAGE and second dimension (2D) electrophoresis

190 BN-PAGE was performed according to Järvi et al. (2011) with minor modifications. Thylakoids 

191 (8 µg Chl) were solubilised on ice for 15 min with dodecyl β-D-maltoside (Sigma) at a final 
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192 concentration of 1.5% (w/v), followed by centrifugation at 18000 g at 4°C for 15 min. 

193 Electrophoresis was performed with a Hoefer Mighty Small system (Amersham Biosciences) at 

194 0°C for 3.5 h by gradually increasing the voltage from 75 to 200 V. For comparison, thylakoids 

195 from Arabidopsis thaliana were included in the analyses. Quantification of band volume was 

196 performed with Image J software. After BN-PAGE, the lanes were cut out and incubated in 10% 

197 SDS Laemmli buffer (Laemmli, 1970) containing 5% (v/v) β-mercaptoethanol for 1.5 h, followed 

198 by separation of the protein subunits of the complexes in the 2D with SDS-PAGE (12% 

199 polyacrylamide and 6 M urea). After electrophoresis, proteins were visualised by silver or SYPRO 

200 Ruby staining, according to the manufacturer’s instructions (www.invitrogen.com). The intensity 

201 of every spot in SYPRO- stained gels was determined with ProFinder 2D, version 2005 (Nonlinear 

202 Dynamics). 

203 Transmission electron microscopy (TEM)

204 For transmission electron microscopy, autotrophic and mixotrophic cells were harvested after 6 

205 days of growth and prepared as previously reported (Baldisserotto et al., 2007; Baldisserotto et al., 

206 2016). 

207 Statistical analyses

208 For each analysis, at least three biological replicates for each sample were set up. Elaboration of 

209 data was carried out with Origin Pro 2015 software (OriginLab, Northampton, MA, USA). To 

210 compare autotrophic and mixotrophic samples, Student’s t test was used. For statistical comparison 

211 of data obtained by SYPRO Ruby staining, one-way analysis of variance (ANOVA) was used. 
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215 Results

216 Growth kinetics of autotrophic and mixotrophic N. oleoabundans cells

217 Cell density of autotrophic and mixotrophic cultures during the experiment is reported in 

218 Supplementary Figure S1. As expected, cell densities were comparable with those observed in 

219 previous works (Giovanardi et al., 2014; Baldisserotto et al., 2016). Autotrophic and mixotrophic 

220 cells grew with no differences during the first 2 days, after that a significant cell density 

221 enhancement was observed in cells grown in presence of glucose starting from the 3rd day (p<0.01 

222 at day 3, p<0.001 at the following times). At the 7th day, both autotrophic and mixotrophic samples 

223 entered the stationary phase. Between day 2 and 7, an increase in PSII maximum quantum yield 

224 FV/FM occurred in mixotrophic cells. Analyses were subsequently performed on cells sampled at 

225 the 6th day of growth, period in which mixotrophic cells, still having high FV/FM values, also 

226 showed the maximum cell density value before entering the stationary phase of growth. 

227 In vivo fluorimetric analyses of autotrophic and mixotrophic N. oleoabundans

228 Slow kinetics of Chla fluorescence 

229 In order to clarify the effects of glucose on the dynamics of photosynthetic electron transfer in N. 

230 oleoabundans, Pulse Amplitude Modulated (PAM) fluorescence trace was monitored in freshly-

231 collected samples of autotrophic and mixotrophic cultures, measuring the time-course of Chl 

232 fluorescence parameters FM’ and Ft. Samples were pre-incubated in darkness for 10 min for 

233 determination of the initial F0 and FM values before triggering the measuring routine. A 90 

234 µmolphotons m-2s-1 irradiance was meant to reproduce a growth light condition, while a 1000 

235 µmolphotons m-2s-1 represented a condition of high light stress. In Fig. 1 representative Chla 

236 fluorescence kinetics are shown for autotrophic (Fig. 1A) and mixotrophic (Fig. 1B) cells. On the 

237 whole: i) no differences in the minimal level of fluorescence F0 were observed before turning on 

238 the actinic light; ii) during the 90 µmolphotons m-2s-1 - darkness sequence of the triggered program, 
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239 FM’ increased over the initial FM in autotrophic cells (Fig. 1A). On the other hand, the FM’ increase 

240 effect in the light was not always observed in mixotrophic samples and, when it occurred, the 

241 fluorescence increase was not as marked as in cells grown in the absence of glucose (Fig. 1B). In 

242 the light of these results, maximum quantum yield of PSII was re-calculated for both samples 

243 considering the real maximum FM value, i.e. FM’ at the end of 90 µmolphotons m-2s-1 irradiance, 

244 hereafter named FMtrue. The obtained FV/FMtrue ratio revealed no differences between autotrophic 

245 and mixotrophic cells in the maximum photochemistry quantum yield (Table 1). Same result was 

246 obtained calculating the FtLL/FMtrue ratio, where FtLL was the basal fluorescence at the end of the 

247 90 µmolphotons m-2s-1 exposure period (Table 1); iii) when cells were exposed to 1000 µmolphotons m-

248 2s-1, an initial rise in the basal fluorescence Ft was observed in autotrophic cells, followed by a 

249 strong decrease. These two phases were less evident in mixotrophic samples because of a less 

250 marked fluorescence rise as compared to autotrophic cells at the beginning of the high-light 

251 exposure period. Interestingly, the calculated FtHL/FMtrue ratio, where FtHL was the basal 

252 fluorescence at the end of the 1000 µmolphotons m-2s-1 exposure period, was significantly lower in 

253 autotrophic (-41%, p<0.01) than in mixotrophic cells (Table 1), suggesting a more reduced state 

254 of plastoquinone in mixotrophic cells after a prolonged exposure to high-light conditions; iv) when 

255 cells were finally exposed to darkness, maximum fluorescence FM’ gradually increased with no 

256 differences between samples. 
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263

Autotrophic 

N. oleoabundans

Mixotrophic 

N. oleoabundans

F
V
/F

Mtrue 0.708 ± 0.018 0.704 ± 0.044

F
t
LL/F

Mtrue 0.409 ± 0.076 0.374 ± 0.042

F
t
HL/F

Mtrue 0.303 ± 0.046 0.510 ± 0.125**

264

265 Table 1. PSII fluorescence ratios in autotrophic and mixotrophic N. oleoabundans. Values were obtained 

266 from Chla fluorescence kinetics traces reported in Fig. 1. Values are means of n≥3 ± standard deviation. 

267 **: p < 0.01 according with Student’s t test.

268

269 Effect of far red exposure on PSII photochemistry 

270 In order to investigate the reason for the increase in FM’ beyond FM during the exposure of 

271 autotrophic cells to growth light conditions, dark-adapted samples were exposed to far red light 

272 (740 nm), which selectively excites PSI and promotes the association of LHCII to PSII. Chla 

273 fluorescence, recorded as FM’ and normalised on the initial fluorescence FM, gradually and 

274 significantly increased in autotrophic samples to a maximum value of 1.78 after 9 min of far red 

275 exposure (p<0.05 at times 1, 5-9 min; p<0.01 from the 10th min) (Fig. 2). Conversely, in 

276 mixotrophic samples Chla fluorescence increased during the first 3 min, but subsequently 

277 stabilized at values of about 1.3 during far red exposure, indicating that LHCII relocation to PSII 
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278 in mixotrophic cells was less inducible by far red treatment. During the subsequent dark relaxation, 

279 Chla fluorescence rapidly decreased in both samples, even though the autotrophic cells maintained 

280 values higher (around 1.1) than initial fluorescence value, whereas mixotrophic samples showed 

281 values around 0.9 (p<0.01).

282 Effects of mixotrophy on reoxidation kinetics of QA

283 The effects of mixotrophy on the activity of both quinone components of the quinone-iron acceptor 

284 complex, QA and QB, can be studied by measuring flash-induced changes in the yield of Chl 

285 fluorescence (Vass et al., 2002). The reduction of QA upon flash excitation results in a prompt 

286 increase in Chl fluorescence yield, which is followed by a dark decay in the range of 100 μs – 100 

287 s, a time range allowing the reoxidation of QA through various pathways (Vass et al., 2002). The 

288 fluorescence relaxation is dominated by a fast component (few-hundred μs), arising from QA
- to 

289 QB electron transfer in the RCII that had an oxidised or semi-reduced PQ molecule in the QB pocket 

290 at the time of flashing. The middle phase (few ms) arises from QA
- reoxidation in centers in which 

291 QB site in darkness is empty and PQ has to be bound from the pool. Finally, the slow phase of 

292 flash-induced fluorescence relaxation curve (few s) shows the recombination of the S2 state of the 

293 water oxidising complex with QB
- via the QA

-QB  QAQB
- equilibrium (Vass et al., 1999; Vass et ↔

294 al., 2002; Allahverdiyeva et al., 2005). Analyses of the kinetics of the flash-induced fluorescence 

295 relaxation showed no differences between autotrophic and mixotrophic samples, suggesting that 

296 the presence of glucose in the cultivation medium did not affect the forward electron transfer 

297 through the PQ pool (Fig. 3; Table 2). The kinetics was dominated by the fast phase of decay 

298 (around 560 µs; 85%), followed by a middle phase of around 10 ms time of decay with 7.7% 

299 amplitude and a slow phase of around 2 s with 7% amplitude. Despite mixotrophic samples showed 

300 a tendency to accelerated time of decay during the middle phase (around 30% less), the results 

301 were not statistically significant compared to autotrophic samples (p=0.42). In the presence of 

302 DCMU, which blocks the reoxidation of QA
- by forward electron transfer, the fluorescence 
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303 relaxation indicates the status of the PSII donor side as revealed by recombination of QA
- with 

304 donor side components. In a functional PSII complex, the recombination partner of QA
- is the S2 

305 state of the water oxidising complex (Allahverdiyeva et al., 2005). As is shown in Fig. 3 (insert), 

306 QA
-
 reoxidation kinetics in the presence of DCMU appeared slowed-down in mixotrophic samples. 

307 This might reflect a defect in the assembly of the oxygen evolving complex (Allahverdiyeva et al., 

308 2013).

309

Sample 
Total 

Amp (%)

Fast phase

T/Amp (ms/%)

Middle phase

T/Amp (ms/%)

Slow phase 

T/Amp (s/%)

A 100
0.568 ± 0.081 / 

85.825 ± 2.597

13.500 ± 4.759 / 

7.694 ± 1.300

2.066 ± 0.665 / 

 6.480 ± 1.369

M 100
0.553 ± 0.116 /

 84.835 ± 4.471 

9.414 ± 1.960 / 

7.891 ± 2.187

1.806 ± 0.577 / 

 7.275 ± 2.335

310

311 Table 2. Characteristics of flash-induced Chl fluorescence relaxation in autotrophic (A) and mixotrophic 

312 (M) N. oleoabundans cells. Values are time of decay (T) and relative amplitudes (Amp) in percent of total 

313 variable fluorescence obtained after the fired flash. Values are means of n ≥ 3 ± standard deviation.

314
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318 Chl-protein complexes in thylakoid membranes of autotrophic and mixotrophic N. 

319 oleoabundans exposed to different light

320 Chl and protein quantification 

321 Quantification of Chl and protein amounts in thylakoids of autotrophic and mixotrophic N. 

322 oleoabundans are reported in Table 3. Total Chl quantified in thylakoids was compared with the 

323 protein amount, to obtain Chl/protein ratios. Interestingly, in the mixotrophic cultures, Chl/protein 

324 was halved as compared to autotrophic samples, because of a halved concentration of pigments 

325 upon an unchanged amount of proteins. This result was clearly visible also observing Coomassie-

326 stained SDS-PAGE (Fig. 4). About the Chla/Chlb molar ratio, instead, higher values were 

327 calculated in mixotrophic samples than in the autotrophic, suggesting a different distribution in the 

328 proportion of Chla and Chlb between samples (Table 3). Some of the key proteins which belong 

329 to major thylakoid complexes were detected and quantified by immunoblot analyses (Fig. 5A). 

330 Interestingly, lower amounts of PsaA (Supplementary Figure S2) and PsaB were detected in 

331 mixotrophic samples (-42.4% as compared to autotrophic cells). A slight decrease in the amount 

332 of ATP-β and LHCII protein was also observed with the addition of glucose upon growth, but it 

333 was not significant. Conversely, D1 protein was detected in higher amounts in 2.5 gL-1 of glucose-

334 grown cells (+47% as compared to autotrophic samples). 

335 To support the belief that autotrophic and mixotrophic cells had a different PSI:PSII stoichiometry, 

336 77K spectra were recorded in vivo from aliquots of samples containing 8 µg mL-1 Chl, frozen and 

337 maintained in liquid N2 before analyses (Fig. 5B). As clearly visible in mixotrophic samples, the 

338 peak at around 684 nm was attributed to PSII, while the peak at 714 nm was attributed to PSI-

339 LHCI (Ferroni et al., 2011). Moreover, a broad shoulder between 692 and 703 nm was observed. 

340 Emission around 700 nm can be attributed to LHCII aggregates (Horton et al., 1991). When 

341 mixotrophic were compared to autotrophic samples, spectra, normalized at the PSII emission 
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342 region, appeared very different (Fig. 5B). In fact, peaks were slightly shifted in control, at 683 nm 

343 for PSII and 713 nm for PSI-LHCI. Moreover, the shoulder at 692-703 nm was not observed 

344 between PSII and PSI emission regions. It is possible that this emission was not evident because 

345 of the higher emission from PSI-LHCI in autotrophic samples, confirming, then, the decrease in 

346 the PSI amount over PSII in mixotrophic vs autotrophic cells observed by immunoblot reactions.

347

348

Sample 
Chlorophylls

(μg μL-1)

Proteins

(μg μL-1)
Chl/proteins Chla/Chlb

A 3.38 ± 0.19 24.30 ± 1.53 0.139 ± 0.014    3.47 ± 0.10

M     1.65 ± 0.23 *** 25.77 ± 1.79     0.064 ± 0.011 **    4.09 ± 0.03***

349

350 Table 3. Chl amounts, protein amounts and corresponding ratios in thylakoids extracted from N. 

351 oleoabundans grown with 0 (A) and 2.5 gL-1 (M) of glucose. n≥3 ± standard deviation. **: p < 0.01; ***: 

352 p < 0.001, according with Student’s t test.

353

354 Organisation of thylakoid complexes 

355 In order to obtain the separation of the thylakoid membrane complexes from autotrophic and 

356 mixotrophic N. oleoabundans, a BN-PAGE system was optimised. In a first analysis, the pattern 

357 of protein complexes in autotrophic N. oleoabundans was compared to that of A. thaliana. 
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358 (Supplementary Figure S3), whose BN-PAGE profile was structured as previously described (Aro 

359 et al., 2005; Caffarri, 2009; Croce and van Amerongen, 2011). In the BN-PAGE of autotrophic N. 

360 oleoabundans, only some protein complexes corresponded to those separated in A. thaliana. 

361 Autotrophic N. oleoabundans lacked the LHCII assembly complex. Moreover, LHCII monomers 

362 were extremely abundant as compared to LHCII trimers. The following bands with higher 

363 molecular mass were identified: band I, apparently corresponding to PSII monomer; region II, 

364 which comprised all the smearing profile between band I and the following more intense band; 

365 band III and band IV, which had a mass similar to C2S supercomplexes of A. thaliana.

366 In a subsequent step, membrane protein complexes from autotrophic and mixotrophic N. 

367 oleoabundans were solubilized with dodecyl β-D-maltoside and separated by BN-PAGE with the 

368 same procedure (Fig. 6). Before thylakoid extraction, autotrophic and mixotrophic cells were 

369 exposed in parallel to darkness (dark autotrophic-DA and mixotrophic-DM samples) or maintained 

370 in growth light for 1 h (light autotrophic-LA and mixotrophic-LM samples), in order to detect 

371 differences in the protein-complexes organisation of photosynthetic membranes between samples 

372 and after a dark-light transition. BN-PAGE of the thylakoid protein complexes demonstrated a less 

373 abundant band of LHCII trimers in mixotrophic samples compared to the autotrophic ones (Fig. 

374 6), but the light-dark differences were not evident in BN-PAGE in the first dimension. 

375 Subsequently, each stripe from the BN-PAGE was analysed by SDS-PAGE in the 2D, enabling 

376 the separation of different protein complexes into constituting subunits (Fig. 7). In 2D silver-

377 stained gel of dark and light autotrophic cells (Fig. 7A), the first conspicuous band from right to 

378 left was identified as the LHCII monomers. The subsequent band corresponded to LHCII trimers. 

379 Two different series of LHCII protein spots were resolved, indicating the co-existence of two types 

380 of LHCII trimers with slightly different molecular mass. The more evident BN-PAGE band above 

381 LHCII trimers, the above-mentioned complex I, comprised a small amount of Psa A/B subunits 

382 co-migrating with all the subunits of PSII monomer. Just below band I, a very faint band, indicated 
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383 as I’, was shown to contain PSII monomer subunits, except CP47. Interestingly, different spots 

384 corresponding to Psa A/B subunits characterized the series of complexes having increasing 

385 molecular mass in the so-called region II. Band III, fainter than band I, comprised Psa A/B subunits 

386 of PSI co-migrating with CP43, CP47, D1 and D2 subunits of dimeric PSII. In this complex, small 

387 amounts of LHCII were also observed. Based on the comparison with A. thaliana profile 

388 (Supplementary Figure S3), band III was interpreted as the result of the co-migration of two 

389 independent complexes, PSII-LHCII (C2S) and PSI-LHCII (state-transition-like complex). Finally, 

390 in band IV Psa A/B subunits of PSI were observed associated to noticeable amounts of LHCI and 

391 LHCII complexes, but only negligible amount of PSII. Interestingly, despite silver-stained gels are 

392 not precisely quantitative, two aspects were noteworthy in autotrophic samples: 1) the amount of 

393 LHC associated with PSI in band IV decreased during the dark-light transition of the microalga, 

394 suggesting a stronger affinity of the subunits which compose this complex in darkness; 2) PSI 

395 subunits of thylakoids extracted from samples maintained in growth light were more evenly 

396 distributed from lower to higher molecular mass complexes as compared to thylakoids extracted 

397 from cells incubated in the dark. About the 2D BN/SDS-PAGE silver-stained image of 

398 mixotrophic samples (Fig. 7B), no major differences were observed in the general thylakoid 

399 protein pattern by comparison with autotrophic samples, except for the presence of a region above 

400 band IV, indicated as “megacomplexes”, which was resolved in the 2D gel in subunits belonging 

401 to PSII and PSI. In dark-acclimated mixotrophic samples, only Psa A/B subunits were clearly 

402 detectable in the band, whereas in light-acclimated mixotrophic samples CP47, CP43, D2, D1 and 

403 LHC proteins were also resolved. As compared to the autotrophic samples, in the mixotrophic 

404 cells: 1) PSI was mainly concentrated in band IV independent of the dark/light incubation; 2) band 

405 IV was shown to also contain PSII, i.e. presumably a C2S LHCII-PSII supercomplex with higher 

406 molecular mass than the C2S PSII complex in band III; 3) PSI and PSII tended to associate into 

407 stable large megacomplexes with LHCII, especially in light conditions.
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408 Quantification of spot density of thylakoid proteins was performed staining the 2D BN/SDS-

409 PAGE gels with SYPRO® Ruby dye. Psa A/B and CP43 were used to quantify the relative amounts 

410 of PSI and PSII, respectively. LHC proteins generated too intense signal to give reliable results in 

411 a gel-stained protein quantification. PSI and PSII distribution in thylakoid complexes was 

412 compared between light and dark autotrophic and mixotrophic samples (Fig. 8). When PSII 

413 distribution was examined among the different thylakoid complexes (Fig. 8A), the majority was 

414 found as a monomer (band I). In particular, autotrophic samples showed a higher proportion (> 

415 80% of total PSII) than mixotrophic cells (around 72% in both samples). On the contrary, PSII of 

416 band III (putative C2S) was more abundant in mixotrophic cells, irrespective of dark-light 

417 acclimation (+ 60%, as compared to the corresponding autotrophic samples). In band IV, LA 

418 showed a negligible percentage of PSII, despite no significant differences were observed with DA, 

419 as well as between autotrophic and mixotrophic samples incubated in darkness. As seen in silver-

420 stained gels, PSII did not characterize the region II and indeed its presence was not determined. 

421 Thus, it can be concluded that, irrespective of the light exposure before extraction, mixotrophic 

422 samples showed more abundant PSII in the dimeric, LHCII associated, forms as compared to the 

423 autotrophic samples. This tendency of PSII to organise more stably with LHCII was in line with 

424 the occurrence of megacomplexes. 

425 Regarding the relative protein amount of PSI, the transition from dark to light did not induce a 

426 different distribution in the bands III and IV in autotrophic samples (Fig. 8B). Instead, in region 

427 II, PSI proportion decreased by 45% upon light exposure. On the contrary, PSI became more 

428 represented in the lighter form, co-migrating with PSII monomer in band I. In mixotrophic 

429 samples, the dark-to-light transition did not change PSI distribution among complexes. 

430 Interestingly, in those samples a lower proportion of PSI was found in complex III compared to 

431 autotrophic samples (about 65% less). As observed previously for PSII distribution, the presence 

432 of megacomplexes occurred only in mixotrophic samples (Fig. 8B). 
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433 The distribution of PSII and PSI in mixotrophic samples conveyed a picture of low dynamism of 

434 thylakoid protein complexes, which was expected to have an impact on the thylakoid architecture. 

435 In fact, TEM images showed in both autotrophic and mixotrophic cells a similar thylakoid system, 

436 except for the very high degree of appression in the latter, even leading to a virtual absence of the 

437 thylakoid lumen (Fig. 9). 

438 Detection of thylakoid phosphoproteins

439 The determination of in vivo thylakoid phosphoproteins was important to understand the role of 

440 band IV and megacomplexes detected in 2D/BN-SDS PAGE. In particular, the strength of LHCII-

441 PSII and LHCII-PSI association is usually linked to LHCII phosphorylation levels (Mekala et al., 

442 2015). The detection was obtained with anti-phosphothreonine (Fig. 10A). Coomassie-stained 

443 SDS-PAGE of a replicate gel was performed to confirm the efficiency of the electrophoretic race 

444 (Fig. 10B). In all the samples, the major phosphoproteins were identified as CP43, D2 and two 

445 different proteins of LHCII (Fig. 10A), i.e. two less abundant subunits with high molecular mass 

446 (Fig. 10B). LHCII phosphorylation was observed at basal levels when thylakoids were extracted 

447 from dark-incubated autotrophic samples. As expected, a strong increase in the phosphorylation 

448 level of LHCII proteins was very evident in LA. Intrinsic antenna CP43 and protein subunit D2 of 

449 PSII core were not affected by the transition from dark to growth light and remained 

450 phosphorylated at basal levels. When DM samples were considered, only CP43 appeared slightly 

451 phosphorylated, whereas other phosphoproteins were barely detectable. Moreover, very 

452 surprisingly, the extent of light-induced phosphorylation was very limited. The phosphorylation 

453 levels were even lower than those observed in dark-acclimated autotrophic cells (Fig. 10A).

454
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456 Discussion 

457 In N. oleoabundans, only limited information concerning its photosynthetic metabolism is 

458 available. Recent works (Baldisserotto et al., 2014;  Giovanardi et al., 2014; Sabia et al., 2015, 

459 Baldisserotto et al., 2016) have proved that the assimilation of organic carbon in this microalga 

460 interferes with the photosynthetic performance in a contrasting manner compared to other green 

461 microalgae, in which mixotrophy induces a down-regulation of photosynthesis (Oesterhelt et al., 

462 2007; Liu et al., 2009). In order to explore the mechanisms involved during the mixotrophic 

463 growth, and understanding how the interaction between Chl-protein complexes are modified by 

464 the glucose assimilation and how light irradiance affects the photosynthetic apparatus, detailed 

465 analyses were performed on N. oleoabundans cultivated in the presence of 2.5 gL-1 of glucose, 

466 which promoted growth and FV/FM, consistent with previously published results (Supplementary 

467 Figure 1S; Giovanardi et al., 2014). 

468 Higher FV/FM in mixotrophic than in autotrophic cells is due to down-regulated chlororespiration

469 Measurements of Chla fluorescence induction were performed on dark-adapted cells. This 

470 condition is meant to fully oxidise the PQ pool, leading to a complete opening of PSII. However, 

471 PQ reduction can partially occur in the dark in different organisms because of chlororespiratory 

472 pathways, which allow dissipating the excess of reducing power in the stroma by the ultimate 

473 reduction of O2 (Bennoun, 1994; Feild et al., 1998; Hoefnagel, 1998; Hill and Ralph, 2008; Cruz 

474 et al., 2011). As a consequence of PQ reduction in darkness, the phosphorylation of LHCII and its 

475 migration to PSI is promoted (Krause and Weiss, 1984; Finazzi et al., 1999; Houille-Vernes et al., 

476 2011), whereas when low actinic light is triggered, FM’ values gradually increase and exceed FM 

477 (Cruz et al., 2011; Houille-Vernes et al., 2011). This is exactly observed in autotrophic N. 

478 oleoabundans cells (Fig. 1A). Very surprisingly, instead, mixotrophic cells did not appear much 

479 affected by chlororespiration in darkness, and, when samples were exposed to growth light 
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480 conditions, FM’ only slightly exceeded FM values (Fig. 1B). It has been suggested that, if 

481 chlororespiration occurs, the maximum FM’ value measured under low actinic light (FMtrue) should 

482 be used instead of the dark-acclimated FM (Serôdio et al, 2006). Then, if the FV/FMtrue ratio was 

483 used instead of FV/FM, the same maximum photochemical activity was determined in autotrophic 

484 and mixotrophic cells (Table 1). 

485 Further evidence for the fact that in autotrophic samples a dark incubation determines a partial 

486 association of LHCII with PSI was provided by illumination the cells with far red light (Fig. 2), 

487 which selectively excites PSI, promoting the maximum oxidation of the PQ pool and of the inter-

488 system electron transport chain (Lokstein et al., 1994; Schansker and Strasser, 2005; Hill and 

489 Ralph, 2008). In autotrophic cells, the gradual rise in FM’/FM during far red light treatment 

490 indicated a gradual increase in the LHCII proportion serving the PSII core. On the contrary, in 

491 mixotrophic cells the ratio soon reached a plateaux, suggesting that most LHCII was already linked 

492 to PSII in dark-acclimated samples. 

493 In the light of above results, it emerges that the higher FV/FM ratio characterising  mixotrophic N. 

494 oleoabundans actually occurred because the FM levels of autotrophic samples were underestimated 

495 (Hill and Ralph, 2008; Giovanardi et al., 2014). Therefore, the glucose-grown samples did not 

496 hold an improved maximum photosynthetic efficiency of PSII, but rather they might have 

497 experienced important effects on the reduction state of the photosynthetic electron transport chain 

498 (Baker, 2008; Roach et al., 2013). On the other hand, the availability of oxidized PQ did not seem 

499 to be much influenced by the addition of glucose in the culture medium (Fig. 3), as previously 

500 shown also in Chlamydomonas reinhardtii (Roach et al., 2013). However, it is noteworthy that in 

501 green microalgae, the fast reoxidation phase appears much more conspicuous compared to those 

502 measured in higher plants and cyanobacteria (Allahverdiyeva et al., 2013; Volgusheva et al., 2013; 

503 Deák et al., 2014). This reflects a faster and more efficient forward electron transfer from QA
- to 

504 the QB present in the QB pocket of PSII as compared to other photosynthetic organisms, but, as a 
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505 side effect, it can also hide differences in the amplitudes and times of decay of the subsequent 

506 middle and slow phases of Chl fluorescence. The addition of DCMU, for instance, revealed a 

507 probable defect in the assembly of the oxygen evolving complex, despite incipient, in mixotrophic 

508 cells. A similar effect was also previously observed in mixotrophic C. reinhardtii (Roach et al., 

509 2013). This defect may be negligible in growth-light conditions, but could become relevant if cells 

510 were exposed to high light.

511

512 Mixotrophic cells are more sensitive to high-light exposure than autotrophic cells

513 Differences in properties of the electron transport pathways in mixotrophic and autotrophic growth 

514 conditions were not detectable under growth light conditions. This light regime, indeed, did not 

515 influence the FtLL/FMtrue ratio (Table 1) and, thus, did not provoke an electron overloading of the 

516 thylakoid membrane. However, the capability to avoid photodamage under high light exposure 

517 was strongly affected in mixotrophic cells, as showed by the lower FtHL/FMtrue ratio than in 

518 autotrophic samples. In the latter cells, according to Tikhonov (2015), when actinic high light was 

519 switched on, the gradual, sensible increase in Ft reflected the rapid reduction of the intermembrane 

520 PQ pool (Fig. 1). Subsequently, its decrease was linked to the activation of the Calvin-Benson 

521 cycle and concomitant acceleration of electron outflow from PSI, with the consequent PQH2 pool 

522 reoxidation (Tikhonov, 2015). The mixotrophic samples reached in a very short time the maximum 

523 level of reduced PQ pool as compared to cells grown autotrophically. This led to the less evident 

524 peak of Ft observed in mixotrophic conditions. The subsequent decrease in the Ft values was 

525 likewise less evident. Accordingly, a slower electron flow in mixotrophy during high light 

526 exposure might be linked to a reduced activity of the Calvin-Benson cycle and a lower proportion 

527 of PSI in the thylakoid membrane (Tikhonov, 2015). 

528
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529 PSII complexes become less dynamic in mixotrophic cells

530 The redox state of the electron transport components influences not only the LHCII association to 

531 PSII and PSI, but also the relative abundance of both photosystems (Kováks et al., 2000). In this 

532 work, mixotrophic samples were mainly characterised by a decrease in the amount of PSI and an 

533 increase in the amount of PSII (Fig. 5A, B). Furthermore, Chla/Chlb ratio was significantly higher 

534 in cells grown with glucose. As Chlb is mostly located in LHCII complexes (Anderson et al., 

535 1995), and immunodetection did not reveal differences in the amount of LHCII between 

536 autotrophic and mixotrophic cells (Fig. 5A), this result further supported a relative increase in PSII 

537 reaction centres when cells were grown under mixotrophy. The analyses of supramolecular 

538 organisation of thylakoid complexes allowed detection of a major difference in the amount of 

539 trimeric LHCII, higher in cells grown autotrophically, in particular in DA samples, as compared 

540 to mixotrophic samples. Free LHCII trimers are considered the only LHCII complexes involved 

541 in state transition-like processes (Ünlü et al., 2014). This confirms that autotrophic cells can rely 

542 on a greater capability to modulate LHCII association with a better efficiency. More detailed 

543 analyses of the supramolecular organisation of photosystems by 2D silver-stained SDS-PAGE and 

544 corresponding quantitative distribution of PSI and PSII among the different major complexes 

545 revealed the specificity of the pigment-protein complexes of each sample.

546 In all thylakoid samples, PSII was mostly monomeric. For many years, there has been a long-

547 standing discussion about the assembly of PSII components into functional multimeric protein 

548 complexes in green algae and higher plants (Minagawa and Takahashi, 2004; Dekker and 

549 Boekema, 2005). Currently, it is widely accepted that functional PSII is normally organised as a 

550 dimer and concentrated in the stacked, appressed regions of thylakoids, whereas PSII monomer 

551 units are usually found in the unstacked thylakoid membranes, where the PSII repair cycle occurs 

552 (Kruse et al., 2000; Minagawa and Takahashi, 2004; Dekker and Boekema, 2005; Daniellson et 

553 al., 2006). However, in some cases, PSII monomers were shown to be fully active and also located 
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554 both in grana cores and margins (Dekker and Boekema, 2005; Daniellson et al., 2006; Takahashi 

555 et al., 2009). Moreover, Järvi et al. (2011) discovered that in the absence of an external charge in 

556 BN/PAGE, PSII complexes were mainly found in the monomeric form. The debate is still open, 

557 but what clearly emerged in N. oleoabundans was that PSII was more distributed in higher forms 

558 of association in mixotrophic than in autotrophic samples, preferring the maintenance of PSII as a 

559 dimer and even in megacomplexes together with PSI. In megacomplexes, there is a stable and 

560 advantageous association between PSI and PSII that promotes photoprotective energy spillover 

561 towards PSI (Grieco et al., 2015; Yokono et al., 2015; Ferroni et al., 2016). The strong interaction 

562 between PSII and PSI limits also the necessity of D1 protein subunit of PSII to be replaced after 

563 photodamage events. On the opposite, a fluent electron transfer through the thylakoid membranes, 

564 as well as the maintenance of an excitation balance between PSII and PSI, is fundamental for an 

565 efficient use of light for photochemistry (Mekala et al., 2015). 

566 On the whole, in autotrophic N. oleoabundans, then, the photosynthetic membrane is regulated as 

567 expected. In darkness, chlororespiratory electron recycling is active and PQ pool is partially 

568 reduced, as also demonstrated by the presence of phosphorylated LHCII and PSII subunits (Fig. 

569 10). During the initial exposure to growth light conditions, the electron transfer components turn 

570 at the oxidised state and maximum PSII quantum efficiency is reached. The role of LHCII 

571 phosphorylation is mainly the balancing of energy excitation between PSII and PSI (Tikkanen and 

572 Aro, 2012), and at low irradiances, maximal phosphorylation is induced in chloroplast in vivo 

573 (Rintämaki et al., 2000). Under a steady-state low-growth light conditions, maximum PSII core 

574 and LHCII phosphorylation is then achieved in autotrophic cultures and ensures an even excitation 

575 distribution between PSII and PSI (Tikkanen and Aro, 2012). This represents for the cells a highly 

576 fluid condition of thylakoid complexes, which allows extensive, though labile, interactions 

577 between photosystems and LHCII (Mekala et al., 2015). 
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578 In dark-adapted mixotrophic N. oleoabundans, chlororespiration appears to be down-regulated and 

579 LHCII is mainly associated to PSII, sustained by the absence of phosphorylation of PSII core and 

580 LHCII (Fig. 10). Furthermore, the very weak phosphorylation even at growth light conditions, the 

581 poorness of free LHCII trimers, the very strong PSII-LHCII association of complexes and PSI-

582 PSII-LHCII megacomplexes suggest a very low dynamicity of thylakoid protein complexes in 

583 mixotrophic cells. This is reflected also by a visibly higher appression degree of thylakoids in 

584 mixotrophic cells, presumably sustained by very low levels of protein phosphorylation (Fig. 9; 

585 Fristedt et al., 2009). Some hypotheses might be advanced to explain this behaviour. The 

586 exogenous glucose - uptaken with such a high efficiency that results even in the accumulation of 

587 starch granules (Baldisserotto et al., 2016) - might have contributed to an excess of available 

588 reducing power through respiration. This could have promoted the maintenance of plastid 

589 thioredoxins at the reduced state, leading to the inhibition of LHCII phosphorylation and thus to 

590 the promotion of PSII-LHCII association (Rintamäki et al., 2000). Moreover, a higher respiration 

591 rate in mixotrophic cells can result in a high availability of ATP, with a consequent down-

592 regulation of Calvin-Benson Cycle and of PSI. A lower PSI:PSII stoichiometry may depend also 

593 on incapability of proteolitic enzymes to degrade PSII subunits (Chow et al., 1990). In fact, it was 

594 demonstrated that PSII is less accessible to degradation when associated in megacomplexes 

595 (Tikkanen and Aro, 2012). The low PSII core protein phosphorylation, as observed in mixotrophic 

596 microalgal thylakoids, limits the fluidity of the thylakoid membrane and cooperates in hindering 

597 the disassembly of PSII supercomplexes, affecting also the oligomerisation of PSII and the 

598 regulation of D1 protein degradation. This event impacts on the capability of mixotrophic samples 

599 to react to photodamage when cells are exposed to prolonged high-light conditions (Figure 1B; 

600 Tikkanen et al., 2008; Tikkanen and Aro, 2012). 
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603 Conclusions

604 In conclusion, contrary to what previously hypothesised, the supply of glucose to N. oleoabundans 

605 cells does not induce an emphasised photosynthetic activity compared to autotrophic cultures, but 

606 rather provokes a decreased dynamicity of PSII assembly. Ultimately, the effect of such a low 

607 dynamicity is the preservation, or a delayed degradation, of PSII, in spite of the mixotrophic mode 

608 of growth. 
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843

844 Figure captions 

845 Fig. 1. Representative curves of slow Chla fluorescence kinetics in response to changing light 

846 intensities in N. oleoabundans at the 6th day of cultivation. A) cells grown with 0 gL-1 of 

847 glucose. B) cells grown with 2.5 gL-1 of glucose. The measurements were started after 10 min of 

848 incubation in darkness by turning on the actinic light, the fluorescence parameters FM’ and Ft were 

849 monitored triggering the samples with different light intensities. FMtrue is maximum fluorescence 

850 measured at the end of the exposure to 90 µmolphotons m-2s-1; FtLL and FtHL are steady-state 

851 fluorescence values measured at the end of the exposure to 90 µmolphotons m-2s-1 and 1000 

852 µmolphotons m-2s-1, respectively. 

853 Fig. 2. Representative curves of Chla fluorescence kinetics during exposure to far red light.  

854 Excitation of autotrophic (filled circles) and mixotrophic (empty circles) N. oleoabundans cells 

855 with far red light for 10 min (purple diagram) and subsequent dark relaxation (dark diagram). n≥3 

856 ± standard error. p < 0.05 at times 1, 5-9. p < 0.01 at times 10, 11, 12, 15, 20, according with 

857 Student’s t  test. 

858 Fig. 3. Relaxation of the flash-induced fluorescence in N. oleoabundans cells grown with 0 

859 (filled circles) and 2.5 (empty circles) gL-1 of glucose. In the insert, relaxation kinetics as 

860 occurring in presence of 5 μM DCMU. Curves are average of at least 3 different biological 

861 replicates and are normalised to the same amplitude. Arrows: saturating-light pulse.
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862 Fig. 4. Coomassie-stained SDS-PAGE of thylakoids extracted from autotrophic and 

863 mixotrophic N. oleoabundans. On each lane, 2 μg of Chl (A) or 20 μg of proteins (B) were loaded. 

864 For comparison, three different amounts of thylakoids from autotrophic sample were loaded. 

865 Molecular weight marker is reported on the left side in each gel. 

866 Fig. 5. Detection of thylakoid protein amount in autotrophic and mixotrophic N. 

867 oleoabundans cells. A) Immunoblot detection of ATPβ (3 µg of Chl loaded in each lane), PsaB 

868 (0.5 µg of Chl loaded in each lane), D1-DE loop (0.5 µg of Chl loaded in each lane) and LHCII 

869 (0.25 µg of Chl loaded in each lane) in thylakoid membranes of N. oleoabundans grown with 0 

870 (A), and 2.5 (M) gL-1 of glucose. For comparison, three different amounts of thylakoids from 

871 control sample were loaded. Molecular weight marker is reported on the left. B) 77K Fluorescence 

872 emission spectra recorded from autotrophic (black line) and mixotrophic (grey line) N. 

873 oleoabundans cells. For easier comparison, spectra were normalized to their maximum peak, 

874 corresponding to PSII emission region. Spectra are averages of at least 3 replicates for each 

875 biological sample.

876 Fig. 6. Representative BN-PAGE profiles of thylakoids from N. oleoabundans. DA: dark 

877 autotrophic cells; LA: light autotrophic cells; DM: dark mixotrophic cells; LM: light mixotrophic 

878 cells. For each lane, 8µg Chl were loaded. The position of major complexes is indicated by labels. 

879 Fig. 7. 2D-BN/SDS-PAGE of protein complexes in thylakoid membranes from N. 

880 oleoabundans. A) comparison between autotrophic cells incubated in darkness (DA) or maintained 

881 in growth light (LA) before thylakoid extraction. B) comparison between mixotrophic cells  

882 incubated in darkness (DM) or in growth light (LM) before thylakoid extraction. The BN-PAGE 

883 strips were loaded horizontally on the SDS-PAGE. The highlighted silver-stained spots correspond 

884 to Psa A/B subunits of PSI, CP47, CP43, D1 and D2 subunits of PSII, and LHCII subunits. Two 
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885 different types of LHCII trimer are indicated by yellow arrows. Marker molecular weight of 

886 proteins is reported on the left. 

887 Fig. 8. Relative amounts of PSII (A) and PSI (B) in thylakoids extracted from autotrophic 

888 (A) and mixotrophic (M) N. oleoabundans cells incubated in darkness  (DA - DM) or 

889 maintained in growth light  (LA – LM) before extraction. Black: DA; line pattern: LA; diamond 

890 pattern: DM; white: LM.  Data are means of 4 replicates ± standard deviation and are obtained by 

891 spot densitometry of 2D/BN-PAGE gels stained by SYPRO Ruby dye. Differences are not 

892 significant (p>0.05) for groups with the same superscript using ANOVA comparison of means.

893 Fig. 9. TEM images of autotrophic (A-B) and mixotrophic (C-D) N. oleoabundans cells after 

894 6 days of cultivation. Asterisks indicate starch granules, arrows highlight thighly-appressed 

895 thylakoids in mixotrophic cells.

896 Fig. 10. Detection of phosphorylated thylakoid proteins in autotrophic (A) and mixotrophic 

897 (M) N. oleoabundans cells. A) phosphorylation of thylakoid proteins of N. oleoabundans cells 

898 incubated in darkness (DA-DM) or maintained in growth light (LA-LM) before extraction. 

899 Phosphoproteins were detected by immunoblotting using an anti-phosphothreonine antibody. 

900 LHCII, D2 and CP43 are indicated as major phosphoproteins. Molecular weights are expressed in 

901 kDa. B) Coomassie-stained SDS-PAGE of thylakoids incubated in darkness (DA-DM) or 

902 maintained in growth light (LA-LM) before extraction. Bands corresponding to LHCII subunits are 

903 indicated. Dashed lines include phosphorylated subunits after immunoblotting. 
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Highlights:

 Mixotrophy influences the photosynthetic performance of Neochloris oleoabundans 

 High FV/FM values are linked to a down-regulated chlororespiration under mixotrophy

 A stronger association of thylakoid complexes is promoted in mixotrophic cells

 Lower dynamicity of complexes allows PSII preservation under growth light
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Supplementary Figures 

Figure S1. Cell density (solid line-circles) and PSII maximum quantum yield FV/FM (dashed line-squares) of 

N. oleoabundans grown in autotrophic (filled symbols) and mixotrophic (2.5 gL-1 of glucose; empty symbols) 

media. For statistical comparison of data on cell density, p < 0.01 at day 3, p < 0.001 at the following times; 

for statistical comparison of data on FV/FM ratio, p < 0.05 at day 2, p < 0.01 at day 7, p < 0.001 at day 4, 

according with Student’s t test. Data are averages of at least 3 biological replicates ± standard deviation. 



Figure S2. Immunoblot detection of PsaA subunit of PSI in thylakoid membranes of N. oleoabundans 

grown with 0 (A), and 2.5 (M) gL-1 of glucose. All samples were loaded on a Chl basis and at the following 

concentrations: 1.5 (25%), 3 (50%) and 6 (100%) µg Chl per lane. Thylakoid proteins were separated by 

SDS-PAGE and electroblotted on a nitrocellulose membrane as described in “Material and Methods” 

section. PsaA was provided from Agrisera (www.agrisera.com). After Western Blot, membranes were 

blocked with 0.5% BSA in TBS buffer. The alkaline phosphatase conjugate method was used for protein 

detection using a goat anti-Rabbit IgG secondary antibody also provided from Agrisera. To confirm the 

reliability of the protein detection and verify that thylakoid proteins were properly electroblotted, Ponceau-

stained nitrocellulose membrane is also reported. The black arrow indicates the band related to PSI.   

Molecular weight marker is reported on the left.



Figure S3. Blue Native (BN) - SDS PAGE profile of thylakoids membranes (see Material and Methods 

section) from Arabidopsis thaliana (Ara) and autotrophic N. oleoabundans (Neo). The position of major 

complexes is indicated by labels. For Arabidopsis, the position  of major complexes reflects that reported in 

previous works: one band corresponding to free LHCII monomer; a more intense band of the free LHCII 

trimer; an LHCII assembly complex (LHCII trimer-CP24-CP29, Aro et al., 2005) close to the band 

corresponding to PSII in the momomeric form; a very intense band corresponding to PSI co-migrating with 

PSII in the dimeric form; and, finally, four bands of PSII-LHCII supercomplexes, structured as the so-called 

C2S, C2S2, C2S2M and C2S2M2 complexes (Caffarri, 2009; Croce and van Amerongen, 2011).


