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Abstract
Background It is still unclear how to combine biomarkers to identify patients who will truly benefit from anti-PD-1 agents 
in NSCLC. This study investigates exosomal mRNA expression of PD-L1 and IFN-γ, PD-L1 polymorphisms, tumor muta-
tional load (TML) in circulating cell-free DNA (cfDNA) and radiomic features as possible predictive markers of response 
to nivolumab and pembrolizumab in metastatic NSCLC patients.
Methods Patients were enrolled and blood (12 ml) was collected at baseline before receiving anti-PD-1 therapy. Exosome-
derived mRNA and cfDNA were extracted to analyse PD-L1 and IFN-γ expression and tumor mutational load (TML) by 
digital droplet PCR (ddPCR) and next-generation sequencing (NGS), respectively. The PD-L1 single nucleotide polymor-
phisms (SNPs) c.-14-368 T > C and c.*395G > C, were analysed on genomic DNA by Real-Time PCR. A radiomic analysis 
was performed on the QUIBIM  Precision® V3.0 platform.
Results Thirty-eight patients were enrolled. High baseline IFN-γ was independently associated with shorter median PFS 
(5.6 months vs. not reached p = 0.0057), and levels of PD-L1 showed an increase at 3 months vs. baseline in patients who 
progressed (p = 0.01). PD-L1 baseline levels showed significant direct and inverse relationships with radiomic features. 
Radiomic features also inversely correlated with PD-L1 expression in tumor tissue. In subjects receiving nivolumab, median 
PFS was shorter in carriers of c.*395GG vs. c.*395GC/CC genotype (2.3 months vs. not reached, p = 0.041). Lastly, respond-
ers had higher non-synonymous mutations and more links between co-occurring genetic somatic mutations and ARID1A 
alterations as well.
Conclusions A combined multiparametric approach may provide a better understanding of the molecular determinants of 
response to immunotherapy.
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MMR  Mismatch repair
MSI  Microsatellite instability
NGS  Next-generation sequencing
NSCLC  Non-small cell lung cancer
ORR  Overall response rate
PD  Progression disease
PD-1  Programmed cell death protein-1
PD-L1  Programmed cell death protein–ligand 1
PFS  Progression free survival
PolyPhen  Polymorphism phenotyping
PR  Partial responses
RECIST  Response evaluation criteria in solid 

tumors
ROC  Receiver operating characteristic
SD  Stable disease
SIFT  Sorting intolerant from tolerant
SNPs  Single nucleotide polymorphisms
SNV  Single-nucleotide variant
TML  Tumor mutational load
TPS  Tumor proportional score
VOI  Volume of interest

Background

Anti-PD-1 therapies significantly improved the prognosis in a 
subset of patients affected by NSCLC. Despite several predic-
tive biomarkers have been proposed, it is still unclear how to 
manage them in an integrated model to improve prediction 
power. PD-L1 assessment in tumor tissue has been widely used 
to identify patients who will benefit from immune-checkpoint 
inhibition; however, intratumor heterogeneity may cause false 
negative results [1] and patients with low PD-L1 expression 
may also take advantage from pembrolizumab [2]. Moreo-
ver, tumor phenotype, including PD-L1 expression, may vary 
throughout time in response to alterations in the tumor micro-
environment and following the clonal selection induced by 
treatments [3–6]. For these reasons, other markers, such us 
PD-1/PD-L1 polymorphisms, tumor immune infiltrate, muta-
tional load and microsatellite instability have been consid-
ered [7–9]. Moreover, several other mediators of the immune 
response have been investigated, such as IFN-γ, which has a 
pleiotropic activity on the immune system and can alter the 
expression of PD-L1 [10], albeit its role in tumor progres-
sion and immunotherapy response is still controversial [11]. 
To overcome spatial and temporal tumor heterogeneity, cell 
free tumor DNA and exosomes, due to their involvement in 
immune signalling, reprogramming of surrounding cells and 
immune escape, are gaining attention [12–15]. In addition to 
this, the concept that biomedical images contain information 
reflecting tumor molecular aberrations is nowadays raising, 
and radiomic analysis is being used to identify predictive bio-
markers of response to treatments [16, 17]. For these reasons, 

the present study was aimed at integrating the evaluation of: 
(1) PD-L1 and IFN-γ mRNA expression in plasma-derived 
exosomes; (2) selected PD-L1 gene variants (i.e. c.-14-
368 T > G and c.*395G > C); (3) tumor mutational load (TML) 
on cfDNA, and (4) radiomic analysis to identify predictive 
biomarkers of response to anti-PD-1 therapy.

Methods

Patients

Patients affected by locally advanced or metastatic NSCLC 
given nivolumab or pembrolizumab as per approved schedule 
were enrolled in the present study. Blood samples were drawn 
from each patient for the analysis of (1) exosomal mRNA lev-
els of PD-L1 and IFN-γ at time 0 (baseline) and after 3 months 
of treatment, (2) selected germinal PD-L1 polymorphisms and 
(3) tumor mutational load (TML) in circulating free DNA 
(cfDNA). PD-L1 immuno-histochemistry assessment in 
tumor tissue was collected in selected cases, accordingly with 
laboratories procedures. Complete (CR) and partial response 
(PR), disease stabilisation (SD) and disease progression (PD) 
were defined following RECIST (v. 1.1) criteria. CT scans 
were collected at baseline for radiomic analysis (see below). A 
written consent form was obtained from all patients; the study 
was approved by the local Ethics Committee and performed 
in accordance with the provisions established by the Helsinki 
Declaration.

Exosomes isolation and measurement of PD‑L1 
and IFN‑γ mRNA

A blood sample of 12 ml was collected in EDTA tubes and 
centrifuged for 10 min at 1900 g within 2 h. Exosomes were 
isolated from plasma and RNA was extracted, as previously 
described [18]. Expression of PD-L1 and IFN-γ was assed 
via ddPCR (Bio-Rad, Hercules, CA) with respect to human 
β-actin (ACTB) as internal control, as previously described 
[4]. The values reported are expressed as fractional abundance 
(FA, %), that is the proportion of the number of copies/ml 
of the investigated protein-coding exosomal mRNAs in the 
total of the commonly detected exosomal mRNAs, including 
also  β-actin (ACTB) as housekeeping gene, calculated by the 
QuantaSoft™ software (Bio-Rad, Hercules, CA).

Analysis of PD‑L1 germline polymorphisms

Germline DNA was extracted from 200 μl of peripheral 
blood (EZ1 Extractor; Qiagen, Valencia, CA) for the analy-
sis of the PD-L1 single nucleotide polymorphisms (SNPs) 
c.*395G > C and c.-14-368 T > C, selected on the basis of a 
previous publication [9, 19], by a real-time PCR using the 



Cancer Immunology, Immunotherapy 

1 3

 TaqMan® SNP Genotyping Assay (ThermoFisher, Carlsbad, 
CA).

TML analysis on cfDNA

A blood sample of 6 ml was collected in EDTA tubes and 
centrifuged for 10 min at 1900 g within 2 h. cfDNA was 
extracted from 3 ml of plasma and DNA was eluted in 50 μl 
of buffer, as previously published [20]. TML analysis was 
performed on the Ion S5 XL System NGS platform, using 
the Oncomine Tumor Mutation Load Assay (ThermoFisher, 
Carlsbad, CA). The filtered variants were examined using 
the Integrative 201 Genomic Viewer IGV tool to check 
their quality level and confirm the presence of the variant 
of interest. To explore the relationship between the quality 
of genetic profiles and TML, all genes and relative calling 
mutations were evaluated according to their involvement 
in NSCLC pathogenesis, immune system, cell cycle, and 
immunotherapy response. For each SNV (single-nucleotide 
variant) occurring in the exonic region, an estimation of its 
putative damaging effect on the resulting protein was scored 
using Grantham, SIFT and PolyPhen criteria [21]. Finally, 
a computational approach was attempted [22, 23]. Starting 
from Milgram’s basic small-world concept [22] a custom-
made  MATLAB® script (The Math Works Inc., Natick, MA) 
was endeavored to investigate possible relationships between 
genes included in the Oncomine panel. For each gene the 
total number of different mutations was considered, weighed 
by the number of mutations with Polyp hen ≥ 0.85 (deleteri-
ous power) and a Watts–Strogatz graph [23] was plotted.

Radiomic analysis

Patients who undergone to CT imaging for lung cancer 
staging and met homogeneity criteria for image acquisition 
parameters [24], were retrospectively enrolled in a radiom-
ics analysis evaluating 25 radiomics features from the entire 
primary tumor lesion at baseline (Supplementary Table S1). 
Scan protocol homogeneity criteria included 120 kV tube 
voltage, a field of view between 36 and 40 cm, 1.5–2 mm 
slice thickness and a standard/soft tissue convolution kernel. 
Only non-contrast CT images were used for radiomics analy-
sis. CT scan were acquired at baseline of immunotherapy, 
either first-line pembrolizumab or nivolumab as subsequent-
line. The primary tumor site was manually contoured slice 
by slice on axial CT images using a lung window setting 
(width, 1500 HU; level, − 600 HU) by a radiologist experi-
enced in lung cancer imaging, and then independently vali-
dated by another radiologist assessor. Radiomic analysis 
was then performed on the volume of interest (VOI) via the 
QUIBIM  Precision® V3.0 platform (QUIBIM SL, Valencia, 
Spain) [25]. Lastly, a statistical method was used to avoid a 

redundancy of information [26] and to select only the most 
distinctive radiomic features (Supplementary Table S2).

Statistical analysis

Categorical variables were described by absolute and rela-
tive frequencies while quantitative factors by median and 
range. To compare quantitative with categorical variables 
the Mann–Whitney test was performed, while the Wilcox-
on’s test was used to assess paired data. The median cut-off 
value for analysis of PD-L1 and IFN-γ was calculated by the 
Receiver Operating Characteristic (ROC) curve analysis to 
differentiate patients with response and no response to ICIs. 
Since an overall survival (OS) advantage was difficult to 
detect due to the small sample size and the short follow-up, 
progression free survival (PFS), overall response rate (ORR) 
and clinical benefit rate (CBR) were investigated [27, 28]. 
Moreover, CBR and PFS are generally based on objective 
and quantitative assessments, including the measurement of 
stable disease, and are not affected by crossover or subse-
quent therapies. PFS was defined as the time from treatment 
start to PD or death. ORR was defined as the proportion 
of patients achieving CR and PR. CBR was defined as the 
proportion of patients achieving CR, PR or SD for at least 
24 weeks. Log-rank test was used to evaluate differences 
between curves and hazard ratio was calculated using Cox 
model to compare cumulative risks. Pearson’s correlation 
coefficient was used to assess the correlation among all radi-
omic features, and between radiomic features and available 
molecular data. Lastly, a radiomic signature was calculated 
based on the sum of the features correlating with tumor 
molecular data, weighted by their corresponding maximum-
likelihood fitted coefficients for the least absolute shrinkage 
and selection operator (LASSO) regression model. A 11-fold 
cross validation was performed for this purpose. Logistic 
regression model test (Cox-Snell’s R2) and receiver operat-
ing characteristic (ROC) curve analysis was computed to 
estimate diagnostic performance of such signatures, alone 
and combined with the other biomarkers analysed. Differ-
ences were considered significant at p < 0.05. All statistical 
analyses were performed with SPSS version 24 (SPSS Inc. 
 SPSS® Chicago, IL, USA) or  MatLab® software (version 
R2019a; MatLab, The Math Works Inc., Natick, MA).

Results

Patients’ characteristics

A total of 38 NSCLC patients were enrolled in the study 
(Table 1). Twenty-five patients received nivolumab as 
second (68%) or higher line of treatment (32%), while 13 
patients received pembrolizumab as first line treatment. 
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At the first radiological assessment 13 patients (34.2%) 
obtained a PR, 8 (31.6%) SD and 17 (44.8%) PD. ORR 
was 34%, slightly different amongst the two cohorts (53% 
vs. 24% for pembrolizumab and nivolumab, respectively), 
CBR was 66% (85% vs. 56% for pembrolizumab and 
nivolumab, respectively).

Association between mRNA expression of PD‑L1 
and IFN‑γ and clinical outcome

Median FA at baseline was 0.3% for PD-L1 and 4.1% 
for IFN-γ (overall population, 38 patients). PFS was 11 
vs. 16.2 months in patients with PD-L1 FA of < 0.3% 
vs. ≥ 0.3%, respectively (p = 0.75; Fig.  1a). PFS was 
5.6 months vs. not reached in patients with baseline FA 
of IFN-γ of ≥ 4.1% vs. < 4.1%, respectively (p = 0.0057; 
Fig. 1b). Comparing PD-L1 at baseline vs. 3 months of 
treatment, the FA was significantly increased in patients 
with PD vs. PR + SD (p = 0.01; Fig. 1c). Of note, con-
sidering IFN-γ baseline levels, the FA was significantly 
higher in patients who progressed within 3 months com-
pared to patients with PR + SD (p = 0.04; Fig. 1d).

Association between PD‑L1 polymorphism 
and clinical outcome

c.-14-368 T > G and c.*395G > C PD-L1 polymorphisms 
were obtained in 32 out of 38 patients (20 patients treated 
with nivolumab and 12 with pembrolizumab). The abso-
lute and relative frequencies are reported in Table 2. In the 
cohort treated with nivolumab, median PFS was signifi-
cantly shorter in patients with c.*395GG vs. those carrying 
the c.*395GC/CC genotype (2.3 months vs. not reached, 
p = 0.041; Fig.  2). No significant association between 
c.*395G > C genotypes and PFS was observed in cohort of 
patients given pembrolizumab and in the overall population. 
The c.-14-368 T > G genotype was not correlated with PFS 
neither in the overall population nor in the cohorts treated 
with nivolumab or pembrolizumab alone.

TML and mutated gene network

TML analysis on cfDNA was available  only in cfDNA sam-
ples showing a sufficient concentration of 150–300 bp DNA. 
PD was associated with lower mutation load compared to 
patients who achieved a PR (Supplementary Table S3). Fur-
thermore, for all the exonic SNVs of each patient, the rela-
tive median values of Grantham, PolyPhen and SIFT scores 
were obtained. Subjects who underwent PR had higher 

Table 1  Clinical characteristics 
of patients

ECOG PS eastern cooperative oncology group performance status, n number

Overall popula-
tion (n = 38)

Nivolumab (n = 25) Pembrolizumab (n = 13)

Age, mean (range) 68 (44–85) 72 (52–85) 65.5 (44–74)
Sex, n (%)
 Male 22 (57.9) 13 (52) 9 (69.2)
 Female 16 (42.1) 12 (48) 4 (30.8)

Smoking habits, n (%)
 Yes/former 34 (89.5) 22 (88) 12 (92.3)
 Never 4 (10.5) 3 (12) 1 (7.7)

ECOG PS, n (%)
 0–1 38 (100) 25 (100) 13 (100)
  ≥ 2 0 0 0

Stage, n (%)
 III 0 0 0
 IV 38 (100) 25 (100) 13 (100)

Sites of disease, mean (range) 2 (1–5) 2.5 (1–5) 2 (1–5)
Site of disease
 Bone, n (%) 9 (23.7) 6 (24) 3 (23.1)
 Visceral, n (%) 6 (15.8) 5 (20) 1 (7.7)
 Central nervous system, n (%) 2 (5.3) 2 (8) 0

Line of therapy, n (%)
 I 8 (21.1) 0 8 (61.5)
  ≥ II 30 (78.9) 25 (100) 5 (38.5)
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Grantham, PolyPhen and SIFT mean values than the patient 
in PD (67.17 ± 6.53 vs. 50, 0.01 vs. 0, 0.90 ± 0.04 vs. 0.80, 
respectively).

Likewise, in the underlying architecture among mutated 
genes defining the TML, fewer connections were evi-
dent between mutated AT-Rich Interaction Domain 1A 

Fig. 1  Kaplan–Meier PFS of 38 NSCLC patients stratified on the basis of fractional abundance of PD-L1 (a) and IFN-γ (b). Comparison of frac-
tional abundance of PD-L1 (c) and IFN-γ (d) among patients with PR, SD and PD, at baseline and after first evaluation (1R)

Table 2  PD-L1 genotypes and 
clinical response at 3 months 
evaluation

n number, T time, PR partial response, SD stable disease, PD progression disease

Clinical response c.*395G > C (n = 32) c.-14-368 T > G (n = 32)

GG GC CC TT TG GG

PR, n (%) 6 (18.8) 6 (18.8) 1 (3.2) 5 (15.6) 6 (18.8) 2 (6.2)
SD, n (%) 3 (9.4) 4 (12.5) 1 (3.2) 5 (15.6) 3 (9.4) 0
PD, n (%) 8 (25) 3 (9.4) 0 4 (12.5) 5 (15.6) 2 (6.2)
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(ARID1A), a gene involved in transcriptional regulation and 
DNA damage response, and the other genes in the patient 
who had PD with respect to those who achieved PR (Fig. 3).

Radiomic results

Radiomic analysis was performed in 11 subjects (Supple-
mentary Fig. S1). FA of PD-L1 at baseline directly cor-
related with contrast (p = 0.96, p = 0.003), dissimilarity 
(p = 0.92, p = 0.008) and sum variance (p = 0.91, p = 0.009), 
and inversely with entropy (p = − 0.95, p = 0.004). Inverse 
correlations were also found between PD-L1 expression in 
tumor tissue with autocorrelation (p = − 0.83, p = 0.04) and 
sum average (p = − 0.82, p = 0.05).

Notably, tissue expression of PD-L1 was variable; in 
45% of subjects the PD-L1 tumor proportional score (TPS) 
was < 1%, in 27.5% was in the 1–49% range and in 27.5% 
was ≥ 50%. Two of them had levels ≥ 75%.

No correlations were found between radiomic features 
and IFN-γ FA. The radiomic signature comprising the 
abovementioned 6 features evidenced good capability with 
acceptable representativeness for predicting patients in PD 
vs. those who underwent PR or SD (Cox-Snell’s R2 = 0.63, 
p < 0.001). The optimal cut-point estimated from the ROC 
curve showed 85.71% sensitivity and 100% specificity, with 
the area under the curve of 0.96. Combining the signature 
with the other biomarkers, representativeness improved 
(Cox-Snell’s R2 = 0.72, p = 0.02) and ROC curve showed 
sensitivity and specificity of 100%. A  multiparametric 
analysis gave a better diagnostic performance than single 
parameters: with regard to clinical response, the sensitivity 
and specificity were, respectively, 75% vs. 57.14% for FA of 
PD-L1, 100% vs. 85.71% for FA of IFN-γ and 71.43% vs. 
75% for PD-L1 TPS cutoff of 50% (Fig. 4).

Discussion

The availability of predictive biomarkers for immunotherapy 
response is still an important need in many solid tumors. 
Many efforts have been made to identify a reliable marker; 
however, except for the PD-L1 expression of patients can-
didate to first line treatment with pembrolizumab, no robust 
biomarkers have been identified. Even among NSCLC 
patients with PD-L1 expression > 50% treated with first-
line pembrolizumab, clinical outcome resulted significantly 
improved in patients with a PD-L1 expression > 90% [29]. 
While drivers such as EGFR, BRAF, ALK are HER2 dic-
tate the choice of target-specific therapy, the same cannot 
be attributed to PD-L1 because it is dynamic, inducible, and 
disease-dependent. Therefore, it is reasonable that more than 
one biomarker is needed to select patients who will benefit 
or not from immunotherapy. Based on this hypothesis, in this 
study we considered exosomal mRNA expression of PD-L1 
and IFN-γ, together with cfDNA-derived TML and radiomic 

Fig. 2  Kaplan–Meier curve of PFS in 20 NSCLC patients treated 
with nivolumab according to the PD-L1 c.*395G > C polymorphism

Fig. 3  Watts–Strogatz graph showing the connections between ARID1A and other genes included in the TML NGS panel according to clinical 
response
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features as a possible pool of predictive markers of response 
to the anti-PD-1 agents nivolumab and pembrolizumab in 
NSCLC.

The baseline expression of IFN-γ was significantly higher 
in patients who progressed. Indeed, although IFN-γ has 
long been implicated as a central orchestrator of antitumor 
immune responses [30], mounting evidence [31–33] sug-
gests that it may also have a pivotal role in immune eva-
sion. IFN-γ upregulates PD-L1 expression in cancer, stromal 
and myeloid cells, impairing immune response [34]. Both 
CD8 + T-cells and IFN-γ are critical for antitumor immunity 
[35], but a prolonged IFN-γ signaling in tumors, coordi-
nates resistance to immune checkpoint inhibitors through a 
multigenic resistance program [36] independent of PD-L1 
expression. Different studies evaluated the role of inflam-
matory cytokines as predictive biomarkers, although results 
are controversial [37]. The emerging picture of the immune 
landscape of NSCLC has provided evidence for an extremely 
high degree of complexity and heterogeneity [38]. Consider-
ing such heterogeneity, looking at only few markers (such 
as PD-L1) could be not robust enough. For these reasons, 
the development of a multiparametric approach is an emerg-
ing challenge to select patients more likely to respond. The 
feasibility to assess TML on cfDNA was evaluated, and a 
radiomic analysis has been conducted in this study. It is well 
known that tumors with high TML and responsive to immu-
notherapy may exhibit specific non-synonymous genetic 
alterations [39, 40]. For example, defects in MMR genes 
lead to MSI and could cause an increase in TML [39, 41]. 
In this study, albeit in a small cohort, patients who achieved 
a PR had higher amount of non-synonymous exonic muta-
tions than the patient who underwent PD. Moreover, Gran-
tham, SIFT and PolyPhen scores were higher in patients with 
PR, indicating a possible biological condition consisting of 

numerous damaging mutations, compared with those found 
in the progressing patient. It is likely that an immunogenic 
phenotype may arise, leading to better responsiveness to 
immunotherapy. Of note, in the underlying architecture 
among mutated genes included in the NGS panel used to 
assess TML, patients who achieved a PR showed higher con-
nections between mutated ARID1A gene and the others with 
respect to the one who underwent PD (Fig. 3). A pan-cancer 
analysis of ARID1A alterations [42] recently highlighted 
their important value as predictive biomarkers for immuno-
therapy. ARID1A alterations promote cancer iper-mutated 
phenotype [43, 44] and co-occurring specific genetic muta-
tions in cancers with ARID1A alterations are detected [42]. 
Looking at differences in the number of ARID1A connec-
tions between PD and PR patients may not only suggests a 
possible novel marker to be considered in patients treated 
with immunotherapy, but also confirms the role of ARID1A 
in promoting immunogenicity. Currently, TML measure-
ments are essentially performed using NGS in tissue biopsy 
and the cut-off can vary from 5 to 10% [45]. TML measure-
ments from cfDNA is technically challenging, due to the low 
quantity and quality of cfDNA that can be extracted from 
plasma. Therefore, the identification of the cut-off of variant 
allele frequency is mandatory to ensure that TML would be 
a reliable estimation of the number of the mutations in the 
tumor, avoiding false negative/positive results.

The choice of using a targeted-NGS panel instead of 
whole-exome sequencing (WES), have been carefully 
evaluated, since the panel size and the kind of included 
variants for TML analysis remain a key question [46, 
47], and a recent report described that in panels with 
genomic coverage < 0.5 Mb, the accuracy of TML deter-
mined by targeted NGS diminished [48]. Nevertheless, our 
approach was intended to meet the clinic-laboratory need 

Fig. 4  Specificity and sensi-
tivity of radiomic signature, 
PD-L1 and IFN-γ FA and 
c.*395G > C polymorphism
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of cost-efficiency. Several studies show that TML measured 
by WES is not currently feasible in routine clinical setting 
due to high costs, long turnaround time and limited avail-
ability of samples [49]. Interesting, previous works dem-
onstrated the comparability of panel-based sequencing ver-
sus WES in NSCLC patients treated with immunotherapy: 
Ritzvi H. et al. [50], performing WES and targeted NGS for 
49 patients, showed a significant correlation between the 
two methodologies (R = 0.86; p < 0.001); similarly, another 
study by Wang Z. et al. [51] demonstrated the same corre-
lations (median R2 = 0.92; interquartile range = 0.91–0.93). 
Moreover, the researchers also confirmed that TML may be 
a potential biomarker to identify patients who will benefit 
from anti-PD-1/PD-L1 therapy.

The present study was also aimed at evaluating the 
impact of germline SNPs of PD-L1 (c.-14-368 T > G and 
c.*395G > C) on PFS as previously investigated [9]. In 
the present work, patients treated with nivolumab showed 
a shorter median PFS in the c.*395GG wild type carriers, 
compared with those carrying the mutant c.*395GC/CC 
genotype. The c.*395G > C polymorphism increases pro-
moter activity and PD-L1 mRNA levels and is significantly 
associated with better survival. These findings suggest that 
PD-L1 polymorphism may be useful predictor of response to 
treatment [19, 52]. Moreover, our results showed that PD-L1 
expression in exosomes is not a predictive biomarker of 
response at baseline; however, PD-L1 expression was found 
to increase in patients who progressed to treatment, con-
firming the results of a previous published study [4]. Given 
the complexity and multifactorial nature of the anticancer 
immune response and the mechanisms of tumor immune 
evasion [38], finding a reliable signature that allows distin-
guishing patients who will benefit from immunotherapy is 
still a mission. In this context, radiomics could be a useful 
tool, as it allows to highlight alterations of neoplastic texture 
[53, 54]. Radiomics has the potential to provide an individu-
alized quantitative (and therefore objective) measurement of 
tissue reaction to treatment in terms of tumor response [17], 
which cannot be accurately derived by either human visual 
assessment or laboratory data, alone. However, the signifi-
cance of the association between radiomics and the complex 
biological processes occurring within the tumor also remains 
challenging. Therefore, combined molecular and radiomic 
data could help to clarify the meaning of imaging-based 
features and increase the predictive significance of bench 
results. In our study Pearson’s correlation showed a direct 
relation between exosomal mRNA expression of PD-L1 and 
radiomic features such as “contrast”, “dissimilarity” and 
“sum variance”, while an inverse correlation was showed 
between PD-L1 expression and “entropy”. Moreover, an 
inverse correlation was also found for PD-L1 expression in 
tumor tissue with the “autocorrelation” and “sum average” 
features. Data from this preliminary study show that liquid 

biopsy can be completed by radiomic features, which could 
reflect tumor spatial heterogeneity, microenvironment and 
mutational profile [55]. Although the results emerge from 
the analysis of 11 patients only, and need to be confirmed 
in a larger population, they are promising and could be 
intended to underline the valuable contribution of texture 
analysis in a multi-parametric context. Our results are con-
sistent with another study from the University of Oklahoma 
reporting that while radiomics (AUC = 0.78) and genomics 
(AUC = 0.78) models were capable of predicting survival, 
accuracy significantly improved (AUC = 0.84) when both 
data were combined [56].

In the present study a manual segmentation of the VOIs 
has been adopted, even if it is labour intensive and not 
always feasible for radiomic analysis, since it requires very 
large data-sets. Moreover, many authors consider manual 
segmentation by expert readers the ground truth despite high 
inter-reader variability [57–60]. However, it is not clear to 
what degree segmentation variability has an impact on radi-
omics features, even considering that a universal automatic 
segmentation algorithm has not been validated and estab-
lished for all image applications, and some features may not 
show stability and reproducibility using different methods. 
Furthermore, automatic segmentation means “probabilistic” 
segmentation, and the ground truth for automatic bounder-
ing comes only for big datasets able to train the neural net-
work [61]. Unfortunately, 11 patients were not sufficient to 
apply an automatic or semi-automatic approach, leading to 
more variable results than manual segmentation. The num-
ber of enrolled patients for radiomic analysis and the type of 
lesions to be contoured, however, allowed the use of a hand-
crafted system for identification and segmentation of pri-
mary lesions. Indeed, lung tumours present as homogenous, 
high-intensity lesions on a background of low-intensity lung 
parenchyma [62, 63] and, therefore, can be manually seg-
mented with high reproducibility and accuracy.

The analysis of different potential biomarkers using 
sophisticated technologies, represent the major advantages 
of this study. However, limitations should be also acknowl-
edged: first, some of the examined potential biomarkers 
have been explored in a limited number of patients, due to 
the suboptimal yield of genetic material; second, NSCLC 
patients were included from both the first- and second-
line setting, and immune checkpoint inhibitor received 
was consequently different. Therefore, using anti-PD-1 
blockade in different lines of treatment could have been a 
bias. Nonetheless, multiple studies have investigated the 
survival benefit of immunotherapy when administered in 
different lines for patients with NSCLC. As an example, 
Paz-Ares et al. [64] and Gandhi et al. [65] in 2018, as well 
as Borghaei et al. in 2019 [66], showed the efficacy of 
first-line ICIs in both PFS (HR: 0.56 95% CI 0.45–0.70; 
HR: 0.52 95% CI 0.43–0.64; HR: 0.53 95% CI 0.33–0.86, 
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respectively) and OS (HR: 0.64 95% CI 0.49–0.85; HR: 
0.49 95% CI 0.38–0, 64; HR: 0.56 95% CI 0.32–0.95, 
respectively), and similar results also emerged from OS 
and PFS analysis by Brahmer et al. [67] and Herbst et al. 
[68] investigating ICIs in the sub-sequent line setting (HR 
PFS: 0.62 95% CI 0.47–0.81 and HR OS: 0.59 95% CI 
0.44–0.79; HR PFS: 0.79 95% CI 0.66–0.94 and HR OS: 
0.71 95% CI 0.58–0.88, respectively). These results sug-
gested that anti-PD-1 inhibitors provide longer PFS and 
OS both when used as first-line treatment and as a subse-
quent-line setting, with no substantial differences. Unfor-
tunately, the sample size did not allow to come up with a 
signature that can be associated with a reliable ORR, and 
a prospective study with larger population is needed to 
confirm these preliminary data.

In conclusion, the study of correlations between radi-
omic features and tumor molecular data may offer a reli-
able picture of the pathophysiological processes under-
lying cancer progression, better than single parameters 
considered individually. The present results confirm the 
predictive role of a  combined approach using genomic and 
imaging-based data to capture both disease heterogeneity 
and dynamic changes induced by treatment, suggesting a 
novel approach in patient management.

If validated in larger and prospective studies, the 
immune-radiogenomic analysis may thus help in under-
standing of the molecular determinants of response to 
immunotherapy.

Acknowledgements None.

Author contributions MDR and RD conceived and planned the study. 
IP, GP, NG, CP, LB, AF enrolled the subjects and drawn blood sam-
ples. EN, MG, FC acquired radiological imaging. MDR, ER, LF, 
RC performed the NGS analysis. MDR, ER, SC developed and veri-
fied the analytical methods. EN, MG, FC developed computational 
approaches. All authors discussed the results and contributed to the 
final manuscript.

Funding Open access funding provided by Università di Pisa within 
the CRUI-CARE Agreement. This research was funded to RD under 
grant n. 2017NR7W5K (PRIN 2017) from MIUR, Italy.

Data availability The dataset used in the current study is available as 
unpublished material, if requested. MDR, FC and RD had full access 
to all the data in the study and takes responsibility for the integrity of 
the data and the accuracy of the data analysis.

Compliance with ethical standards 

Conflict of interest The authors report no conflict of interest.

Ethics approval and consent to participate The study was approved 
by the local Ethics Committee and conducted in accordance with the 
principles of the Declaration of Helsinki. All patients gave their signed 
informed consent before blood collection and data analysis.

Consent for publication All patients gave their consent for publication.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Nakamura S, Hayashi K, Imaoka Y et al (2017) Intratumoral 
heterogeneity of programmed cell death ligand-1 expression is 
common in lung cancer. PLoS ONE 12:e0186192. https ://doi.
org/10.1371/journ al.pone.01861 92

 2. Mok TSK, Wu Y-L, Kudaba I et  al (2019) Pembrolizumab 
versus chemotherapy for previously untreated, PD-L1-express-
ing, locally advanced or metastatic non-small-cell lung can-
cer (KEYNOTE-042): a randomised, open-label, controlled, 
phase 3 trial. Lancet (Lond Engl) 393:1819–1830. https ://doi.
org/10.1016/S0140 -6736(18)32409 -7

 3. Cheng C-C, Lin H-C, Tsai K-J et al (2018) Epidermal growth 
factor induces STAT1 expression to exacerbate the IFNr-medi-
ated PD-L1 axis in epidermal growth factor receptor-positive 
cancers. Mol Carcinog 57:1588–1598. https ://doi.org/10.1002/
mc.22881 

 4. Del Re M, Marconcini R, Pasquini G et al (2018) PD-L1 mRNA 
expression in plasma-derived exosomes is associated with 
response to anti-PD-1 antibodies in melanoma and NSCLC. Br 
J Cancer 118:820–824. https ://doi.org/10.1038/bjc.2018.9

 5. Jiang X, Wang J, Deng X et al (2019) Role of the tumor micro-
environment in PD-L1/PD-1-mediated tumor immune escape. 
Mol Cancer 18:10. https ://doi.org/10.1186/s1294 3-018-0928-4

 6. Omori S, Kenmotsu H, Abe M et al (2018) Changes in pro-
grammed death ligand 1 expression in non-small cell lung can-
cer patients who received anticancer treatments. Int J Clin Oncol 
23:1052–1059. https ://doi.org/10.1007/s1014 7-018-1305-4

 7. Dudley JC, Lin M-T, Le DT, Eshleman JR (2016) Microsatellite 
instability as a biomarker for PD-1 blockade. Clin Cancer Res 
22:813–820. https ://doi.org/10.1158/1078-0432.CCR-15-1678

 8. Heeke S, Hofman P (2018) Tumor mutational burden assess-
ment as a predictive biomarker for immunotherapy in lung can-
cer patients: getting ready for prime-time or not? Transl lung 
cancer Res 7:631–638. https ://doi.org/10.21037 /tlcr.2018.08.04

 9. Nomizo T, Ozasa H, Tsuji T et al (2017) Clinical impact of 
single nucleotide polymorphism in PD-L1 on response to 
nivolumab for advanced non-small-cell lung cancer patients. 
Sci Rep 7:45124. https ://doi.org/10.1038/srep4 5124

 10. Mimura K, Teh JL, Okayama H et al (2018) PD-L1 expression 
is mainly regulated by interferon gamma associated with JAK-
STAT pathway in gastric cancer. Cancer Sci 109:43–53. https 
://doi.org/10.1111/cas.13424 

 11. Mandai M, Hamanishi J, Abiko K et al (2016) Dual faces of 
ifngamma in cancer progression: a role of PD-L1 induction in the 
determination of pro- and antitumor immunity. Clin Cancer Res 
22:2329–2334. https ://doi.org/10.1158/1078-0432.CCR-16-0224

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0186192
https://doi.org/10.1371/journal.pone.0186192
https://doi.org/10.1016/S0140-6736(18)32409-7
https://doi.org/10.1016/S0140-6736(18)32409-7
https://doi.org/10.1002/mc.22881
https://doi.org/10.1002/mc.22881
https://doi.org/10.1038/bjc.2018.9
https://doi.org/10.1186/s12943-018-0928-4
https://doi.org/10.1007/s10147-018-1305-4
https://doi.org/10.1158/1078-0432.CCR-15-1678
https://doi.org/10.21037/tlcr.2018.08.04
https://doi.org/10.1038/srep45124
https://doi.org/10.1111/cas.13424
https://doi.org/10.1111/cas.13424
https://doi.org/10.1158/1078-0432.CCR-16-0224


 Cancer Immunology, Immunotherapy

1 3

 12. Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion 
of exosomes. Curr Opin Cell Biol 29:116–125. https ://doi.
org/10.1016/j.ceb.2014.05.004

 13. Kalluri R (2016) The biology and function of exosomes in cancer. 
J Clin Invest 126:1208–1215. https ://doi.org/10.1172/JCI81 135

 14. Kharaziha P, Ceder S, Li Q, Panaretakis T (2012) Tumor cell-
derived exosomes: a message in a bottle. Biochim Biophys Acta 
1826:103–111. https ://doi.org/10.1016/j.bbcan .2012.03.006

 15. Ventimiglia LN, Alonso MA (2016) Biogenesis and function of 
T cell-derived exosomes. Front cell Dev Biol 4:84. https ://doi.
org/10.3389/fcell .2016.00084 

 16. Neri E, Del Re M, Paiar F et al (2018) Radiomics and liquid 
biopsy in oncology: the holons of systems medicine. Insights 
Imaging 9:915–924. https ://doi.org/10.1007/s1324 4-018-0657-7

 17. Trebeschi S, Drago SG, Birkbak NJ et al (2019) Predicting 
response to cancer immunotherapy using noninvasive radiomic 
biomarkers. Ann Oncol Off J Eur Soc Med Oncol 30:998–1004. 
https ://doi.org/10.1093/annon c/mdz10 8

 18. Del Re M, Biasco E, Crucitta S et al (2017) The detection of 
androgen receptor splice variant 7 in plasma-derived exosomal 
RNA strongly predicts resistance to hormonal therapy in meta-
static prostate cancer patients. Eur Urol 71:680–687. https ://doi.
org/10.1016/j.eurur o.2016.08.012

 19. Yeo M-K, Choi S-Y, Seong I-O et al (2017) Association of 
PD-L1 expression and PD-L1 gene polymorphism with poor 
prognosis in lung adenocarcinoma and squamous cell carci-
noma. Hum Pathol 68:103–111. https ://doi.org/10.1016/j.humpa 
th.2017.08.016

 20. Del Re M, Tiseo M, Bordi P et al (2017) Contribution of KRAS 
mutations and c.2369C > T (p.T790M) EGFR to acquired resist-
ance to EGFR-TKIs in EGFR mutant NSCLC: a study on cir-
culating tumor DNA. Oncotarget 8:13611–13619. https ://doi.
org/10.18632 /oncot arget .6957

 21. Schulz WL, Tormey CA, Torres R (2015) Computational 
approach to annotating variants of unknown significance in clini-
cal next generation sequencing. Lab Med 46:285–289. https ://doi.
org/10.1309/LMWZH 57BRW OPR5R Q

 22. Milgram S (1967) The small world problem. Psychol Today 
2:60–67

 23. Menezes MBC, Kim S, Huang R (2017) Constructing a Watts-
Strogatz network from a small-world network with symmet-
ric degree distribution. PLoS ONE 12:e0179120. https ://doi.
org/10.1371/journ al.pone.01791 20

 24. Berenguer R, Pastor-Juan MDR, Canales-Vazquez J et al (2018) 
Radiomics of CT features may be nonreproducible and redundant: 
influence of CT acquisition parameters. Radiology 288:407–415. 
https ://doi.org/10.1148/radio l.20181 72361 

 25. Alberich-Bayarri A, Hernandez-Navarro R, Ruiz-Martinez E et al 
(2017) Development of imaging biomarkers and generation of 
big data. Radiol Med 122:444–448. https ://doi.org/10.1007/s1154 
7-017-0742-x

 26. de Jong EEC, Sanders KJC, Deist TM et al (2019) Can radiomics 
help to predict skeletal muscle response to chemotherapy in stage 
IV non-small cell lung cancer? Eur J Cancer 120:107–113. https 
://doi.org/10.1016/j.ejca.2019.07.023

 27. Villaruz LC, Socinski MA (2013) The clinical viewpoint: defini-
tions, limitations of RECIST, practical considerations of meas-
urement. Clin Cancer Res Off J Am Assoc Cancer Res 19:2629–
2636. https ://doi.org/10.1158/1078-0432.CCR-12-2935

 28. Clarke JM, Wang X, Ready NE (2015) Surrogate clinical end-
points to predict overall survival in non-small cell lung cancer 
trials-are we in a new era? Transl lung cancer Res 4:804–808. 
https ://doi.org/10.3978/j.issn.2218-6751.2015.05.03

 29. Aguilar EJ, Ricciuti B, Gainor JF et al (2019) Outcomes to first-
line pembrolizumab in patients with non-small-cell lung cancer 

and very high PD-L1 expression. Ann Oncol Off J Eur Soc Med 
Oncol 30:1653–1659. https ://doi.org/10.1093/annon c/mdz28 8

 30. Schoenborn JR, Wilson CB (2007) Regulation of interferon-γ 
during innate and adaptive immune responses. Adv Immunol 
96:41–101. https ://doi.org/10.1016/S0065 -2776(07)96002 -2

 31. Ni L, Lu J (2018) Interferon gamma in cancer immunotherapy. 
Cancer Med 7:4509–4516. https ://doi.org/10.1002/cam4.1700

 32. Zaidi MR (2019) The interferon-gamma paradox in cancer. J Interf 
Cytokine Res 39:30–38. https ://doi.org/10.1089/jir.2018.0087

 33. Castro F, Cardoso AP, Gonçalves RM et al (2018) Interferon-
gamma at the crossroads of tumor immune surveillance or 
evasion. Front Immunol 9:847. https ://doi.org/10.3389/fimmu 
.2018.00847 

 34. Abiko K, Matsumura N, Hamanishi J et al (2015) IFN-γ from 
lymphocytes induces PD-L1 expression and promotes progres-
sion of ovarian cancer. Br J Cancer 112:1501–1509. https ://doi.
org/10.1038/bjc.2015.101

 35. Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and 
lymphocytes prevent primary tumour development and shape 
tumour immunogenicity. Nature 410:1107–1111. https ://doi.
org/10.1038/35074 122

 36. Benci JL, Xu B, Qiu Y et al (2016) Tumor interferon signaling 
regulates a multigenic resistance program to immune checkpoint 
blockade. Cell 167:1540-1554.e12. https ://doi.org/10.1016/j.
cell.2016.11.022

 37. Camidge DR, Doebele RC, Kerr KM (2019) Comparing and con-
trasting predictive biomarkers for immunotherapy and targeted 
therapy of NSCLC. Nat Rev Clin Oncol 16:341–355. https ://doi.
org/10.1038/s4157 1-019-0173-9

 38. Anichini A, Tassi E, Grazia G, Mortarini R (2018) The non-small 
cell lung cancer immune landscape: emerging complexity, prog-
nostic relevance and prospective significance in the context of 
immunotherapy. Cancer Immunol Immunother 67:1011–1022. 
https ://doi.org/10.1007/s0026 2-018-2147-7

 39. Hellmann MD, Nathanson T, Rizvi H et al (2018) Genomic fea-
tures of response to combination immunotherapy in patients with 
advanced non-small-cell lung cancer. Cancer Cell 33:843-852.e4. 
https ://doi.org/10.1016/j.ccell .2018.03.018

 40. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunol-
ogy. Mutational landscape determines sensitivity to PD-1 block-
ade in non-small cell lung cancer. Science 348:124–128. https ://
doi.org/10.1126/scien ce.aaa13 48

 41. Chen Y-P, Zhang Y, Lv J-W et al (2017) Genomic analysis of 
tumor microenvironment immune types across 14 solid cancer 
types: immunotherapeutic implications. Theranostics 7:3585–
3594. https ://doi.org/10.7150/thno.21471 

 42. Jiang T, Chen X, Su C et  al (2020) Pan-cancer analysis of 
ARID1A alterations as biomarkers for immunotherapy outcomes. 
J Cancer 11:776–780. https ://doi.org/10.7150/jca.41296 

 43. Shen J, Ju Z, Zhao W et al (2018) ARID1A deficiency promotes 
mutability and potentiates therapeutic antitumor immunity 
unleashed by immune checkpoint blockade. Nat Med 24:556–562. 
https ://doi.org/10.1038/s4159 1-018-0012-z

 44. Mathur R, Alver BH, San Roman AK et al (2017) ARID1A loss 
impairs enhancer-mediated gene regulation and drives colon 
cancer in mice. Nat Genet 49:296–302. https ://doi.org/10.1038/
ng.3744

 45. Melendez B, Van Campenhout C, Rorive S et al (2018) Meth-
ods of measurement for tumor mutational burden in tumor tis-
sue. Transl lung cancer Res 7:661–667. https ://doi.org/10.21037 
/tlcr.2018.08.02

 46. Fancello L, Gandini S, Pelicci PG, Mazzarella L (2019) Tumor 
mutational burden quantification from targeted gene panels: major 
advancements and challenges. J Immunother Cancer 7:183. https 
://doi.org/10.1186/s4042 5-019-0647-4

https://doi.org/10.1016/j.ceb.2014.05.004
https://doi.org/10.1016/j.ceb.2014.05.004
https://doi.org/10.1172/JCI81135
https://doi.org/10.1016/j.bbcan.2012.03.006
https://doi.org/10.3389/fcell.2016.00084
https://doi.org/10.3389/fcell.2016.00084
https://doi.org/10.1007/s13244-018-0657-7
https://doi.org/10.1093/annonc/mdz108
https://doi.org/10.1016/j.eururo.2016.08.012
https://doi.org/10.1016/j.eururo.2016.08.012
https://doi.org/10.1016/j.humpath.2017.08.016
https://doi.org/10.1016/j.humpath.2017.08.016
https://doi.org/10.18632/oncotarget.6957
https://doi.org/10.18632/oncotarget.6957
https://doi.org/10.1309/LMWZH57BRWOPR5RQ
https://doi.org/10.1309/LMWZH57BRWOPR5RQ
https://doi.org/10.1371/journal.pone.0179120
https://doi.org/10.1371/journal.pone.0179120
https://doi.org/10.1148/radiol.2018172361
https://doi.org/10.1007/s11547-017-0742-x
https://doi.org/10.1007/s11547-017-0742-x
https://doi.org/10.1016/j.ejca.2019.07.023
https://doi.org/10.1016/j.ejca.2019.07.023
https://doi.org/10.1158/1078-0432.CCR-12-2935
https://doi.org/10.3978/j.issn.2218-6751.2015.05.03
https://doi.org/10.1093/annonc/mdz288
https://doi.org/10.1016/S0065-2776(07)96002-2
https://doi.org/10.1002/cam4.1700
https://doi.org/10.1089/jir.2018.0087
https://doi.org/10.3389/fimmu.2018.00847
https://doi.org/10.3389/fimmu.2018.00847
https://doi.org/10.1038/bjc.2015.101
https://doi.org/10.1038/bjc.2015.101
https://doi.org/10.1038/35074122
https://doi.org/10.1038/35074122
https://doi.org/10.1016/j.cell.2016.11.022
https://doi.org/10.1016/j.cell.2016.11.022
https://doi.org/10.1038/s41571-019-0173-9
https://doi.org/10.1038/s41571-019-0173-9
https://doi.org/10.1007/s00262-018-2147-7
https://doi.org/10.1016/j.ccell.2018.03.018
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.7150/thno.21471
https://doi.org/10.7150/jca.41296
https://doi.org/10.1038/s41591-018-0012-z
https://doi.org/10.1038/ng.3744
https://doi.org/10.1038/ng.3744
https://doi.org/10.21037/tlcr.2018.08.02
https://doi.org/10.21037/tlcr.2018.08.02
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4


Cancer Immunology, Immunotherapy 

1 3

 47. Stenzinger A, Endris V, Budczies J et al (2020) Harmonization and 
Standardization of panel-based tumor mutational burden meas-
urement: real-world results and recommendations of the quality 
in pathology study. J Thorac Oncol 15:1177–1189. https ://doi.
org/10.1016/j.jtho.2020.01.023

 48. Chalmers ZR, Connelly CF, Fabrizio D et al (2017) Analysis of 
100,000 human cancer genomes reveals the landscape of tumor 
mutational burden. Genome Med 9:34. https ://doi.org/10.1186/
s1307 3-017-0424-2

 49. Budczies J, Allgäuer M, Litchfield K et al (2019) Optimizing 
panel-based tumor mutational burden (TMB) measurement. Ann 
Oncol 30:1496–1506. https ://doi.org/10.1093/annon c/mdz20 5

 50. Rizvi H, Sanchez-Vega F, La K et al (2018) Molecular determi-
nants of response to anti-programmed cell death (PD)-1 and anti-
programmed death-ligand 1 (PD-L1) blockade in patients with 
non-small-cell lung cancer profiled with targeted next-generation 
sequencing. J Clin Oncol Off J Am Soc Clin Oncol 36:633–641. 
https ://doi.org/10.1200/JCO.2017.75.3384

 51. Wang Z, Duan J, Cai S et al (2019) Assessment of blood tumor 
mutational burden as a potential biomarker for immunotherapy in 
patients with non-small cell lung cancer with use of a next-gen-
eration sequencing cancer gene panel. JAMA Oncol 5:696–702. 
https ://doi.org/10.1001/jamao ncol.2018.7098

 52. Yup S, Kju D, Eun J et al (2016) Functional polymorphisms 
in PD-L1 gene are associated with the prognosis of patients 
with early stage non-small cell lung cancer. Gene. https ://doi.
org/10.1016/j.gene.2016.11.007

 53. Khorrami M, Prasanna P, Gupta A et al (2019) Changes in CT 
radiomic features associated with lymphocyte distribution predict 
overall survival and response to immunotherapy in non-small cell 
lung cancer. Cancer Immunol Res. https ://doi.org/10.1158/2326-
6066.CIR-19-0476

 54. Sun R, Limkin EJ, Vakalopoulou M et al (2018) A radiomics 
approach to assess tumour-infiltrating CD8 cells and response to 
anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, 
retrospective multicohort study. Lancet Oncol 19:1180–1191. 
https ://doi.org/10.1016/S1470 -2045(18)30413 -3

 55. Sala E, Mema E, Himoto Y et al (2017) Unravelling tumour 
heterogeneity using next-generation imaging: radiomics, radiog-
enomics, and habitat imaging. Clin Radiol 72:3–10. https ://doi.
org/10.1016/j.crad.2016.09.013

 56. Emaminejad N, Qian W, Guan Y et al (2016) Fusion of quantita-
tive image and genomic biomarkers to improve prognosis assess-
ment of early stage lung cancer patients. IEEE Trans Biomed Eng 
63:1034–1043. https ://doi.org/10.1109/TBME.2015.24776 88

 57. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and 
the challenges. Magn Reson Imaging 30:1234–1248. https ://doi.
org/10.1016/j.mri.2012.06.010

 58. Balagurunathan Y, Gu Y, Wang H et al (2014) Reproducibility 
and prognosis of quantitative features extracted from CT images. 
Transl Oncol 7:72–87. https ://doi.org/10.1593/tlo.13844 

 59. Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust 
radiomics feature quantification using semiautomatic volumetric 
segmentation. PLoS ONE 9:e102107

 60. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics: the facts 
and the challenges of image analysis. Eur Radiol Exp 2:36. https 
://doi.org/10.1186/s4174 7-018-0068-z

 61. Haarburger C, Müller-Franzes G, Weninger L et  al (2020) 
Radiomics feature reproducibility under inter-rater variability 
in segmentations of CT images. Sci Rep 10:12688. https ://doi.
org/10.1038/s4159 8-020-69534 -6

 62. Kalef-Ezra J, Karantanas A, Tsekeris P (1999) CT measure-
ment of lung density. Acta radiol 40:333–337. https ://doi.
org/10.3109/02841 85990 91755 64

 63. Sofka M, Wetzl J, Birkbeck N et al (2011) Multi-stage learning for 
robust lung segmentation in challenging CT volumes. Med image 
Comput Comput Interv MICCAI. Int Conf Med Image Comput 
Comput Interv 14:667–674. https ://doi.org/10.1007/978-3-642-
23626 -6_82

 64. Paz-Ares L, Luft A, Vicente D et al (2018) Pembrolizumab plus 
chemotherapy for squamous non-small-cell lung cancer. N Engl J 
Med 379:2040–2051. https ://doi.org/10.1056/NEJMo a1810 865

 65. Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pem-
brolizumab plus chemotherapy in metastatic non-small-cell lung 
cancer. N Engl J Med 378:2078–2092. https ://doi.org/10.1056/
NEJMo a1801 005

 66. Borghaei H, Langer CJ, Gadgeel S et al (2019) 24-Month over-
all survival from KEYNOTE-021 cohort G: pemetrexed and 
carboplatin with or without pembrolizumab as first-line therapy 
for advanced nonsquamous non-small cell lung cancer. J Thorac 
Oncol Off Publ Int Assoc Study Lung Cancer 14:124–129. https 
://doi.org/10.1016/j.jtho.2018.08.004

 67. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus 
docetaxel in advanced squamous-cell non-small-cell lung cancer. 
N Engl J Med 373:123–135. https ://doi.org/10.1056/NEJMo a1504 
627

 68. Herbst RS, Baas P, Kim D-W et al (2016) Pembrolizumab versus 
docetaxel for previously treated, PD-L1-positive, advanced non-
small-cell lung cancer (KEYNOTE-010): a randomised controlled 
trial. Lancet (Lond Engl) 387:1540–1550. https ://doi.org/10.1016/
S0140 -6736(15)01281 -7

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Affiliations

Marzia Del Re1 · Federico Cucchiara1 · Eleonora Rofi1 · Lorenzo Fontanelli1 · Iacopo Petrini2 · Nicole Gri3 · 
Giulia Pasquini2 · Mimma Rizzo3 · Michela Gabelloni4 · Lorenzo Belluomini5 · Stefania Crucitta1 · Raffaele Ciampi6 · 
Antonio Frassoldati5 · Emanuele Neri4 · Camillo Porta3,7,8 · Romano Danesi1 

1 Unit of Clinical Pharmacology and Pharmacogenetics, 
Department of Clinical and Experimental Medicine, 
University of Pisa, Pisa, Italy

2 General Pathology, Department of Translational Research 
and New Technologies in Medicine, University of Pisa, Pisa, 
Italy

3 Division of Translational Oncology, IRCCS Istituti Clinici 
Scientifici Maugeri, Pavia, Italy

4 Diagnostic and Interventional Radiology, Department 
of Translational Research and New Technologies 
in Medicine, University of Pisa, Pisa, Italy

5 Unit of Clinical Oncology, Specialist Medical Department, 
S. Anna University Hospital, Ferrara, Italy

https://doi.org/10.1016/j.jtho.2020.01.023
https://doi.org/10.1016/j.jtho.2020.01.023
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.1093/annonc/mdz205
https://doi.org/10.1200/JCO.2017.75.3384
https://doi.org/10.1001/jamaoncol.2018.7098
https://doi.org/10.1016/j.gene.2016.11.007
https://doi.org/10.1016/j.gene.2016.11.007
https://doi.org/10.1158/2326-6066.CIR-19-0476
https://doi.org/10.1158/2326-6066.CIR-19-0476
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1016/j.crad.2016.09.013
https://doi.org/10.1016/j.crad.2016.09.013
https://doi.org/10.1109/TBME.2015.2477688
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1593/tlo.13844
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.1038/s41598-020-69534-6
https://doi.org/10.1038/s41598-020-69534-6
https://doi.org/10.3109/02841859909175564
https://doi.org/10.3109/02841859909175564
https://doi.org/10.1007/978-3-642-23626-6_82
https://doi.org/10.1007/978-3-642-23626-6_82
https://doi.org/10.1056/NEJMoa1810865
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1016/j.jtho.2018.08.004
https://doi.org/10.1016/j.jtho.2018.08.004
https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.1016/S0140-6736(15)01281-7
https://doi.org/10.1016/S0140-6736(15)01281-7
http://orcid.org/0000-0002-4414-8934


 Cancer Immunology, Immunotherapy

1 3

6 Endocrinology Unit, Department of Clinical 
and Experimental Medicine, University of Pisa, Pisa, Italy

7 Department of Internal Medicine and Therapeutics, 
University of Pavia, Pavia, Italy

8 Present Address: Unit of Medical Oncology, Department 
of Biomedical Sciences and Human Oncology, University 
of Bari ‘A. Moro’, Bari, Italy


	A multiparametric approach to improve the prediction of response to immunotherapy in patients with metastatic NSCLC
	Abstract
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Patients
	Exosomes isolation and measurement of PD-L1 and IFN-γ mRNA
	Analysis of PD-L1 germline polymorphisms
	TML analysis on cfDNA
	Radiomic analysis
	Statistical analysis

	Results
	Patients’ characteristics
	Association between mRNA expression of PD-L1 and IFN-γ and clinical outcome
	Association between PD-L1 polymorphism and clinical outcome
	TML and mutated gene network
	Radiomic results

	Discussion
	Acknowledgements 
	References




