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Paranà-Etendeka igneous province is reported, with particular attention 

being devoted to the relationships between high-MgO CFB (tholeiitic 

basalts-picrites) and nearly coeval alkaline-carbonatite complexes linked 

to the same extensional tectonics on a regional scale. At 135-130 Ma, the 

tectonomagmatic activity was focused in Etendeka, the centre of the 

restored province, and characterised by an exclusive occurrence of the 

hottest and deepest high-MgO CFB (potential temperature Tp up to 1590°C 

and pressure up to 5 GPa) possessing the same Sr-Nd-Pb isotopic 

composition of the "Gough" geochemical component, a marker of the initial 

Tristan plume activity. Etendeka high-MgO CFB thus represent the most 

genuine proxies of sublithospheric melts generated at the plume axis and 

are relatively unaffected by lithospheric contamination. Nearly coeval 

(133-128 Ma) alkaline-carbonatite complexes cluster around the 

extensional structures of the Ponta Grossa Arch (e.g., Jacupiranga and 

Juquia in Brazil) and the Damara Belt (e.g., Erongo, Okurusu, Okenyenya 

and Paresis in Namibia), both of which intersect the early track of the 

south Atlantic opening. Compared to high-MgO CFB, alkaline magmas display 

distinctive isotopic signatures and an incompatible element distribution 

consistent with their generation from lithospheric mantle sources, which 

were variably metasomatised (veined?) by amphibole and phlogopite. 

Metasomes of alkaline mantle sources have a HIMU affinity and are 

dominated by amphibole in Namibia, whereas they display EM tendency and a 

more relevant role of phlogopite in Brazil, which implies important 

lithospheric differences at a regional scale. The tectonomagmatic 

features of Paranà-Etendeka -also shared by other Gondwana LIPs, such as 

Deccan and Karoo- can be reconciled by a generalized model where a hot 

plume impinging on a relatively thick lithosphere caused, in the axial 

zone, the contemporaneous generation and rise of high-MgO CFB and 

alkaline magmas from distinct asthenospheric and lithospheric mantle 

sources, respectively. In the asthenosphere, the volatile-poor solidus 

was crossed under an adiabatic thermal regime, mostly in the range of 4 

to 5 GPa and Tp 1500 to 1600°C with the development of high-MgO CFB. In 

the overlying metasomatised lithosphere, the plume effects caused a 



perturbation of the conductive thermal regime and a crossing of volatile-

rich solidus (mostly P 2-3 GPa, Tp 1300-1400°C) with the generation of 

alkaline melts from the most fusible (hydrated and carbonated) mantle 

domains. 
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Abstract 

A careful review of petrological and geochemical data on the Paranà-Etendeka igneous province is 

reported, with particular attention being devoted to the relationships between high-MgO CFB 

(tholeiitic basalts-picrites) and nearly coeval alkaline-carbonatite complexes linked to the same 

extensional tectonics on a regional scale. At 135-130 Ma, the tectonomagmatic activity was focused 

in Etendeka, the centre of the restored province, and characterised by an exclusive occurrence of the 

hottest and deepest high-MgO CFB (potential temperature Tp up to 1590°C and pressure up to 5 

GPa) possessing the same Sr-Nd-Pb isotopic composition of the “Gough” geochemical component, 

a marker of the initial Tristan plume activity. Etendeka high-MgO CFB thus represent the most 

genuine proxies of sublithospheric melts generated at the plume axis and are relatively unaffected 

by lithospheric contamination. Nearly coeval (133-128 Ma) alkaline-carbonatite complexes cluster 

around the extensional structures of the Ponta Grossa Arch (e.g., Jacupiranga and Juquia in Brazil) 

and the Damara Belt (e.g., Erongo, Okurusu, Okenyenya and Paresis in Namibia), both of which 

intersect the early track of the south Atlantic opening. Compared to high-MgO CFB, alkaline 

magmas display distinctive isotopic signatures and an incompatible element distribution consistent 

with their generation from lithospheric mantle sources, which were variably metasomatised 

(veined?) by amphibole and phlogopite. Metasomes of alkaline mantle sources have a HIMU 

affinity and are dominated by amphibole in Namibia, whereas they display EM tendency and a 

more relevant role of phlogopite in Brazil, which implies important lithospheric differences at a 

regional scale. The tectonomagmatic features of Paranà-Etendeka –also shared by other Gondwana 

LIPs, such as Deccan and Karoo– can be reconciled by a generalized model where a hot plume 

impinging on a relatively thick lithosphere caused, in the axial zone, the contemporaneous 

generation and rise of high-MgO CFB and alkaline magmas from distinct asthenospheric and 

lithospheric mantle sources, respectively. In the asthenosphere, the volatile-poor solidus was 

crossed under an adiabatic thermal regime, mostly in the range of 4 to 5 GPa and Tp 1500 to 1600°C 

with the development of high-MgO CFB. In the overlying metasomatised lithosphere, the plume 
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Click here to download Abstract: Abstract_R1.doc

http://ees.elsevier.com/lithos/download.aspx?id=608751&guid=ddc0758a-3cea-47a6-9ee2-ad82e71458a7&scheme=1


effects caused a perturbation of the conductive thermal regime and a crossing of volatile-rich 

solidus (mostly P 2-3 GPa, Tp 1300-1400°C) with the generation of alkaline melts from the most 

fusible (hydrated and carbonated) mantle domains.  
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Abstract 11 

A careful review of petrological and geochemical data on the Paranà-Etendeka igneous province is 12 

reported, with particular attention being devoted to the relationships between high-MgO CFB 13 

(tholeiitic basalts-picrites) and nearly coeval alkaline-carbonatite complexes linked to the same 14 

extensional tectonics on a regional scale. At 135-130 Ma, the tectonomagmatic activity was focused 15 

in Etendeka, the centre of the restored province, and characterised by an exclusive occurrence of the 16 

hottest and deepest high-MgO CFB (potential temperature Tp up to 1590°C and pressure up to 5 17 

GPa) possessing the same Sr-Nd-Pb isotopic composition of the “Gough” geochemical component, 18 

a marker of the initial Tristan plume activity. Etendeka high-MgO CFB thus represent the most 19 

genuine proxies of sublithospheric melts generated at the plume axis and are relatively unaffected 20 

by lithospheric contamination. Nearly coeval (133-128 Ma) alkaline-carbonatite complexes cluster 21 

around the extensional structures of the Ponta Grossa Arch (e.g., Jacupiranga and Juquia in Brazil) 22 

and the Damara Belt (e.g., Erongo, Okurusu, Okenyenya and Paresis in Namibia), both of which 23 

intersect the early track of the south Atlantic opening. Compared to high-MgO CFB, alkaline 24 

magmas display distinctive isotopic signatures and an incompatible element distribution consistent 25 
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 2 

with their generation from lithospheric mantle sources, which were variably metasomatised 26 

(veined?) by amphibole and phlogopite. Metasomes of alkaline mantle sources have a HIMU 27 

affinity and are dominated by amphibole in Namibia, whereas they display EM1 tendency and a 28 

more relevant role of phlogopite in Brazil, which implies important lithospheric differences at a 29 

regional scale. The tectonomagmatic features of Paranà-Etendeka –also shared by other Gondwana 30 

LIPs, such as Deccan and Karoo– can be reconciled by a generalized model where a hot plume 31 

impinging on a relatively thick lithosphere caused, in the axial zone, the contemporaneous 32 

generation and rise of high-MgO CFB and alkaline magmas from distinct asthenospheric and 33 

lithospheric mantle sources, respectively. In the asthenosphere, the volatile-poor solidus was 34 

crossed under an adiabatic thermal regime, mostly in the range of 4 to 5 GPa and Tp 1500 to 1600°C 35 

with the development of high-MgO CFB. In the overlying metasomatised lithosphere, the plume 36 

effects caused a perturbation of the conductive thermal regime and a crossing of volatile-rich 37 

solidus (mostly P 2-3 GPa, Tp 1300-1400°C) with the generation of alkaline melts from the most 38 

fusible (hydrated and carbonated) mantle domains.  39 

 40 

1. Introduction  41 

 42 

In the last decades, several authors have drawn attention to the close spatial-temporal 43 

relationships between alkaline-carbonatite complexes and Continental Flood Basalts (CFB) in many 44 

Large Igneous Provinces (LIP), giving rise to a longstanding debate on the role of lithosphere and 45 

plume/asthenosphere components of their respective magma sources (Ellam and Cox, 1991; Bell, 46 

2001; Gibson et al., 2006; Campbell, 2007; Ernst and Bell, 2010; Safonova and Santosh, 2014; 47 

Pirajino, 2015). Specifically, in the Gondwana realm, alkaline-carbonatite complexes appear to be 48 

closely related to high-MgO picrite-basalt rocks at the intersection of rift structures characterising 49 

the inner part of plume-related CFB provinces, such as Karoo and Deccan (Natali et al., 2017) and, 50 

particularly, Paranà-Etendeka, where these rock associations are well-documented (Comin-51 
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Chiaramonti et al., 2011; Gomes et al., 2011). For the latter province, petrogenetic investigations 52 

have relevant implications considering the debated origin of the Paranà-Etendeka, which is either 53 

related to the Early Cretaceous activation of the proto-Tristan plume (Cordani et al., 1980; White 54 

and McKenzie, 1989; 1995; Bizzi et al., 1995; Gibson et al., 1995; 2006; Thompson et al., 2001; 55 

Campbell, 2001; Tuff et al., 2005; Campbell and Davies, 2006) or to passive rifting events that 56 

mainly involved melting of the lithosphere (Peate et al., 1999; Hawkesworth et al., 2000; Ernesto et 57 

al., 2002; Iacumin et al., 2003; Guarino et al., 2013; Rocha-Junior et al., 2013). 58 

Therefore, the integrated study of nearly coeval high-MgO CFB and alkaline igneous rocks 59 

from this province represents a very convenient case study to investigate their genetic relationships, 60 

including P-T conditions, source compositions and melting degree within a coherent 61 

tectonomagmatic framework. For this purpose, more than three thousand analyses from the 62 

literature, including major/trace and Sr-Nd-Pb isotopic data have been revisited, emphasising the 63 

petrological and geochemical characteristics of CFB and the nearly coeval alkaline-carbonatite 64 

complexes. In addition, the review includes the analogous occurrences from Deccan and Karoo with 65 

the aim of evaluating, within a homogeneous scheme, whether these recurrent igneous associations 66 

of west-central Gondwana may be attributed to a common tectono-magmatic scenario. 67 

 68 

2. Methods 69 

 70 

Bulk rock chemical analyses of CFB and associated alkaline-carbonatite complexes from the 71 

three investigated provinces were retrieved by the GEOROC database. For Paranà-Etendeka, CFB 72 

samples were reclassified as Low-Ti (LT) and High-Ti (HT1) suites, discriminating samples on the 73 

basis of Ti, Fe, Nb and Ce, as recently proposed by Natali et al. (2016; 2017) for the Deccan and 74 

Karoo provinces. Major element compositions of the investigated igneous associations are 75 

discussed and compared with the experimental petrology data in order to constrain phase equilibria 76 

and conditions of magma generation (Walter, 1998; Green and Fallon, 2005; Gudfinnsson and 77 
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Presnall, 2005; Dasgupta et al., 2007; Pilet et al., 2008). Reconstruction of primary magmas and the 78 

relative thermobarometric conditions were estimated according to PRIMELT3MEGA (Herzberg 79 

and Asimow, 2015), FRACTIONATEPT (Lee et al., 2009) and MANTLEPT (Putirka, 2016) using 80 

major element compositions, whereas incompatible trace elements were used to constrain source 81 

enrichment and the degree of melting (Pilet et al., 2011). Moreover, the available Sr-Nd-Pb isotopic 82 

data were taken into consideration to constrain the nature of magma sources in terms of mantle 83 

components (Zindler and Hart, 1986; Hofmann, 1997; Stracke et al., 2012).   84 

 85 

3. High-MgO CFB and associated alkaline-carbonatite complexes in west-central Gondwana 86 

 87 

3.1 Paranà-Etendeka igneous Province 88 

 89 

The Paranà-Etendeka CFB province of the south American and southwest African margins 90 

mostly consists of LT and HT1 basalts, locally topped by rhyolitic volcanic rocks (Bellieni et al., 91 

1986; Piccirillo and Melfi, 1988; Piccirillo et al., 1989; 1990). The chronology of CFB spans from 92 

139 to 128 Ma, with the oldest recorded ages occurring in some basalts of western Paranà. The 93 

main magmatic phases are in the range of 135-130 Ma (Stewart et al., 1996; Renne et al., 1996a; 94 

1996b; Gibson et al., 2006; Thiede and Vasconcelos, 2010; Janasi et al., 2011; Pinto et al., 2011).  95 

Geochemical data reviewed in this work are used for the paleogeographic reconstruction of 96 

the Paranà-Etendeka province reported in Fig. 1. CFB are classified in LT (TiO2 0.5-2.5 wt%) and 97 

HT1 (TiO2 2.0-4.5 wt%) suites, as shown in Fig. 2. In the Etendeka region, both suites include high-98 

MgO (> 10 wt%) basaltic and picritic rocks typically represented by HT1 Doros picrites, olivine-99 

rich gabbroic intrusives and LT Horingbaai dikes (Thompson et al., 2001; Jennings et al., 2017; 100 

Owen-Smith et al., 2017). The significant systematic increase of incompatible elements (such as Nb 101 

and Ce) from LT to HT1 at comparable MgO values is illustrated in Fig. 2. Chondrite-Normalized 102 

Rare Earth Element (REE) patterns show a significant increase in the LaN/YbN ratio from LT to 103 
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HT1 (4.0-4.7 in LT, 7.0-8.5 in HT1; Fig. 3), indicating a systematic enrichment of incompatible 104 

elements and/or a lower melting degree of HT mantle sources. In the petrogenetic grid of Fig. 4, the 105 

two suites show distinct FeO enrichment at comparable MgO, particularly for the least fractionated 106 

lavas, suggesting mantle sources with different iron content. Representative differentiation trends 107 

modelled for the two suites (PETROLOG v.3, Danyushevsky and Pletchov, 2011) show that they 108 

are both characterised by the early fractionation of olivine (Ol), followed by clinopyroxene (Cpx) 109 

for HT1, and plagioclase (Pl) and Cpx for LT, which are consistent with the phenocryst 110 

assemblages observed in the rocks.  111 

The reconstruction of primary magmas and their potential temperature (Tp) have been 112 

performed through the accumulated fractional melting algorithm PRIMELT3MEGA (Herzberg and 113 

Asimow, 2015), assuming the anhydrous lherzolite KR4003 (Walter, 1998) as a mantle source 114 

having mg# of 0.90, which is suitable for tholeiitic magmas. The calculated primary melts have 115 

MgO 21.2 wt%, FeO 11.1 wt%, mantle potential temperature (Tp)  1590°C for HT1, and MgO 116 

18.1 wt%, FeO 9.6 wt%, Tp  1520°C for LT. Phase equilibria constraints and the application of 117 

geobarometers by Herzberg et al. (2007) and Guddfinnson and Presnall (2005) suggest that the 118 

generation of these primary melts occurred at  5 GPa for HT1 and 3-4 GPa for LT (Supplementary 119 

Table 1). Compared to the above thermobarometric estimates, Tp obtained by the model of Lee et al. 120 

(2009) show a good agreement, and Tp by the model of Putirka (2016) are 70-80°C higher. 121 

Conversely, the pressures obtained by Lee et al. (2009) and Putirka (2016) are always 122 

underestimated with respect to those of Herzberg et al. (2007) and Guddfinnson and Presnall (2005; 123 

Supplementary Table 1). As shown by the Primitive Mantle (PM) incompatible element distribution 124 

(Fig. 5), the HT1 and LT primary magmas could be formed by 9% and 22% melting, respectively, 125 

from a mixed mantle source composed by 97% PM and 3% eclogite (recorded as xenoliths from 126 

Angolan kimberlites; Shervais et al., 1988).  127 

The most representative alkaline complexes coeval (133-128 Ma) with CFB occur in the 128 

elliptical area depicted in Fig. 1, which corresponds to the centre of the restored Paranà-Etendeka 129 
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province. In this area, several extensional lineaments converge towards the Walvis Ridge and the 130 

early track of the South Atlantic opening. On the south American side of the province, these 131 

complexes are represented by Juquia, Jacupiranga and Anitapolis, located in the Ponta Grossa Arch 132 

and along the Brazilian coast (Beccaluva et al., 1992; 2017; Gomes et al., 2011 and references 133 

therein). In the south-western African margin, alkaline and alkaline-carbonatite complexes are 134 

widespread in the Namibian Damara Belt (e.g., Erongo, Paresis, Okenyenya and Okurusu; Comin-135 

Chiaramonti et al., 2011 and references therein) and in the Angolan Moçamedes Arch (e.g., 136 

Chivira-Bonga; Coltorti et al., 1993; Alberti et al. 1999).  137 

The magmatic associations of alkaline complexes from both south American and African 138 

margins consist of mafic lithologies -such as alkali basalts, basanites/tephrites, nephelinites, and 139 

ankaratrites- or their plutonic counterpart, coupled with ultramafic cumulates, nepheline-syenites 140 

and carbonatites (Beccaluva et al., 1992; 2017; Morbidelli et al., 1995; Le Roex and Lanyon, 1998; 141 

Trumbull et al., 2003; Comin-Chiaramonti and Gomes, 2005; Ruberti et al., 2005; Gibson et al., 142 

2006; Gomes et al., 2011; Azzone et al., 2013). All of these lithologies are silica-undersaturated 143 

with variable amounts of nepheline and the ubiquitous presence of hydrous phases, such as 144 

amphibole and/or phlogopite. The latter is the dominant hydrous phase in the Brazilian alkaline 145 

complexes, typically showing a more potassic character with respect to those from Namibia and 146 

Angola (Fig. 6). Accordingly, the PM-normalized incompatible element patterns of Fig. 7 show that 147 

the African alkaline magmas, unlike those from Brazil, are characterised by the presence of a 148 

significant negative K anomaly. As demonstrated by experimental petrology, this indicates a major 149 

role of amphibole with respect to phlogopite in mantle sources and a consequent K deficiency in the 150 

generated melts (K< 20000 ppm; Späth et al., 2001; Rooney et al., 2017). Therefore, for a 151 

comparable alkali/silica ratio, the potassic or sodic affinity of alkaline magmas depends on the 152 

relative phlogopite/amphibole proportion in their mantle sources. Generally, the significant 153 

presence of hydrous (and carbonated) phases is a necessary requirement in the genesis of alkaline 154 

melts, as invariably indicated by experimental petrology, either from 1) homogeneously 155 
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metasomatised or 2) variably veined mantle sources. In the first case, experimental results (Green 156 

and Fallon, 2005; Gudfinnsson and Presnall, 2005; Dasgupta et al., 2007) show that alkaline 157 

magmas could be generated by decreasing the degree of partial melting (< 10% alkali basalts and 158 

basanites; < 5% nephelinites, melilitites and carbonatites) of hydrated and/or carbonated fertile 159 

lherzolite at increasing pressure from  2 to 3.5 GPa within the lithosphere (Morris and Pasteris, 160 

1987; Nielson and Wilshire, 1993). In the second case, alkaline basic melts (e.g., basanites, 161 

nephelinites) have been obtained by melting experiments on natural amphibole-rich veined 162 

lherzolites at 1.5 GPa (Pilet et al., 2011).  163 

From the above, the modelling of alkaline melts has to include the effect of metasomatism, 164 

which decreases the mg# of the inferred source with respect to that of the unmetasomatised mantle. 165 

In fact, olivine composition in alkaline magmas is generally ≤ Fo88 (Harris et al., 1999; Coltorti et 166 

al., 1993; Beccaluva et al., 1992; 2017; Trumbull et al., 2003), a value that is significantly lower 167 

than that recorded in CFB (Fo up to 89-90; Beccaluva et al., 2009; Natali et al., 2016; 2017; 168 

Thompson and Gibson 2000), conforming to a source composition that does not exceed mg# 0.88. 169 

Accordingly, the Paranà-Etendeka alkaline primary magmas and the related P-T estimates have 170 

been modelled using the algorithms of Putirka (2016), which allows taking into proper account the 171 

effect of metasomatism. The results, which are reported in Supplementary Table 1, indicate that the 172 

investigated alkaline magmas are compatible with generation in the P range 1.8-2.0 GPa and Tp 173 

1300-1360°C, by melting of a mantle source having mg# 0.87. Notably, these thermobarometric 174 

conditions approach those recorded by amphibole-bearing peridotite xenoliths from the Damara 175 

Belt lithosphere (Baumgartner et al., 2000; Le Roex and Class, 2014). As reported in Fig. 8, the 176 

incompatible element distribution of the Paranà-Etendeka alkaline magmas are satisfactorily 177 

reproduced assuming mantle sources variably enriched by metasomatic veins, as proposed by Pilet 178 

et al. (2008; 2011). The melting model of the African alkaline magmas indicates a best fit 179 

calculation either by a low melting degree (F  2%) of a PM source hybridized by 20% amphibole-180 

rich metasomatic veins or by a higher melting degree (F  10%) of highly veined (40%) PM source 181 
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(Fig. 8a). Conversely, the more potassic character of alkaline melts from south America necessarily 182 

implies a significant presence of phlogopite, in addition to amphibole, in their mantle sources. In 183 

this case, best fit can be obtained either by F  2% of a PM source hybridized by 40% amphibole-184 

phlogopite veins, or by F  8% of a PM source dominated by the amphibole-phlogopite metasome 185 

(90%, Fig. 8b). It is important to note that conceptually, in these models the metasomatising veins 186 

include variable proportions of cumulate hydrous minerals and residual liquids that could also be 187 

carbonated (Pilet et al., 2011). As recently observed in various volcanic provinces, this phenomenon 188 

conforms to the wide variability of lithospheric mantle sources, in terms of extent and composition 189 

of metasomatism, configuration of the lowered solidus and melting degrees (Jung et al., 2011; 190 

Rooney et al., 2017). Noteworthy, by a purely geochemical standpoint, the incompatible element 191 

distribution could also be approached by < 1% melting of an unmetasomatised (volatile-poor) 192 

mantle source, but this possibility is strongly discounted due to the ubiquitous evidence that alkaline 193 

magmas are significantly hydrated and carbonated. 194 

The distribution of Sr-Nd-Pb isotopes for Paranà-Etendeka CFB and associated alkaline 195 

complexes is reported in Fig. 9. Taken as a whole, the two magmatic associations show distinct 196 

isotopic signatures that imply significant differences in their mantle sources. In particular, most 197 

high-MgO CFB from Etendeka (LT and HT1 picrites and some basalts) cluster in the upper left of 198 

the Nd-
87

Sr/
86

Sr(i) diagram covering a restricted isotopic range (Nd 9.1-0.5 and 
87

Sr/
86

Sr(i) 199 

0.70326-0.70513). As observed by other authors (Thompson et al., 2001; Hoernle et al., 2015; 200 

Owen-Smith et al., 2017) this isotopic signature is attributable to uncontaminated, sublithospheric 201 

mantle components. Conversely, all of the Paranà and the remaining Etendeka CFB (MgO 9-5 wt%) 202 

extend in the lower right quadrant towards low Nd (down to -10) and extremely high 
87

Sr/
86

Sr(i) 203 

(up to 0.7142) values, reflecting the variable involvement of lithospheric mantle components and/or 204 

variable continental crust contamination at progressive differentiation. In particular, HT1 from 205 

Paranà display a relatively restricted isotopic range (
87

Sr/
86

Sr(i) 0.70495-0.70620 and Nd from -206 

1.27 to -4.32) that could be related to a significant role of lithospheric components in their mantle 207 
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sources, whereas the wide 
87

Sr/
86

Sr(i) variation recorded in LT certainly reflects continental crust 208 

contamination. The Pb isotopic composition of the entire CFB population ranges between 209 

207
Pb/

204
Pb 15.4-15.8 and 

206
Pb/

204
Pb 17.1-19.7, with the abovementioned high-MgO Etendeka CFB 210 

plotting in the middle of the distribution. On the whole, the Sr-Nd-Pb isotope distributions of 211 

uncontaminated CFB from Etendeka shows a good agreement with the “Gough” component, which 212 

has been recently identified as the marker of the initial (proto-Tristan) plume activity since 133-132 213 

Ma (Hoernle et al., 2015). In diagrams of Fig. 9 the Paranà-Etendeka alkaline complexes show 214 

distinct isotopic compositions that plausibly reflect a derivation from independent and different 215 

mantle sources: the Brazilian complexes extend from near FOZO (Prevalent mantle) to EM1 (Nd 216 

from +4.5 to -7.8, 
87

Sr/
86

Sr(i) 0.70410-0.70632, 
206

Pb/
204

Pb 17.1-18.0), whereas those from Namibia 217 

and Angola display affinity with the HIMU component (Nd from +5.0 to -1.8, 
87

Sr/
86

Sr(i) 0.70375-218 

0.70487, 
206

Pb/
204

Pb 18.2-19.7). These different isotopic signatures appear to be correlated with the 219 

potassic vs sodic affinity, testifying for a different history of metasomatic enrichment in the 220 

lithospheric mantle of the south American and African margins.  221 

 222 

3.2 Comparison with Deccan and Karoo igneous provinces  223 

 224 

Deccan is a LIP where CFB cover an area of  600,000 km
2
 and mostly consist of tholeiitic 225 

basalts -locally overlain by rhyolites- that were emplaced from 63 to 68 Ma, with the main 226 

magmatic phase at 65-66 Ma (Cox and Hawkesworth, 1985; Melluso et al., 1995; 2004; 2006; 227 

Chenet et al., 2007; Sheth and Melluso, 2008; Sheth et al., 2014; Chatterjee and Bhattacharji, 2008; 228 

Keller et al., 2009; Manikyamba et al., 2015; Richards et al., 2015). The Deccan province is widely 229 

considered linked to the activation of the Reunion hot spot and was originally close to the 230 

Seychelles plateau before the opening of the Central Indian Ocean (Cox, 1989; White and 231 

McKenzie, 1989; Courtillot et al., 2003), although this view is contended by some authors (e.g., 232 

Sheth, 2005). In the paleogeographic reconstruction reported in Fig. 10 (modified after Natali et al., 233 
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2017), the Deccan traps represent part of a wider magmatic province originally extending for  234 

2000 km maximum diameter. The spatial distribution of Deccan lavas is zonally arranged with most 235 

CFB represented by LT basalts, whereas the occurrence of HT1 basaltic and picritic lavas is 236 

restricted to the NW sector. This area is located at the intersection of major NS-EW rift systems and 237 

is also characterised by the occurrence of nearly coeval alkaline-carbonatite complexes. 238 

Northeastward of the main rift systems, the CFB outcrops decrease in relation to the rapid increase 239 

of lithosphere thickness below the Bastar craton (Paul et al., 2008; Sen et al., 2009; 2012; 240 

Chalapathi Rao and Lehmann, 2011 and references therein). Reconstruction of primary CFB 241 

magmas and thermobarometric conditions using the Guddfinnsonn and Presnall (2005), Herzberg et 242 

al. (2007) and Herzberg and Asimow (2015) algorithms suggest that HT1 could be generated by Tp 243 

up to 1560°C at pressures 4-5 GPa, whereas LT were formed at lower temperature (Tp  1500°C) 244 

and pressures (3-4 GPa). The thermobarometric models by Lee et al. (2009) and Putirka (2016) give 245 

temperature estimates in reasonable agreement (Tp 1500-1600°C), whereas pressures are 246 

underestimated with respect to those obtained by the Guddfinnsonn and Presnall (2005) and 247 

Herzberg et al. (2007) models (2017; Supplementary Table 1). Based on the incompatible element 248 

distribution of primary melts, Natali et al. (2017) estimated that HT1 and LT were generated by  249 

9% and 17% melting degree of a PM source, respectively.  250 

Geochemical features of alkaline basic rocks s.l. coeval with CFB and related to the main 251 

rift structures (Kutch, Cambay and Narmada rifts) are reported in Fig 6 and 7, where they display a 252 

sodic affinity and variable LREE enrichment (LaN/YbN 13-34). As modelled for Paranà-Etendeka, 253 

Deccan alkaline primary magmas have been calculated by the Putirka (2016) model, assuming a 254 

metasomatised mantle source having mg# 0.87. Accordingly, mantle potential temperature (Tp) and 255 

pressure (P) of generation are in the range of 1370-1350°C and 2.1-2.0 GPa, respectively. Fig. 7 256 

shows that the incompatible element patterns of Deccan alkaline magmas are analogous to those of 257 

Namibia and could be generated by similar metasomatised mantle sources, as modelled in Fig. 8. 258 
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The isotope systematics of the Deccan magmatic province is reported in Fig. 11. Similar to what 259 

was observed in the Paranà-Etendeka, HT1 picrites and the least differentiated (high-MgO) LT 260 

basalts display a restricted isotopic range (Nd from 6.8 to 2.5, 
87

Sr/
86

Sr(i) 0.70386-0.70491) 261 

plotting in the upper-left quadrant of the diagram, which can be attributed to uncontaminated 262 

sublithospheric mantle components. The rest of the Deccan CFB record 
87

Sr/
86

Sr(i) up to 0.71756,  263 

clearly in relation to the variable extent of crust contamination. Alkaline-carbonatite complexes 264 

show a distinctly different Sr-Nd-Pb composition with respect to CFB and a tendency towards the 265 

HIMU geochemical component, similar to those from Namibia and Angola.  266 

The Karoo CFB province of southern Africa (and its extension in the Dronning Maud Land 267 

of Antarctica) is classically considered a LIP originated by the breakup of southern Gondwana and 268 

the opening of the south western Indian Ocean (White and McKenzie, 1989; Storey and Kyle, 1997; 269 

Elliot and Fleming, 2000; Storey et al., 2013; Riley et al., 2005; Heinonnen et al., 2014). The Karoo 270 

CFB activity mostly occurred from 174 and 184 Ma, (Hastie et al., 2014) and mainly consist of 271 

tholeiitic basalts-picrites (locally topped by rhyolites), whose variable geochemical and isotopic 272 

characteristics have been attributed either to the Sub Continental Lithospheric Mantle (SCLM, 273 

Duncan et al., 1984; Hawkesworth et al., 1984 Jourdan et al., 2007) or to mantle sources modified 274 

by plume-related asthenospheric components (Ellam and Cox, 1991; Ellam et al., 1992; Sweeney et 275 

al., 1991; 1994). As reported in Fig. 12, Karoo CFB are zonally arranged, with very high-TiO2 276 

(HT2) picrite-basalt lavas in the central area (Mwenetzi) and progressively lower-TiO2 (HT1 and 277 

LT) basalts towards the periphery (Natali et al., 2017). The Guddfinnsonn and Presnall (2005), 278 

Herzberg et al. (2007) and Herzberg and Asimow (2015) algorithms applied to Karoo CFB yield Tp 279 

of 1580°C at 5GPa and 1490°C at 3-4 GPa for HT2 and LT primary magmas, respectively. 280 

Thermobarometric models by Lee et al. (2009) and Putirka (2016) give the same discrepancies 281 

observed for Paranà-Etendeka and Deccan CFB, providing comparable temperatures but 282 

systematically lower pressures (see Supplementary Table 1). Based on the incompatible element 283 

distribution of primary melts, Natali et al. (2017) estimated that LT were generated by a  14% 284 
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melting degree of a PM source, whereas HT2 were generated by 8% batch melting of a PM garnet 285 

peridotite source hybridized with 15% eclogite. 286 

Coexistent alkaline complexes occur at a triple junction located at the convergence of huge 287 

dike swarms in the Mwenetzi region. These complexes are represented by the Mashikiri 288 

nephelinites outcropping below the HT2 lavas and the ijolite-nephelinite-carbonatite complexes of 289 

Dorowa and Shawa, northward (Ellam and Cox, 1991; Harmer et al., 1998; Jourdan et al., 2007). 290 

Rocks from these complexes are the most sodic (Fig. 6) and silica undersaturated with respect to 291 

those from Paranà-Etendeka and Deccan, and according to the thermobarometric model of Putirka 292 

(2016), their primary magmas were generated at Tp of 1350-1410°C in the pressure range of 2.4-2.7 293 

GPa (Supplementary Table 1). The PM-normalized incompatible element and the chondrite-294 

normalized REE distribution (Fig. 7) reveal the most depressed patterns with respect to those of the 295 

other investigated provinces, the lowest LREE enrichment (LaN/YbN  13 in Mashikiri nephelinites 296 

and  5 in ijolites), as well as unusual positive anomalies in Sr and Ti. These features suggest a 297 

peculiar metasomatic enrichment of previously depleted mantle sources, quite different with respect 298 

to that envisaged for other provinces. 299 

Sr-Nd isotopes of Karoo HT and LT, plotted in Fig. 13, display divergent trends that are 300 

partially overlapped in proximity to the Bulk Solid Earth composition, which could be attributed to 301 

the uncontaminated sublithospheric mantle of this region. The HT picrite-basalt suites display 302 

variation towards lower Nd (down to -9.7), plausibly in relation to the involvement of lithospheric 303 

components in their magma genesis. The LT suite shows a trend towards very high 
87

Sr/
86

Sr(i) 304 

values, indicating a variable extent of crustal contamination. Pb isotopes also show systematic 305 

differences between LT and HT suites. Conversely, alkaline magmas are distinct in that they show 306 

an extremely unradiogenic Nd isotopic composition (Nd down to -19.9), which has been 307 

interpreted as the signature of the enriched SCLM (cf. Harmer et al., 1998).  308 

 309 

4. Discussion and conclusions 310 
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 311 

The critical review and new elaboration of literature data on high-MgO CFB and coeval 312 

alkaline complexes from the Paranà-Etendeka LIP provide constraints on the P-T-X conditions of 313 

their mantle sources. The inception of the CFB magmatism (approximately 139 Ma) occurred in the 314 

northwestern portion of the Paranà basin and migrated southeastward towards the Etendeka region, 315 

likely in connection with a generalized northwestward lithospheric drift of this region of Gondwana 316 

over an active plume (Turner et al., 1994; Gibson et al., 2006). Whatever the extent of the 317 

lithospheric drift before the South Atlantic opening, the focus of the tectonomagmatic activity at 318 

135-130 Ma was well-established in the Etendeka region, which comprises the oldest parts of the 319 

Walvis Ridge and several extensional lineaments that intersect the early track of the south Atlantic 320 

opening. Paleogeographic restoration shows that this region, at the centre of the CFB province, is 321 

characterised by the exclusive occurrence of high-MgO basalt-picrite rocks (belonging to both LT 322 

and HT1 suites) and is spatially/temporally (133-128 Ma) associated with alkaline-carbonatite 323 

complexes from the Ponta Grossa arch (Brazil) and Damara belt (Namibia) extensional structures.  324 

The new petrogenetic modelling and thermobarometric estimates obtained in this work 325 

indicate that the primary magmas of the HT1 suite are the hottest and deepest CFB (Tp  1590°C, P 326 

 5 GPa) of the entire province. This finding conforms to the interpretation that magma generation 327 

was triggered by thermal and tectonic effects related to the impingement of a hot plume on a 328 

relatively thick continental lithosphere. The maximum temperature excess (Tex), both with respect to 329 

notional MORB and local mantle xenoliths thermobarometry, is estimated as 250-300°C, in 330 

agreement with what was obtained for Deccan and Karoo (this work and Natali et al., 2017). 331 

Moreover, most high-MgO CFB of the Etendeka region show a Sr-Nd-Pb isotopic range 332 

corresponding to prevalent mantle compositions uncontaminated by lithospheric signatures, and 333 

share the “Gough” geochemical component recently recognized as the initial proto-Tristan plume 334 

activity (Hoernle et al., 2015). All of these features agree with a rapid ascent of high-MgO Etendeka 335 

magmas that, in our opinion, effectively represent the most genuine proxies of plume-related 336 
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sublithospheric melts, virtually unaffected by lithospheric contamination. By contrast, out of the 337 

focal zone, most basalts of the Paranà-Etendeka CFB province are variably differentiated (MgO 9-5 338 

wt%) and display variable increases of 
87

Sr/
86

Sr(i), reflecting either lithosphere/asthenosphere mixed 339 

sources (HT1 from Paranà) and/or remarkable shallow level crustal contamination. This 340 

interpretation can reconcile the contrasting views on the role of “lithosphere” vs “plume” in the 341 

genesis of CFB (Turner et al., 1996; Hawkesworth et al., 2000; Gibson et al., 2000; 2006), since 342 

both views appear to be appropriate for the different CFB sections, reflecting different extents of 343 

plume-lithosphere interaction. 344 

The Paranà-Etendeka alkaline-carbonatite complexes coeval with CFB show petrological 345 

and isotopic signatures that agree with melts from lithospheric mantle sources. The results from 346 

modelling favour the genesis of the studied alkaline magmas by moderate to low melting degrees of 347 

lithospheric mantle sources that were significantly enriched (veined?) by metasomatic phases 348 

(amphibole and phlogopite). Alkaline rocks display regional geochemical differences, suggesting 349 

distinct metasomatising events with a more relevant role of phlogopite in magma sources from 350 

south America with respect to those from southern Africa. Accordingly, the Brazilian complexes 351 

have a more potassic character and isotopic tendency to the EM1 mantle component, whereas those 352 

from Namibia and Angola display sodic affinity coupled with a signature approaching the HIMU 353 

mantle component.  354 

On a regional scale, the main tectono magmatic characteristics of Paranà-Etendeka are also 355 

shared by Deccan and Karoo, where superheated picrite-basalt (mostly HT tholeiitic suites) and 356 

alkaline-carbonatite complexes occurred at the intersection of multiple extensional lineaments -such 357 

as faulting, rifting and dike swarms- radiating from the central area of each province (cfr Natali et 358 

al., 2017). As already observed for Paranà-Etendeka, the isotopic data of alkaline-carbonatite 359 

complexes of Deccan and Karoo invariably show significant differences with respect to associated 360 

high-MgO CFB, and mostly record continental lithospheric signatures. In our opinion, a satisfactory 361 

explanation for the spatial-temporal association of such contrasting, and isotopically distinct, 362 
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magma types cannot be ascribed to common mantle sources, but requires the nearly 363 

contemporaneous generation of high-MgO CFB and alkaline melts from distinct mantle systems, 364 

namely the convective asthenosphere and the subcontinental lithosphere in the focal zone of LIPs. 365 

Accordingly, in the generalized tectonomagmatic model proposed in Fig. 14, the same thermal and 366 

tectonic events that characterised the axial zone of the impinging hot plume underneath the 367 

Gondwana lithosphere triggered melting of both asthenospheric and lithospheric mantle sources 368 

with magma rising through a nearly open feeding system. The results from modelling indicate that 369 

the asthenospheric peridotite solidus is crossed mostly in the range 4-5 GPa and Tp 1500-1600°C 370 

with the generation of high-MgO CFB magmas whose sources plausibly experienced adiabatic 371 

decompression and melting over a large mantle column (Gibson et al., 2000; Thompson et al., 2001; 372 

Herzberg and Asimov, 2015; Natali et al., 2016; 2017; Jennings et al., 20017). The same plume 373 

effects favoured the generation of alkaline melts by moderate to low melting degrees of the most 374 

fusible lithospheric domains (P 2-3 GPa, T 1300-1400°C), where the solidus is variably depressed 375 

due to occurrences of hydrated and/or carbonated phases; despite the small volume, alkaline melts 376 

ascended to upper crustal levels, favoured by their intrinsic low density and viscosity.  377 

It should be noted that for LIP that do not present anomalous and focalized thermo-378 

mechanical input on thick continental lithosphere-as in the case of the cooler CAMP and Ferrar 379 

CFB provinces-other models could be more appropriate as alternative (or complementary) to the hot 380 

plume hypothesis (Coltice et al., 2009; Hole, 2015; Natali et al., 2016). 381 
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Figure captions 784 

 785 

Figure 1 – Paleogeographic reconstruction of Parana-Etendeka CFB at 135-130 Ma (modified after 786 

White and McKenzie, 1989). Low-Ti (LT) and high-Ti (HT1) spatial distribution was reviewed 787 

after data from Piccirillo and Melfi (1988), Piccirillo et al. (1990), Hawkesworth et al. (1992), Peate 788 

et al. (1999), Marzoli et al. (1999), Thompson et al. (2001), Lustrino et al. (2005), Cernuschi et al. 789 

(2015), Marsh and Swart (2016), Rämö et al. (2016). Locations of Early Cretaceous alkaline-790 

carbonatite complexes after Beccaluva et al. (1992; 2017), Coltorti et al. (1993), Trumbull et al. 791 

(2003), Comin-Chiaramonti and Gomes (2005), Gibson et al. (2006), Comin-Chiaramonti et al. 792 
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(2011; 2014) and references therein, Gomes et al. (2011) and references therein. The hot spot focal 793 

zone includes the oldest part of the Walvis volcanic ridge and the Etendeka high-MgO rocks (max 794 

Tp 1590°C) and is considered the axis of the Proto-Tristan mantle plume during the main magmatic 795 

phase of the Paranà-Etendeka province; it also includes the majority of coeval alkaline-carbonatite 796 

complexes, along the extensional structures that intersect the early track of the south Atlantic 797 

opening.  798 

 799 

Figure 2 – FeOt, TiO2, Nb and Ce vs MgO variation diagrams for the Paranà-Etendeka CFB. Data 800 

from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/) and by Owen-Smith et 801 

al. (2017). LT type localities are Esmeralda, Gramado in Paranà and Horingbaai, Tafelberg in 802 

Etendeka. HT1 type localities are Paranapanema, Pitanga, Urubici in Paranà and Khumib, Doros in 803 

Etendeka. Empirical boundaries between LT and HT1 CFB are drawn in order to minimise the 804 

misclassified samples (generally less than 5%). 805 

 806 

Figure 3 – Chondrite-normalized Rare Earth Element (REE) patterns for LT and HT1 Paranà- 807 

Etendeka CFB. Average LaN/YbN for each group are also reported. Normalizing factors are from 808 

Sun and McDonough (1989). Data are from the GEOROC database and from Owen-Smith et al. 809 

(2017).     810 

 811 

Figure 4 – MgO vs FeO diagram for the Paranà-Etendeka CFB. HT1 and LT primary magmas were 812 

modelled according to Herzberg and Asimow (2015). Liquid lines of descent were modelled 813 

according to Petrolog software v.3 (Danyuschevsky and Pletchov, 2011). Data are from the 814 

GEOROC database and from Owen-Smith et al. (2017). Abbreviations: Ol = olivine, Cpx = 815 

clinopyroxene; Pl = plagioclase.    816 

 817 
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Figure 5 – Incompatible element distribution of calculated LT and HT1 primary melts (data from 818 

Ewart et al., 1998; Gibson et al., 2000) and modelled composition obtained by batch melting of a 819 

PM source hybridized with 3% eclogite. Source mode and melting proportions conform to 820 

experimental data by Walter (1998); partition coefficients (Kd) from the GERM database. 821 

Normalizing factors are from Sun and McDonough (1989). See text for further explanation.  822 

 823 

Figure 6 – Na2O vs K2O (wt%) binary diagram for mafic rocks from alkaline-carbonatite complexes 824 

coeval with CFB from the a) Paranà-Etendeka, b) Deccan and c) Karoo igneous provinces. 825 

Subdivision among various sodic and potassic affinities are from Middlemost (1975). Paranà-826 

Etendeka data are from Beccaluva et al. (1992; 2017), Coltorti et al. (1993), Trumbull et al. (2003), 827 

Comin-Chiaramonti et al. (2002; 2011; 2014), Comin-Chiaramonti and Gomes (2005), Gibson et al. 828 

(2006), Gomes et al. (2011) and references therein. Deccan data are from Simonetti et al. (1998) 829 

and Sen et al. (2009); alkaline rocks locally interbedded within CFB (e.g., Melluso et al., 1995) are 830 

not considered. Karoo data are from Harmer et al. (1998) and de Bruiyn et al. (2005).  831 

 832 

Figure 7 – Chondrite-normalized Rare Earth Element (REE) and Primitive Mantle-normalized 833 

incompatible element patterns for mafic rocks from alkaline-carbonatite complexes coeval with 834 

CFB from a) Paranà-Etendeka, b) Deccan and c) Karoo igneous provinces. Paranà-Etendeka data 835 

are from Beccaluva et al. (1992; 2017); Coltorti et al. (1993); Trumbull et al. (2003), Comin-836 

Chiaramonti et al. (2002; 2011; 2014); Comin-Chiaramonti and Gomes (2005); Gibson et al. 837 

(2006); Gomes et al. (2011) and references therein. Deccan data are from Sen et al. (2009), whereas 838 

Karoo data are from Harmer et al. (1998) and de Bruiyn et al. (2005). Normalizing factors after Sun 839 

and McDonough (1989). 840 

 841 

Figure 8 – Incompatible element distribution of alkaline basic melts coeval with CFB in the Paranà-842 

Etendeka province. a) modelling indicates that Etendeka alkaline basic melts could be generated 843 
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either by 2% or 10% batch melting of a PM source hybridized with 20% and 40% amphibole-rich 844 

metasomatic veins, respectively. Composition of metasomatic veins, mineral modes and melting 845 

coefficients are after Pilet et al. (2011). b) Modelling for Brazilian alkaline basic magmas requires 846 

the significant presence of phlogopite (in addition to amphibole) in the source. Best fit is obtained 847 

either by 2% or 8% batch melting of a PM source hybridized with 40% and 90% of metasomatic 848 

veins, respectively. In this case, amphibole-rich metasomatic veins (Pilet et al., 2011) contain up to 849 

30% of phlogopite. Data source as in Fig. 7. Partition coefficients (Kd) from the GERM database. 850 

Normalizing factors are from Sun and McDonough (1989).  851 

 852 

Figure 9 – (a) Sr-Nd and (b) Pb isotopic composition of CFB and coeval alkaline-carbonatite 853 

complexes for the Paranà-Etendeka igneous province. Data from GEOROC and from Huang et al. 854 

(1995); Milner and Le Roex (1996); Le Roex and Lanyon (1998); Harris et al., (1999); Alberti et al. 855 

(1999); Trumbull et al. (2003; 2007); Comin-Chiaramonti et al. (2007; 2011); Gomes et al. (2011); 856 

Beccaluva et al. (2017); Owen-Smith et al. (2017). Isotopic composition of Gough and Tristan hot 857 

spot tracks are from Hoernle et al. (2015). Reference mantle end-members (DM, EM1, EM2, HIMU 858 

and FOZO) are also reported for comparison (Zindler and Hart, 1986; Hofmann, 1997; Stracke, 859 

2012). Sr-Nd initial isotopic values have been calculated at 132 Ma. 860 

 861 

Figure 10 – Paleogeographic reconstruction of the Deccan igneous province at ca. 65 Ma reporting 862 

the spatial distribution of HT1 and LT suites (modified after Natali et al., 2017 and references 863 

therein). Note that the centre of the encircled equidimensional area (Reunion hot spot) corresponds 864 

to the distribution of HT1 picrite-basalt, the maximum concentration of nearly coeval alkaline (-865 

carbonatite) complexes and the intersection of the main rift structures.  866 

 867 

Figure 11 – (a) Sr-Nd and (b) Pb isotopic composition of CFB and coeval alkaline-carbonatite 868 

complexes for the Deccan igneous province. Data from GEOROC and from Simonetti et al. (1995; 869 
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1998) and Sen et al. (2009). Reference mantle end-members (DM, EM1, EM2, HIMU and FOZO) 870 

are also reported for comparison (Zindler and Hart, 1986; Hofmann, 1997; Stracke, 2012). Sr-Nd 871 

initial isotopic values have been calculated at 65 Ma. 872 

 873 

Figure 12 –Paleogeographic reconstruction of the Karoo igneous province at ca. 170 Ma, reporting 874 

the spatial distribution of HT2, HT1 and LT suites (modified after Natali et al., 2017 and references 875 

therein). Note that the central CFB area correspond to a triple junction defined by the convergence 876 

of dike swarms, the distribution of HT2 picrite-basalt and the location of nearly coeval alkaline-877 

carbonatite complexes. 878 

 879 

Figure 13 – (a) Sr-Nd and (b) Pb isotopic composition of CFB and coeval alkaline-carbonatite 880 

complexes for the Karoo igneous province. Data from GEOROC and from Hawkesworth et al. 881 

(1984) and Harmer et al. (1998). Reference mantle end-members (DM, EM1, EM2, HIMU and 882 

FOZO) are also reported for comparison (Zindler and Hart, 1986; Hofmann, 1997; Stracke, 2012). 883 

Sr-Nd initial isotopic values have been calculated at 180 Ma. 884 

 885 

Figure 14 – Impinging of the mantle plume head on the pre-existing lithosphere caused a dramatic 886 

thermal anomaly (Tex 250-300°C) coupled with bulging, thinning and development of extensional 887 

lineaments that intersected and radiated from the plume axial zone. The combined tectonic and 888 

thermal effects at the plume axis could explain the contemporaneous generation, virtually on the 889 

same plumbing system, of high-MgO CFB and alkaline magmas from the convective asthenosphere 890 

and the overlying lithosphere, respectively, under distinct P-T-X conditions (see inset): 1) high-891 

MgO CFB could derive from volatile-poor sublithospheric mantle sources where the solidus is 892 

crossed at Tp 1500-1600°C, 4-5 GPa by moderate-high melting degree under nearly-adiabatic 893 

conditions; 2) parental melts of the alkaline-carbonatite complexes formed by a generally low 894 

degree of melting in the lower portion of the lithosphere (Tp 1300-1400°C, P 2-3 GPa), where the 895 
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solidus is variably depressed owing to the common occurrence of hydrated and carbonated 896 

components. Data for volatile-rich (hydrated and carbonated lherzolite) and volatile-poor 897 

(anhydrous lherzolite) solidi are taken from the literature (Turner et al., 1996; Walter, 1998; 898 

Thompson et al., 2001; Green and Fallon, 2005; Gudfinnsson and Presnall, 2005). The thermal 899 

regime and composition of the lithosphere is based on mantle xenoliths from the Gondwana realm 900 

that consist of Sp- to Gt-lherzolite/harzburgite variably enriched by metasomatic phases 901 

(amphibole, phlogopite and carbonates; Rivalenti et al., 2000; Fodor et al., 2002; Dessai et al., 902 

2004; Griffin et al., 2003; Beccaluva et al., 2007; 2008; 2011; Karmalkar et al., 2009; Natali et al., 903 

2013; Bianchini et al., 2014; Sgualdo et al., 2015; Stanley et al., 2015). The hatched area 904 

corresponds to the asthenosphere-lithosphere transition. 905 

 906 

Table captions: 907 

 908 

Supplementary Table 1 – Major element composition of calculated primary melts for representative 909 

high-MgO CFB and coeval alkaline basic melts Paranà-Etendeka, Deccan Karoo LIPs. 910 

Reconstruction of CFB primary melts has been obtained by the Herzberg and Asimow (2015) 911 

model assuming a mantle source with mg# 0.90, whereas alkaline primary melt have been obtained 912 

using the Putirka (2016) model assuming mg# 0.87 for the metasomatized source. 913 

Thermobarometric estimates have been obtained using the models of Guddfinnsonn and Presnall 914 

(2005), Herzberg et al. (2007), Lee et al., (2009), Herzberg and Asimow (2015), Putirka (2016) for 915 

CFB, whereas for alkaline magmas only the Putirka (2016) model could be applied.    916 

 917 

 918 
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