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Abstract
About ten years after their introduction to the market (happened in 2006), the so-called second generation superficially
porous particles (SPPs) have undoubtedly become the benchmark as well as, very often, the preferred choice for many
applications in liquid chromatography (LC), when high efficiency and fast separations are required. This trend has interested
practically all kinds of separations, with the only exception of chiral chromatography (at least so far). The technology
of production of base SPPs is advanced, relatively simple and widely available. The deep investigation of mass transfer
mechanisms under reversed-phase (RP) and normal-phase (NP) conditions for achiral separations has shown the advantages
in the use of these particles over their fully porous counterparts. In addition, it has been demonstrated that SPPs are extremely
suitable for the preparation of efficient packed beds through slurry packing techniques. However, the research in this field
is in continual evolution. In this article, some of the most advanced concepts and modern applications based on the use
of SPPs, embracing in particular ultrafast chiral chromatography and the design of SPPs with engineered pore structures
or very reduced particle diameter, are revised. We describe modern trends in these fields and focus on those aspect where
further innovation and research will be required.

Keywords Superficially porous particles (SPPs) · Sub-2 μm SPPs · 2.0 μm chiral SPPs · Highly ordered radially oriented
mesopore SPPs · High efficient ultrafast (chiral) separations

Introduction0

One of the main challenges facing chromatographers is

Q1

1

developing high efficient and fast separation methods. A2

fundamental aspect of this process is the choice of the3

liquid-chromatography (LC) column, in particular regarding4

the physico-chemical and geometric characteristics of5

packing particles. Their size and morphology (either fully or6
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superficially porous) indeed dramatically affect the kinetic 7

performance of columns not only by modifying the volume 8

available for the diffusion of molecules but also through the 9

“quality” of the resulting packed bed [1–3]. 10

As a matter of fact, for a long time, the main 11

approach followed by column manufacturers to improve the 12

efficiency of separation has been to prepare columns made 13

of particles with smaller and smaller diameter. Sub-2 μm 14

spherical fully porous particles (FPPs) are nowadays widely 15

commercialized and routinely employed. The downside of 16

this approach is in the very high pressure required to use 17

these columns at their full potential (up to 1200-1500 bars 18

or more) [4], since pressure drop along the column increases 19

by a square function of the inverse of particle size [5]. 20

In 2006, the so-called second generation superficially 21

porous particles (SPPs) – alternatively named core-shell, 22

fused-coreTM or porous shell particles – were launched [6]. 23

Since then, columns packed with SPPs invaded the market, 24

mailto:martina.catani@unife.it
mailto:cvz@unife.it
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representing an effective and concrete alternative to sub-25

2 μm FPPs in terms of efficiency and speed of separation,26

but orignating much less back pressure [7]. As an example,27

columns packed with C18 2.7 μm SPPs provide efficiencies28

close to those of columns of the same geometry packed with29

1.7 μm fully porous C18 particles but operating at a30

backpressure that is 50-75% smaller than that of FP particles31

[8, 9].32

Second-generation SPPs are made of a nonporous solid33

silica core surrounded by a porous silica shell, exactly as34

the pellicular particles introduced in the sixties by Horváth35

and Lipsky [10]. The main advantage of these particles36

with respect to first generation ones is their higher loading37

capacity achieved thanks to a specific design, where the38

porous zone occupies roughly 3/4 of the total particle39

volume [11].40

The rationale behind the introduction of a solid core41

into the particle was not only to improve solid-liquid42

mass transfer (cs-term of the van Deemter equation) by43

shortening the diffusion path length across the particle but44

also to reduce the contribution of longitudinal diffusion (b-45

term of the van Deemter equation) by decreasing the pore46

volume accessible to analyte molecules [8, 12–14]. Later on,47

it turned out that SPPs are characterized by very low eddy48

diffusion (a-term of the van Deemter equation, accounting49

for any kind of flow inhomogeneity and unevenness in50

the packed bed), which largely contributes to the overall51

efficiency of a column [8, 15].52

A countless number of papers and reviews have been53

published describing the fundamentals, developments and54

applications of SPPs in areas as different as food chemistry,55

biological applications, environmental chemistry, “omics”56

sciences, bi-dimensional chromatography, etc. [8, 11, 16–57

24]. Readers interested in these topics are addressed to58

specific literature.59

On the other hand, in this paper, we focus on some60

of the most interesting solutions and ideas proposed to61

push further the limits of performance and the field of62

applications of SPPs. These innovations embrace different63

fields and sectors of activities. First of all, they pertain to64

high efficient and ultrafast chiral chromatography, where65

results that were unimaginable even only a few years ago66

have been recently achieved [16, 25–28]. For instance,67

several examples of chiral separations performed in less68

than one second with chiral SPPs as stationary phases have69

been published. Even if some fundamental aspects need70

further understanding [16, 25], these works represent the71

turning point between an old concept of chiral separations72

by LC and a new one based on columns exhibiting73

perfomance (in terms of efficiency and speed of separation)74

very similar to those of chips employed for high-speed75

enantioseparations [29]. We may reasonably expect in the76

next few years the appearence on the market of many77

chiral stationary phases based on these concepts, since the 78

technology of production of chiral SPP particles is mature 79

enough to find its way into commercial products. 80

In other less fortunate cases, very innovative and 81

promising concepts of SPPs are still at the level of 82

prototypes. Among these, it is worth to mention the so- 83

called highly ordered radially oriented mesopore (ROM) 84

SPPs [30, 31]. Engineered to achieve superior kinetic 85

performance thanks to their highly ordered mesopore 86

network, these SPPs have however exhibited some issues 87

in terms of chemical and long term stability, limiting the 88

extensive evaluation of their potential for high efficient 89

separations. Another remarkable example of precursors is 90

represented by SPPs of very reduced diameter (down up to 91

1.1 μm) and porous layer thickness. In this case, the major 92

barrier to large scale production and commercialization 93

has been essentially practical, coming from actual limits 94

of even state-of-art instrumentation, whose extra column 95

void volume is incompatible with the efficiency of these 96

particles. Admittedly, also the slurry packing of smallest 97

SPPs (1.1 μm) into very narrow tubes presents important 98

difficulties [32, 33]. 99

Chiral SPPs: the future of high efficient 100

and ultrafast enantioseparations? 101

The employment of high efficient particles – either sub- 102

2 μm fully porous or second-generation superficially ones 103

– in chiral LC has been relatively recent. This delay, 104

with respect to achiral separations, depends on different 105

reasons. They include both practical issues and theoretical 106

problems. Among the former, the most relevant ones are the 107

difficulty to adapt in some cases pre-existing methods in 108

use for the functionalization of larger chiral FPPs to very 109

small particles; particle agglomeration during synthesis; 110

the non uniform coating of chiral particles. On the other 111

hand, from a theoretical viewpoint, the lack of complete 112

understanding of the complex mass transfer phenomena 113

in chiral chromatography is a relevant limitation to the 114

development of very efficient chiral particles [1, 16, 34]. 115

Last but not least, conservative commercial strategies by the 116

most important producers of chiral columns may also be 117

advocated to explain the delay. 118

As a matter of fact, until 2011, SPPs were not used as 119

base material for the preparation of chiral stationary phases 120

(CSPs) [35, 36] (for the sake of information completeness, 121

the first report on the use of 1.9 μm fully porous chiral 122

particles is dated 2010 [37, 38]). Since then, different 123

classes of CSPs have been produced as porous shell 124

materials and the debate about pros and cons of chiral 125

SPPs over FPPs has begun. Chankvetadze and his group 126

were most active in the preparation of polysaccharide-based 127



AUTHOR'S PROOF! JrnlID 216 ArtID 842 Proof#1 - 09/01/2018

UNCORRECTED
PROOF

New frontiers and cutting edge applications in ultra high performance liquid chromatography...

superficially porous CSPs [39, 40]. Their studies about the128

comparison of kinetic performance between these CSPs and129

their fully porous counterparts of comparable content of130

chiral selector and particle size led to the conclusion that131

SPP chiral columns can provide higher separation factors,132

higher efficiency and flatter van Deemter curves.133

The most complete works on the evaluation of the134

performance of SPPs in chiral chromatography are those135

from Armstrong’s group [28, 41–46]. Armstrong and136

coworkers have evaluated, from a kinetic viewpoint, a wide137

class of chiral selectors prepared on 2.7 μm SPPs including138

cyclofructan-6 and β-cyclodextrin, macrocyclic antibiotics139

(teicoplanin, teicoplanin aglycone and vancomycin) and140

quinine-based ones. In agreement with Chankvetadze’s141

findings, they also have demonstrated that chiral SPPs142

perform systematically better than fully porous ones under143

RP, NP, hydrophilic interaction (HILIC) and polar organic144

mode LC. Remarkably, the employment of very short145

columns (5 mm long) packed with chiral SPPs and operated146

at a very high flow rate, permitted to achieve ultrafast147

enantioseparations (sub-second timescale) [27]. At the same148

time, also Gasparrini and coworkers reported about the149

possibility of performing sub-second separations by using150

SPPs functionalized with Whelk-O1 chiral selector [1, 16].151

As an example, Fig. 1 shows some remarkable cases where152

– thanks to the use of high flow rates (up to 8 ml/min) and153

very short columns (length 5-10 mm) packed with latest154

generation chiral particles – separations of enantiomers in155

less than one second were achieved (see figure caption for156

details).157

a

b

Fig. 1 Ultrafast enantioseparations of a trans-stilbene oxide enan-
tiomers on a 10×3.0 mm column packed with 2.6 μm Whelk-O1 SPPs,
MP: hexane/ethanol 90:10 %(v/v)+1% methanol, flow rate: 8 mL/min;
b N-(3,5-dinitrobenzoyl)- DL-leucine enantiomers on a 5×4.6 mm
column packed with 2.7 μm Quinine based SPPs, MP: acetoni-
trile/20 mM ammonium formate 70:30%(v/v), flow rate: 5 mL/min.
(Modified with permissions from Refs. [16] and [27], respectively)

These proof-of-concept experiments demonstrate the 158

state of the art of chiral LC and allow to predict a great 159

future for this technology in the field of ultrafast enan- 160

tioseparations. However, in spite of these very promising 161

results, it is the opinion of the authors of this paper that there 162

are still some fundamental aspects that require a deeper 163

investigation to truly understand the potential and limits 164

of these particles. They concern essentially two intercon- 165

nected aspects. The first one is about the importance of 166

the adsorption-desorption kinetics on the performance of 167

modern, ultra-high effient chiral LC columns [47, 48]. In 168

particular, questions such as: 169

– if (and how) the adsorption-desorption kinetics varies 170

by changing the surface density of chiral selector; 171

– if (and how) the surface density of chiral selector 172

varies across the particle diameter (this is particularly 173

important when considering the comparison between 174

chiral SPPs and FPPs); 175

– if (and how) the chemical environment surrounding 176

the chiral moiety anchored to the surface affects 177

the adsorption-desorption kinetics (physico-chemical 178

properties of bare silicas can be very different); 179

need serious consideration. To date these points have been 180

only marginally addressed in the literature. 181

The other aspect that needs more fundamental work 182

is about the very complex problem of evaluating the 183

contribution of eddy dispersion to band broadening and 184

the factors on which it depends [49]. It concerns, clearly, 185

also the study of packing of particles into chromatographic 186

columns and how it possibly changes depending on 187

the surface characteristics of particles themselves [50]. 188

According to the experience of the authors of this work, 189

packing apolar or polar particles (such as chiral ones), 190

be they FPPs or SPPs, [16, 25] can be intrinsically 191

different. Even the most advanced approaches to study 192

mass transfer in chiral chromatography, indeed, cannot 193

provide independent estimations of contributions to band 194

broadening coming from eddy dispersion and adsorption- 195

desorption kinetics [51]. 196

These considerations show that the apparently obvious 197

statement according to which columns packed with chiral 198

SPPs must outperform those made of chiral FPPs in terms 199

of efficiency (in agreement with what happens in achiral 200

RP LC) [43, 44], must be taken with great caution. Indeed, 201

some experimental facts showing that the above mentioned 202

generalization cannot be always applied have been reported. 203

Ismail et al. [1], for instance, compared the efficiency 204

of chiral columns for ultrafast high-efficient separations 205

packed with both Whelk-O1 SPPs (2.6 μm) and FPPs 206

(1.8 and 2.5 μm). Contrary to initial expectations they 207

found that, especially for the more retained enantiomer, the 208

efficiency of the column packed with SPPs was worse than 209
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that of the 1.8 μm FPP column and quasi-comparable to210

that of the column made of 2.5 μm FPPs [16]. The authors211

reported about the possible combination of both a slower212

adsorption-desorption kinetics and a larger eddy dispersion213

in the column packed with chiral SPPs as the reasons to214

explain this behavior. On the one hand, they correlated215

the unusual low perfomance of SPPs to the larger surface216

density of chiral selector found on the SPPs (+ 20%) with217

respect to the fully porous ones (even if particles were218

prepared under identical experimental conditions) and, on219

the other hand, to the empirical difficulties encountered220

during the packing of chiral SPPs.221

Quite recently, the same group pushed beyond the limit of222

high efficient chiral particles, by featuring the first example223

of a (teicoplanin-based) CSP prepared on 2.0 μm SPPs [26].224

The kinetic performance of the column packed with this225

new particles was compared to that of other two columns226

packed with 2.7 μm SPPs and 1.9 μm FPPs of narrow227

particle size distribution (TitanTM particles), functionalized228

with the same chiral selector. At the minimum of the van229

Deemter curve, the new 2.0 μm SPP CSP was found to230

overcome the other two for the separation of both achiral231

and chiral compounds in HILIC conditions, with efficiency232

close to 300,000 plates/meter. On the opposite, at higher233

flow rates, even with the new 2.0 μm teicoplanin-based SPP234

column a significant loss of performance (especially for the235

second eluted enantiomer) was observed. This finding is236

consistent with the observation made with Whelk-O1 CSPs237

(see before).238

To conclude this paragraph, Fig. 2 reports another extraor-239

dinary example, in addition to those given in Fig. 1, of240

the outstanding results that can be achieved with the new241

2.0 μm teicoplanin-based SPPs. This figure shows the sepa-242

ration of a mixture of haloxyfop and ketorolac enantiomers243

in about 8 seconds with a resolution larger than 2.0 (see244

Fig. 2 Ultrafast enantioseparation of a racemic mixture containing
haloxyfop (firstly eluted pair of peaks) and ketorolac (secondly eluted
pairs of peaks) on a 20×4.6 mm (L×I.D.) column packed with 2.0 μm
teicoplanin SPPs. Modified with permission from [26]

figure caption for details) [26]. Incidentally, we mention 245

here that teicoplanin and teicoplanin-based derivatives have 246

been for a long time considered “slow” selectors, unsuitable 247

for high efficient and ultrafast separations. 248

Highly ordered radially oriented mesopore 249

SPPs: reaching unexplored efficiency limits 250

through engineered particles 251

In 2016, an innovative approach named pseudomor- 252

phic transformation (PMT) micelle templating has been 253

described to produce a new type of SPPs characterized by: 254

(i) narrower particle size; (ii) thinner porous layer with high 255

surface area; and, most importantly, (iii) a pore network 256

made of highly ordered radially oriented mesopores [30]. 257

PMT process is based on the dispersion of non-porous sil- 258

ica particles (which will form the core) in a silica-dissolving 259

alkaline solution with self-organizing surfactant molecules. 260

Fig. 3 reports SEM images of ROM-SPPs (squares a and c) 261

and traditional SPPs (squares b and d). Cross-section views 262

(Fig. 3c and d) show how the presence of ROM limits diffu- 263

sion only to the radial direction. This is thus fundamentally 264

different from the randomly distributed and tortuous dif- 265

fusion pathways in conventional SPPs (Fig. 3d). Prototype 266

columns packed ROM-SPPs with an overall diameter of 267

5 μm have been demonstrate to produce minimum reduced 268

plate height values about 0.5-1 units lower than those 269

achievable with fully porous and traditional SPPs of the 270

same particle size, respectively. This represents the lowest 271

value reported for analytical columns [30]. 272

In a remarkable theoretical study by Deridder et al. [31], 273

computational fluid dynamics (CFD) was used to compare 274

mass transfer properties and band broadening in perfectly 275

ordered beds made of: ROM-SPPs; traditional SPPs; and, 276

finally, FPPs. To allow for a fair comparison, the same 277

particle arrangement, the same values for the mobile zone 278

and porous zone diffusion coefficients, as well as the same 279

retention factor have been assumed for the three particle 280

types. The results of this study can be summarized with the 281

help of Fig. 4, where the theoretical van Deemter curves 282

obtained for the three types of particles are reported. The 283

advantage in terms of mass transfer given by ROM-SPPs is 284

evident. The ordered pore structure allow these particles to 285

outperform the others, thanks to a dramatic reduction of the 286

b-term contribution. 287

Deridder et al. demonstrated the longitudinal diffusion 288

to be independent of the retention factor. It remained at 289

its minimal value (corresponding to that of unretained 290

molecules) instead of increasing with retention, as it 291

happens for particles with isotropic internal diffusion. This 292

depends on the fact that when retained molecules reside 293

in the porous layer of ROM-SPPs, their diffusion in the 294
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Fig. 3 High resolution SEM
images of a ROM-SPP (a, c) and
a SPP (b, d). Pictures (c) and (d)
are cross-section views of the
mesoporous network, showing
the differences between the
diffusion pathways in the two
types of particles. Taken with
permission from [30]

circumferential direction is completely blocked. Therefore,295

the only remaining route available for diffusion is the296

interstitial volume between particles. This advantage in the297

b-term is achieved without affecting the cs-term, which does298

not increase, as it should be expected. Another important299

aspect that would affect the performance of ROM-SPPs300

is the geometrical shape of mesopores. From a theoretical301

point of view, Gritti has demonstrated that conical shaped302

Fig. 4 Theoretical reduced van Deemter curves (h vs. ν, being h

the reduced plate height and ν the reduced interstitial velocity) for
packed beds made of FPPs (red data), traditional SPPs (blue data) and
ROM-SPPs (black data). Modified with permission from [31]

mesopores would produce roughly 80% lower cs-term than 303

cylindrical ones [52]. 304

In spite of these important advantages, the development 305

of ROM-SPPs apparently is not any longer supported, due 306

to (no better specified) both chemical stability problems and 307

low mechanical resistance. 308

Sub-2 μm SPPs: when instrumental 309

constraints are the bottleneck to reaching 310

highest efficiency 311

The reduction of the particle size to increase efficiency 312

and favour faster separation has been pursued also with 313

SPPs. Already a few years after the introduction of second 314

generation SPPs in the format of 2.7 μm (HaloTM particles), 315

sub-2 μm SPPs were produced and commercialized. Very 316

high efficiency and reduced analysis times were found by 317

several authors by using columns packed with 1.7 μm SPPs 318

[7, 17, 53–55]. Later on, the particle diameter of SPPs 319

has been further decreased to 1.3 μm, which represents 320

the smallest dimension of SPPs available to date in the 321

market. Fekete et al. characterized columns packed with 322

these particles from a kinetic viewpoint [4, 56]. They 323

found exceptionally low reduced plate heights and high 324
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peak capacities with cutting edge applications, especially in325

the field of fast separation of peptides. However, it appeared326

evident that instrumental constraints of even state of the art327

equipments prevent the full deployment of particle technology.328

Figure 5 compares the van Deemter curves of KinetexTM329

SPPs of different sizes (including 1.3 μm ones). As it can330

be evinced from this plot, the minimum of the van Deemter331

curve for 1.3 μm particles is barely reached. This depends332

on the back-pressure limitations of commercial UHPLC333

equipments, which are not able to supply the pressure334

needed to push, through beds made of very small particles,335

the mobile phase at reasonably high linear velocities. As a336

matter of fact, for the current operating pressure limit, these337

particle format look advantageous only for the separation338

of large molecules (having a lower optimal velocity range339

than that of small molecules) both in isocratic and gradient340

elution mode [4, 56].341

The reasearch was pushed forward by Blue and342

Jorgenson who featured the first example of 1.1 μm SPPs,343

the smallest SPP ever produced, through an innovative344

layer-by-layer synthetic approach [32, 33]. The information345

contained in Fig. 5 let us glimpse the highest potential of346

this material. Indeed, one might expect the van Deemter347

curve of 1.1 μm SPPs to be significantly lower than those of348

the other particle formats, potentially permitting to achieve349

incredibly high efficiency.350

However, the expectation was not satisfied. Blue and351

Jorgenson report about the importance not only of an352

extremely precise control of experimental conditions for353

the synthesis of these particles but also of the slurry354

packing procedure, which can have a major impact on the355

efficiency of the column, in their case made of a 30 μm356

I.D. capillary. This last aspect, in particular, was claimed357

to be responsible for the performance observed with their358

capillaries, significantly lower than the theoretical values359

predictable for 1.1 μm particles.360

In addition, the other very important instrumental factor 361

limiting the development of this technology comes from the 362

contribution to efficiency given by band broadening in the 363

extra-column void volume (including injector, connections, 364

column frits, detector, etc.) of modern UHPLC equipments, 365

which is larger than that produced by particles of these 366

intrinsic characteristics [57]. Finally, it is worth to mention 367

that a practical problem of columns packed with very small 368

particles is that they can behave as traps for particulate 369

matter dissolved in the eluent, with important consequences 370

on the lifetime of these columns if mobile phases and 371

samples are not carefully filtered prior analysis. 372

Outlook 373

The technology not only of production but also of 374

functionalization of SPPs to prepare very small particles 375

with extremely enhanced properties in terms of mass 376

transfer has come a long way. With the remarkable 377

exception of RP achiral separations for particle not smaller 378

than 1.7 μm, however, the potential of latest generation 379

SPPs remains still largely unexplored due to a series of 380

limitations, mainly instrumental ones, which have impeded 381

the development of techniques and methods based on them. 382

The further advancement of the field requires an 383

important contribution by LC instrument manufacturers 384

for the production of equipments suitable to provide very 385

large back pressure and, simultaneously, characterized by 386

extremely low extra-column volume through innovative 387

designs for detectors, injectors, column fittings, etc. This 388

is particularly important (see below) for supercritical 389

fluid chromatography (SFC), where the development of 390

enhanced instrumentation is particularly necessary. Column 391

manufacturers, on the other hand, should develop the 392

technology to prepare very short columns with optimized 393

Fig. 5 Experimental van
Deemter curves of butylparaben
in reversed-phase conditions
measured on columns packed
with Kinetex 1.3, 1.7, 2.6 and
5 μm SPPs. Taken with
permission from [4]
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hardware (including column frits) to reduce extra-column394

band broadening. Advancement in 3D printing technology395

and CFD studies are fundamental to drive this change.396

From a more theoretical viewpoint, an extension of our397

understanding of the packing process of slurry suspensions398

into chromatographic columns is necessary, by focusing in399

particular on the factors (including the rheology of particles,400

slurry density, etc. [49]) that affect it and which could have401

an impact on the performance of the resulting packed bed402

(e.g., through the a-term of the van Deemter equation).403

In parallel, the investigation of the fundamentals of mass404

transfer is expected to provide information that will help the405

design of SPPs with still more advanced kinetic properties.406

For instance, the study of adsorption-desorption kinetics in407

chiral chromatography might suggest important indications408

on how to functionalize particles (e.g., in terms of density409

of chiral selector) for optimum performance.410

It is precisely in the field of enantioseparations by LC411

that, in the nearest future, we can expect a real revolution412

thanks to the use of chiral SPPs of latest generation.413

Over the year, this field has fallen behind compared to414

achiral RP separations as regards ultrafast and high efficient415

separations. However, new developments in chiral particle416

technology let us predict an inversion of this trend. The417

market of chiral technology is already a very important418

one but it is expected to remarkably grow thanks to the419

new technology. In particular, extraordinary results and very420

fast enantioseparations are expected by the employment of421

latest generation chiral particles in SFC [58]. Moreover,422

chiral stationary phases made on SPPs could be suitable,423

thanks to their high efficiency, in the case of challenging424

enantiomeric separations (e.g., chiral impurity profiling),425

where an extremely low concentration of one enantiomer426

has to be detected [59].427

Another field where chiral SPPs will find application is428

2D-chromatography. Very short columns packed with SPPs429

can be efficiently used as second dimension for very fast430

separations in comprehensive applications [22].431

Acknowledgements The authors thank Dr. Ercolina Bianchini of the432

University of Ferrara for technical support.433

Compliance with Ethical Standards434

Conflict of interests The authors declare that they have no conflict of435

interest.436

References437

1. Ismail OH, Catani M, Pasti L, Cavazzini A, Ciogli A, Villani C,438

et al. Experimental evidence of the kinetic performance achievable439

with columnspacked with new 1.9 μm fully porous particles of narrow440

particle size distribution. J Chromatogr A. 2016;1454:86–92.441

2. Catani M, Ismail OH, Cavazzini A, Ciogli A, Villani C, Pasti L, 442

et al. Rationale behind the optimum efficiency of columns packed 443

with the new 1.9 μm fully porous particles of narrow particle size 444

distribution. J Chromatogr A. 2016;1454:78–85. 445
3. Gritti F, Bell DS, Guiochon G. Particle size distribution and 446

column efficiency. An ongoing debaterevived with 1.9 μm titan- 447

C18 particles. J Chromatogr A. 2014;1355:179–92. 448
4. Fekete S, Guillarme D. Kinetic evaluation of new generation of 449

column packed with 1.3 μm core-shell particles. J Chromatogr A. 450

2013;1308:104–13. 451
5. Neue UD. HPLC Columns: theory, technology and practice. 452

Wiley-VCH. 1997. 453
6. Kirkland JJ, Langlois TJ. US Patent application 20070189944 a1. 454

2007. 455
7. Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, 456

Guiochon G. Performance of columns packed with the new shell 457

particles, kinetex-C18. J Chromatogr A. 2010;1217:1589–603. 458

8. Guiochon G, Gritti F. Shell particles, trials, tribulations and 459

triumphs. J Chromatogr A. 2011;1218:1915–38. 460

9. Cavazzini A, Gritti F, Kaczmarski K, Marchetti N, Guiochon 461

G. Mass-transfer kinetics in a shell packing materials for 462

chromatography. Anal Chem. 2007;79:5972–79. 463
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