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Abstract

Two open problems of Jayaram are solved. Firstly, we prove that an Archimedean trian-

gular norm with a strong associated negation is necessarily left-continuous. Secondly, as

straightforward consequence of the first result, we show that an Archimedean triangular

norm with a strong associated negation is necessarily conditionally cancellative.
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1. Introduction

In a very recent paper ([3]), Jayaram presented two open problems connected to the

relationships between an Archimedean triangular subnorm (t-subnorm, for short) whose

associated negation is strong (see Definitions 2.2 and 2.1 below) and its analytic properties

of left-continuity and conditional cancellativity (see Definition 2.3 below).

The investigation of t-norms and t-subnorms under the point of view of the associated

negations has been treated in many papers. Particularly, the case of a t-subnorm with a

strong associated negation has been deeply analyzed (see, for instance, [4] and [2]).

In this work, we will solve the two open problems proposed by Jayaram, showing that

an Archimedean triangular subnorm with a strong associated negation is necessarily both

left-continuous and conditionally cancellative.
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2. Preliminaries

In this section, we shall introduce some notions and properties which are crucial for

the main results of this paper (for a thorough exposition of the theory, we recommend the

monographs [5] and [1]). We warn the reader that throughout this paper the concept of

monotonicity is intended in weak sense, otherwise we refer to strict monotonicity. In the

sequel, we will denote the identity function by id, the unit real interval by I and the open

unit interval by I̊.

Definition 2.1. A fuzzy negation is a decreasing function n : I → I such that n(0) = 1

and n(1) = 0. Moreover, a fuzzy negation is called strong (or involutive) if n ◦ n = idI.

Definition 2.2. A t-subnorm is an increasing function T : I2 → I such that T is associa-

tive, commutative and satisfies T (x, y) ≤ min{x, y} for all x, y ∈ I.

It is well-known that a t-norm is a particular t-subnorm such that T (x, 1) = x for all x ∈ I.

Definition 2.3. Let T be a t-subnorm.

(1) T is said to be Archimedean if for all x, y ∈ I̊ there exists an n ∈ N such that x
[n]
T < y,

where, as usual, x
[1]
T := x and x

[n]
T = T (x, x

[n−1]
T ) for every n > 1;

(2) T is said to be conditionally cancellative if T (x, y) = T (x, z) > 0 implies y = z;

(3) An element x ∈ I̊ is said to be a nilpotent element of T if there exists an n ∈ N such

that x
[n]
T = 0.

Definition 2.4. Let T be a t-norm. We say that T is nilpotent if it is continuous and if

each x ∈ I̊ is a nilpotent element of T .

Definition 2.5. Let T be a t-subnorm. The associated negation of T is the function

nT : I → I defined as

nT (x) = sup{t ∈ I : T (x, t) = 0}.



As emphasized in [3], nT is a decreasing function, with nT (0) = 1, but it need not be a

fuzzy negation since nT (1) can be greater than zero. Remark that nT is evidently a fuzzy

negation when T is a t-norm.

The main result presented in [3], which is both a generalization of a theorem of Jenei

(see [4]) and of Jayaram (see [2]), states that any t-subnorm with a strong associated

negation nT is actually a t-norm.

Theorem 2.1 (see Theorem 3.1 in [3]). Let T be any t-subnorm whose associated nT is

strong. Then, T is a t-norm.

Let us recall some important properties concerning the associated negation of a t-norm

(cf. Proposition 2.3.4 in [1]).

Proposition 2.2. Let T be any t-norm and nT its associated negation. Then, we have the

following:

(i) T (x, y) = 0 implies y ≤ nT (x);

(ii) y < nT (x) implies T (x, y) = 0;

(iii) if T is left-continuous, then y = nT (x) implies T (x, y) = 0.

Moreover, we present a classical result characterizing the properties of a strong asso-

ciated negation of a t-norm (see Corollary 2.3.7 in [1]), due to its importance in what

follows.

Lemma 2.3. Let T be any t-norm and nT its associated negation. Then, the following

statements are equivalent:

(a1) nT is strictly decreasing and continuous;

(a2) nT is strong.



3. Archimedean Property and Left-Continuity

In [3], the author poses the following, suitably rephrased, problem:

Problem 1. Is an Archimedean t-norm T whose nT is strong necessarily left-continuous?

Well, the answer is yes and the purpose of this section is just to illustrate the proof of

this statement. We need a preliminary result.

Proposition 3.1. Let T be any t-norm whose associated nT is strong. Then, T is left-

continuous if, and only if, the following property is fulfilled:

T (x, nT (x)) = 0 for all x ∈ I. (1)

Proof. Due to Proposition 2.2 (iii), it suffices to prove that Eq. (1) implies the left-

continuity of T . Suppose ab absurdo that T is not left-continuous. Then, there exist

x0 ∈ I \ {0}, y0 ∈ I̊ and a strictly increasing sequence {xn}n∈N ⊂ I \ {1} such that

xn → x0, but

lim
n→∞

T (xn, y0) < T (x0, y0).

Recalling that, by Lemma 2.3, nT is continuous, from the last equation it follows that there

exists a z ∈ I̊ such that T (xn, y0) < nT (z) < T (x0, y0) for all n ∈ N. Hence, Proposition

2.2 (i) evidently forces T (z, T (x0, y0)) > 0, while T (z, T (xn, y0)) = 0 for all n ∈ N directly

follows from Proposition 2.2 (ii). Due to associativity and commutativity, the two previous

conclusions may be rewritten as:

T (xn, T (z, y0)) = 0 for all n ∈ N and T (x0, T (z, y0)) > 0. (2)

Therefore, employing the property of the sequence {xn}n∈N, it is not difficult to see that

Eq. (2) leads to nT (T (z, y0)) = x0, so contradicting Eq. (1) for x = T (z, y0).

Now, we are ready to present the main result of this section.

Theorem 3.2. Let T be any t-norm whose associated nT is strong. If T is Archimedean

then it is left-continuous.



Proof. By Proposition 3.1, it is enough to show that Eq. (1) is satisfied. Reasoning by

contradiction, let x0 ∈ I̊ be such that T (x0, nT (x0)) > 0. Due to the Archimedean property

of T and the strongness of nT , respectively, we have that (x0)
[2]
T < x0 = nT (nT (x0)), hence

T ((x0)
[2]
T , nT (x0)) = 0

as consequence of Proposition 2.2 (ii). The last equation, combined with the associativ-

ity of T , leads to T (x0, T (x0, nT (x0))) = 0, which clearly excludes the possibility that

T (x0, nT (x0)) is equal to nT (x0), due to the initial assumption T (x0, nT (x0)) > 0. There-

fore, we derive that 0 < T (x0, nT (x0)) < nT (x0) < 1 or, equivalently,

0 < x0 < nT (T (x0, nT (x0))) < 1 (3)

according to the strict monotonicity of nT (see Lemma 2.3). For notational simplicity, set

sT (x0) := nT (T (x0, nT (x0))): now, we assert that sT (x0) = sup{t ∈ I : T (x0, t) < x0}.

Indeed, by definition, we have that sT (x0) is given by sup{t ∈ I : T (T (x0, nT (x0)), t) = 0},

which in its turn coincides with sup{t ∈ I : T (T (x0, t), nT (x0)) = 0} by associativity

and commutativity. By virtue of Proposition 2.2 (i), we know that T (T (x0, t), nT (x0)) =

0 implies that T (x0, t) ≤ x0, but the initial assumption evidently shows that the case

T (x0, t) = x0 is impossible, so proving the assertion. As consequence of Eq. (3) and the

assertion, there exists a z ∈ [sT (x0), 1[ such that T (x0, z) = x0: owing to associativity, we

immediately get T (z
[2]
T , x0) = T (z, T (x0, z)) = T (z, x0) = x0 and, similarly,

T (z
[n]
T , x0) = x0 for all n ∈ N.

However, T being Archimedean, we have that z
[n]
T < nT (x0) for a sufficiently large n

and, consequently, T (z
[n]
T , x0) = 0, so contradicting the previous equation and definitely

concluding the proof.

4. Archimedean Property and Conditional Cancellativity

In [3], the author poses the following, suitably rephrased, problem:



Problem 2. Is an Archimedean t-norm T whose nT is strong necessarily conditionally

cancellative?

The answer is again affirmative, as straightforward consequence of Theorem 3.2.

Theorem 4.1. Let T be any t-norm whose associated nT is strong. If T is Archimedean

then it is conditionally cancellative.

Proof. Applying Theorem 3.2 yields the left-continuity of T . Now, employing Corollary

6.4 in [3], which is based upon a classical result by Kolesárová (see [6]), we derive that T is

nilpotent, i.e. isomorphic to the  Lukasiewicz t-norm T L(x, y) = max{x + y − 1, 0}, which

is clearly conditionally cancellative, so concluding the proof.

Remark 4.1. We emphasize that, as a straightforward consequence of Theorem 2.1 and

Theorem 4.1, every Archimedean t-subnorm with a strong associated negation is a nilpotent

t-norm (isomorphic to the  Lukasiewicz t-norm).

5. Concluding Remarks

We have solved two open problem of Jayaram ([3]). As straightforward consequence,

we have found that an Archimedean triangular norm T with a strong associated negation

nT is necessarily both left-continuous and conditionally cancellative. Note that we cannot

draw the same conclusion if we drop the assumption that T is Archimedean, as shown by

the following example.

Example 5.1. Let T : I2 → I be described as

T (x, y) =

0, if x + y < 1;

min{x, y}, otherwise.

It is not difficult to show that such T is a t-norm whose associated negation is given by

nT (x) = 1−x, hence nT is strong. Moreover, T is not Archimedean, because, for instance,

T (x, x) = x for all x ≥ 1
2
. However, T is clearly neither left-continuous nor conditionally

cancellative.
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