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Abstract Optical Fabry-Perot cavities always show a non-degeneracy of

two orthogonal polarisation states. This is due to the unavoidable birefrin-

gence of dielectric mirrors whose effects are extremely important in Fabry-

Perot based high-accuracy polarimeters. We have developed and present

here a theory of the polarisation state dynamics in a birefringent Fabry-

Perot resonator, and we validate it through measurements performed with

the polarimeter of the PVLAS experiment. The measurements are per-

formed while a laser is frequency-locked to the cavity, and provide values

for the finesse of the cavity and for the phase difference between the two

orthogonal polarisation components introduced by the combination of the
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two cavity mirrors (equivalent wave-plate). The theoretical formulas and the

experimental data agree well showing that the consequences of the mirror

birefringence must be taken into account in this and in any other similar

experiment.

1 Introduction

Today high finesse Fabry-Perot (FP) cavities are often used to increase the

effective optical path length of light within a given region. One such applica-

tion is in very sensitive polarimetry [1,2,3,4]. Typically, to further increase

the sensitivity of such an apparatus, the effect to be measured is modu-

lated in time. Finesses have become so high that more and more often the

modulated effect has frequency components close to or above the frequency

cutoff of the cavity itself. For example, in ellipticity measurements, such

Fabry-Perot cavities are treated as first order filters [5,6]. A complication

exists when the mirrors of the Fabry-Perot cavity are birefringent, in that

not only does the ellipticity generate a rotation [1,7] but the ellipticity and

the rotation have different frequency responses, which depend on the cavity

intrinsic birefringence.

In this paper we present an experimental method to make a complete

characterisation of the polarisation dynamics of a Fabry-Perot cavity used

for polarimetry. The study should be of interest for the wide community

that employs Fabry-Perot cavities to pursue measurements of fundamental

physics.
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2 Polarimetry with a birefringent cavity

2.1 General method

Fig. 1 Principle scheme for magneto-optical polarimetry with a Fabry-Perot cav-

ity. PDT: transmission photodiode that collects the intensity I1 of the electric field

component with polarisation equal to that of the input light; PDE: extinguished

beam photodiode that collects the intensity I2 of the orthogonal component.

In previous papers [1,8,9,10,11,12,13,14], the method employed by the

PVLAS experiment for ultra-high-sensitive magneto-optical polarimetry based

on a Fabry-Perot (FP) cavity was presented. The instrument is a Malus in-

terferometer [15], namely a Fabry-Perot cavity inserted between two crossed

polarisers, with heterodyne detection [8]. The principle scheme is shown in

Fig. 1. The instrument measures the ellipticity and the rotation acquired

by linearly polarised light as a consequence of a magnetic anisotropy of the

complex index of refraction ñ = n+ iκ of the medium between the mirrors.

The ellipticity is the ratio of the minor to the major axis of the ellipse de-

scribed by the electric field vector. With respect to the axes of the ellipse,

there is a phase difference of π/2 between the two orthogonal components

of the electric field: if the component of the electric field along the major
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axis is real, the orthogonal component is a purely imaginary number. Dif-

ferently, in rotations the two components remain in phase. We also remind

the reader that, if all acquired ellipticities and rotations are small, then they

add algebraically.

The most general element describing linear magnetic birefringence and

dichroism can be expressed as a Jones matrix [16] as


eξ/2 0

0 e−ξ/2


 ,

where ξ = i2ψ + 2θ; an overall attenuation factor has been neglected. The

ellipticity ψ and the rotation θ acquired in a single passage through the

magnetic region of length L are given by

ψ = π
∆nL

λ
sin 2φ ≡ ψ0 sin 2φ and θ = π

∆κL

λ
sin 2φ ≡ θ0 sin 2φ,

where λ is the light wavelength, ∆n = n‖ − n⊥ is the magnetic birefrin-

gence, ∆κ = κ‖ − κ⊥ is the magnetic dichroism and φ is the angle between

the input polarisation direction (electric field of the light beam) and the

external magnetic field. The subscripts ‖ and ⊥ refer to the direction of the

external magnetic field. In the PVLAS experiment, rotating the dipole per-

manent magnets that generate the magnetic field modulates the magneto-

optical effects; an ellipticity modulator is used for heterodyne detection. If a

quarter-wave plate is properly inserted between the output mirror and the

modulator, so as to transform rotations into ellipticities, rotation measure-

ments are obtained. If the λ/4 plate is not inserted, ellipticity is measured.

Indeed, the ellipticity of the modulator will only beat with other ellipticities.
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The Fabry-Perot lengthens the optical path within the interaction region

thus amplifying both the ellipticity and the rotation by a factor N = 2F/π,

where F is the finesse of the cavity given by [17]

F =
π
√
R

1−R, (1)

with R the reflectance of the cavity mirrors, assumed identical. Finesse

values cas high as 7.7× 105 can be obtained [18]. We denote with

Ψ = Nψ ≡ Ψ0 sin 2φ and Θ = Nθ ≡ Θ0 sin 2φ

the amplified values of the ellipticity and of the rotation. Let us indicate

with η(t) = η0 sinωmt with η0 � 1 the ellipticity introduced by the elliptic-

ity modulator and let us assume that η0 � Ψ0, Θ0. In the presence of both

rotations and ellipticities, the extinguished intensity collected by the pho-

todiode PDE in the ellipticity measurements and rotation measurements is

given by

Iell2 = I0
[
σ2 + |iη + iΨ +Θ|2

]

Irot2 = I0
[
σ2 + |iη + iΘ + Ψ |2

]
, (2)

where σ2 is the extinction coefficient of the crossed polarisers and I0 is

the intensity transmitted by the cavity, essentially equal to the intensity

I1 collected by photodiode PDT. The values of ellipticity or rotation are

extracted from a Fourier transform of the extinguished intensity. Indicating

with νB the rotation frequency of the magnets and with νm the modulation

frequency of the ellipticity it can be seen, by inspection of Eqs. (2), that the
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amplitude of the Fourier components at the frequencies νm ± 2νB is linear

in the ellipticity or in the rotation, Ψ0 or Θ0, respectively [8,11]:

Iellνm±2νB = I0 2 η0 Ψ0 or Irotνm±2νB = I0 2 η0Θ0.

By demodulating the extinguished intensity at the frequency νm, the ellip-

ticity and rotation signals can be expressed in terms of the components of

the Fourier transform of the demodulated signal as [1]

Ψ0, Θ0 =
I2νB

2
√

2 I0 I2νm
. (3)

2.2 Birefringent mirrors

In previous papers [1,7] it was shown that, as a consequence of the intrin-

sic birefringence of the cavity mirrors [19], a cross-talk between ellipticity

and rotation arises. We are assuming that a laser is frequency-locked to a

birefringent cavity and that the input polarisation is aligned with one of

the axes of the equivalent wave-plate of the cavity. In the case in which

only an ellipticity is generated (pure Cotton-Mouton – or Voigt – effect in

gases [20]) the electric field component with orthogonal polarisation can be

written as

Eout,2(φ) = i Ψ0 k(α)

(
E0T

1−R

)(
1− i N

2
sinα

)
sin 2φ,

where T is the transmittance of the mirrors, α is the total phase differ-

ence (due to the two mirrors) acquired by the two orthogonal polarisation

components in a cavity round trip, and

k(α) =
1

1 +N2 sin2(α/2)
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is a factor taking into account the fact that, since the extinguished beam

experiences a phase shift in the reflection on the mirrors, it cannot be on top

of the cavity resonance curve. The electric field has an imaginary component

describing the induced ellipticity but also a real component describing a

rotation. More in general, in the presence of both an ellipticity Ψ0 = Nψ0

and a rotation Θ0 = Nθ0 the measured values of Ψ and Θ are respectively

Ψ = k(α)

[
Ψ0 −

Nα

2
Θ0

]
and Θ = k(α)

[
Θ0 +

Nα

2
Ψ0

]
. (4)

This means that, if the cavity mirrors are birefringent (and they always

are), no meaningful measurement of only ellipticity or rotation can be done.

By measuring both, instead, the values of Ψ0 and Θ0 can in principle be

disentangled by solving the two equations (4) above, provided that N and

α are known. These two parameters completely characterise a Fabry-Perot

cavity when used as a polarimetric device. In this paper we present a simple

method to measure the two parameters.

A measurement of N is normally obtained by measuring the decay time

τI of the intensity transmitted by the cavity, recorded by the photodiode

PDT of Fig. 1:

τI =
Nd

2c
, (5)

where d is the distance between the cavity mirrors. This measurement usu-

ally implies unlocking the laser. In order to measure α, one has to resort

to experimental configurations in which a birefringence and a dichroism

are not simultaneously present. In these cases, in fact, only one of the two
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quantities ψ0 and θ0 are different from zero. If for example θ0 = 0 (pure

birefringence, as in gases) one has

Ψb = k(α)Ψ0 and Θb = k(α)
Nα

2
Ψ0. (6)

The ratio of the rotation Θb and of the ellipticity Ψb is then

R0 =
Θb
Ψb

=
Nα

2
, (7)

giving the value of α. The same mathematics applies to the complementary

case in which only θ0 6= 0 (a pure dichroism – or, more generally, a rotation):

Θd = k(α)Θ0 and Ψd = k(α)
Nα

2
Θ0. (8)

The ratio Ψd/Θd gives the same value of R0.

2.3 Frequency dependence

When doing polarimetry with a Fabry-Perot cavity, since the mirrors in

practice always feature some birefringence, one has to pay attention to the

different frequency dependences of the two terms appearing in each of the

two equations (4). As the effects are modulated by the rotation of the mag-

netic field, these equations concern the amplitude of Fourier components of

the extinguished intensity, and not dc quantities: the equations (4) strictly

hold only in the limit of zero frequency. The first term in each of the two

equations (4) has the same frequency dependence as the electric field trans-

mitted by the cavity, namely that of a first order filter [5]. The second terms

in the two equations, instead, are generated by a second order process. In
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fact, in order for them to show up, the polarisation component orthogonal

to the input polarisation must first be created and only then the effect of

the intrinsic birefringence of the mirrors can transform the ellipticity into a

rotation and vice versa.
6 Aldo Ejlli et al.

Fig. 2 Fabry-Perot cavity used for magnetic polarimetry, schematised as a mul-
tiple interference phenomenon. The incidence angle is shown as non-zero only for
the sake of the argument; it is brought to zero at the end of the calculation. Left:
transmitted beam; Right: extinguished beam.

di↵erence 2 0 ⌧ 1. This corresponds to a maximum ellipticity per passage
equal to  0. As said above, light in the first cavity is kept on top of the
resonance curve by means of a feedback system that locks the laser frequency
to the resonance frequency of this cavity. This amounts to say that the
multiple beam pattern on the left of Fig. 2 is stationary, and not time
dependent. In this condition, the electric field at the exit of this cavity is
easily calculated as

Eout,1 = E0T
�
1 + R + R2 + ... + Rk + ....

�
=

E0T

1 � R
= E0T

N

2
,

where R is the reflectance of the mirrors. To calculate the behaviour of the
second cavity, we focus on the k-th pair of passages inside the first cavity,
with an electric field ⇡ E0

p
TRk. The beam traverses two times the bire-

fringent region, giving a contribution to the electric field inside the second
cavity equal, to first order in  0, to 2i 0 sin 2�E0

p
TRk, where � = !Bt+�0

is the time dependent angle between the input polarisation direction and
the instantaneous direction of the magnetic field. This contribution exits
the second cavity by undergoing multiple reflections, during which a neg-
ligible ellipticity is generated back in the first cavity. To synchronise all
the partial beams in the output electric field, however, one has to consider
contributions that have been generated at previous times separated by the
time interval ⌧ = 2d/c. The electric field at the exit of the second cavity is
then given by

Eout,2(�) ⇡ 2i 0E0T
X

k

Rk
X

j

Rje�ji↵ sin 2�j =

Fig. 2 Fabry-Perot cavity used for magnetic polarimetry, schematised as a mul-

tiple interference phenomenon. The incidence angle is shown as non-zero only for

the sake of the argument; it is brought to zero at the end of the calculation. Left:

transmitted beam; Right: extinguished beam.

A more detailed analysis of the phenomenon shows that the non-zero

value of α modifies the frequency response of the two signals with respect

to the simple first and second order filters. The calculation is performed

referring to the usual scheme of multiple interference depicted in Fig. 2,

applied to the two cavities, one travelled by light having polarisation equal

to the input one, and the other with orthogonal polarisation. The two cavi-

ties coincide spatially, but do not interfere. The second cavity has no input
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beam, and is pumped by the magnetic anisotropy. We analyse the case of

the magnetic birefringence that is generated by the rotating magnetic field

in gas; the specular case of the dichroism can be treated exactly with the

same mathematics. The magnetic birefringence due to the rotating magnets

can be schematised as a rotating birefringent wave-plate with a small phase

difference 2ψ0 � 1 (as we will see, one must have Nψ0 � 1). This corre-

sponds to a maximum ellipticity per passage equal to ψ0. As said above,

light in the first cavity is kept on top of the resonance curve by means of a

feedback system that locks the laser frequency to the resonance frequency

of this cavity. This amounts to say that the multiple beam pattern on the

left of Fig. 2 is stationary, and not time dependent. In this condition, the

electric field at the exit of this cavity is easily calculated as

Eout,1 = E0T
(
1 +R+R2 + ...+Rk + ....

)
=

E0T

1−R = E0T
N

2
,

where R is the reflectance of the mirrors. To calculate the behaviour of

the second cavity with orthogonal polarisation, we focus on the k-th pair

of passages inside the first cavity, with an electric field ≈ E0

√
TRk. The

beam traverses two times the birefringent region, giving a contribution to

the electric field inside the second cavity equal, to first order in ψ0, to

2iψ0 sin 2φE0

√
TRk, where φ = ωBt + φ0 is the time dependent angle be-

tween the input polarisation direction and the instantaneous direction of

the magnetic field. This contribution exits the second cavity by undergoing

multiple reflections, during which a negligible ellipticity is generated back

in the first cavity. To synchronise all the partial beams in the output electric
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field, however, one has to consider contributions that have been generated

at previous times separated by the time interval τ = 2d/c. The electric field

at the exit of the second cavity is then given by

Eout,2(φ) ≈ 2iψ0E0T
∑

k

Rk
∑

j

Rje−jiα sin 2φj =

= E0
Tψ0

1−R

[
e2iφ

1−Re−iαe2iωBτ
− e−2iφ

1−Re−iαe−2iωBτ

]
,

where φj = φ− jωBτ . In this second cavity, the phase factor e−iα is intro-

duced at each round trip to take into account the birefringence of the cavity

mirrors: remember that the polarisation is aligned to one of the cavity axes.

Using the Jones matrices, the electric field at the photodiode PDE is

obtained as

E(φ) =




0 0

0 1


 ·




1 i η

i η 1


 ·



q 0

0 q∗


 ·



Eout,1

Eout,2


 .

In this formula, from left to right, one finds the matrices of the analyser, of

the ellipticity modulator, and of the quarter-wave-plate. In this last matrix,

q = 1 for ellipticity measurements, when the wave-plate is out of the optical

path and the matrix therefore coincides with the identity matrix, whereas

q = (1 + i)/
√

2 for rotation measurements when the quarter wave-plate is

inserted. The extinguished electric field is then

E2(φ) =
E0T

1−R

[
iqη + q∗ψ0

(
e2iφ

1−Re−iαe2iωBτ
− e−2iφ

1−Re−iαe−2iωBτ

)]
.

By Fourier transforming the intensity recorded by the photodiode PDE

demodulated at the frequency νm of the ellipticity modulator, and by sub-

stituting 2ωB with a generic signal angular frequency 2πν, one is able to
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obtain the values of the ellipticity Ψb and of the rotation Θb by making ref-

erence to Eq. (3). The results of the calculation are expressed as amplitude

and phase:

|Ψb| =
T 2

(1−R)2

√
16ψ2

0 [1−R cosα(2 cos δ −R cosα)]

[1 +R2 − 2R cos(α− δ)] [1 +R2 − 2R cos(α+ δ)]

arg(Ψb) = arctan

[
−R

[
(1 +R2) cosα− 2R cos δ

]
sin δ

1 +R2 +R [R cos 2α− (3 +R2) cosα cos δ +R cos 2δ]

]

|Θb| =
T 2

(1−R)2

√
16ψ2

0 R
2 sin2 α

[1 +R2 − 2R cos(α− δ)] [1 +R2 − 2R cos(α+ δ)]

arg(Θb) = arctan

[−2R cosα+ (1 +R2) cos δ

(1−R2) sin δ

]
, (9)

where δ = 2πντ . The formulas for the case of the dichroism are obtained

from the ones above substituting Ψb with Θd, Θb with Ψd and ψ0 with θ0:

|Θd| =
T 2

(1−R)2

√
16 θ20 [1−R cosα(2 cos δ −R cosα)]

[1 +R2 − 2R cos(α− δ)] [1 +R2 − 2R cos(α+ δ)]

arg(Θd) = arctan

[
−R

[
(1 +R2) cosα− 2R cos δ

]
sin δ

1 +R2 +R [R cos 2α− (3 +R2) cosα cos δ +R cos 2δ]

]

|Ψd| =
T 2

(1−R)2

√
16 θ20 R

2 sin2 α

[1 +R2 − 2R cos(α− δ)] [1 +R2 − 2R cos(α+ δ)]

arg(Ψd) = arctan

[−2R cosα+ (1 +R2) cos δ

(1−R2) sin δ

]
. (10)

It is easy to verify that the formulas (6) and (8) are obtained from the

amplitudes in the limit δ → 0.

In Fig. 3, the four equations (9) above are plotted as functions of the

frequency for various values of R0 = Nα/2. In the limit R0 → 0, the transfer

function of the ellipticity reduces to that of a first order filter [5]:

lim
R0→0

|Ψd| ∝
T√

1 +R2 − 2R cos δ
= hT(ν)

lim
R0→0

arg(Ψd) = arctan

[
R sin δ

1−R cos δ

]
= φT(ν). (11)
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Fig. 3 Left: Calculated frequency response of the amplitude of the ellipticity
(continuous curves) and of the rotation (dashed curves) generated by magnetic
birefringence in gas in the PVLAS polarimeter, employing a high-finesse Fabry-
Perot cavity with birefringent mirrors. The frequency scale is expressed in units
of the cavity line-width ⌫c; the vertical scale is normalised to the low-frequency
amplitude of the R0 = 0 filter [Eq. (11)]. The ellipticity curves are drawn for the
values of the low-frequency ratio of rotation to ellipticity [Eq. (7)] R0 = 0, 0.5,
1.0 and 1.5; the rotation curves have R0 = 0.5, 1.0 and 1.5. Right: Calculated
frequency response of the phase of the ellipticity (continuous curves) and of the
rotation (dashed curves), drawn for the values of R0 = 0, 0.5, 1.0 and 1.5. The
curves have been arbitrarily chosen to start at zero phase and have negative slope.

Fig. 3 Top panel: Calculated frequency response of the amplitude of the ellipticity

(continuous curves) and of the rotation (dashed curves) generated by magnetic

birefringence in gas in the PVLAS polarimeter, employing a high-finesse Fabry-

Perot cavity with birefringent mirrors. The frequency scale is expressed in units

of the cavity line-width νc; the vertical scale is normalised to the low-frequency

amplitude of the R0 = 0 filter [Eq. (11)]. The ellipticity curves are drawn for the

values of the low-frequency ratio of rotation to ellipticity [Eq. (7)] R0 = 0, 0.5, 1.0

and 1.5; the rotation curves have R0 = 0.5, 1.0 and 1.5. Bottom panel: Calculated

frequency response of the phase of the ellipticity (continuous curves) and of the

rotation (dashed curves), drawn for the values of R0 = 0, 0.5, 1.0 and 1.5. The

curves have been arbitrarily chosen to start at zero phase and have negative slope.

In the same limit, the rotation amplitude vanishes; nevertheless, for small

R0, the shape of the rotation curve and its phase converge to those of a
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second order filter:

HT(ν) = h2T(ν) and ΦT(ν) = 2φT(ν). (12)

In this article we present an experimental study of the Fabry-Perot cav-

ity of the PVLAS polarimeter, obtained through the measurements of two

magneto-optical effects as a function of frequency. One is the magnetic bire-

fringence in gas. The second is the rotation generated by a Faraday effect

in the reflecting layers of the dielectric mirrors of the cavity [21]; for this

second measurement, a solenoid coil has been added to the PVLAS appara-

tus. The choice of the Faraday effect is motivated by the absence of a usable

low-energy magnetic dichroism effect in gases. Each of the two sets of data

is a complete characterisation of the FP cavity. Both confirm the frequency

dependences quoted above.

3 Experimental set-up and method

3.1 The PVLAS polarimeter

The set-up of the PVLAS has been presented elsewhere [1], hence only a

brief summary will be given here. A scheme and a picture of the apparatus

are shown in Fig. 4. The polarimeter consists of a 3.3 m long Fabry-Perot

cavity inserted between two crossed polarisers. The finesse of the cavity

has been measured recording the decay of the intensity I1. The results are

reported in Fig. 5. The best fit gives τI = 2.32 ± 0.02 ms, corresponding

to a finesse F = (662 ± 6) × 103, N = (421 ± 4) × 103 and a line-width
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magneto-optical e↵ects as a function of frequency. One is the magnetic bire-
fringence in gas. The second is the rotation generated by a Faraday e↵ect
in the reflecting layers of the dielectric mirrors of the cavity [21]; for this
second measurement, a solenoidal coil has been added to the PVLAS ap-
paratus. The choice of the Faraday e↵ect is motivated by the absence of a
usable low-energy magnetic dichroism e↵ect in gases. Each of the two sets
of data is a complete characterisation of the FP cavity. Both confirm the
frequency dependences quoted above.

3 Experimental set-up and method

3.1 The PVLAS polarimeter

Fig. 4 Top: optical scheme of the apparatus. WPs = Wave-plates; HWP = Half-
wave-plate; PDR = Reflection photodiode; P = Polariser; Ms = Mirrors;
QWP = Quarter-wave-plate; PEM = Photoelastic modulator; A = Analyser;
PDT = Transmission photodiode; PDE = Extinction photodiode; FC = Fara-
day coil. Bottom: a picture of the experiment. The two blue cylinders are the
dipole magnets.

The set-up of the PVLAS has been presented elsewhere [1], hence only a
brief summary will be given here. A scheme and a picture of the apparatus
are shown in Fig. 4. The polarimeter consists of a 3.3 m long Fabry-Perot
cavity inserted between two crossed polarisers. The finesse of the cavity
has been measured recording the decay of the intensity I1. The results are
reported in Fig. 5. The best fit gives ⌧ = 2.32 ± 0.02 ms, corresponding
to a finesse F = (662 ± 6) ⇥ 103, N = (421 ± 4) ⇥ 103) and a line-width
⌫c = 68.0±0.6 Hz. The whole polarimeter, from the polariser to the analyser
is kept in high vacuum (pressure better than 10�7 mbar) or in a pure gas

Fig. 4 Top: optical scheme of the apparatus. WPs = Wave-plates; HWP = Half-

wave-plate; PDR = Reflection photodiode; P = Polariser; Ms = Mirrors;

QWP = Quarter-wave-plate; PEM = Photoelastic modulator; A = Analyser;

PDT = Transmission photodiode; PDE = Extinction photodiode; FC = Fara-

day coil. Bottom: a picture of the experiment. The two blue cylinders are the

dipole magnets.

νc = 68.0±0.6 Hz. The whole polarimeter, from the polariser to the analyser

is kept in high vacuum (pressure better than 10−7 mbar) or in a pure gas

at low pressure. We have verified that the value of the finesse does not

change due to the presence of the gas. The light source is a 2 W tuneable

laser, frequency-locked to the cavity using the Pound-Drever-Hall method

[22]. In the cavity, the beam travels inside glass tubes traversing the bores

of two identical dipole permanent magnets (magnetic field lines orthogonal

to the light path). The magnetic field inside each 20 mm diameter bore is

2.5 T, each magnetic region having an effective length L = 0.82 cm long [1].

The magnets rotate around their axes; this modulates both the magnetic
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Fig. 5 Decay of the intensity I1 transmitted by the Fabry-Perot cavity following

switching off of the system that locks the frequencies of the laser and the cavity.

The experimental curve is fitted with an exponential function Ae−t/τI + C with

τI = 2.32 ms, corresponding to a finesse F = 662× 103.

birefringence and the dichroism at twice the rotation frequency. Before the

analyser, a small ellipticity, modulated at νm = 50 kHz, is added to the beam

polarisation by means of a Photo-Elastic Modulator (PEM). A retractable

quarter-wave plate is inserted between the FP and the PEM during the

rotation measurements. After the analyser, the extraordinary beam and

the extinguished one are collected on two photodiodes. The extinguished

intensity is demodulated at the frequency of modulation νm. The signal is

then filtered, digitised and Fourier transformed.

3.2 The measurement method

In the work presented in this paper, two different measurement configura-

tions have been used. In both configurations, the ellipticity signal Ψ and

the rotation signal Θ have been measured, both in amplitude and phase, as
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a function of the frequency. In the first configuration, one of the two rotat-

ing PVLAS magnets is used to induce a magnetic birefringence in Ar gas at

880 µbar (Cotton-Mouton effect [20]) at frequencies ranging from 1 to 46 Hz

(magnet rotation frequencies from 0.5 to 23 Hz). The ellipticity and rotation

signals are in this case described by Eqs. (9). In the second configuration,

a solenoid coil, positioned outside the vacuum chamber hosting one of the

cavity mirrors and roughly aiming at the mirror centre, is used to generate

an alternating magnetic field with a significant component orthogonal to the

reflecting surface of the mirror, thus generating a Faraday effect [21]. We

analyse the data in the same frequency range as above. With a 1 A current,

the coil produces a magnetic field ≈ 1 G at a distance of 15 cm from the

mouth of the coil (distance to the mirror). Precise values of the magnitude

and of the orientation of the magnetic field at the position where the light

beam impinges on the mirror are unknown, but on the other hand unneces-

sary. Since in this second experiment the vacuum vessel is kept in vacuum,

no gas birefringence is generated, and the measured rotation and elliptic-

ity signals are given by Eqs. (10). In the case of the Cotton-Mouton effect,

rotating the magnet at a frequency νB generates signals at frequency 2νB .

In the case of the Faraday effect, a magnetic field oscillating at a frequency

νF generates signals at the same frequency. In this case, the Frequency Re-

sponse function of an Agilent 35670A Dynamic Signal Analyzer has been

employed. The frequency response is obtained as the coherent average of

fast 0.16 s/Hz sweeps over 400 points and 50 Hz frequency range. In the
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case of the Cotton-Mouton effect, the phases of the signals are measured

with respect to a trigger signal generated by a contrast sensitive diode in

correspondence of the passage of a mark drawn on the external surface of

the rotating magnet. The diode has a response time < 50 µs, corresponding

to a maximum phase uncertainty < 0.8◦ at 46 Hz. Note that the result-

ing phases depend on the angle between the polarisation direction and the

diode position. In the case of the Faraday effect, the phases are measured

with respect to the current flowing through the coil. In both cases, a small

correction has been subtracted from the measured phase, due to the fre-

quency response of the lock-in amplifier used to demodulate the signal from

the diode PDE collecting the extinguished intensity. The amplitude of the

signals measured in the Faraday effect has been normalised to the intensity

of the current in the coil.

4 Results and discussion

4.1 Magnetic birefringence in gas

In Fig. 6, the relative amplitude and phase of the ellipticity and rotation

signals measured as a function of the frequency in the Cotton-Mouton ef-

fect of 880 µbar of Ar gas are shown. Integration time was 256 s/point for

both ellipticity and rotation measurements. A constant phase, measuring

the zero-frequency relative position of the signals and the trigger, has been

subtracted from the phase data, so as to have both curves starting at zero

phase. The experimental points are fitted simultaneously with the four func-
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Fig. 6 Top panel: relative amplitude of the ellipticity signal  b (upper curve)
and of the rotation signal ⇥b (lower curve) measured as a function of frequency
in the Cotton-Mouton e↵ect of 880 µbar of Ar gas. Bottom panel: phases of the
ellipticity signal  b (upper curve) and of the rotation signal ⇥b (lower curve). The
continuous lines are the global fit obtained with Eqs. (9). The values of the finesse
F and of the phase di↵erence ↵ are obtained as F = 640⇥103 and ↵ = 1.78 µrad.

Fig. 6 Top panel: relative amplitude of the ellipticity signal Ψb (upper curve)

and of the rotation signal Θb (lower curve) measured as a function of frequency

for the Cotton-Mouton effect of 880 µbar of Ar gas. Bottom panel: phases of the

ellipticity signal Ψb (upper curve) and of the rotation signal Θb (lower curve). The

continuous lines are the global fit obtained with Eqs. (9). The values of the finesse

F and of the phase difference α are obtained as F = 640×103 and α = 1.78 µrad.

tions of Eqs. (9). The fit provides a unique value for the reflectance R and

hence for the finesse F [see Eq. (1)], and for the phase difference α appearing

in the expressions of the four curves. The values found are F = (640±4)×103

and α = (1.78± 0.02) µrad, with a normalised χ2
o.d.f. = 181/174. The value
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obtained for the finesse is about 4% smaller than the value obtained from

the analysis of the decay of the intensity transmitted by the FP cavity

(see Fig. 5), and is compatible with that within three standard deviations.

The uncertainties used in the fit are the piecewise standard deviations of

the residuals obtained by fitting the four curves separately. In a first ten-

tative of a global fit, the residuals of the phase data exhibited a marked

linear behaviour of a few degrees over the whole frequency interval. This

behaviour can be attributed to the fact that, during the measurements, the

polarisation direction of the light entering the Fabry-Perot cavity is varied

by small quantities to compensate for the slow drift of the static birefrin-

gence of the cavity. We have then added two linear functions to the two

phase fit functions. The values of the slopes obtained through the fit are

(0.1◦±0.01◦) Hz−1 for the phase of the ellipticity, and (0.05◦±0.01◦) Hz−1

for the phase of the rotation. Note that the duration of the ellipticity and ro-

tation measurements were, respectively, eight hours and four hours, leading

to an identical drift of 160 µdeg/s in the two measurements. This strongly

supports the suggested interpretation. It is worth noting that the value of

α is small enough that fitting simultaneously the four data sets with the

expressions of the first and second order filters (11) and (12) still produces

a reasonable fit, with a similar χ2 probability, but at the expenses of an un-

reasonable 20% reduction of the value of F and of completely incompatible

drifts of the ellipticity and rotation phases. In this case, α can be extracted
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from the low frequency ratio R0 of the amplitudes of rotation and ellipticity

[see Eq. (7)].

4.2 Magnetic rotation

In Fig. 7, the relative amplitude and phase of the rotation and ellipticity

signals measured as a function of the frequency νF of the current in the

Faraday coil are shown. Integration time was 18 s/point for the rotations

measurement, and 50 s/point for the ellipticity measurement. In this second

experiment, an alternating current with amplitude ≈ 1 A and frequency νF

sweeping between 0 and 50 Hz is fed to the coil FC of Fig. 4. The amplitude

data have been normalised to the current through the coil. A constant phase,

measuring the zero-frequency relative position of the signals and the trigger,

has been subtracted from the phase data, so as to have both curves starting

at zero phase. The experimental points are fitted with the four functions

of Eqs. (10). The fit provides a unique value for the finesse F and the

phase difference α appearing in the expressions of the four curves. The

values found are F = (691 ± 8) × 103 and α = (1.87 ± 0.02) µrad with a

normalised χ2
o.d.f. = 1472/1434. The value obtained for the finesse is about

4% larger than the value obtained from the analysis of the decay of the

intensity transmitted by the FP cavity (see Fig. 5), and is compatible with

that within three standard deviations. The value of α is 5% larger than the

one found in the Cotton-Mouton experiment described above; the two values

are compatible within three standard deviations. This small difference could
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Fig. 7 Top panel: relative amplitude of the rotation signal ⇥d (upper curve) and
of the ellipticity signal  d (lower curve) measured as a function of frequency in
a Faraday e↵ect on the reflecting surface of a mirror of the FP cavity. Bottom
panel: phases of the rotation signal ⇥d (upper curve) and of the ellipticity signal  d

(lower curve). The continuous lines are the global fit obtained with Eqs. (10). The
values of the finesse F and of the phase di↵erence ↵ are obtained as F = 691⇥103

and ↵ = 1.87 µrad.

Fig. 7 Top panel: relative amplitude of the rotation signal Θd (upper curve) and

of the ellipticity signal Ψd (lower curve) measured as a function of frequency for

the Faraday effect on the reflecting surface of a mirror of the FP cavity. Bottom

panel: phases of the rotation signal Θd (upper curve) and of the ellipticity signal Ψd

(lower curve). The continuous lines are the global fit obtained with Eqs. (10). The

values of the finesse F and of the phase difference α are obtained as F = 691×103

and α = 1.87 µrad.

be accounted for by the fact that the two datasets were taken in different

days and that we know that α is subject to small drifts. As in the case

of the Cotton-Mouton measurement, the uncertainties used in the fit are

the piecewise standard deviations of the residuals obtained by fitting the
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four curves separately. Differently from the Cotton-Mouton case, no linear

addition to the phase fit function was necessary. This is consistent with the

interpretation of the feature observed in the Cotton-Mouton effect: in fact,

in the case of the Faraday measurements, the phase is electronically defined.

By fitting the four curves with the expressions of the first and second order

filters (11) and (12) we obtained F = 594 × 103, with a χ2 probability of

5× 10−3, justifying the necessity of introducing the parameter α.

5 Conclusions

In this paper we have presented two experimental characterisations of an

optical Fabry-Perot cavity used for polarimetry. The studies provide values

for the finesse of the cavity and for the phase difference acquired by light

upon reflection on the dielectric mirrors of the cavity. The measurements

are performed while the laser is frequency-locked to the cavity. The data are

analysed in terms of the frequency response of the ellipticity and rotation

signals, whose theory is developed and presented. The theoretical frequency

responses show a marked deformation from the expressions of the first and

second order filters, reducing to these last expressions for R0 = Nα
2 � 1.

It should be noted that the Cotton-Mouton characterisation of the cavity

requires introducing a gas in the Fabry-Perot enclosure whereas the Faraday

characterisation is less intrusive as it requires no interventions on the Fabry-

Perot. The Faraday effect on the mirrors can therefore be used to monitor

R0 during polarimetric measurements.
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