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Abstract

Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and 

pathways underlying complex disease. Here we employ systems genetics approaches to 

characterize the genetic regulation of pathophysiological pathways in human temporal lobe 

epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-

regulatory network genetically associated with epilepsy that contains a specialized, highly 

expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor 

signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 

control hippocampi shows the proconvulsive module is preserved across-species, specific to the 

epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-

acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that 

SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-

mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and 

attenuates chemically induced behavioural seizures in vivo.

Epilepsy is a serious neurological disorder affecting about 1% of the world’s population. 

Recently, a growing body of experimental and clinical data has implicated Toll-like receptor 

(TLR) signalling1 and release of proconvulsant inflammatory molecules (that is, interleukin 

(IL)-1β) in both seizure generation and epileptogenesis2,3. However, the pathogenetic 

mechanisms linking these inflammatory processes with the development (and recurrence) of 

epileptic seizures in humans are unclear. Despite high heritability of epilepsy4–6, both 

genome-wide association studies (GWAS) and exome sequencing approaches have so far 

provided limited insights into the genetic regulatory mechanisms underlying inflammatory 

pathways in epilepsy aetiology7–11, and traditional single-variant association approaches are 

likely to be underpowered to detect complex gene network interactions that underlie disease 
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susceptibility12. As the molecular processes driving complex disease usually affect sets of 

genes acting in concert, one alternative strategy is to use systems-level approaches to 

investigate transcriptional networks and pathways within pathologically relevant cells and 

tissues13,14. Integrated analysis of transcriptional networks with genetic susceptibility data 

and phenotypic information allows specific transcriptional programmes to be connected to 

disease states, and thereby can identify disease pathways and their genetic regulators as new 

targets for therapeutic intervention15.

Almost uniquely among disorders of the human brain, epilepsy surgery offers opportunities 

for gene expression profiling in ante-mortem brain tissue from pathophysiologically relevant 

brain structures such as the hippocampus16. This allows direct investigation of 

transcriptional programmes in brain tissue from living epilepsy patients. In this study, we 

integrate unsupervised network analysis of global gene expression in the hippocampi of 

patients with temporal lobe epilepsy (TLE) with GWAS data in a systems genetics 

approach17. We uncover pathways and transcriptional programmes associated with epilepsy 

that are conserved in mouse epileptic hippocampus, including a proconvulsant gene network 

encoding IL-1β3 and TLR-signalling genes1 previously implicated in epilepsy. Using 

genome-wide Bayesian expression QTL mapping18, we probe the genome for key genetic 

regulators of the network in human brain. We pinpoint an unexpected gene, Sestrin 3 

(SESN3) whose protein product controls the intracellular response to reactive oxygen 

species19–22, as a trans-acting genetic regulator of the proconvulsant gene network in the 

human epileptic hippocampus. We carry out validation experiments in independent in vitro 

and in vivo systems, which confirm the genetic regulation of the proconvulsant 

transcriptional programme in epilepsy by Sestrin 3, therefore providing a first evidence of a 

function for SESN3 in disorders of the human brain.

Results

Identification of a gene network associated with epilepsy

We first assessed the degree of variation in gene expression between hippocampal subfields 

in TLE patients with hippocampal sclerosis, and compared this with the total variation in 

gene expression measured both across subjects and between subfields (Supplementary Fig. 

1). We found higher variability in gene expression across TLE subjects than between the 

hippocampal subfields alone, suggesting that variation in whole hippocampus expression 

can be used to infer co-expression networks in the hippocampus of TLE patients 

(Supplementary Fig. 1). After excluding subjects with incomplete clinical data or 

nonhippocampal sclerosis pathology, whole-genome expression profiles in surgically 

resected hippocampi from 129 TLE patients (median age at surgery 35 years, range 1–64 

years, male/female ratio of 1.2:1; Supplementary Table 1) were available for gene co-

expression network analysis.

We then investigated whether the transcriptome in the hippocampus of these 129 TLE 

patients is organized into discrete gene co-expression networks, and if these have functional 

implications for susceptibility to epilepsy. Gene co-expression networks were reconstructed 

genome wide using Graphical Gaussian Models (GGMs)23, which identified a large co-

expression network comprising 442 annotated genes (false discovery rate (FDR)<5%, Fig. 
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1a and Supplementary Data 1). To investigate whether the protein products of the TLE-

hippocampus derived transcriptional network (TLE-network) genes have a shared function 

at the protein level, we used the DAPPLE algorithm24. This method interrogates high-

confidence protein–protein interactions to assess the physical connections among proteins 

encoded by the genes in the network. Genes comprising the TLE-network were found to 

have increased protein–protein interconnectivity as compared with random protein–protein 

interaction networks (P = 9.9 × 10−5, Supplementary Fig. 2). This provides evidence that 

proteins encoded by the co-expressed genes in the TLE-network interact physically, 

supporting the validity of the gene network topography.

As gene expression may vary both as a cause and a consequence of disease, we investigated 

the causal relationship between the TLE-network and epilepsy by integration with genetic 

susceptibility data. Here, DNA variation was used to infer causal relationships between the 

network and epilepsy by assessing whether the network as a whole was genetically 

associated with epilepsy. To this aim, we used focal epilepsy GWAS data6,25 from a 

separate cohort of 1,429 cases (consisting mainly of patients with TLE) and 7,358 healthy 

controls. Although no single-nucleotide polymorphism (SNP) achieved genome-wide 

significance in the epilepsy GWAS (Supplementary Fig. 3), we found that the TLE-network 

as a whole was highly enriched for genetic associations to focal epilepsy compared with 

genes not in the network (P = 2 × 10−7; Fig. 1a and Supplementary Table 2). These 

integrated analyses of co-expression network and genetic susceptibility data from a focal 

epilepsy GWAS provide independent evidence to support the causal involvement of the 

TLE-network in epilepsy aetiology.

Conservation and functional specialization of the network

The TLE-network was significantly enriched for genes belonging to several biological 

pathways involving cell-to-extracellular matrix adhesion including ‘extracellular matrix–

receptor interaction’ (P = 3.9 × 10−5), ‘focal adhesion’ (P = 1.4 × 10−4) and inflammation, 

such as the ‘cytokine–cytokine receptor interaction’ (P = 2.4 × 10−5) and ‘TLR signalling’ 

(P = 3.9 × 10−5; Fig. 1b). The observation that the TLE-network was enriched for multiple 

pathways led us to investigate whether the network contained functionally homogenous 

transcriptional modules (that is, sub-networks of highly correlated genes) with implications 

for epilepsy aetiology. Using unsupervised agglomerate clustering approaches (see 

Supplementary Methods), we identified two transcriptional modules comprising 69 

(Module-1) and 54 (Module-2) unique genes, respectively (Fig. 1c and Supplementary Data 

1). Module-1 was specifically enriched for gene ontology categories related to inflammatory 

mechanisms, whereas Module-2 was enriched for cell-to-extracellular matrix adhesion 

processes (Fig. 1d and Supplementary Table 3), indicating functional sub-specialization 

within the larger TLE-network. We observed that Module-1 genes were significantly 

upregulated as compared with genes in the larger TLE-network, Module-2, or with respect 

to all other genes profiled in the hippocampus of TLE patients (Fig. 1e). This increased 

hippocampal expression of Module-1 genes in TLE patients was not observed in separate 

gene expression data sets from the hippocampus of healthy subjects (that is, individuals 

clinically classified as neurologically normal; Supplementary Fig. 4). Notably, Module-1 

was markedly enriched for highly expressed inflammatory cytokines (16-fold enrichment, P 
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= 6.6 × 10−13) many of which belong to the IL-1 signalling cascade (IL-1β, IL-1RN, IL-1α, 

TNFα) and the TLR-signalling pathway (11-fold enrichment, P = 1.4 × 10−6), previously 

implicated in epileptogenesis1 and brain inflammation2,3 (Supplementary Fig. 5). Taken 

together, these data indicate the presence of a coordinated transcriptional programme 

(Module-1), encompassing TLR activation and release of proinflammatory cytokines 

(including IL-1β), in chronic human epileptic hippocampus as previously hypothesized3,26.

We then investigated whether the TLE-network and Module-1 genes, in particular, were 

conserved across-species and to this aim we carried out high-throughput sequencing of 

mRNA (RNA-Seq) in whole hippocampus from 100 epileptic (pilocarpine model)27 and 100 

control naïve mice (full details of this model are reported in the Supplementary Methods). 

We employed GGMs to assess the co-expression relationships between the 371 mouse 

orthologues of the human TLE-network genes, and found that 312 genes (84%) had 

significant co-expression (FDR<5%) with at least another network gene in mouse epileptic 

hippocampus (Fig. 2a). The conserved TLE-network genes formed 1,119 significant partial 

correlations in mouse epileptic hippocampus, which is significantly higher than expected by 

chance (P = 0.001 by 10,000 bootstrap permutations; Fig. 2b). In contrast, only 615 

significant partial correlations between the same 312 genes were detected in healthy 

hippocampus (P = 0.659 by 10,000 bootstrap permutations), suggesting that the TLE-

network is specifically conserved in the epileptic mouse hippocampus (Fig. 2b). In keeping 

with the high expression of proinflammatory genes observed in the hippocampus of TLE 

patients (Supplementary Fig. 5), the mouse orthologues of Module-1 genes that were 

significantly upregulated in epileptic hippocampus were enriched for TLR-signalling and 

cytokines (gene set enrichment analysis28, P = 9.03 × 10−4, Fig. 2c). These comparative 

genomics analyses revealed that, to a large extent, the hippocampal TLE-network is 

conserved across-species, and confirm that genes for TLR signalling and proinflammatory 

cytokines within the TLE-network are upregulated in chronic epileptic hippocampus.

SESN3 is a genetic regulator of the proinflammatory network

We set out to identify genetic variants that regulate the gene co-expression modules (that is, 

regulatory ‘hotspots’) by employing genome-wide Bayesian expression QTL mapping 

approaches18,29. To this aim, we have developed a multi-step strategy to identify SNPs that 

regulate the expression of a transcriptional module (or network) as a whole. As first step, we 

summarize the expression of the genes in each module using principal component (PC) 

analysis and detect regulatory ‘hotspots’ using a Bayesian regression model at the genome-

wide level29. This analysis prioritizes genomic regions associated with variation in mRNA 

expression of the genes in each module. As a second step, to refine the genetic mapping 

results, we regress jointly the mRNA levels of module genes to all SNPs within the 

regulatory locus identified in the first step18. Given the functional specialization within the 

large TLE-network (Fig. 1d), we investigated the genetic regulation of both Module-1 and 

Module-2, by analysing 527,684 genome-wide SNPs in the TLE patient cohort. In the first 

step, we identified a single locus on chromosome 11q21 centred on SNP rs10501829, which 

was significantly associated with the first PC of Module-1 expression (FDR<5%; Fig. 3a). 

Module-2 showed no significant genome-wide associations (Supplementary Fig. 6). In the 

second step, we investigated in detail the locus on chromosome 11q21 regulating Module-1 
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and carried out joint mRNA levels-SNPs analysis of all genes in Module-1 and all SNPs 

genotyped within a 1-Mbp region centred on SNP rs10501829. This analysis identified three 

additional SNPs (rs530190, rs7107661 and rs6483435) in the Best Model Visited (that is, 

the best combination of SNPs predicting mRNA level of module genes, see Supplementary 

Methods) that were associated with the majority of genes of Module-1 (58–74% of 

Module-1 genes are predicted by individual SNPs, Fig. 3b). The set of SNPs regulating in 

trans the expression of Module-1 genes defined the boundaries of a minimal regulatory 

region spanning ~383 kb (Fig. 3b).

The larger 1-Mbp region centred on SNP rs10501829 contained eight annotated protein-

coding genes (Fig. 3b). To further prioritize candidate genes, we carried out co-expression 

analysis between each of these genes and all genes in Module-1, and found that Sestrin 3 

(SESN3) was, on average, most strongly and positively correlated with Module-1 gene 

expression (P = 1.7 × 10−13, Fig. 3c). The positive association between SESN3 and 

Module-1 gene expression remained significant following genome-wide correlation analysis 

in human hippocampus (P < 0.00001, Supplementary Fig. 7). In summary, SESN3 is the 

only gene within the minimal regulatory region and, when compared with all genes within a 

1-Mbp window around SNP rs10501829, showed the strongest correlation with Module-1 

gene expression. Similarly, in the epileptic mouse hippocampus, we found that increased 

Sesn3 mRNA expression was also significantly associated with upregulation of Module-1 

genes (P = 5.4 × 10−6, Fig. 3d), therefore providing independent, cross-species evidence 

supporting SESN3 as a positive regulator of Module-1 genes in epileptic hippocampus.

Taken together, these data prioritize SESN3 as a candidate gene for the trans-acting genetic 

regulation of Module-1. To test this hypothesis, we first carried out gene knockdown 

experiments followed by transcriptional analysis of Module-1 genes by means of RNA 

interference using short interfering RNA (siRNA). Initially, we used murine bone marrow-

derived macrophages (BMDMs) and BV2 microglia cell line as an in vitro system as 

Module-1 recapitulates the ATF3/AP1 transcriptional complex and IL-1 signalling 

(Supplementary Fig. 8), known to be highly expressed in lipopolysaccharide (LPS)-

stimulated macrophages30. Consistent with the positive correlation of Module-1 genes with 

SESN3 mRNA expression (Fig. 3c,d and Supplementary Fig. 7), we observed decreased 

expression of Module-1 genes after siRNA-mediated knockdown of SESN3 in both LPS-

stimulated BMDMs and BV2 microglia cells (Fig. 4a,b). Similar results were found in 

unstimulated BV2 microglial cells, suggesting that SESN3 can modulate expression of 

proinflammatory genes (for example, IL-1β, IL-1RN, IL-1α, TNFα) even in the absence of a 

strong inflammatory stimulus (Fig. 4c). Within the human brain we localized SESN3 

expression to neurons by immunohistochemistry (Fig. 4d), and found that it is highly 

expressed in the hippocampus of TLE patients as compared with hippocampus from control 

autopsy samples (Fig. 4e and Supplementary Fig. 9). In keeping with this, we found 

increased Sesn3 mRNA expression in the mouse hippocampus after pilocarpine-induced 

status epilepticus (Supplementary Fig. 10), suggesting an association between SESN3 gene 

expression and epilepsy that is conserved across-species. We then tested whether Module-1 

genes are upregulated when SESN3 is overexpressed in neurons. To address this aim, we 

used an integrating lentiviral vector (LV) for gene overexpression in primary murine 
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neurons (see Supplementary Methods) and quantitative PCR analysis showed that the 

relative levels of Sesn3 mRNA were markedly increased in transduced neurons compared 

with the levels observed in mock transduction (Fig. 4f). Consistent with the observed 

positive correlation between increased Sesn3 expression and Module-1 genes in the 

hippocampus (Fig. 3c,d), lentiviral-mediated overexpression of Sesn3 resulted in significant 

upregulation of Module-1 genes in hippocampal neurons (Fig. 4f). These in vitro 

experiments show that Sesn3 is capable of regulating Module-1 gene expression in different 

cell types and in particular of inducing upregulation of proinflammatory genes in 

hippocampal neuronal cells. Our findings in primary neurons are in keeping with previous 

data reporting the activity of several inflammatory molecules in neuronal cells under 

pathological conditions31, including IL-1β and its receptor32. Furthermore, the upregulation 

of proinflammatory genes in neurons supports the ‘neurogenic inflammation’ hypothesis, 

wherein neurons are proposed as triggers of innate and adaptive immune-cell activation in 

the central nervous system (CNS; reviewed in Xanthos and Sandkuhler33).

SESN3 regulates chemically induced behavioural seizures

The in vitro data, combined with the positive association between SESN3 and Module-1 

gene expression in human and mouse epileptic hippocampus, indicate that SESN3 is a 

positive regulator of Module-1. We hypothesized that inhibiting SESN3 would reduce the 

activity of genes in functional pathways enriched in Module-1, including proconvulsant 

signalling molecules, and thus by extension could have seizure-suppressing effects. To test 

this hypothesis in vivo, we investigated the role of SESN3 in a zebrafish model of 

convulsant-induced seizures34,35. In this model, exposure of 2- or 3-day-old zebrafish larvae 

to the convulsant agent pentylenetetrazole (PTZ) rapidly induces the expression of synaptic 

activity-regulated genes in the CNS and causes vigorous episodes of calcium flux in muscle 

cells as well as intense locomotor activity characteristic of epileptic seizures34,35. This acute 

seizure model has been primarily used to investigate the anti-/proconvulsant activity of 

compounds36 and for in vivo drug discovery34. In particular, molecular and behavioural 

phenotypes in the zebrafish PTZ-induced seizure model have been employed to identify 

compounds that attenuate seizure activity37. We employed this model to correlate the 

locomotor responses with gene network dynamics, that is, transcriptional activation of the 

neuronal activity-regulated gene c-fos38 and an additional subset of Module-1 genes in 

response to PTZ treatment in Sesn3 morphant and control morphant larvae. Sesn3 showed 

widespread expression in the brain of 3 and 4 days post fertilization (d.p.f.) zebrafish larvae 

(Supplementary Fig. 11) and, following PTZ treatment, we found that Sesn3 morphant 

zebrafish larvae exhibited significantly reduced locomotor activity as compared with control 

morphant larvae (Fig. 5a). To test the specificity of the morpholino effect, we co-injected the 

Sesn3 morpholinos (Supplementary Fig. 12) along with synthetic Sesn3 mRNA, which 

cannot be targeted by either of the splice-blocking morpholinos (see Supplementary 

Methods), and assessed whether the Sesn3 mRNA could rescue the morphant phenotype. 

We observed an almost complete rescue of the locomotor activity phenotype (only 10% 

difference between uninjected larvae and larvae co-injected with Sesn3 morpholinos and 

Sesn3 mRNA), with no significant differences in the locomotor activities between the 

uninjected larvae and the larvae injected with synthetic Sesn3 mRNA alone (Fig. 5b).
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To further confirm Sesn3-dependent modification of neuronal response to PTZ, we 

measured transcriptional activation of the neuronal activity-regulated gene c-fos, an 

important regulator for cellular mechanisms mediating neuronal excitability and survival38. 

Consistent with the behavioural assay (Fig. 5a), there was decreased expression of c-fos in 

the brain (mostly in forebrain and midbrain) following PTZ exposure in Sesn3 morphant 

larvae as compared with control morphant larvae (Fig. 5c and Supplementary Fig. 12). As 

silencing of Sesn3 resulted in downregulation of Module-1 genes in vitro (Fig. 4a–c), we 

tested whether inhibiting Sesn3 could similarly reduce the activity of Module-1 genes 

following PTZ exposure in vivo. We observed significant reduction in the PTZ-induced 

mRNA expression of Module-1 genes in the Sesn3 morphant as compared with control 

morphant larvae (Fig. 5d), and we also found that transient overexpression of Sesn3 in 

zebrafish larvae increased expression of Module-1 genes independently of PTZ treatment 

(Fig. 5e). Taken together, these data show that Sesn3 knockdown attenuates both PTZ-

induced locomotor convulsive behaviour and the transcriptional responses of c-fos and 

Module-1 genes to treatment with PTZ. These findings in the zebrafish model support the 

evidence from our studies of human and mouse epileptic hippocampus and primary murine 

neurons that SESN3 positively regulates expression of proconvulsive molecules (Module-1 

genes).

Discussion

Deciphering the complex regulatory processes of pathophysiological pathways in human 

brain remains a challenge due to the inaccessibility of ante-mortem tissue but can have 

important mechanistic and therapeutic implications39. In this study, we have used surgical 

hippocampal tissue samples and employed systems genetics approaches17 to investigate 

transcriptional networks for epilepsy and their genetic regulation. We identified a large gene 

co-expression network in the human epileptic hippocampus that was conserved in mouse 

epileptic hippocampus and was enriched for GWAS genetic signals of focal epilepsy. In 

keeping with similar network-based studies of complex disease such as type-1 diabetes40 

and autism spectrum disorder41,42, our approach leverages the combined evidence from 

genetic susceptibility variants across multiple genes15 to link the TLE-hippocampus network 

with susceptibility to focal epilepsy. Within the TLE-network, we identified a functionally 

coherent and coordinated transcriptional programme (Module-1), which was overexpressed 

in the hippocampus of TLE patients, and which encoded epileptogenic IL-1 (refs 2,3,43) and 

TLR-signalling pathways1. We confirmed the upregulation TLR-signalling genes and 

proinflammatory cytokines in chronic epilepsy by RNA-Seq analysis in 200 mouse 

hippocampi. Preclinical studies in experimental models of epilepsy have consistently shown 

that individual proinflammatory cytokines such as IL-1β or tumor necrosis factor (TNF)-α 

are overexpressed in brain areas of seizure generation and propagation44. Therefore, 

targeting TLR and IL-1 signalling has been proposed as a possible avenue for therapeutic 

intervention in epilepsy and antiepileptogenesis1,3, including reduction of acute seizures45 

and drug-resistant chronic epileptic activity46. The identification of upstream genetic 

regulators of these pathways in the human epileptic brain might suggest opportunities for 

novel targets for disease modification. To investigate the genetic regulation of the TLE-

network and the proinflammatory module therein, we employed Bayesian expression QTL 
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mapping approaches18, which identified SESN3 as a trans-acting genetic regulator of a 

proinflammatory transcriptional programme in the epileptic human hippocampus. The 

positive regulation of this network by SESN3 was confirmed in vitro across different cell 

types by gene silencing (resulting in ~50% reduction of Module-1 gene expression) and 

overexpression experiments (resulting in approximately two- to sevenfold activation of 

Module-1 genes, Fig. 4), and in vivo using a zebrafish model of chemically induced seizures 

(Fig. 5e).

SESN3 is a member of the Sestrin family of proteins that have been shown to decrease 

intracellular reactive oxygen species and to confer resistance to oxidative stress19. Intrinsic 

antioxidant defenses are important for neuronal longevity and the genes that regulate these 

processes might well influence pathological processes associated with oxidative damage in 

the brain, a common feature of many neurodegenerative diseases including epilepsy47,48. 

Therefore, we hypothesize that SESN3 might regulate neuro-inflammatory molecules, 

previously implicated in epilepsy1,33,43,49, through modulation of oxidative stress in the 

brain.

Our systems genetics analysis in the human hippocampus, combined with in vitro and in 

vivo data, revealed SESN3-dependent regulation of epileptogenic IL-1β3 and TLR-signalling 

genes1. The upstream genetic control of the proconvulsant transcriptional programme by 

SESN3 in human TLE-hippocampus suggested a role for this gene in modulating seizures. 

To test the potential functional role of SESN3 in vivo, we used an experimental model of 

acute epileptic seizures34,37 and found that knockdown of Sesn3 attenuated chemical 

convulsant-induced locomotor activity and c-fos expression, as well as modulating 

Module-1 gene expression (Fig. 5). Our in vitro data in macrophages, BV2 microglial cells 

and primary neurons showed that SESN3 is a positive regulator of proinflammatory 

molecules (Fig. 4), including IL-1β and TNF-α, major mediators of inflammation, which are 

capable of inducing changes in neuronal excitability50. The finding of reduced severity of 

PTZ-induced seizures upon knockdown of Sesn3 in the zebrafish model is consistent with 

previous studies in rodents describing the effects of proinflammatory cytokines on seizures. 

In the context of pre-existing brain inflammation, antibody-mediated antagonism of TNF-α 

function inhibited susceptibility to PTZ-induced seizures in rats51, whereas administration of 

exogenous TNF-α increased susceptibility to PTZ-induced seizures52. Our findings in 

zebrafish are therefore in keeping with a role for SESN3 in regulating proinflammatory 

cytokines and their downstream effect on CNS excitability and seizure susceptibility.

Taken together, our data provide the first evidence of a function for SESN3 in regulating 

proconvulsant agents (for example, TNF-α, IL-1 and TLR-signalling genes) in human 

epileptic hippocampus, and suggest SESN3 as a new potential target for modulating brain 

inflammation3,44 and CNS excitability53. Our systems genetics approach builds on and 

extends previous methods correlating individual genetic variation with disease susceptibility 

by identifying disease-associated gene networks, pathophysiological pathways and their 

upstream genetic regulators in human brain. More generally, the systems genetics 

framework described here can be employed to identify genes and regulatory networks across 

diverse neuropsychiatric disorders where genetic factors can perturb underlying molecular 

pathways in the brain.
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Methods

Gene expression profiling in the human hippocampus

All 129 patients considered in this study had mesial TLE and all tissue samples were from 

indistinguishable hippocampal tissue portions. Sample preparation and microarray analysis 

of human hippocampi are detailed in Supplementary Methods. Expression data were 

analysed using Illumina’s GenomeStudio Gene Expression Module and normalized by 

quantile normalization with background subtraction. Microarray probes were annotated 

using either the Human HT-12 v3 annotation file or Ensembl (release 72). All patients gave 

informed consent for use of their tissue and all procedures were conducted in accordance 

with the Declaration of Helsinki and approved by the Ethics Committee of the University of 

Bonn Medical Center.

Gene co-expression network analysis

Gene co-expression networks were reconstructed using GGMs, which use partial 

correlations to infer co-expression relationships between any microarray probe pair in the 

data set, removing the effect of other probes23. We used the empirical Bayes local FDR 

statistics54 to extract significant partial correlations (Supplementary Fig. 13), and which 

identified a large set of 2,124 inter-connected nodes belonging to the same connected 

component (TLE-network, Supplementary Data 2). Network extraction and identification of 

transcriptional modules are described in the Supplementary Methods.

Mapping the genetic control of networks

We used Bayesian variable selection models18,29 to identify the genetic control points 

(regulatory ‘hotspots’) of transcriptional modules in the TLE patient cohort. First, we 

combined PC analysis55 with multivariate regression approaches to prioritize genome-wide 

genomic regions associated with the module expression. We then analysed all genes of the 

module with all SNPs in the regulatory region using the hierarchical evolutionary stochastic 

search algorithm18, where the module genes’ expression are jointly considered. Further 

details are reported in Supplementary Methods.

Genetic association of the TLE-network with epilepsy

To test if TLE-network genes are likely to be causally involved in the disease process, we 

assessed whether network genes are enriched for SNP variants associated to focal epilepsy 

by GWAS6,25. Full details on the GWAS of focal epilepsy are reported in Supplementary 

Methods. Briefly, in the GWAS-enrichment analysis each gene of the TLE-network was 

assigned a GWAS significance value consisting of the smallest P-value of all SNPs mapped 

to it. We used the hypergeometric distribution test to assess whether SNPs close to (<100 kb 

from) any network gene were more likely to associate with epilepsy by GWAS than SNPs 

close to genes not in the TLE-network. Empirical GWAS-enrichment P-values were 

generated by 1,000,000 randomly selected gene-sets and are reported in Supplementary 

Table 2 (see Supplementary Methods for additional details).
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RNA-Seq analysis in the mouse hippocampus

RNA-Seq analysis in whole hippocampus from 100 epileptic (pilocarpine model)27 and 100 

control naïve mice (NMRI) is detailed in Supplementary Methods. Briefly, raw reads were 

mapped to the reference mouse genome (mm10) using TopHat version 2.0.8 (ref. 56) and 

read counts per gene were normalized across all samples using the ‘trimmed mean of M-

value’ approach57. Differential expression analysis was performed using the edgeR57 and a 

threshold of 5% FDR was used to identify significant gene expression changes. 

Experimental animals were used only once for each study. All experimental procedures 

complied with the guidelines of the European Union Directive 2010/63/EU. A local ethical 

committee approved the experimental protocol.

In vitro studies

Details on all cell cultures used in these studies are reported in Supplementary Methods. 

SiRNA knockdown experiments were performed in murine BMDMs and BV2 microglia cell 

lines using a mouse Sesn3 ON-TARGETplus SMARTpool siRNA (100 nM, ThermoFisher 

Scientific) and Dharmafect 1 (ThermoFisher Scientific) as transfection reagent, according to 

the manufacturer’s recommendations. For LPS stimulation experiments, the transfected cells 

were washed twice in DMEM and stimulated with LPS (Sigma, 100 ng ml−1) for an hour. 

For overexpression experiments, a third-generation LV was used to transduce murine 

primary hippocampal neuronal culture. Additional information and details on Sesn3 siRNA 

target sequences, the real-time quantitative PCR for Module-1 genes and primer sequences 

are given in Supplementary Methods and Supplementary Table 4. The relative expression 

levels normalized to Beta-actin (or Gapdh as indicated) gene expression were then 

determined by the 2−ΔΔCt method.

In vivo studies

To study the function of sestrin 3 in response to PTZ-induced seizures, two different 

morpholinos were designed to block the normal splicing of the zebrafish Sesn3 primary 

transcript (see Supplementary Fig. 12 and Supplementary Methods). Embryos that were to 

be analysed by whole-mount in situ hybridization were first treated with 1-phenyl-2 thiourea 

at 23 h post fertilization (h.p.f.) to inhibit melanogenesis. At 3 d.p.f., larvae were treated for 

1 h with 20 mM PTZ or left untreated, and all larvae were then fixed with paraformaldehyde 

immediately after the treatment period. RNA in situ hybridization analysis was carried out 

using a c-fos digoxigenin-labelled probe, which was prepared as recommended by the 

manufacturer of the in situ hybridization reagents (Roche). Whole-mount in situ 

hybridization was performed using standard procedures58. Analysis of zebrafish locomotor 

activity was carried out using the Viewpoint Zebrabox system (Viewpoint) as previously 

reported in ref. 34. Briefly, 3 d.p.f. larvae were incubated in E3 medium with or without 20 

mM PTZ in microtitre plates, with one larva per well, and larval movements were recorded 

with the Viewpoint Zebrabox over a recording period of 60 min, using a light cycle of 2 

min: 100% light; 2 min: 0% light. The distance swam by each larva was measured for every 

10-min period during the recording period, and the cumulative distance swam over the 

recording period was calculated. Rescue experiments were performed by co-injection of 

synthetic sesn3 RNA into one-cell stage AB wild-type zebrafish embryos alone (2 nl of 0.3 
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ng nl−1 sesn3 mRNA) or in combination with Sesn3 morpholinos. Additional details, 

including the quantitative PCR analyses of c-fos and Module-1 genes, primer sequences are 

reported in Supplementary Methods. All experimental procedures involving zebrafish were 

performed in compliance with the UK Animal (Scientific Procedures) Act and approved by 

the University of Sheffield Animal Welfare Ethical Review Board.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of the TLE-network and functionally specialized transcriptional modules 
in human epileptic hippocampus
(a) Gene co-expression network identified in the hippocampus of TLE patients (TLE-

network). Nodes represent genes and edges represent significant partial correlations between 

their expression profiles (FDR<5%). Node colour indicates the best GWAS P-value of 

association with focal epilepsy for SNPs within 100 kb of each gene (Supplementary Data 

1). Boxes mark two transcriptional modules within the network. (b) Kyoto Encyclopedia of 

Genes and Genome (KEGG) pathways significantly enriched in the TLE-network 

(FDR<5%). The fold enrichment for each KEGG pathway is reported on the side of each 

bar. (c) Module-1 and Module-2 details. The size of each node is proportional to its degree 

of interconnectivity within each module. Light blue indicates genes showing nominal 

association with susceptibility to focal epilepsy by GWAS. Numbers in parenthesis indicate 

multiple microarray probes representing the same gene. (d) KEGG pathways significantly 

enriched in Module-1 (top) and Module-2 (bottom; FDR<5%). (e) Module-1 is significantly 

highly expressed in the hippocampus of TLE patients. mRNA expression of Module-1 (n = 

80 probes, representing 69 unique annotated genes) as compared with Module-2 (n = 60 

probes, representing 54 unique annotated genes), other network genes (n = 371 probes, 

representing 319 unique annotated genes) and all other probes represented on the microarray 

(n = 48,256). **P = 3.8 × 10−4; ***P < 10−10, Mann–Whitney test, two-tailed.
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Figure 2. TLE-network conservation in mouse epileptic hippocampus
(a) Human TLE-network genes that are conserved and co-expressed (84%) in the mouse 

hippocampus. Each node in the network represents a transcript that had significant partial 

correlation with at least another transcript in the network (FDR<5%). Conserved Module-1 

and Module-2 genes are indicated in blue and green, respectively. (b) Distribution of 

significant partial correlations (FDR<5%) between pairs of transcripts from 10,000 bootstrap 

permutation samples in epileptic (top) and control (bottom) mouse hippocampus. In each 

case, the red line indicates the actual number of significant partial correlations (FDR<5%) 

Johnson et al. Page 17

Nat Commun. Author manuscript; available in PMC 2015 October 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



between all genes in the network. The number of significant partial correlations observed in 

control hippocampus was no different from chance expectation (P = 0.659). In contrast, the 

number of significant partial correlations detected in epileptic hippocampus was 

significantly higher than expected by chance (P = 0.001). (c) Differential expression of 

Module-1 genes between control and epileptic mouse hippocampus shows specific 

enrichment for TLR-signalling and cytokine genes among the upregulated genes (gene set 

enrichment analysis28). Stars denote significant fold changes between epileptic and control 

mouse hippocampus (FDR<5%); blue bars indicate TLR-signalling and cytokine genes.
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Figure 3. SESN3 is a trans-acting genetic regulator of Module-1 in epileptic hippocampus
(a) Genome-wide mapping of the genetic regulation of Module-1. For each autosome 

(horizontal axis), the strength of evidence for each SNP (filled dot) being a regulatory locus 

for the first PC of Module-1 expression is measured by the log10(Bayes factor) (vertical 

axis). The Bayes factor quantifies evidence in favour of genetic regulation versus no genetic 

control of module expression, and is reported as a ratio between the strengths of these 

models. At 5% FDR (that is, log10(Bayes factor)>6, dashed line), SNP rs10501829 (11q21, 

highlighted in red) was significantly correlated with Module-1 expression. (b) Joint mRNA 

levels and SNPs analysis within the 1-Mbp region centred on SNP rs10501829, comprising 

178 SNPs genotyped in the TLE patient cohort. We carried out multivariate Bayesian 

regression modelling18 of all Module-1 probes (n = 80) and all SNPs (n = 178) to identify 

the most informative SNPs in the region predicting Module-1 expression. For each SNP, we 

report the proportion of associated genes in Module-1 (vertical axes): four SNPs 

(rs10501829, rs530190, rs7107661 and rs6483435) that are individually associated with 58–

74% of Module-1 genes are highlighted. The grey box indicates the boundaries of the 

associated regulatory region (delimited by SNPs rs530190 and rs6483435), spanning 383 kb. 

(c) For each candidate gene at the 1-Mbp regulatory locus, we report the average Pearson 

correlation (r; ± s.e.m.) between the candidate gene’s expression and the expression of 
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Module-1 genes (y axes) and its statistical significance for deviation from r = 0 (x axes). 

Two-tailed P-values are reported on a negative log scale and were calculated using one 

sample Wilcoxon Signed Rank test. Two genes (ENDOD1 and MTMR2) were represented 

by two microarray probes and were analysed separately. (d) Association between increased 

Sesn3 mRNA expression and upregulation of Module-1 genes in epileptic mouse 

hippocampus. For each gene, we report its log10(fold change) in epilepsy versus control (y 

axes) and its correlation with Sesn3 mRNA expression (x axes). The 95% confidence 

interval of the slope of the regression line is indicated. TLR-signalling and cytokines genes 

are highlighted in blue.
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Figure 4. SESN3 regulates expression of Module-1 genes in macrophages, microglial cells and 
neurons
Effect of siRNA-mediated knockdown of Sesn3 as compared with control siRNA 

(siControl), showing significant inhibition of Sesn3 mRNA expression and downregulation 

of Module-1 genes in murine LPS-stimulated (1 h) BMDM (a) and BV2 microglial cells (b), 

as well as in unstimulated BV2 microglial cells (c). Five independent biological replicates 

were used for BMDM experiments and at least three replicates in the BV2 microglia cells 

experiments. Data normalized to β-actin levels are shown as means relative to control 
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±s.e.m. (d) SESN3 immunofluorescence of human hippocampal slices from TLE patients: 

co-immunostainings with NeuN (green) antibody showed that SESN3 (red) is localized in 

neurons. Scale bar, 100 μm. (e) Quantification of SESN3 expression in human hippocampal 

tissue by immunofluorescence analysis. Maximum intensity projections of confocal z-stack 

images of immunohistochemical stainings with antibody against SESN3 were used. For 

determination of SESN3 cell fluorescence as a measure of SESN3 expression level, SESN3-

expressing cells in the CA2 region of the hippocampus in both TLE patients samples (n = 7) 

and autopsy samples (n = 8) were measured using ImageJ software. Cell fluorescence was 

assessed as follows: integrated density—(area of selected cell × mean fluorescence of 

background readings). SESN3 total cell fluorescence in TLE patients is significantly 

increased as compared with the SESN3 total cell fluorescence in autopsy samples (two-

tailed Mann–Whitney test, P<0.001). Fluorescence intensity data are reported as means

±s.e.m. (f) Effect of lentiviral-mediated Sesn3 overexpression on Module-1 genes in primary 

hippocampal neurons. Left, relative levels of Sesn3 mRNA in transduced neurons (LV-

CMV-Sesn3) compared with the levels in mock transduction (Mock). Right, relative mRNA 

levels of Module-1 genes and a control gene not in the network (Hprt) in transduced neurons 

compared with levels in mock transduction. Data normalized to Gapdh levels are shown as 

means relative to control ±s.e.m. Four (Mock group) and twelve (LV-CMV-Sesn3 group) 

replicates were used in neuronal cell experiments. Statistical significance of the differences 

(P-value) between siSESN3 (or LV-CMV-Sesn3) and siControl (or Mock) was assessed by 

t-test (two-tailed) and adjusting for unequal variances across different groups. *P<0.05; 

**P<0.01; ***P<0.001; ****P<0.0001; NS, not significant (P>0.05).
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Figure 5. Sesn3 modulates PTZ-induced c-fos expression, locomotor convulsions and Module-1 
genes in zebrafish
(a) Left, Sesn3 promotes convulsive locomotor response of zebrafish larvae exposed to PTZ. 

Three days post fertilization (d.p.f.) zebrafish larvae were incubated with and without 20 

mM PTZ for 1 h and locomotor activity was monitored continuously. Larvae microinjected 

with Sesn3 morpholinos exhibited a sustained reduction in locomotor activity throughout the 

period of PTZ incubation, in comparison with control morphant larvae. Both Sesn3 

morphant and control morphant larvae (n = 12) exhibited similarly low levels of locomotor 

activity in the absence of PTZ. Right, Sesn3 morpholinos reduced the cumulative locomotor 

activity of zebrafish exposed to 20 mM PTZ (black columns) without appreciably affecting 

basal locomotor activity of larvae incubated in the absence of PTZ (white columns). (b) Co-

injecting Sesn3 morpholinos with synthetic Sesn3 mRNA showed that Sesn3 mRNA rescued 

the locomotor activity phenotype (total distance swam, y axis). For each group, 16–18 larvae 

were analysed. Black bars, 1 h PTZ treatment (20 mM). (c) Sesn3 morpholinos attenuate 

seizure-induced expression of the synaptic activity-regulated gene c-fos. Left and central 

images, dorsal views of the brains of 3 d.p.f. control morphant (top) and Sesn3 morphant 
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larvae (bottom) maintained for 1 h in the absence and presence of 20 mM PTZ, after which 

larvae were fixed and analysed for c-fos expression by whole-mount in situ hybridization. 

Red arrowheads: position of the transverse sections of the brains; scale bar, 200 μm. 

Following PTZ treatment (20 mM, 1 h), quantitative PCR (qPCR) analysis revealed that 

Sesn3 morphant larvae exhibited significantly lower mRNA expression of c-fos in the brain 

than control morphant larvae (c, right panel). (d) PTZ-induced transcriptional response of 

Module-1 genes was significantly lower in Sesn3 morphants as compared with uninjected 

larvae; six samples were used in the qPCR experiments (one sample = 15–20 pooled larvae). 

(e) Upregulation of Module-1 genes upon injection of synthetic mRNA (1 ng) in zebrafish 

embryos (n = 30) as compared with uninjected control embryos (n = 30). Total RNA was 

extracted 28 h post fertilization and qPCR experiments were performed for the two pools of 

embryos using six technical replicates. Data reported as means±s.e.m. were determined by 

the 2−ΔΔCt method and normalized to the housekeeping gene β-actin. P-values calculated by 

t-test (two-tailed) adjusting for unequal variances across different groups. NS, not significant 

(P>0.05).
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