One-Pot, Four-Step Organocatalytic Asymmetric Synthesis of ${ }_{2}$ Functionalized Nitrocyclopropanes

${ }_{3}$ Anna Zaghi, Tatiana Bernardi, Valerio Bertolasi, Olga Bortolini, Alessandro Massi, and Carmela De Risi*
4 Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy

S Supporting Information

Abstract

The asymmetric synthesis of functionalized nitrocyclopropanes has been achieved by a one-pot, four-step method catalyzed by (S)-diphenylprolinol TMS ether, which joins two sequential domino reactions, namely a domino sulfaMichael/aldol condensation of α, β-unsaturated aldehydes with 1,4-dithiane-2,5-diol, and a domino Michael/ α-alkylation reaction of the derived chiral dihydrothiophenes with bromonitromethane. The title compounds were obtained in $27-45 \%$ yields, with high levels of diastereoselectivity ($93: 7$ to 100:0 dr) and generally good enantioselectivities (up to 95:5 er).

About 130 years after the first synthesis of a cyclopropane derivative by William Henry Perkin, the strained threemembered carbocyclic ring motif still attracts attention from synthetic organic chemists.

Cyclopropane compounds are widely distributed among natural products and biologically active agents, ${ }^{1}$ such as the N -methyl-D-aspartate (NMDA) receptor partial agonist 1 -amino-cyclopropane-1-carboxylic acid (ACC, $\mathbf{1}$), ${ }^{2}$ the antibiotic and antitumor duocarmycin A 2, ${ }^{3}$ the phytotoxin coronatine 3, ${ }^{4}$ and the cholesteryl ester transfer protein inhibitor U-106305 4^{5} (Figure 1).

Due to their distinguishing structural features, cyclopropanes can also serve as convenient synthons in several types of reactions. ${ }^{6}$

Nitrocyclopropanes represent a special family of cyclo3 propane compounds, which are found in natural products, such

Figure 1. Structures of the cyclopropane-based bioactive compounds 1-4.
as the peptide lactone hormaomycin $\mathbf{5}^{7}$ (Figure 2), and used in 34 f 2 many synthetic transformations, ${ }^{8}$ including the preparation of 35 the broad-spectrum antibiotic Trovafloxacin. ${ }^{9}$ 36

Figure 2. Structure of hormaomycin 5.
In the past few decades, there has been a growing interest in 37 developing stereoselective approaches to cyclopropanes. ${ }^{10,11} \quad 38$
In this context, the Michael-initiated ring-closure (MIRC) 39 reaction strategy ${ }^{12}$ has been largely used to obtain nitro- 40 cyclopropane derivatives. ${ }^{10 \mathrm{~b}}$ In this approach, the target 41 compounds are formed through a domino Michael/ α-alkylation 42 reaction, wherein the conjugate addition of a nucleophile to an 43 electron-poor alkene generates a stabilized carbanion inter- 44 mediate that then undergoes intramolecular ring-closure. 45

We have recently demonstrated that racemic 2,5 -dihydro- 46 thiophene-3-carbaldehydes 8 , obtained by secondary amine- 47 catalyzed domino sulfa-Michael/aldol condensations between 48

[^0]Scheme 1. Diastereoselective Nitrocyclopropanation of Racemic Dihydrothiophenes 8 Derived from Sulfa-Michael/Aldol Condensation Reaction

1,4 -dithiane-2,5-diol 6 and α, β-unsaturated aldehydes 7, were suitable substrates for cyclopropanations with bromonitro1 methane catalyzed by dL-proline (Scheme 1). ${ }^{13}$ These reactions 52 provided unprecedented bicyclic nitrocyclopropanes, namely 6-nitro-3-thiabicyclo[3.1.0]hexane-1-carbaldehydes 9, in fair to good yields (55-71\%) and good to excellent diastereoselectivities (up to 100:0 dr).
The compounds obtained are highly interesting bicyclic systems, due to the fusion of the nitrocyclopropane moiety to a tetrahydrothiophene nucleus, which is comprised in a number of pharmacologically important systems too. To date, structurally related derivatives have been already proved to be effective as agonists of metabotropic glutamate receptors. ${ }^{14}$

As a logical extension of our previous work, we embarked on the development of an asymmetric variant using chiral proline 4 surrogates as catalysts, with a view to join the two catalytic 5 domino sequences in a challenging four-step reaction, one-pot 66 tandem process. Herein, we report the details of our studies which led us to disclose a one-pot, four-step asymmetric 8 organocatalytic method, promoted by a single proline-based catalyst, giving the functionalized nitrocyclopropanes 9 with good to high diastereo- and enantioselectivies.

- RESULTS AND DISCUSSION

At the outset, we conceived that the asymmetric synthesis of 3 compounds 9 could be achieved by carrying out the two catalytic domino reactions separately, as we have done in racemic series. With this in mind, we explored two different MIRC strategies to install the nitrocyclopropane moiety onto a preformed 2,5-dihydrothiophene-3-carbaldehyde scaffold (Scheme 2): the reaction of bromonitromethane with a racemic

Scheme 2. Potential Strategies for the Asymmetric Synthesis of Functionalized Nitrocyclopropanes

79 substrate catalyzed by a chiral amine organocatalyst (route A) 80 or the reaction between bromonitromethane and an enantiopure (or enantioenriched) substance (route B).
In the first case, we hoped to obtain enantioenriched nitrocyclopropane adducts through kinetic resolution of the racemic dihydrothiophene substrate by means of the chiral
organocatalyst, while in the second case we counted on the 85 stereochemical bias of the preexisting stereogenic center upon 86 nitrocyclopropanation.

To test the feasibility of our hypotheses, we performed a 88 series of experiments using the model compound $\mathbf{8 a}$ as reaction 89 partner of bromonitromethane. As shown in Scheme 3, 90 s3

Scheme 3. Investigation of Route A

investigation of route A was undertaken on racemic 8a, 91 conveniently prepared as reported. ${ }^{13}$ We used catalysts $10,{ }^{15}{ }_{92}$ $\mathbf{1 1},{ }^{16}$ and 12, ${ }^{17}$ which have been selected among the ones most 93 efficiently used in asymmetric nitrocyclopropanation reactions 94 of α, β-unsaturated carbonyl compounds. ${ }^{18-20}$ Catalysts $\mathbf{1 3}^{21} 95$ and 14^{22} were also included in our study.

With particular regards to catalyst 14, we believed that it 97 could promote the nitrocyclopropanation process through 98 simultaneous activation of the Michael donor and the 99 electrophilic aldehyde group by the tertiary amine and thiourea 100 moieties, respectively.

Successful reactions were observed when (\pm)-8a was reacted 102 with bromonitromethane (1.3 equiv) and triethylamine (1.3 103 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, using primary and 104 secondary amine catalysts $\mathbf{1 0} \mathbf{- 1 3}(20-40 \mathrm{~mol} \%)$ in the 105 presence of benzoic acid ($10-40 \mathrm{~mol} \%$) as an additive. The 106 expected nitrocyclopropane 9a was obtained in yields ranging 107 from 43 to 65% (Table S1, Supporting Information). In terms 108 of enantioselectivity, the results were totally disappointing. In 109 all cases, compound 9 a was obtained as a racemate, albeit 110

Scheme 4. Re-examined Synthesis of Diidrothiophene (+)-8a

(+)-8a: 52\%, 98:2 er
Table 1. One-Pot, Four-Step Organocatalytic Asymmetric Synthesis of Nitrocyclopropane (+)-9a ${ }^{a}$

	 6	\qquad so		$\begin{gathered} \mathrm{Br} \\ (1.3 \mathrm{e} \\ \mathrm{Et}_{3} \mathrm{~N}(1 . \\ \hline 0^{\circ} \mathrm{C} \text { to } \end{gathered}$		
entry	additive	solvent	$t\left({ }^{\circ} \mathrm{C}\right)^{b}$	$t(\mathrm{~h})^{c}$	yield (\%) ${ }^{\text {d }}$	er (\%) ${ }^{e}$
1	$\mathrm{PhCO}_{2} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	2	45	95:5
2	$\mathrm{PhCO}_{2} \mathrm{H}$	EtOH	rt	2	\sim^{f}	-
3	$\mathrm{PhCO}_{2} \mathrm{H}$	MeOH	rt	2	$-^{f}$	-
4	$\mathrm{PhCO}_{2} \mathrm{H}$	PhMe	rt	5	26	90:10
5	$\mathrm{PhCO}_{2} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	4	20	92:8
6	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	4	18	92:8
7	4- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	PhMe	rt	16	18	99:1
8	4- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	PhMe	40	2	32	89:11

${ }^{a}$ Reaction conditions: $6(0.372 \mathrm{mmol}), 7 \mathrm{a}(0.62 \mathrm{mmol})$, catalyst $\mathbf{1 0}(20 \mathrm{~mol} \%)$, and additive $(10 \mathrm{~mol} \%)$ were stirred in solvent (2.0 mL) at the given temperature for the indicated time. Upon completion, the reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, bromonitromethane (0.8 mmol) and triethylamine $(0.8 \mathrm{mmol})$ were sequentially added, and the reaction mixture was kept at room temperature overnight. ${ }^{b}$ Temperature at which the dihydrothiophene-forming step took place. ${ }^{c}$ Duration of the dihydrothiophene-forming step. ${ }^{d}$ Yield of isolated product. ${ }^{e}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{f}$ The thiophene product was obtained exclusively.

111 diastereomerically pure. On the basis of these results, we turned 112 our attention to route B. Hence, an enantiopure (or 113 enantioenriched) 2,5-dihydrothiophene-3-carbaldehyde sub114 stance was needed.
115 116 f 117 118 f 119 k

The recent work on the enantioselective synthesis of functionalized dihydrothiophenes through organocatalytic domino sulfa-Michael/aldol condensation reaction was selected for this purpose. ${ }^{23}$ Accordingly, we attempted to prepare the known chiral dihydrothiophene (+)-8a under the reported experimental conditions. Thus, cinnamaldehyde 7a and 1,4-dithiane-2,5-diol 6 (0.6 equiv) were reacted in toluene at room temperature for 12 h in the presence of (S)-diphenylprolinol TMS ether 10 ($20 \mathrm{~mol} \%$) and 4-nitrobenzoic acid ($10 \mathrm{~mol} \%$) as additive. Disappointingly, we were unable to reproduce the authors' findings. As a matter of fact, compound (+)-8a has been isolated in only 25% yield, with $>99.5: 0.5$ er. Therefore, the reaction was re-examined (Table S2, Supporting Information) and slightly improved conditions were determined by carrying out the domino sulfa-Michael/aldol condensation reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ for 2 h using benzoic acid ($10 \mathrm{~mol} \%$) as additive (Scheme 4).
Although we ran the reaction under very carefully controlled conditions, we could not completely avoid the formation of various uncharacterized byproducts together with a certain amount of the aromatic thiophene derivative arising from oxidation of (+)-8a. Therefore, a very time-consuming and wasteful chromatographic purification of the crude reaction mixture was needed in order to isolate the target compound. At best, (+)-8a was obtained in 52\% yield and 98:2 er.
We doubted that these difficulties might depend on the selected model compound, so we attempted the synthesis of
some other chiral dihydrothiophenes among those reported, ${ }^{23}{ }_{142}$ but we experienced the same hurdles in any case. On the 143 strength of this, we reasoned that a "one-pot" process, wherein 144 the intermediate dihydrothiophene was not isolated but treated 145 in situ with bromonitromethane anion, could circumvent the 146 observed problems. In doing so, we envisioned to use the single 147 organocatalyst 10 to promote both the dihydrothiophene- 148 forming step and the following Michael $/ \alpha$-alkylation reaction 149 rather than exploiting different amine organocatalysts for each 150 domino process.

To prove the feasibility of this tactic, we ran an optimization 152 study based on the findings obtained thus far. As shown in 153 Table 1, the one-pot process could be run in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 1, 154 tl entries 1,5 , and 6) or toluene (Table 1, entries 4, 7, and 8), 155 with yields and enantioselectivities being influenced by both the 156 acid additive and the temperature at which the dihydrothio- 157 phene-forming step took place.

Optimal conditions (Table 1, entry 1) were established by 159 reacting dithiane 6, cinnamaldehyde 7a, amine catalyst 10 (20 160 $\mathrm{mol} \%)$, and benzoic acid ($10 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40{ }^{\circ} \mathrm{C}$ for 2161 h, under inert atmosphere. Upon completion (TLC analysis), 162 the reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, treated with a 163 bromonitromethane/triethylamine (1.3 equiv each) system, 164 and kept at room temperature overnight. Gratifyingly, nitro- 165 cyclopropane (+)-9a was obtained as a single diastereomer in 166 45% isolated yield and 95:5 er (Table 1, entry 1).

Having established the best conditions for the one-pot, four- 168 step organocatalytic process, we proceeded to investigate its 169 scope using a variety of α, β-unsaturated aldehydes as partners 170 of 1,4-dithiane-2,5-diol 6 . The results of these studies are 171 summarized in Table 2.

Table 2. One-Pot, Four-Step Organocatalytic Asymmetric Synthesis of Functionalized Nitrocyclopropanes 9a-p ${ }^{a}$

	 6				Br_{2} $0^{\circ} \mathrm{C}$ to rt, 16 h $\mathrm{Et}_{3} \mathrm{~N}(1.3$ equiv)		
entry	aldehyde	R	product	$t(\mathrm{~h})$	yield (\%) ${ }^{\text {b }}$	$\mathrm{dr}(\%)^{c}$	er (\%) ${ }^{\text {d }}$
1	7 a	2-MeOC66 H_{4}	9 a	2	45	100:0	95:5
2	7 b	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	9 b	2	40	94:6	$n d^{e}$
3	7 c	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	9c	2	28	100:0	86:14
4	7 d	2- $\mathrm{MeC}_{6} \mathrm{H}_{4}$	9d	1	40	100:0	93:7
5	7 e	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	9 e	2	40	94:6	82:18 ${ }^{f}$
6	7 f	4- $\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{\text {g }}$	9 f	2	35	94:6	85:15 ${ }^{f}$
7	7 g	2- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	9g	1	42	100:0	90:10
8	7 h	2-Me-5-NO2 $\mathrm{C}_{6} \mathrm{H}_{4}$	9 h	1	30	100:0	92:8
9	7 i	$2-\mathrm{BrC}_{6} \mathrm{H}_{4}$	9 i	1	31	100:0	91:9
10	7 j	$3-\mathrm{BrC}_{6} \mathrm{H}_{4}$	9j	1	27	96:4	87:13 ${ }^{\text {f }}$
11	7 k	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	9k	1	27	100:0	93:7
12	71	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	91	1	30	100:0	92:8
13	7 m	$2-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	9 m	1	35	100:0	94:6
14	7 n	$3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	9 n	1	27	100:0	93:7
15	70	2-furanyl ${ }^{\text {h }}$	90	1	27	94:6	80:20 ${ }^{\text {f }}$
16	7 p	Ph	9p	1	31^{i}	93:7	$n \mathrm{nd}^{\text {e }}$

${ }^{a}$ Reaction conditions: $6(0.372 \mathrm{mmol}), 7(0.62 \mathrm{mmol})$, catalyst $10(20 \mathrm{~mol} \%)$, and $\mathrm{PhCO}_{2} \mathrm{H}(10 \mathrm{~mol} \%)$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ for the indicated time. Upon completion, the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$, bromonitromethane (0.8 mmol) and triethylamine (0.8 mmol) were sequentially added, and the reaction mixture was kept at room temperature overnight. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{e}$ Not determined. ${ }^{f}$ The er value of the major isomer. ${ }^{g}$ Additional 10 mol $\%$ of catalyst 10 and $5 \mathrm{~mol} \%$ of $\mathrm{PhCO}_{2} \mathrm{H}$ were used in the cyclopropanation step. ${ }^{h} 40 \mathrm{~mol} \%$ of catalyst 10 and $20 \mathrm{~mol} \%$ of $\mathrm{PhCO}_{2} \mathrm{H}$ were used. ${ }^{i}$ Compound $9 \mathbf{p}$ was slightly contaminated by uncharacterized byproducts.

Scheme 5. Derivatization of Nitrocyclopropane 9o to the Mosher Esters 16 and 17

DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 48 h

16

17
β-Phenyl (Table 2, entry 16) and substituted β-phenyl 174 (Table 2, entries $1-14$) α, β-unsaturated aldehydes were 175 suitable substrates for the organocatalytic process, providing 176 the target nitrocyclopropanes in 27-45\% yields. The position 177 and nature of substituents on the β-phenyl ring had slight effect 178 on stereocontrol. Good to very good enantioselectivities were 179 observed (85:15 to 95:5 er), except for compound 9 e (82:18 er, 180 Table 2, entry 5). The one-pot, four-step method was also 181 applicable to the β-heteroaryl α, β-unsaturated aldehyde $7 \mathbf{0}$, 182 providing compound 90 in 27% yield and 80:20 er (Table 2, 3 entry 15).

On the contrary, the reactions of 1,4-dithiane-2,5-diol 6 with alkyl α, β-unsaturated aldehydes were completely unsuccessful, leading to complex product mixtures.
187 It should be pointed out that the organocatalytic reactions 188 gave moderate yields mainly due to the low efficiency of the 189 dihydrothiophene-forming step. Similarly to what we have 190 observed in the optimization studies of the sulfa-Michael/aldol 191 condensation reaction, the chiral dihydrothiophenes were 192 generally formed together with the corresponding thiophene 193 derivatives and various uncharacterized byproducts, as con-
firmed by TLC and ${ }^{1} \mathrm{H}$ NMR monitoring. Every attempt to 194 improve these outcomes failed, regardless of the reaction 195 conditions and the α, β-unsaturated aldehyde used. Even so, it is 196 worth noting that the observed yields are in regard with a 197 process that takes place through four sequential reaction steps 198 involving the formation of one $C-S$ and three $C-C$ bonds as 199 well as one dehydration step; all of them occurring in a single 200 operation.

Notably, the organocatalytic process displayed high diaster- 202 eoselectivity. The nitrocyclopropane derivatives have been 203 obtained as single diastereomers (100:0 dr, Table 2, entries 1, 3, 204 $4,7-9$, and $11-14$) or as mixtures of two diastereomers ($93: 7205$ to $96: 4 \mathrm{dr}$, Table 2, entries $2,5,6,10,15$, and 16). The latter 206 were inseparable except for $\mathbf{9 0}$ ($94: 6 \mathrm{dr}$, Table 2, entry 15). In 207 this case, the major diastereomer was partially isolated by flash 208 chromatography.

The relative and absolute configurations of the major 210 diastereomers have been unambiguously assigned by X-ray 211 crystallography. Since we were unable to obtain good quality 212 single crystals of any diastereomerically pure nitrocyclopropane, 213 we carried out a series of chemical transformations to prepare 214

Scheme 6. Plausible Mechanism for the One-Pot, Four-Step Organocatalytic Process

Scheme 7. Enantiofacial Discrimination of Activated Olefin I

(R) - or (S)-configured enamine

215

220 and 17 ($80: 20 \mathrm{dr}$) in 75% combined yield (Scheme 5). ${ }_{221}$ Purification by flash chromatography provided analytical 222 samples of both products, and a single crystal of the minor
compounds suitable for X-ray structure determination. To our delight, reduction of the pure diastereomer 9 o (80:20 er) to the corresponding primary alcohol under standard conditions $\left(\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{rt}\right)$, followed by DMAP-catalyzed esterification with (S)-Mosher acid 15, gave diastereomeric esters 16
ester 17 was produced by slow evaporation of an EtOAc 223 solution at room temperature.

X-ray diffraction analysis of $\mathbf{1 7}$ allowed us to determine the 225 ($1 S, 2 R, 5 R, 6 S$) absolute configuration of its bicyclic core (Figure 226 S3, Supporting Information). ${ }^{24}$ This result revealed a cis- 227 relationship between the nitro functional group, the hydrox- 228 ymethyl ester moiety and the substituent at C2. Accordingly, 229 we assigned the structure to compound 16, and the 230 configurations of all the major nitrocyclopropanes $\mathbf{9 a} \mathbf{a} \mathbf{p}$ were 231
established by analogy. Importantly, NMR analysis further supported this assignment. Indeed, ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{9 a}-\mathbf{p}$ showed a diagnostic doublet signal for hydrogen $\mathrm{H6}$ with $J_{\mathrm{HS}, \mathrm{H} 6}$ $=3.3-3.6 \mathrm{~Hz}$, which reflects its trans configuration with hydrogen $\mathrm{H} 5 .{ }^{25}$

On the other hand, the structures of the minor nitrocyclopropane isomers have not been definitively identified. However, we may tentatively assume that the nitro and formyl groups have a cis-relationship, due to the H5-H6 coupling constants observed in the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds.
Based on previous literature results, ${ }^{23,26}$ a plausible mechanism for the one-pot, four-step organocatalytic process has been postulated (Scheme 6). Thus, activation of the α, β unsaturated aldehyde by the organocatalyst $\mathbf{1 0}$ generates the iminium-ion I, which is attacked by in situ generated mercaptoacetaldehyde (sulfa-Michael reaction) to give the stereodefined enamine II. Next, intramolecular aldol reaction and dehydration (aldol condensation reaction) form intermediate III that undergoes reaction with bromonitromethane anion (Michael reaction) providing adduct IV. It is likely that the Re face of the carbon-carbon double bond in the iminiumion III is effectively shielded by the bulky substituent on the organocatalyst framework, leaving the Si face exposed for carbon-carbon bond formation. Intramolecular nucleophilic substitution (α-alkylation reaction) of IV and hydrolysis of the resulting iminium-ion intermediate \mathbf{V} provide the major nitrocyclopropane isomer 9 .
It may be assumed that benzoic acid promotes both the formation of I and the aldol condensation step as well as the hydrolysis of intermediate \mathbf{V}. Moreover, we cannot exclude that intermediate III could be hydrolyzed to the corresponding aldehyde, but a plausible re-equilibration to III might take place under the reaction conditions.
In terms of enantiocontrol during the dihydrothiopheneforming step, we anticipated that the sterically demanding group at the organocatalyst residue efficiently shielded one face of the olefin in intermediate I. Hence, the incoming S nucleophile preferentially attacked at the opposite, less hindered face (Scheme 7). Thus, shielding of the Si face forced the nucleophile to attack on the $R e$ face to provide the (R) configured enamine II. Notable exceptions would be the 2-furanyl- and 2-bromophenyl-substituted activated olefins, which gave the (S)-configured product via conjugate addition of mercaptoacetaldehyde from the deshielded Si face.

- CONCLUSION

In summary, we have developed the asymmetric synthesis of functionalized nitrocyclopropanes via a one-pot, four-step organocatalytic process, catalyzed by (S)-diphenylprolinol TMS ether, which evolves through domino sulfa-Michael/ aldol condensation of α, β-unsaturated aldehydes and 1,4-dithiane-2,5-diol followed by domino Michael $/ \alpha$-alkylation reaction of the derived chiral dihydrothiophene adducts with bromonitromethane. In spite of quite moderate yields (up to 45%), the products were obtained in good to high diastereoselectivities (up to 100:0 dr) and enantioselectivities (up to 95:5 er).

- EXPERIMENTAL SECTION

General Experimental Methods. All reactions were run under argon atmosphere, using freshly distilled solvents under anhydrous conditions. Reactions were monitored by thin-layer chromatography
(TLC) on silica gel 60 F254 precoated plates, and all compounds were 293 visualized by UV light and KMnO_{4} (2% aqueous) spray test. Flash 294 column chromatography was performed on silica gel 60 (230-400 295 mesh), using reagent grade solvents. Melting points (mp) were 296 recorded with a melting point apparatus and are uncorrected. 297
${ }^{1} \mathrm{H}(300 \mathrm{MHz}),{ }^{13} \mathrm{C}(101 \mathrm{MHz})$, and ${ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ NMR spectra 298 were recorded on 300 and 400 MHz spectrometers in CDCl_{3}, at room 299 temperature unless otherwise stated. Chemical shifts are reported in $\delta 300$ (ppm), and coupling constants (J) are given in Hertz (Hz). 301

Optical rotations (α) were measured on a polarimeter with a 302 sodium lamp in the given solvent at the indicated concentration (c, g/ 303 100 mL) and temperature (${ }^{\circ} \mathrm{C}$).

High resolution mass spectra (HRMS) data were obtained using a 305 QTOF LC/MS mass spectrometer with a dual-electrospray ionization 306 (ESI) source. Samples were dissolved in 10 mM solution of formic 307 acid (0.1%) in 60:40 $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$, and the compounds were detected 308 in positive ion mode by HPLC-Chip Q/TOF-MS (nanospray) analysis 309 using a quadrupole and a time-of-flight unit to produce spectra. 310

Enantiomeric ratios (er) were determined by chiral HPLC analysis 311 using $250 \times 4.6 \mathrm{~mm}$ Lux $5 \mu \mathrm{~m}$ Cellulose- 1 and $250 \times 4.6 \mathrm{~mm} 5 \mu \mathrm{~m} 312$ ChiralPak ID columns. The mobile phase was a binary mixture n- 313 hexane $/ i-\mathrm{PrOH}$.

Catalysts $\mathbf{1 0}^{15}$ and $\mathbf{1 4}{ }^{22}$ were commercially available and were used 315 without purification. Catalysts $\mathbf{1 1},{ }^{16} \mathbf{1 2},{ }^{17}$ and $\mathbf{1 3}{ }^{21}$ were known 316 compounds. They were synthesized according to the literature 317 procedures, starting from quinine, ${ }^{16}$ ($1 S, 2 S$)-diphenylethylenedi- 318 amine, ${ }^{17}$ and $(1 R, 2 R)-1,2$-diamino cyclohexane, ${ }^{21}$ respectively.

Aldehydes $7 \mathrm{a}, 7 \mathrm{~g}, 7 \mathbf{o}$, and $7 \mathbf{p}$ were commercial products and were 320 used as received. Aldehydes $\mathbf{7 b}-\mathbf{f},{ }^{27} \mathbf{7 j},{ }^{28} \mathbf{7 1},{ }^{27} \mathbf{7 m},{ }^{29}$ and $\mathbf{7 n}{ }^{27}$ were 321 known compounds, and aldehyde 7 h was a new compound. All of 322 them were prepared from the appropriate aryl halide and acrolein 323 diethyl acetal according to the literature procedure. ${ }^{27}$ Aldehydes $7 \mathbf{i}$ and 324 $7 \mathbf{k}$ were known compounds ${ }^{28}$ and were prepared from a suitable 325 benzaldehyde precursor and triphenylphosphoranilidene acetaldehyde 326 following known directions. ${ }^{30}$

General Procedure for the Nitrocyclopropanation of 328 Dihydrothiophene (\pm)-8a. The amine catalyst and the additive 329 were added to a solution of $(\pm)-8 \mathrm{a}(55 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 330$ $(0.5 \mathrm{~mL})$. After cooling to $0{ }^{\circ} \mathrm{C}$, bromonitromethane ($0.023 \mathrm{~mL}, 0.325331$ mmol) and the base (0.325 mmol) were sequentially added, and 332 stirring was continued at room temperature for the indicated time 333 (Table S1, Supporting Information). Upon completion (TLC 334 analysis), the reaction mixture was evaporated to dryness, and the 335 crude residue was purified by flash chromatography ($7: 1$ cyclohexane/ 336 EtOAc) to afford compound (\pm)-9a. The physical and spectral data 337 obtained are in accordance with those reported in the literature. ${ }^{13} \quad 338$
(+)-(R)-2-(2-Methoxyphenyl)-2,5-dihydrothiophene-3-carbalde- 339 hyde (8 Ba). To a solution of catalyst $10(40 \mathrm{mg}, 0.124 \mathrm{mmol}$) and 340 $\mathrm{PhCO}_{2} \mathrm{H}(8 \mathrm{mg}, 0.062 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, cinnamaldehyde 7 a 341 $(100 \mathrm{mg}, 0.62 \mathrm{mmol})$ and 1,4-dithiane-2,5-diol $6(57 \mathrm{mg}, 0.372 \mathrm{mmol}) 342$ were sequentially added, and the reaction mixture was heated at $40^{\circ} \mathrm{C} 343$ for 2 h . After cooling down, the reaction mixture was loaded onto a 344 silica-gel column for purification (7:1 cyclohexane/EtOAc) to afford 345 the product $(+)-8 \mathrm{a}^{23}(71 \mathrm{mg}, 52 \%)$ as an amorphous yellow solid. 346 $[\alpha]_{\mathrm{D}}{ }^{20}+194\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.80347$ $(\mathrm{s}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 348$ $6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{dt}, J=5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=18.1,349$ $5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} 350$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.5,156.5,150.7,147.9,130.6,128.6,351$ 126.9, 120.8, 111.0, 55.8, 47.9, 38.3 ppm ; HRMS (ESI-TOF) m / z : [M 352 $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}$ 221.0631, Found 221.0637; HPLC 353 conditions: Chiralpak ID, n-hexane $/ i$ - $\mathrm{PrOH}=95: 5$, flow rate $=0.5 \mathrm{~mL} 354$ $\min ^{-1}, \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=31.69$ (major), 33.46 (minor), $98: 2$ er. 355
(E)-3-(2-Methyl-5-nitrophenyl)acrylaldehyde (7h). Compound 7h 356 was obtained as an amorphous yellow solid ($67 \mathrm{mg}, 70 \%$) from 2-357 methyl-5-nitrobenzaldehyde ($96 \mathrm{mg}, 0.5 \mathrm{mmol}$) according to the 358 literature procedure. ${ }^{27}$ The compound was purified by column 359 chromatography ($10: 1$ cyclohexane/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 360$ CDCl_{3}): $\delta 9.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, 361$ $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 362$
$1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.74433$ $(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=12.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=12.0434$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (as 435 major isomer): $\delta 192.3,141.2,139.3,129.4,129.1,127.4,123.7,66.6,436$ 53.5, 52.7, 36.5, 32.6, 21.6 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} 437$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S} 264.0689$, Found 264.0688; HPLC conditions: 438 Lux Cellulose-1, n-hexane $/ i-\mathrm{PrOH}=70: 30$, flow rate $=1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda 439$ $=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=20.20$ (minor), 17.08 (major), $82: 18$ er (for 440 major isomer).
(1R,2R,5S,6R)-6-Nitro-2-(4-methylphenyl)-3-thiabicyclo[3.1.0]- 442 hexane-1-carbaldehyde (9f). Column chromatography with 11:1 443 cyclohexane/EtOAc afforded the orange oil $9 \mathrm{f}(57 \mathrm{mg}, 35 \%)$ as a 444 diastereomeric mixture ($94: 6 \mathrm{dr}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (as 445 major isomer): $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 446$ $2 \mathrm{H}), 5.11(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.62-447$ $3.54(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} 448$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (as major isomer): δ 192.1, 138.1, 130.1, 449 126.5, 66.4, 53.2, 52.7, 36.3, 32.5, 26.9, 21.1 ppm ; HRMS (ESI-TOF) 450 $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}$ 264.0694, Found 264.0690; 451 HPLC conditions: Lux Cellulose-1, n-hexane $/ i-\mathrm{PrOH}=70: 30$, flow 452 rate $=1 \mathrm{~mL} \min ^{-1}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=19.33$ (minor), 16.00453 (major), 85:15 er (for major isomer).
(+)-(1R,2R,5S,6R)-6-Nitro-2-(2-nitrophenyl)-3-thiabicyclo[3.1.0]- 455 hexane-1-carbaldehyde (9g). Column chromatography with 3:1 456 cyclohexane/EtOAc afforded 9 g ($77 \mathrm{mg}, 42 \%$) as an amorphous 457 orange solid. $[\alpha]_{\mathrm{D}}{ }^{20}+19\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 458$ $\left.55{ }^{\circ} \mathrm{C}\right): \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 459$ $1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.21460$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=12.1,3.8 \mathrm{~Hz}, 461$ $1 \mathrm{H}), 3.35(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}, 462$ $\mathrm{CDCl}_{3}, 55{ }^{\circ} \mathrm{C}$): δ 191.3, 148.1, 136.2, 133.6, 128.7, 128.2, 125.4, 66.2, 463 52.5, 48.4, 37.2, 32.4 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd 464 for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 295.0383, Found 295.0374; HPLC conditions: 465 Chiralpak ID, n-hexane $/ i-\mathrm{PrOH}=40: 60$, flow rate $=0.5 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=466$ $254 \mathrm{~nm}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=18.20$ (minor), 19.20 (major), 90:10 er.
(+)-(1R,2R,5S,6R)-2-(2-Methyl-5-nitrophenyl)-6-nitro-3-468 thiabicyclo[3.1.0]hexane-1-carbaldehyde (9h). Column chromatog- 469 raphy with $5: 1$ cyclohexane/EtOAc afforded $9 \mathrm{~h}(57 \mathrm{mg}, 30 \%)$ as an 470 amorphous yellow solid. $[\alpha]_{\mathrm{D}}{ }^{20}+54.7$ (c 1.62, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR 471 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 472$ $7.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 473$ $1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}, 474$ $1 \mathrm{H}), 3.44(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 475 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.4, 147.0, 143.0, 141.9, 132.0, 122.6, 119.9, 476 66.0, 52.7, 48.2, 36.4, 32.5, 20.4 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+477$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 309.0540, Found 309.0554; HPLC 478 conditions: Lux Cellulose-1, n-hexane $/ i$ - $\mathrm{PrOH}=50: 50$, flow rate $=1479$ $\mathrm{mL} \mathrm{min}{ }^{-1}, \lambda=210 \mathrm{~nm}, 50^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=13.52$ (minor), 9.91 (major), 92:8 480 er.
(+)-(1R,2S,5S,6R)-2-(2-Bromophenyl)-6-nitro-3-thiabicyclo[3.1.0]- 482 hexane-1-carbaldehyde (9i). Column chromatography with 4.5:1 483 cyclohexane/EtOAc afforded $9 \mathrm{i}(63 \mathrm{mg}, 31 \%)$ as an amorphous yellow 484 solid. $[\alpha]_{\mathrm{D}}{ }^{20}+82.8\left(\mathrm{c} 1.98, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 485$ $9.59(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{td}, J 486$ $=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=487$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 488$ $3.32(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 489$ 191.9, 140.1, 133.7, 129.4, 128.5, 126.9, 123.8, 66.1, 52.1, 51.9, 36.3, 490 31.7 ppm ; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for 491 $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNO}_{3} \mathrm{~S} 327.9617$, Found 327.9622; HPLC conditions: Lux 492 Cellulose- $1, n$-hexane $/ i$ - $\mathrm{PrOH}=70: 30$, flow rate $=1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda=493$ $210 \mathrm{~nm}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=33.16$ (minor), 40.21 (major), 91:9 er.
(1R, 2 , 5S, 6R) 2 (3.16 (mor), 1.21 (major), 1.9 er. 3.10$]$ hexane-1-carbaldehyde (9j). Column chromatography with 5:1 496 cyclohexane/EtOAc afforded the yellow solid $\mathbf{9 j}(45 \mathrm{mg}, 27 \%)$ as a 497 diastereomeric mixture ($96: 4 \mathrm{dr}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (as 498 major isomer): $\delta 9.53(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=1.8 \mathrm{~Hz}, 499$ $1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 500$ $1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=12.2,3.9 \mathrm{~Hz}, 501$ 1 H), $3.35(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 502$
(ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{4} \mathrm{~S} 240.0325$, Found 573 240.0330; HPLC conditions: Lux Cellulose-1, n-hexane $/ i-\mathrm{PrOH}=574$ 70:30, flow rate $=1 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=20.36$ (minor), 575 22.54 (major), 80:20 er.
(1R,2R,5S,6R)-6-Nitro-2-phenyl-3-thiabicyclo[3.1.0]hexane-1-car- 577 baldehyde (9p). Column chromatography with $5: 1$ cyclohexane/ 578 EtOAc afforded the orange oil $\mathbf{9 p}$ as a diastereomeric mixture (93:7 579 dr) slightly contaminated by uncharacterized byproducts ($48 \mathrm{mg}, 580$ 31%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (as major isomer): $\delta 9.51(\mathrm{~s}, 1 \mathrm{H})$, 581 $7.38-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86582$ $(\mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=12.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34583$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (as 584 major isomer): $\delta 192.1,141.3,129.5,128.3,126.8,66.5,53.5,52.8,585$ 36.5, 32.6 ppm ; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for 586 $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S} 250.0538$, Found 250.0544 .

Synthetic Procedure for the Preparation of Mosher Esters 588 16 and 17. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $9 \mathrm{o}(30 \mathrm{mg}, 0.12 \mathrm{mmol})$ in 589 $\mathrm{MeOH}(0.7 \mathrm{~mL}), \mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added, and the 590 reaction mixture was vigorously stirred for 1 h at room temperature. 591 The solvent was then removed in vacuo, and the crude product 592 dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. ((S)-Mosher acid $15(35 \mathrm{mg}, 0.15 \mathrm{mmol})$, 593 DCC ($37 \mathrm{mg}, 0.18 \mathrm{mmol}$), and a catalytic amount of DMAP were 594 sequentially added. The reaction mixture was left to stand at room 595 temperature for 48 h , then filtered and evaporated. Purification of the 596 crude residue by flash-chromatography (6:1 petroleum ether/EtOAc) 597 gave esters 16 and 17 ($41 \mathrm{mg}, 75 \%$ overall yield).
(+)-(S)-\{(1R,2S,5S,6R)-2-(Furan-2-yl)-6-nitro-3-thiabicyclo[3.1.0]- 599 hexan-1-yl\}methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 600 (16). White amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{20}+80.5$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} 601$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.32(\mathrm{dd}, J=3.2,1.9602$ $\mathrm{Hz}, 1 \mathrm{H}), 6.13-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=603$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=16.6,8.3604$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.23-3.09(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} 605$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,152.5,143.1,131.8,129.7,128.5,606$ 127.3, $123.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=287 \mathrm{~Hz}\right), 110.5,108.0,84.7\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=28 \mathrm{~Hz}\right), 607$ 62.7, 61.4, 55.4, 47.9, 43.6, $35.9,33.0 \mathrm{ppm}$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, 608$ CDCl_{3}): $\delta-71.9 \mathrm{ppm}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for 609 $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S} 458.0879$, Found 458.0886 . 610 (-)-(S)-\{(1S,2R,5R,6S)-2-(Furan-2-yl)-6-nitro-3-thiabicyclo[3.1.0]- 611 hexan-1-yl\}methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 612 (17). White solid, $\mathrm{mp} 128-129{ }^{\circ} \mathrm{C}$ (EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}-109.8$ (c 1.0, 613 CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.24614$ (dd, $J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 615$ $1 \mathrm{H}), 4.54(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=616$ $11.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=8.7,5.7 \mathrm{~Hz}, 617$ 2H) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.8,152.2,143.0,618$ 131.9, 129.7, 128.5, 127.1, 123.2 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=287 \mathrm{~Hz}$), 110.5, 108.1, 619 $84.5\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=28 \mathrm{~Hz}\right), 62.7,61.6,55.5,47.7,43.5,35.8,33.0 \mathrm{ppm}$; ${ }^{19} \mathrm{~F}{ }^{620}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-71.5 \mathrm{ppm}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}: 621$ $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S} 458.0879$, Found 458.0882. 622

Crystal Structure Determinations. X-ray diffraction suitable 623 single crystals of $\mathbf{1 7}$ were obtained by slow evaporation of an EtOAc 624 solution at room temperature. The crystal data of compound 17 were 625 collected at room temperature using a diffractometer with graphite 626 monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

The data sets were integrated with the Denzo-SMN package ${ }^{31}$ and 628 corrected for Lorentz and polarization effects. The structure was 629 solved by direct methods using $\operatorname{SIR} 97^{32}$ system of programs and 630 refined using full-matrix least-squares with all non-hydrogen atoms 631 anisotropically and hydrogens included on calculated positions, riding 632 on their carrier atoms. All calculations were performed using SHELXL- 633 97^{33} implemented in WINGX ${ }^{34}$ system of programs.

ASSOCIATED CONTENT

 635
(5) Supporting Information

 636The Supporting Information is available free of charge on the 637 ACS Publications website at DOI: 10.1021/acs.joc.5b01607. 638

Table S1 (screening of route A), Table S2 (re- 639 examination and optimization of the organocatalytic 640 693 703

660 Chem. Rev. 2007, 107, 4493-4537. (c) Reichelt, A.; Martin, S. F. Acc. 660 Chem. Rev. 2007, 107, 4493-4537. (c) Reichelt, A.; Martin, S. F. Acc.
661 Chem. Res. 2006, 39, 433-442. (d) Wessjohann, L. A.; Brandt, W.; 662 Thiemann, T. Chem. Rev. 2003, 103, 1625-1648. (e) Gnad, F.; Reiser, 662 Thiemann, T. Chem. Rev. 2003, 103, 1625-1648. (e) Gnad, F.; Reiser,
663 O. Chem. Rev. 2003, 103, 1603-1623. (f) Donaldson, W. A. 664 Tetrahedron 2001, 57, 8589-8627. (g) Faust, R. Angew. Chem., Int.
665 Ed. 2001, 40, 2251-2253. (h) Salaün, J. Top. Curr. Chem. 2000, 207, 664 Tetrahedron 2001, 57, 8589-8627. (g) Faust, R. Angew. Chem., Int.
665 Ed. 2001, 40, 2251-2253. (h) Salaün, J. Top. Curr. Chem. 2000, 207, 666 1-67.
667 (2) (a) Burroughs, L. F. Nature 1957, 179, 360-361. (b) Vähätalo,
668 M. L.; Virtanen, A. I. Acta Chem. Scand. 1957, 11, 741-743. 670 K.; Kawamoto, I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915-
671 1917. 6711917.

672 (4) Geng, X.; Jin, L.; Shimada, M.; Kim, M. G.; Mackey, D. Planta 673 2014, 240, 1149-1165.
674 (5) Kuo, M. S.; Zielinski, R. J.; Cialdella, J. I.; Marschke, C. K.; 675 Dupuis, M. J.; Li, G. P.; Kloosterman, D. A.; Spilman, C. H.; Marshall, 676 V. P. J. Am. Chem. Soc. 1995, 117, 10629-10634.
677 (6) For selected reviews on cyclopropanes as synthetic intermediates, 678 see: (a) David, E.; Milanole, G.; Ivashkin, P.; Couve-Bonnaire, S.; 679 Jubault, P.; Pannecoucke, X. Chem. - Eur. J. 2012, 18, 14904-14917. 680 (b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 681 3117-3179. (c) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719-
682 732. (d) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196. 681 3117-3179. (c) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719-
682 732. (d) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196. 683 (e) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y.-C.; Tanko, J.; 684 Hudlicky, T. Chem. Rev. 1989, 89, 165-198. (f) Goldschmidt, Z.; 685 Crammer, B. Chem. Soc. Rev. 1988, 17, 229-267.
686 (7) (a) Zlatopolskiy, B. D.; Loscha, K.; Alvermann, P.; Kozhushkov,
687 S. I.; Nikolaev, S. V.; Zeeck, A.; de Meijere, A. Chem. - Eur. J. 2004, 10, 688 4708-4717. (b) Rössner, E.; Zeeck, A.; König, W. A. Angew. Chem., 689 Int. Ed. Engl. 1990, 29, 64-65. (c) Andres, N.; Wolf, H.; Zähner, H.; 690 Rössner, E.; Zeeck, A.; König, W. A.; Sinnwell, V. Helv. Chim. Acta 691 1989, 72, 426-437. (8) For reviews on synthesis and use of nitrocyclopropanes, see: 694 Chem. Rev. 2009, 78, 887-902. (b) Ballini, R.; Palmieri, A.; Fiorini, D. 695 Arkivoc 2007, vii, 172-194.
696 (9) (a) Norris, T.; Braish, T. F.; Butters, M.; DeVries, K. M.; 697 Hawkins, J. M.; Massett, S. S.; Rose, P. R.; Santafianos, D.; Sklavounos, 698 C. J. J. Chem. Soc., Perkin Trans. 1 2000, 1615-1622. (b) Braish, T. F.; 699 Castaldi, M.; Chan, S.; Fox, D. E.; Keltonic, T.; McGarry, J.; Hawkins, 700 J. M.; Norris, T.; Rose, P. R.; Sieser, J. E.; Sitter, B. J.; Watson, H., Jr. 701 Synlett 1996, 1100-1102.
702 (10) For reviews on stereoselective cyclopropanation reactions, see:
domino sulfa-Michael/aldol condensation reaction), Figure S3 (ORTEP/X-ray view of compound 17), copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra, and HPLC chromatograms (PDF)
X-ray crystallographic data (CIF)
(PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: drc@unife.it.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Grateful thanks are due to University of Ferrara (Fondi FAR) for financial support. Thanks are also given to Mr. P. Formaglio and Mr. A. Casolari for NMR spectroscopic experiments.

REFERENCES

(1) For reviews on the cyclopropane motif in drugs and natural products, see: (a) Chen, D. Y.-K; Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev. 2012, 41, 4631-4642. (b) Brackmann, F.; de Meijere, A.
(3) Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, (a) Averina, E. B.; Yashin, N. V.; Kuznetsova, T. S.; Zefirov, N. S. Russ. (a) Charette, A. B.; Lebel, H.; Roy, M.-N. In Copper-Catalyzed

Asymmetric Synthesis; Alexakis, A., Krause, N., Woodward, S., Eds.; 704 Wiley-VCH: Weinheim, 2014; pp 203-238. (b) Bartoli, G.; 705 Bencivenni, G.; Dalpozzo, R. Synthesis 2014, 46, 979-1029. 706 (c) Pellissier, H. Tetrahedron 2008, 64, 7041-7095. (d) Lebel, H.; 707 Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 708 977-1050. (e) Hartley, R. C.; Caldwell, S. T. J. Chem. Soc., Perkin 709 Trans. 1 2000, 477-501. (f) Salaün, J. Chem. Rev. 1989, 89, 1247-710 1270.
(11) For recent highlights, see: (a) Goudreau, S. R.; Charette, A. B. 712 Angew. Chem., Int. Ed. 2010, 49, 486-488. (b) Doyle, M. P. Angew. 713 Chem., Int. Ed. 2009, 48, 850-852.
(12) Little, R. D.; Dawson, J. R. Tetrahedron Lett. 1980, 21, 2609- 715 2612.
(13) De Risi, C.; Benetti, S.; Fogagnolo, M.; Bertolasi, V. Tetrahedron 717 Lett. 2013, 54, 283-286.
(14) Monn, J. A.; Massey, S. M.; Valli, M. J.; Henry, S. S.; 719 Stephenson, G. A.; Bures, M.; Hérin, M.; Catlow, J.; Giera, D.; Wright, 720 R. A.; Johnson, B. G.; Andis, S. L.; Kingston, A.; Schoepp, D. D. J. Med. 721 Chem. 2007, 50, 233-240.
(15) (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., 723 Int. Ed. 2005, 44, 4212-4215. (b) Marigo, M.; Wabnitz, T. C.; 724 Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794-725 797.
(16) Manna, M. S.; Kumar, V.; Mukherjee, S. Chem. Commun. 2012, 727 48, 5193-5195.

728
(17) Fotaras, S.; Kokotos, C. G.; Tsandi, E.; Kokotos, G. Eur. J. Org. 729 Chem. 2011, 2011, 1310-1317. 730
(18) Vesely, J.; Zhao, G.-L.; Bartoszewicz, A.; Córdova, A. 731 Tetrahedron Lett. 2008, 49, 4209-4212. 732
(19) Lv, J.; Zhang, J.; Lin, Z.; Wang, Y. Chem. - Eur. J. 2009, 15, 972-733 979.
(20) Dong, L.-t.; Du, Q.-s.; Lou, C.-1.; Zhang, J.-m.; Lu, R.-j.; Yan, M. 735 Synlett 2010, 2010, 266-270.
(21) Yu, F.; Jin, Z.; Huang, H.; Ye, T.; Liang, X.; Ye, J. Org. Biomol. 737 Chem. 2010, 8, 4767-4774.
(22) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 739 125, 12672-12673.
(23) Tang, J.; Xu, D. Q.; Xia, A. B.; Wang, Y. F.; Jiang, J. R.; Luo, S. 741 P.; Xu, Z. Y. Adv. Synth. Catal. 2010, 352, 2121-2126. 742
(24) CCDC-1051035 contains the supplementary crystallographic 743 data for compound 17. These data can be obtained free of charge from 744 the Cambridge Crystallographic Data Centre via free of charge from 745 the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ 746 data_request/cif.
(25) (a) Wiberg, K. B.; Barth, D. E.; Schertler, P. H. J. Org. Chem. 748 1973, 38, 378-381. (b) Morris, D. G. In The Chemistry of the 749 Cyclopropyl Group; Patai, S., Rappoport, Z., Eds.; John Wiley and Sons: 750 New York, 1987; pp 101-172.
(26) Zhang, J.-m.; Hu, Z.-p.; Dong, L.-t.; Xuan, Y.-n.; Lou, C.-L.; Yan, 752 M. Tetrahedron: Asymmetry 2009, 20, 355-361.
(27) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Org. Lett. 2003, 5, 777-754 780.
(28) Kim, E.; Koh, M.; Lim, B. J.; Park, S. B. J. Am. Chem. Soc. 2011, 756 133, 6642-6649.
(29) Barcelos, R. C.; Pastre, J. C.; Caixeta, V.; Vendramini-Costa, D. 758 B.; de Carvalho, J. E.; Pilli, R. A. Bioorg. Med. Chem. 2012, 20, 3635-759 3651.
(30) Paul, S.; Gorai, T.; Koley, A.; Ray, J. K. Tetrahedron Lett. 2011, 761 52, 4051-4055.
(31) Otwinowski, Z.; Minor, W. In Methods in Enzymology;Carter, C. 763 W., Sweet, R. M., Eds.; Academic Press: London, 1997; Vol. 276, Part 764 A, pp 307-326.
(32) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; 766 Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G.; Polidori, G.; Spagna, 767 R. J. Appl. Crystallogr. 1999, 32, 115-119.
(33) Sheldrick, G. M. SHELX-97, Program for Crystal Structure 769 Refinement; University of Gottingen: Germany, 1997.
(34) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.

[^0]: Received: July 12, 2015

