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Abstract 

Regional characterization of the continental crust has classically been performed through either 
geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques 
fully integrated, due to limits of data coverage, quality, and/or incompatible datasets. We 
combine geologic observations, geochemical sampling, and geophysical surveys to create a 
coherent 3D geologic model of a 50 × 50 km upper crustal region surrounding the Sudbury 
Neutrino Observatory (SNO) in Canada, which includes, the Southern Province, the Superior 
Province, the Sudbury Structure and the Grenville Front Tectonic Zone. Nine representative, 
aggregate units, of exposed lithologies, are geologically characterized, geophysically 
constrained, and probed with 109 rock samples supported by compiled geochemical databases. A 
detailed study of the lognormal distributions of U and Th abundances and of their correlation 
permits a bivariate analysis for a robust treatment of the uncertainties. A downloadable 3D 
numerical model of U and Th distribution, defines an average heat production of 1.5+1.4

-0.7 
µW/m3, and predicts a contribution of 7.8+8.4

-3.2 TNU (a Terrestrial Neutrino Unit is one 
geoneutrino event per 1032 target protons per year) out of a crustal geoneutrino signal of 31.2+8.6

-

4.7 TNU. The relatively high local crust geoneutrino signal together with its large variability 
strongly restrict the SNO+ capability of experimentally discriminating among BSE 
compositional models of the mantle. Future work to constrain the crustal heat production and the 
geoneutrino signal at SNO+ will be inefficient without more detailed geophysical 
characterization of the 3D structure of the heterogeneous Huronian Supergroup, which 
contributes the largest uncertainty to the calculation. 

1 Introduction 

Geoscientists map out and define the surface geology and from that predict 3D cross 
sections of regional terrains. Geological mapping in 3D is a fundamental task for understanding 
the potential for economic resources and the geological evolution of a region. Infrequently are 
datasets from these surface campaigns fully integrated into a coherent depth projection using 
data from shallow geophysical surveys. Although geological data of various sorts have been 
collected almost everywhere on Earth, crustal data in most regions have vastly different 
resolution and data types that present challenges to integrate into a coherent 3D picture that 
projects 10+ km into the crust. With the advent of advanced techniques of statistical analysis and 
extensive data collection with comparable uncertainties, it is now possible to integrate many 
different types of information into a single coherent model. The resultant models are useful in 
geophysical modeling (e.g. structural analysis, geodynamic simulations, seismic wave 
corrections, and heat flux), geologic interpretation (e.g. orogenic history, past environments, and 
crustal processes), and particle physics (e.g. geoneutrinos flux and muon tomography). 

We report here a method of integrating available geological, geochemical, and 
geophysical data into a coherent 3D model of the upper crust of the Sudbury region of Canada 
(see supporting information Dataset S1). Our efforts build on a previous study [Huang et al., 
2014], hereafter H14, that developed a 3D model of the thick LOcal Crust belonging to the 6°× 
4° (~440 km x 460 km total area) region centered near Sudbury (hereafter defined as LOC) 
(Figure 1). H14 found that the Huronian Supergroup of the Southern Province was chemically 
and lithologically heterogeneous and revealed marked variations in its K, Th, and U contents. 
Consequently, predictions of the abundance and distribution of the heat producing elements in 
this unit came with considerable uncertainties, resulting in a large variability on estimates of the 
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local radiogenic heat power and expected geoneutrino signal at the SNO+ detector located in 
Sudbury. Based on these findings, we performed additional geochemical sampling (112 new 
analyses) of the region and combined these data with the models published in H14 and in 
[Olaniyan et al., 2015], to build a revised 3D high resolution model that describes the Close 
Upper Crust (CUC) corresponding to the 50 km × 50 km area around SNO+. 

2 Motivation 

Motivation of H14 and this study was to build a model that would then be used to 
calculate the expected geoneutrino signal at the SNO+ detector, which is a multipurpose kiloton-
scale liquid scintillation detector located 2092 (± 6) meters underground at SNOLAB outside 
Sudbury [Lozza, 2016; Sonley, 2009]. Integrating the 3D geophysical (i.e. density and spatial 
distribution of units) and geochemical (i.e. K, Th, and U concentrations) data with the existing 
surface data yields a more coherent geological understanding of the regional crust surrounding 
Sudbury.  

Geoneutrinos are electron antineutrinos emitted in beta minus decays, with those 
occurring along the 238U and 232Th decay chains having sufficient energies to be detected [Araki 
et al., 2005]. One of the challenging goals that the SNO+ experiment wants to address in the 
geoneutrino field are the separation of 238U and 232Th geoneutrino spectral components together 
with the distinction between the mantle and the crustal contributions in a global analysis of the 
geoneutrino spectrum, comprising data coming from the ongoing KamLAND [KamLAND 
Collaboration, 2013] and Borexino [Borexino Collaboration, 2015] experiments. Insights into 
the mantle contribution to the geoneutrino signal at any individual detector can be pursued 
provided precise and accurate knowledge of the dominant geoneutrino background, mostly due 
to reactor antineutrinos, and a refined regional-scale model of the continental crust [Baldoncini et 
al., 2015]. 

Understanding the power inside the Earth that drives plate tectonics, mantle convection, 
and the geodynamo are fundamental goals in our science. The emerging field of neutrino 
geoscience provides a new tool by which to define the abundance and distribution of heat 
producing elements inside the Earth. At any given geoneutrino detector that is sited on 
continental crust, the mantle contribution is only 20% to 25% of the total signal [see Figure 2 in 
Šrámek et al., 2016]. Thus, to define the mantle contribution and power of the largely 
inaccessible Earth, it is crucial to understand the specific attributes of the local crustal 
contribution to the signal. Importantly, global geoneutrino models  provide flux maps for the 
Earth [Usman et al., 2015] which will be a reference for discriminating among distinct 
compositional paradigms of the bulk silicate Earth [Dye, 2010; Fiorentini et al., 2007; Šrámek et 
al., 2016]. 

3 Geological setting 

The Close Upper Crust (CUC), i.e. the 50 × 50 km region centered at SNOLAB, is the 
target area of the 3D crustal model constructed for estimating the geoneutrino signal at SNO+. 
The study area is comprised mostly of the Southern Province and Sudbury Structure, and lesser 
areas of the Superior Province and the Grenville Front Tectonic Zone (GFTZ). 

The Southern Province, covering much of the southwestern part of the study area, is 
primarily composed of Huronian Supergroup (HS), a well-exposed Paleoproterozoic succession 
deposited between 2.4 and 2.2 Ga as the result of a partial Wilson cycle with the rifting and 
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development of a southward-facing passive margin [Young et al., 2001]. The HS can reach up to 
12 km of thickness and it is composed of (from bottom to top) the Elliot Lake, Hough Lake, 
Quirke Lake, and Cobalt groups. A generalized stratigraphic column of the formations of HS is 
reported in Figure 5 of [Young, 2013]. The different groups include variable lithologies, such as 
sandstones, mudstones, carbonates, conglomerates, and minor volcanic rocks [Long, 2004; 
2009]. In the study area, the HS is represented primarily by the Elliot Lake Group, a thick 
package of volcanic rocks and deep-water sediments, and the Hough Lake group, a basal 
diamictite that fines upward from mudstone to sandstone. The upper formation of the Hough 
Lake Group, the Mississage Fm., representing 18% of the total studied area, is made up of 
medium to coarse grained, arkosic to subarkosic sandstones. In the southwest area, carbonate 
rocks of the Quirke Lake group outcrop in a relative small portion of the study area, while the 
Cobalt Group is almost absent. The supracrustal rocks of the HS are intruded by the mafic dikes 
and sills of the Nipssing Gabbro, which are less than 100 m thick, and by felsic intrusions, 
mainly the granitic rocks of the Creighton and Murray plutons [Riller, 2009]. 

Following the HS deposition, a meteorite impact (1.85 Ga) [Therriault et al., 2002] 
caused the formation of the Sudbury Igneous Complex (SIC) that intrudes the HS and that, 
together with the Whitewater group, constitutes the Sudbury Structure. The SIC is 
geographically divided into North, East, and South ranges and the main mass is composed of 
norite, quartz-gabbro, and granophyre. The basin of the impact crater was later filled by the 
Whitewater Group sediments, a 2900 m thick assemblage of breccias, hypabyssal intrusions, 
carbonaceous sediments, and turbidity sequences [Rousell and Card, 2009].  

In the northwestern part of the studied region are the Archean crystalline rocks of the 
Superior Province, the Levack Gneiss Complex. These high-grade rocks (tonalite-granodiorite 
orthogneiss) form a collar, 0.5 to 5 km wide, around the North and East margin of the SIC. The 
complex is intruded by the felsic plutonic rocks of the Cartier Batholith [Rousell and Card, 
2009]. 

In the southeast corner of the studied area are Grenville Province rocks in a crustal scale 
shear zone (GFTZ) that mark the northwest edge of the Grenville Orogeny. It is interpreted as a 
metamorphic transition comprising gneissic and migmatitic rocks originating from HS 
sedimentary rocks and Nipissing Gabbro that underwent deep metamorphic and granitization 
processes  [Davidson, 1997; Easton, 2016]. 

4 Sampling survey 

Locations of the 112 collected rock samples are reported in Figure 2 (see supporting 
information Table S4) and are projected on the published 1:250,000 scale Bedrock Geology of 
Ontario [Ontario Geological Survey, 2011] used as a guide for the survey. Sample GPS location 
and geological information (e.g. geological formation, lithology granulometry, recognized 
minerals) were recorded. Every sample was collected from fresh outcrops, representative of the 
geological formation, and placed in a polyethylene bag (Figure 3a). Later each sample was 
crushed, sealed in a polycarbonate container (Figure 3b) and left undisturbed for at least 5 weeks 
with the objective of establishing radioactive equilibrium between 226Ra and 222Rn (see Figure 2 
of [Xhixha et al., 2016]).  

Provided the accessibility of the outcrops, the number of the samples collected for each 
cartographic unit was planned on the basis of the exposure area and the estimated volume, taking 
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into account also the proximity to the detector. For each of the 22 cartographic units, identified 
by a Geocode, we report extent area, number of samples collected, and average U and Th 
abundances, with the average ratio between extent area and number of samples being ~15 
km2/sample (Table 1). 

In the CUC area are also homogeneously distributed olivine diabase dikes emplaced 
along faults cutting across the Sudbury Structure having negligible volumes [Tschirhart and 
Morris, 2012]. Although the reference geological map does not report the presence of the dike 
swarm according to its spatial resolution, we chose to collect 3 samples in order to characterize 
these rocks. After checking that the U and Th abundances of these 3 samples (Table 1) are 
compatible with the average abundances of the CUC, we decided to exclude them for the 
geochemical modeling (see Section 6.3) performed with the remaining 109 samples out of the 
collected 112.  

5 Analytical method 

  The radioactive content of the collected samples was measured at the Department of 
Physics and Earth Sciences of the University of Ferrara, with a High Pure Germanium detector 
(HPGe) called MCA_Rad. Analytical details are given in [Xhixha et al., 2016; Xhixha et al., 
2013]. The overall relative uncertainties on the K, eU and eTh (i.e. U and Th assumed in secular 
equilibrium) are of the order of 10%. In the analyzed dataset less than 4% of the samples have 
eU and eTh abundances below the Minimum Detectable Activity (MDA) defined in  [Xhixha et 
al., 2013] and corresponding to about 0.2 µg/g and 0.7 µg/g, respectively (see supporting 
information Table S4). 

Additional analyses of U and Th on 14 of the 112 samples, including those below MDA 
of MCA_Rad, were done at the Department of Geology at the University of Maryland using an 
ICPMS (Thermo-Finnigan Element 2) (see supporting information Table S1). These results are 
reported in supporting information, see Table S2. Aliquots of the samples used for gamma ray 
spectroscopy were powdered and analyzed for U and Th concentrations using a Standard 
Addition method detailed in [Gaschnig et al., 2016]. U and Th concentrations from Standard 
Addition have average relative uncertainty of 3.5%.   

In addition, external calibration analyses using USGS rock standards were conducted for 
some 36 other elements including Th and U. These elements were calculated by comparison to 
external standards that were dissolved alongside the samples. We calculated the counts-per-
second/concentration of the standard(s) using accepted concentrations from GeoReM (Queried 
March 28, 2017). These ratios were compared to counts-per-second for each element within a 
sample to calculate a final concentration (see supporting information Table S5). U and Th results 
from this External Calibration method agree with the Standard Addition method. Uncertainties 
on the External Calibration analysis are 5% or better following [Gaschnig et al., 2016]. 

The U and Th abundances of the 5 samples below the MDA of MCA_Rad are substituted 
by the values from ICPMS technique, which has a sensitivity better than HPGe investigation. 
Taking into account the experimental uncertainties for the remaining 9 samples we observe an 
agreement at 2 sigma level and exclude any systematic effect. The dataset of 112 U and Th 
abundances is therefore composed by 98 and 14 values from the HPGe and ICPMS technique, 
respectively. 
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6 Construction of the model 

The geological unit of the 3D model of the Close Upper Crust (CUC) (see supporting 
information Dataset S1) were defined considering the surface exposure described in the 
published 1:250,000 scale Bedrock Geology of Ontario [Ontario Geological Survey, 2011], 
which is conveniently simplified according to the spatial resolution of the available information 
about crustal structure. The upper crust is subdivided into nine units (Figure 4) on the basis of 
lithology, metamorphism, tectonic events, and evolutional history: 

1) Chelmsford Fm, Whitewater Group (CM); 

2) Onwatin Fm., Whitewater Group (OW); 

3) Onaping Fm., Whitewater Group (OP); 

4) Granophyre, Sudbury Igneous Complex (GN); 

5) Norite-gabbro, Sudbury Igneous Complex (NG); 

6) Cartier Granite (CT); 

7) Huronian Supergroup and minor felsic and mafic Intrusions (HI); 

8) Grenville Front Tectonic Zone rocks (GF); 

9) Gneissic Tonalite suite (GT). 

The CM, OW and OP are respectively the metagraywackes, the pelagic metasedimentary 
rocks and the breccias of the Whitewater Group that fills the Sudbury Basin while the main mass 
of the SIC is constituted by granophyre (GN) and norite-gabbro (NG). The HI, formally 
composed by the HS, includes also minor mafic (Nipissing mafic sills) and felsic intrusions 
(Creighton and Murray granite). The Gneissic Tonalite suite (GT), that is assumed to be 
representative of the rest of the upper crust, is an assemblage of high-grade gneisses rocks 
intruded on the Northwest area by the massive granitic rocks of the Cartier Batholith (CT). In the 
south-eastern portion of the CUC, the GF unit  is characterized by the presence of migmatitic 
rocks, gneisses and felsic intrusions of the GFTZ. The Geocodes associated to each unit  are 
detailed in Table 1. 

6.1 Geophysical modeling 

The crustal structures of the nine units were defined by combination of multiple 
geological and geophysical inputs: (i) the contacts of the simplified geological map (Figure 4), 
(ii) a published digital elevation model [Jarvis et al., 2008], (iii) the map of depth of the top of 
the middle crust reported in H14, (iv) the 2.5D geological models along six profiles used for 
constructing the 3D model reported in [Olaniyan et al., 2015] and (v) five virtual cross sections 
derived from the model developed in H14. 

The surface topography for the CUC region uses the digital elevation model produced by 
the Shuttle Radar Topographic Mission (SRTM) [Jarvis et al., 2008].  

The bottom of the 3D model has a 1×1 km resolution and is the surface of the top of the 
middle crust (Figure 1) determined in H14. The depth map of the top of the middle crust was 
obtained alongside the error estimation map by applying a geostatistical estimator (ordinary 
kriging) to 343 depth-controlling points. These points are derived from refraction surveys 
performed in the region surrounding Sudbury. The P-wave velocity of 6.6 km/s is adopted as a 
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contour to identify the top of the middle crust in 18 refraction lines, two of which (XY and AB 
reported in [Winardhi and Mereu, 1997]) are within the CUC area. The top of the middle crust is 
a 2D input for the construction of the 3D model. The depth of the CUC varies between 16.4 km 
and 20.4 km, with a mean of 18.4 km. The normalized estimation error of the map has an 
average value of 4.7%. 

In [Olaniyan et al., 2015] the 3D model was obtained by integrating a compilation of 
surface and subsurface geologic data with high-resolution airborne magnetic and gravity data. 
The authors evaluated qualitatively high resolution Bouguer gravity data with the computed field 
along with subsurface geologic data and created their cross section profiles. They observed a 
broad correlation between the measured and computed gravity field and found areas of misfit. 
The 2.5D geological models reported in six profiles (AA', BB', CC', CC', EE' and FF' in Figure 
4), are used as inputs for the modeling of the Sudbury Structure. Orientation data and boundary 
surfaces of the units  of the Whitewater group (CM, OP, and OW units) and of the main mass of 
the SIC (GN and NG units) are modeled by extracting the depth-controlling points of the 
boundary surfaces from each profile. 

For the remaining area of the CUC, the 3D geometries of the units were developed in 
H14 on the basis of surface contacts between units and 16 interpreted crustal cross sections of the 
area, with the main inputs from [Easton, 2000] and [Adam et al., 2000]. In this perspective, five 
virtual cross sections (MM', NN', MN, M'N' and OO' in Figure 4) are extracted from H14 and 
used as input for inferring the structure of units  not constrained by inputs from [Olaniyan et al., 
2015]. 

The geological interfaces of the 9 units  are modeled using the interpolator method based 
on potential field theory [Calcagno et al., 2008] and implemented in the software package 
GeoModeller.Using the avaliable data from the geological reference map and that reported in 
[Olaniyan et al., 2015] we reduced interpretional non-uniquiness of the potential field data by 
applying hard geological constraints, including (i) the stratigraphic succession of geological 
formations, (ii) geological contacts, (iii) structural data, and (iv) orientation data. Figure 5  
provides 3D views of the determined geological model. 

The adopted density values for each unit (Table 3) are from the model reported in 
[Olaniyan et al., 2015] and the relative uncertainties from Table 5 in H14. Density of the HI unit 
is obtained from the weighted average of values of sediments (2.70 g/cm3) and mafic rocks (2.88 
g/cm3), assuming that their proportions are respectively 75% and 25% according to the exposure 
surface within the reference geologic map. The GT and GF units are assumed to have density 
equal to the Archean basement value (2.73 g/cm3) reported in [Olaniyan et al., 2015]. 

6.2 Geochemical modeling 

Based on the 109 representative outcrop samples we statistically evaluated the The 
abundances of U and Th in the nine units. Analyses of the SIC and GT units  were combined 
with data from the H14 model and from compiled geochemical databases. 

 For the six  units with more than 10 samples (Table 3), the distribution function of U 
and Th concentrations is graphically evaluated using univariate statistics by means of frequency 
histograms. In order to discriminate the normal and lognormal distributions, the Kolmogorov-
Smirnov (K-S) statistical test was applied, providing a p-value for rejecting the null hypothesis. 
The mean and standard deviation are calculated and used for the geochemical modeling of the 
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other 3 units (CM, OW, and CT), characterized with less than 5 samples, corresponding 
approximately to 1% of the total volume of the CUC. 

The first refinement in the geochemical modeling compared to H14 consisted in the use 
of collected rock samples to describe the chemical composition of the Whitewater Group, a 
sedimentary and volcanic sequence that fills the Sudbury Basin, as 3 different lithographic 
sequences with distinct volumes in the 3D geophysical model (CM, OW, and OP in Figure 4). In 
H14 the Whitewater Group was included with the Huronian Supergroup as a single unit  with 
relatively high U (4.2+2.9

-1.7 µg/g) and Th (11.1+9.2
-4.8 µg/g) abundances. In this study, the 

turbidite wacke of the CM and the siltstone of OW, belonging to the same proximal turbiditic 
sequence, are characterized as a separate lithographic section with the same average U (~ 1 µg/g) 
and Th (~ 5 µg/g) abundances (Table 3), which are slightly lower than in  other sedimentary 
units and this feature reflects their enrichment in carbonate. The breccia and igneous-textured 
rocks of the OP are enriched in U and Th with respect to the rest of the Whitewater group and 
show a normal distribution, with a relative low uncertainty (15%). 

The geochemical inputs for modeling the main mass of the Sudbury Igneous Complex 
come from a combined dataset that includes this study and the compiled database analyzed in 
H14, i.e. ICPMS compositional data reported in [Lightfoot et al., 1997] (see supporting 
information Table S3 and Table S6). Table 2 reports the results of exploratory data analysis 
considering the two datasets separately and all the data together. The central values of U and Th 
abundances agree at 1 sigma level with the values reported in [Mareschal et al., 2017]. Although 
the previous and the new data are characterized by different sources, measurement methodology, 
and sampling strategies, our analysis demonstrate that the two datasets belong to the same 
population and can be treated as a single distribution. In the SUC, the U (2.0+0.4

-0.2µg/g) and Th 
(10.5+1.3

-1.1 µg/g) abundances associated to the "Sudbury Igneous Complex" unit are obtained by 
equally weighting the values of the GN and NG units , in agreement with the mixing reported in 
H14. 

The dataset adopted for the geochemical characterization of the Huronian Supergroup 
and minor felsic and mafic Intrusions unit  (HI in Figure 4) includes 41 samples belonging to the 
Huronian Supergroup (Geocode 17b, 18a, 18c, 19a, 19b, 20a, 20b, 21) and the 10 rock samples 
representative of the minor mafic (Geocode 23d, Nipissing mafic sills) and felsic intrusions 
(Geocode 30a, Creighton and Murray granite). The frequency histograms and K-S test (Figure 
6) indicate that the U and Th concentrations in the HI unit are positively skewed and fit a 
lognormal distribution. The parameters, µ and σ, obtained from the lognormal probability density 
function (Figure 6) give the central tendency and the asymmetrical uncertainties of U and Th 
abundances (Table 3). The U and Th abundances of the HI unit in the CUC are 2.3+4.0

-1.5 µg/g 
and 8.0+15.3

-5.3 µg/g respectively. This lower, revised estimate for the Huronian Supergroup, as 
compared to that reported in H14, results from a targeted and refined collection of samples 
specifically aimed at the geochemical characterization of the unit. In H14 Huronian Supergroup 
samples had an anomalous geographical distribution since they were collected only in the 
western portion of the study area. At the same time, there was an additional lithographic bias as 
the extensive amount of arkose and quartz arenites in the Mississage Fm. close to SNO+ was not 
characterized with a proportionate number of samples. 

Although the Gneissic Tonalite suite unit (GT in Figure 4), constituted by tonalitic gneiss 
and minor paragneiss, is only the 4 % of the area of the CUC, it is supposed to be representative 
of the high-grade gneissic rock of the rest of the upper crust [Huang et al., 2014]. The GT unit 
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has limited exposure (Table 1) in the northwest, but comprises 63.7% of the volume of the CUC 
(Table 3). Due to its relevance for estimating the geoneutrino signal, data from the 9 collected 
samples were integrated with 37 other samples (supporting information Table S7) extracted from 
compiled databases [Ayer et al., 2010; Beakhouse, 2011; Berger, 2012] on the base of both 
lithologic and geographic criteria. The final dataset includes the tonalite gneiss samples,  
attributed to Geocode 11 (gneissic tonalite suite) and Geocode 12 (foliated tonalite suite) of the 
reference map. The same statistical analysis adopted for the HI unit was applied to the updated 
GT unit, which shows a lognormal distribution for U and Th concentrations (Figure 7) and agree 
with the values adopted for the modeling of the "Tonalite/tonalite gneiss" unit in H14 (0.7+0.5

-0.3 

µg/g for U and 3.1+2.3
-1.3 µg/g for Th). 

The composition of the Cartier Granite unit,  (CT in Figure 4) which is characterized by  
a poor exposure (Table 1) and a relatively small volume in the CUC (Table 3), is inferred from 
the analysis of 2 samples. The U and Th abundances measured are in agreement with the range 
reported in Table 1 of [Meldrum et al., 1997] and that for the "Felsic intrusion" unit of H14. 
These rocks have an anomalous high average Th/U ratio of ~32 compared to average continental 
crust Th/U = 4.3 [Rudnick and Gao, 2003]. 

The 10 samples from the Grenville Front Tectonic Zone unit (GF in Figure 4), occupying 
the southeast portion of the Close Upper Crust and corresponding to 1.8% of the total volume, 
have significant compositional variability (Table 1) linked to the different lithologies (gneisses, 
felsic, mafic and migmatitic rocks). Results of K-S statistical tests reveal their U and Th 
abundances and uncertainties are lognormally distributed (Table 3). 

7 Geoneutrino signal calculation 

Predicting a geoneutrino signal at a detector depends upon: (1) the abundance and 
distribution of Th and U, (2) propagation of the electron antineutrino from the decay point to the 
detector, and (3) detection of the particle via the Inverse Beta Decay (IBD) reaction within the 
detector. The final 3D crustal model for the CUC was divided into cells of 0.1 km × 0.1 km × 0.1 
km dimensions, for a total of about 5 × 107 voxels (see supporting information Dataset S1). 
Spatial, geophysical, and geochemical attributes were assigned to each voxel.   

The activity of the individual isotopes (i.e. the average number of decays occurring per 
unit time) for each voxel was computed by dividing the number of radioactive nuclei by the 
corresponding radioisotope mean lifetime, the former estimated on the base of the radioisotope 
abundance and the volumetric density defined by the 3D model. The geoneutrino flux reaching 
SNO+ is then calculated by applying the isotropic 1/4r2 spherical scaling factor, weighted for 
the corresponding geoneutrino spectrum (normalized to the number of geoneutrinos emitted per 
decay) [Fiorentini et al., 2007], and oscillated by the electron antineutrino three-flavor survival 
probability calculated with sinθ12= 2.97∙10-1, sinθ13 = 2.15∙10-2, δm2 = 7.37∙10-5 eV2 [Capozzi et 
al., 2017].  

Finally, the geoneutrino signal (in TNU) and spectra (Figure 9) originating from each 
cell are calculated combining U and Th oscillated geoneutrino fluxes with IBD cross section. 
The predicted geoneutrino signals originating by U and Th in the 9 units of the CUC are reported 
in (Table 4). The geophysical and geochemical uncertainties associated to each unit are 
propagated to obtain the geoneutrino signal uncertainties.  
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Geochemical uncertainties on the geoneutrino signal were estimated taking into account 
correlations between U and Th abundances (Table 3) and their distributions as follows. 

 For the GT, HI, NG and GF units a bivariate normal distribution describing the 
joint (ln(U), ln(Th)) Probability Density Function (PDF) was built. For each unit 
the adopted statistical parameters are the logarithmic U and Th mean and sigma 
values calculated from the abundances reported in Table 3, and the logarithmic U 
and Th covariance coefficient determined from U and Th concentrations of 
individual samples. 

 For the GN unit a bivariate normal distribution characterizing the joint (U, Th) 
PDF was modeled. The statistical parameters are the mean and sigma values 
reported in Table 3 for U and Th and the covariance coefficient determined from 
U and Th concentrations of individual samples.   

 For the OP unit the r = -0.15 correlation coefficient indicates a non-evident 
correlation among U and Th abundances (Table 3): the U and Th geochemical 
distributions are separately modeled as individual normal PDFs having as U and 
Th mean and sigma the values reported in Table 3. 

 For the OW, CM and CT units the number of collected samples is not sufficient 
for establishing a correlation between U and Th concentrations. For each unit the 
U and Th geochemical distributions are built as distinct normal PDFs having as U 
and Th mean and sigma the values reported in Table 3. 

The mentioned geochemical PDFs together with the geophysical uncertainties  are the 
input ingredients of a Monte Carlo uncertainty propagation procedure: by performing 104 Monte 
Carlo iterations, the U, Th, and total geoneutrino signal distributions have been built, which are 
characterized by the median ± 1 values reported in Table 4. 

We used the same approach for predicting the geoneutrino signals and their uncertainties 
for the SUC (Figure 1), the Local Middle Crust (LMC), and the Local Lower Crust (LLC) 
(Table 5) which takes into account the geophysical and geochemical inputs reported in Table 4 
of H14. The only exception is that of "Sudbury Igneous Complex", which we assigned U and Th 
abundances on the base of the geochemical considerations described in Section 6.2. 

The calculated geoneutrino signal of the Far Field Crust (FFC; Figure 1) and Continental 
Lithospheric Mantle (CLM) (Table 6) are described in [Huang et al., 2013] and updated with 
oscillation parameters from [Capozzi et al., 2017]. 

8 Heat production 

According to [Mareschal et al., 2017] the CUC is located in a geothermally anomalous 
region, the Sudbury Structure with a mean heat flux of 50 ± 7 mW/m2; this flux is larger than the 
flux typical of the Superior Province  of 40 ± 8  mW/m2. The bulk crustal radioactivity has been 
estimated through inversion of heat flux measurements [Perry et al., 2009], however this 
approach yields a non-unique constraint for modeling the geoneutrino flux. The energy released 
by K, Th, and U decay chains  provides the crustal radiogenic power, whereas the current 
geoneutrino detection method (i.e. Inverse Beta Decay reaction) only  measures geoneutrinos 
produced by U and Th decay chains. Estimating the geoneutrino signal from heat flux data 
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requires, among others, the following inputs: (i) the Moho heat flow, (ii) the amount of heat 
producing elements in the crust, (iii) heat flux data from deep boreholes and (iv) models that 
constrain horizontal and vertical heat transport.  

Given the U, Th and K abundances and lithologic densities, one can calculate the 
corresponding heat production per unit volume, H: 

 

where concentrations of [U] and [Th] are in µg/g, and [K] is in %, and ρ is density in 
g/cm3. Adopting the element specific heat generation in µW/g from [Dye, 2012], the 
geochemical abundances in Table 1 and the densities in Table 3, we calculated the H values for 
each Geocode of the geological reference map in the CUC (Figure 2).  

A heat flux map does not discriminate heat production contributions of U and Th (HU+Th) 
from K (HK) and such maps have an inherent problem with accurately predicting a geoneutrino 
signal. In typical crustal rocks, contributions to surface heat flux from K heat production can 
represent up to 30% of the total signal. Uncertainty estimates from HK/H can vary significantly 
among different lithologies. The Mississage Fm. of the Huronian Supergroup and the Onaping 
Formation of the Whitewater Group, which together cover more than 30% of the CUC area 
(Table 1), have HK/H ~ 10%, whereas the GT unit, which occupies 63.7% by volume of the 
Close Upper Crust, has a HK/H ~ 22%. Mafic and ultramafic intrusive rocks of HS and 
sandstones of Serpent Fm. have HK/H ~ 4 % and HK/H ~ 29 % respectively. 

 Our distribution of H values (Figure 8)  are comparable with that  reported in Figure 4 of 
[Phaneuf and Mareschal, 2014]. Even though the study area in [Phaneuf and Mareschal, 2014] 
is wider than the CUC, the histograms of spatial frequency of H show comparable lognormal 
distributions (Figure 8) with central values that are compatible at the 1 level. 

Heat production for the Granophyre and Norite Gabbro subunits of the SIC are 2.3 ± 0.3 
µWm-3 and 1.0 ± 0.5 µWm-3, respectively (Table 1),  coincident with that reported in Table 5 of 
[Mareschal et al., 2017]. The predicted mean heat production of the Sudbury Igneous Complex 
is 1.6 ± 0.6 µWm-3, consistent with  it being a melt sheet of upper crustal (high heat production) 
[Darling et al., 2010] and lower crustal (low heat production) [Mungall et al., 2004] lithologies.  
The average heat production in the CUC, weighted according to our 3D model, is 1.0+0.8

-0.3 
µWm-3. Adding contributions from the Middle and Lower crust yields a total heat production 
above the Moho of 0.7+0.4

-0.2 µWm-3. 

9 Discussion 

With the aim of improving our model ofthe geoneutrino flux originating from units 
surrounding SNO+, we initiated a strategy of dense sampling The strength of the adopted 
approach is to prevent a potential bias introduced by compiling literature data [Huang et al., 
2014; Phaneuf and Mareschal, 2014] that are often motivated by other sampling strategies  (e.g. 
mineral exploration). The Bedrock Geology of Ontario map [Ontario Geological Survey, 2011] 
provided a functional spatial scale for geoneutrino studies in the CUC. This map guided our 
statistical sampling of units, set the rationale for  identifying the independent units , and guided 
us in establishing  the building blocks of the presented model. The sampling resolution (i.e. 1 
sample for 15 km2) adopted here for each cartographic unit was proportional to its surface extent. 

      3( ) 0.0985 0.0263 0.0333H Wm U Th K     
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In H14 the unit including the Huronian Supergroup was  predicted to be the dominant 
near-field, crustal source of the geoneutrino signal at SNO+ and thus it was systematically 
studied and sampled to improve our knowledge of its composition. The results of the current 
study highlight the intrinsic heterogeneity of this unit, and the lognormal distribution of U and 
Th abundances (2.3+4.0

-1.5 µg/g and 8.0+15.3
-5.3 µg/g respectively) and its excellent U-Th 

correlation (r = 0.95). Any further modeling of the geoneutrino signal at SNO+, following the 
methodology of this study and H14, will be ineffective without further geophysical 
characterization of the chemically heterogeneous Huronian Supergroup. It is a complex mixture 
of different lithologies that records cyclic deposition during its 200 Ma  development  towards 
becoming a passive margin. Glacial events, metamorphic processes, and cross-cutting volcanic 
fissure-type eruptions have allover-printed this stratigraphic sequence leaving a challenging 
riddle for geological community. 

In geochemical and environmental surveys, highly incompatible trace elements, such as 
U and Th, generally follow right skewed distributions: this observation triggered a scientific 
debate on the a priori adoption of lognormal tendency to describe a statistical population 
[Ahrens, 1954; Reimann and Filzmoser, 2000]. The deviation from normality has serious 
consequences for the statistical treatment of geochemical data since the widespread practice of 
using the mean and the standard deviation presupposes that data have a Gaussian distribution. In 
this study, we applied Kolmgorov-Smirnov statistical tests revealing lognormal tendencies of U 
and Th for the majority of the modeled units (Table 3). Where a strong correlation between 
logarithmic U and Th was observed, a bivariate analysis for the calculation of geoneutrino signal 
was performed [Fogli et al., 2006], leading to a refinement of the signal uncertainty estimation. 

The bulk crust geoneutrino signal expected at SNO+, corresponding to 31.2+8.6
4.7 TNU, 

can be expressed as the sum of two comparable and independent contributions, the signal from 
the 6° x 4° crust surrounding  SNO+  (LOC) (15.4+8.4

-3.6 TNU) and the signal from the rest of 
global crust (FFC) (15.2+2.7

2.4 TNU) (Table 6). U and Th in the CUC contributes 51% of the 
signal (Table 5) of the LOC. The signal from the CLM beneath the Mohorovičić discontinuity is 
calculated according to the model described in [Huang et al., 2013] (Table 6). 

The overall antineutrino spectrum  includes the geoneutrino and the reactor antineutrino 
components (Figure 9), which are modeled according to the predictions discussed in [Baldoncini 
et al., 2016].  The different  portions of geoneutrino spectra contributed by LOC and FFC, 
particularly in the energy region [1.81 - 2.25 MeV] highlight how differences in Th/U of these 
two crustal components affect the geoneutrino spectrum expected at SNO+. 

The mantle geoneutrino spectrum (Figure 9) was built according to a BSE (Bulk Silicate 
Earth) model constrained by the relative abundances of the refractory lithophile elements in 
chondritic meteorites [McDonough and Sun, 1995], producing a mantle signal of 6.9+2.7

-2.5 TNU. 
Competing compositional models for the BSE estimate markedly dissimilar radiogenic 

power (Q) due to differences in amount of Th and U predicted in the Earth. These estimates were 
classified [Dye et al., 2015; Šrámek et al., 2013] as low Q, e.g. [Javoy et al., 2010] [O'Neill and 
Palme, 2008] (8 ± 2 TW), medium Q, e.g. [McDonough and Sun, 1995] (16.6 ± 3.0 TW), and 
high Q, e.g. [Turcotte and Schubert, 2002] (26 ± 3 TW) models. The estimated mantle 
geoneutrino signal for low-Q and high-Q models at SNO+ are 3.0 ± 0.7 TNU and 13.5+2.6

-2.3 
TNU, respectively. The 1σ uncertainty of geoneutrino signal predicted by LOC encompasses 
both low and high Q mantle signals, restricting the potential of SNO+ to discriminate between  
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BSE compositional models on the basis of experimental results. On the other hand, by 
integrating mantle compositional data from Borexino [Agostini et al., 2015] and KamLAND 
[Šrámek et al., 2016], the results from SNO+ can most usefully be used to resolve U and Th 
composition of local upper crust belonging to the Southern Province. 
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Table 1. Summary of the Geocode units, aerial extent, number of sample (N), and average and 41 
uncertainties of element abundances. Geocodes of the reference geological map are reported for 42 
the corresponding unit abbreviation and the area of the exposed surface. For Geocodes with more 43 
than 10 samples the central value and the uncertainty for K, U, and Th abundances are derived 44 
from a normal or lognormal distribution fit inferred from the Kolmogorov-Smirnov test (see 45 
section 6.2); for the other Geocodes we report the mean and the standard deviation. The 46 
uncertainty of the Geocode with 1 sample corresponds to the statistical uncertainty of the HPGe 47 
measurement. 48 

Unit  Geocode Group and Formation 
Area 
(km2)

Area (%) N K ± σ (%) U ± σ (µg/g) Th ± σ (µg/g)

GT 11 Gneissic tonalite suite 91.5 3.7 9 1.21 ± 0.65 0.6 ± 0.9 2.8 ± 3.5 

CT 15 Cartier granite 62.2 2.5 2 4.55 ± 0.28 1.8 ± 1.1 56.9 ± 27.3 

HI 

17b 
HS; Mafic and ultramafic intrusive 
rocks and mafic dikes 

8.2 0.3 1 0.32 ± 0.03 2.0 ± 0.2 3.2 ± 0.4 

18a HS; Elliot Lake Group; McKim Fm. 121.9 4.9 7 1.94 ± 1.00 5.0 ± 3.0 16.2 ± 8.4 

18c HS; Elliot Lake Group; volcanic rocks 125.3 5.0 6 3.30 ± 1.38 5.9 ± 3.2 23.2 ± 11.4 

19a HS; Hough Lake Group; Mississage Fm. 442.4 17.7 18    

19b HS; Hough Lake Group; Pecors Fm. 41.9 1.7 4 1.37 ± 1.49 2.9 ± 1.1 9.2 ± 4.3 

20a HS; Quirke Lake Group; Serpent Fm. 15.5 0.6 1 2.45 ± 0.15 0.9 ± 0.1 4.2 ± 0.5 

20b HS; Quirke Lake Group; Espanola Fm. 32.3 1.3 3 3.48 ± 0.86 3.7 ± 0.7 12.5 ± 2.1 

21 HS; Cobalt Group 4.6 0.2 1 1.59 ± 0.17 1.6 ± 0.2 3.1 ± 0.4 

23d 
Mafic and related intrusive rocks and 
mafic dikes 

88.0 3.5 6 0.70 ± 0.51 0.4 ± 0.3 1.7 ± 1.0 

30a Felsic intrusive rocks 53.6 2.1 4 4.36 ± 0.25 5.9 ± 2.4 36.2 ± 6.4 

- Sudbury Dyke Swarm; olivine diabase - - 3 0.48 ± 0.03 0.9 ± 0.5 4.0 ± 2.8 

CM 28a Whitewater Group; Chelmsford Fm. 153.1 6.1 4 1.29 ± 0.29 1.1 ± 0.1 5.1 ± 0.7 

OW 28b Whitewater Group; Onwatin Fm. 160.1 6.4 2 2.19 ± 0.35 1.1 ± 0.1 5.2 ± 1.4 

OP 28c Whitewater Group; Onaping Fm. 343.3 13.7 12 1.83 ± 0.95 3.1 ± 0.6 8.2 ± 1.0 

GN 29a SIC; granophyre 241.7 9.7 10 3.18 ± 0.40 3.4 ± 0.5 15.1 ± 2.4 

NG 29b SIC; norite-gabbro 157.9 6.3 9 1.21 ± 0.08 1.3 ± 0.8 6.8 ± 4.3 

GF 

30b Felsic intrusive rocks 126.8 5.1 3 4.15 ± 0.24 6.8 ± 5.8 31.0 ± 17.5 

40 Mafic rocks 16.7 0.7 1 0.96 ± 0.06 1.3 ± 0.1 4.9 ± 0.5 

41 
Migmatitic rocks and gneisses of 
undetermined protolith 

124.0 5.0 5 2.41 ± 0.14 2.7 ± 2.3 13.0 ± 12.1 

43 Felsic igneous rocks 18.5 0.7 1 2.33 ± 0.14 2.9 ± 0.3 4.6 ± 0.5 

 49 
  50 

1.65

0.791.52


2.4

1.22.2


7 .5

3.56.6 
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Table 2. Exploratory data analysis results for U and Th abundance of the GN and NG units  
which compose the main mass of the SIC (Figure 4). 

Dataset 

Sudbury Igneous Complex 

Granophyre (GN) Norite-gabbro (NG) 

Number 
of samples 

U ± σ 
[µg/g] 

Th ± σ 
[µg/g] 

Number 
of samples 

U ± σ 
[µg/g] 

Th ± σ 
[µg/g] 

H14 25 3.3 ± 0.2 14.9 ± 1.0 99 1.3 ± 0.4  

This study 10 3.4 ± 0.5 15.1 ± 2.4 9 1.3 ± 0.8 6.8 ± 4.2 

All data  35 3.3 ± 0.3 15.0 ± 1.5 108  

 

Table 3. Summary of geochemical and geophysical properties of the units . For each modeled 
unit  the geophysical properties (volume, density and mass) and the U and Th abundances are 
reported together with the number of samples used for their characterization. The mass 
uncertainty is obtained by summing the volume uncertainty from the estimation errors of the 
depth to the top of the middle crust, i.e. 4.7%, and the density uncertainty derived from H14. The 
correlation coefficient r, with the exception of  GN and OP units, is calculated assuming 
logarithmic distribution of the U and Th abundances. 

 
  

1.9
1.55.9


0 .6
0 .41 .2 


2.1
1.55.9



Unit  
Volume 
[103km3] 

Volume 
[%] 

Density 
[g/cm3] 

Mass 
[1015kg] 

Number of 
samples 

U ± σ 
[µg/g] 

Th ± σ 
[µg/g] 

r 

GT 29.69 ± 1.40 63.7 2.73± 0.08 81.05± 5.01 46  0.81 

HI 10.52 ± 0.49 22.6 2.75± 0.04 28.93± 1.79 51  0.95 

NG 2.64 ± 0.12 5.7 2.83 ± 0.10 7.47± 0.46 108  0.84 

GN 1.43 ± 0.07 3.1 2.70± 0.10 3.86 ± 0.32 35 3.3 ± 0.3 15.0 ± 1.5 0.58 

OP 0.94 ± 0.04 2.0 2.77± 0.04 2.60± 0.22 12 3.1 ± 0.6 8.2 ± 1.0 -0.15 

GF 0.83 ± 0.04 1.8 2.73± 0.08 2.27± 0.12 10  0.89 

OW 0.30 ± 0.01 0.6 2.68± 0.04 0.80± 0.05 2 1.1 ± 0.01 5.2 ± 1.5 - 

CM 0.23± 0.01 0.5 2.75 ± 0.04 0.62 ± 0.05 4 1.1 ± 0.1 5.1 ± 0.7 - 

CT 0.04 ± 0.002 0.1 2.65± 0.02  0.11± 0.01 2 1.8 ± 1.1 56.9 ± 27.3 - 

1.0
0 .40 .7 


6 .0
1 .92 .7 



4.0
1.52.3


15 .3
5 .38 .0 



0.6
0.41.2 


2 .1
1 .65 .9 



3 .4
1 .52 .7 


17.3
6.710.9
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Table 4.  Geoneutrino signals and uncertainties (σ) in TNU for uranium (SU), thorium (STh) and 
total signals (STOT) for the 9 units  of the CUC. In the first two columns are reported the 
geoneutrino signals from U (GU) and Th (GTh) calculated with unitary abundances. 

Unit  GU ± σ GTh ± σ SU ± σ STh ± σ STOT ± σ 

GT 0.70 ± 0.05 0.041 ± 0.003 0 .7
0 .30 .5 


 0.24

0.070.11


 0 .9
0 .40 .6 


 

HI 1.66 ± 0.10 0.112 ± 0.007 6 .7
2 .43 .8 


 1 .7

0 .60 .9 


 8 .4
3 .04 .7 


 

NG 0.62 ± 0.05 0.042 ± 0.003 0 .4
0 .20 .8 


 0 .09

0 .070 .23 


 0 .4
0 .31 .0 


 

GN 0.17 ± 0.01 [1.16 ± 0.10] × 10-2 0 .09
0 .070 .56 


 0.15 ± 0.02 0.71 ± 0.08 

OP [6.5 ± 0.4] × 10-2 [4.2 ± 0.3] × 10-3 0.20 ± 0.04 [3.50 ± 0.40] × 10-2 0.24 ± 0.04 

GF [1.4 ± 0.1] × 10-2 [7.9 ± 0.6] × 10-4 3 .5 2
1 .52 .6 1 0 

   
 1 .4 2

0 .50 .9 1 0 
   

 4 .5 2
2 .13 .6 1 0 

   
 

OW [1.55 ± 0.10] × 10-2 [9.8 ± 0.6] × 10-4 [1.70 ± 0.02] × 10-2 [0.51 ± 0.15] × 10-2 [2.2 ± 0.2] × 10-2 

CM [1.24 ± 0.08] × 10-2 [7.8 ± 0.5] × 10-4 [1.37 ± 0.15] × 10-2 [0.40 ± 0.06] × 10-2 [1.8 ± 0.2] × 10-2 

CT [2.03 ± 0.12] × 10-4 [1.05 ± 0.06] × 10-5 [0.4 ± 0.2] × 10-3 [0.6 ± 0.3] × 10-3 [1.0 ± 0.4] × 10-4 

Table 5. Summary of geoneutrino signals and uncertainties (σ) in TNU from uranium (SU), 
thorium (STh), and total signals (STOT) for different components of the LOcal Crust (LOC). Local 
Upper Crust (LUC), Close Upper Crust (CUC), Surrounding Upper Crust (SUC), Local Middle 
Crust (LMC), and Local Lower Crust (LLC) are the building blocks defined in Figure 1 and 
used for modeling the crust surrounding SNO+. 

  SU ± σ STh ± σ STOT ± σ 

LUC 
CUC 6.8

2 .66 .2 


 1 .7
0 .61 .6 


 8 .4

3 .27 .8 


 

SUC 1 .0
0 .74 .1 


 0 .4

0 .31 .0 


 1 .1
0 .85 .2 


 

LMC 0 .5
0 .30 .9 


 0 .2

0 .10 .3 


 0.6
0 .41 .2 


 

LLC 0.3
0 .20 .4 


 0 .2

0 .10 .2 


 0 .4
0 .20 .6 


 

Total 6 .8
2 .91 2 .1 

  
1 .8
0 .93 .3 

  
8 .4
3 .61 5 .4 

  

Table 6. Summary of the total geoneutrino signal and uncertainties (σ) in TNU from the 
different components of the lithosphere. 

 STOT ± σ

LOC 8 .4
3 .61 5 .4 



FFC 2 .7
2 .41 5 .2 



Bulk Crust 8.6
4.731 .2 



CLM 3 .0
1 .32 .1 



Lithosphere 9 .8
5 .53 4 .3 
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Figure 1. The crustal geoneutrino signal expected in SNO+ is calculated considering the Far 
Field Crust (FFC, the rest of the Earth’s crust not included in the studied 6° × 4° region) and the 
Local Crust (LOC, the 6°× 4° regional area under study). Adopting the same structure of H14, 
the LOC is subdivided in Local Lower Crust (LLC), Local Middle Crust (LMC) and LUC (Local 
Upper Crust). In this study the closest 50 × 50 km region, the Close Upper Crust (CUC), is 
investigated. 

Figure 2. Location of the 112 rock samples. Rocks samples are collected in the CUC (inner box) 
and projected onto the Bedrock Geology of Ontario [Ontario Geological Survey, 2011] (HS = 
Huronian Supergroup, WG = Whitewater Group, SIC = Sudbury Igneous Complex, CGB = 
Central Gneiss Belt). (Cartographic reference system NAD1927 UTM Zone 17N). 

Figure 3. Rock sample of lapilli tuff (Geocode 28c, Onaping Fm.). Each sample was collected 
from fresh outcrop (a) and then crushed and sealed in polycarbonate box of 180 cm3 of volume 
(b). 

Figure 4. Geophysical inputs used for the construction of the 3D model. The 6 cross sections 
derived from [Olaniyan et al., 2015] (AA', BB', CC', DD', EE', FF') and the 5 cross sections 
extracted from the H14 model (MM', M'N', NN', MN, OO') are projected on the simplified 
geological map. The dashed line represents the boundary of the CUC. (Cartographic reference 
system NAD1927 UTM Zone 17N). 

Figure 5. Views of the 3D model in GeoModeller. The 3D model takes into account contacts, 
structural data, and orientation data and follows  the order of the stratigraphic succession of 
geologic units. Color of units  is the same as in Figure 4. (Cartographic reference system 
NAD1927 UTM Zone 17N). 

Figure 6. Frequency histograms for U (upper-left panel) and Th (lower-right panel) 
measurements of HI fitted with a lognormal distribution and for the logarithm abundances fitted 
with a normal distribution. The p-value obtained from the K-S test and the parameters of the fit 
(µ and σ), considering a lognormal or a normal distribution, are reported in the table on the 
upper-right panel together with the result in terms of abundances (a) and uncertainties. The plot 
of the correlation of U and Th abundances and the result of the fit are reported in the lower-left 
panel, where the error bars refer to experimental uncertainty during measurement 

Figure 7. Frequency histograms for U (upper-left panel) and Th (lower-right panel) 
measurements of GT fitted with a lognormal distribution and for the logarithm abundances fitted 
with a normal distribution. The p-value obtained for the K-S test and the parameters of the fit (µ 
and σ), considering a lognormal or a normal distribution, are reported in the table on the upper-
left panel together with the result in term of abundances (a) and uncertainties. The plot of the 
correlation of U and Th abundances and the result of the fit are reported in the lower-left panel 
(triangles refer to samples collected in this study; dots refer to data from compiled databases). 

Figure 8. Spatial distribution of H values in the CUC is reported in the lower-left panel. In the 
table are reported the parameters (µ and σ) of the fit considering a lognormal or a normal 
distribution of the spatial frequencies obtained in this study (upper-left panel) and in [Phaneuf 
and Mareschal, 2014] (lower-right panel) (P14) together with the results in term of H and its 
uncertainties. 
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Figure 9. Antineutrino spectra expected at SNO+. The geoneutrino spectra are subdivided into 
the components of LOC (red), FFC (blue) and mantle (green) which includes CLM. The reactor 
antineutrino spectrum is modeled according to [Baldoncini et al., 2016] and summed to the 
geoneutrino components to obtain the total antineutrino spectrum (black).  

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Figure 1.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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