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Abstract

So far, the study of gear contacts in lightly loaded gears by means of vibration analysis has not been suffi-
ciently addressed in the literature. Indeed, the complex nature of the physical phenomena involved makes
the vibration analysis extremely challenging. This paper deals with the development and the validation of
an approach for the contact pattern assessment in straight bevel gears within a pass/fail decision process.
The proposed methodology is based on blending vibration-based condition indicators with classification
algorithms in order to discriminate proper contact patterns from improper ones. Specifically, three different
classification algorithms have been investigated: the Naive Bayes classifier, the weighted k-Nearest Neigh-
bors classifier and a novel classifier proposed by the authors. The classifier accuracies are evaluated with
a MC cross-validation that includes an extended experimental campaign consisting of more than one hun-
dred different straight bevel gear pairs. The results show that the proposed classifier is superior to the other
considered classifiers in terms of average accuracy. Finally, this manuscript proposes an original methodol-
ogy that provides a reliable and quick assessment of the contact pattern in straight bevel gears considering
different speeds, gear parameters and surface finish.
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1. Introduction1

Straight Bevel Gears (SBGs) play a crucial role in the field of mechanical power transmissions, with2

particular regard to vehicle transmissions [1]. Two common examples of SBG applications are differential3

drives or anytime power must be transmitted between incident axes.4

One of the most important parameters about SBG performances in terms of vibrations and durability is5

the contact pattern whereby forces and motion are transmitted. In the industrial context, it is a matter of6

fact that the contact pattern tests are still widely used for the final state assessment of SBGs [2]. Briefly,7

these tests consist in the inspection of the traces left on the tooth faces by two meshing gears mounted on8

a dedicated test-rig where the teeth are coated with a marking compound. The contact pattern evaluation9

allows to detect manufacturing errors depending on the trace characteristics, particularly shape and position.10

Moreover, the contact pattern tests can be used to detect assembling errors. In fact, the bevel gears can be11

assembled with different mounting distances but only the design mounting distance guarantees the correct12

meshing that implies quiet functioning, low vibration levels and endurance. The manufacturing errors can13

cause deviations on the correct mounting distances and, as a consequence, produce endurance issues due to14
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wear phenomena and uneven distribution of the forces among teeth. Despite the contact pattern test is quick15

and does not require particular measurement instruments, it is almost completely subjective and strongly16

relies on the tester experience and on the test conditions [3]. Hence, there is an urgent need to update the17

contact pattern inspections with objective and advanced tools.18

In this scenario, vibration analysis is a powerful approach in order to detect anomalies in gears. The aca-19

demic interest about gear fault identification by means of vibration analysis is evinced by the large number of20

research works about this topic gathered in more than five decades [4]. Nowadays, several well-established21

signal processing techniques are available for the detection and identification of localized and distributed22

gear faults. It is worth to mention (second-order) cyclostationary analysis [5, 6], phase-amplitude demodu-23

lation [7], time synchronous averaging [8] (TSA), cepstral analysis [9], blind deconvolution methods [10],24

auto-regressive models [11], spectral kurtosis [12] and Empirical Mode Decomposition algorithms [13].25

Recently, the combination of pattern recognition techniques and statistical indicators has become a conve-26

nient methodology for the diagnosis of gears [14–17]. This strategy answers the need for characterizing27

complex physical phenomena (e.g. wear in gears) through vibration analysis without an explicit knowledge28

or explanations of how these phenomena manifest within the vibration signature.29

The specialized literature offers a number of papers focusing on the development of contact pattern30

models of SBG [18–20]. The state of the art reported in Refs. [18–20] shows that great attention has31

been devoted on modeling teeth contacts in SBGs. In general, the contact pattern can be predicted through32

cutting simulations and analytical models Kolivand et al. [20]. Generally, these approaches do not include33

the possible deviations from the ideal tooth flank geometry - due to manufacturing errors or assembling34

errors, for instance - which usually occur in real scenarios. Moreover, these models need a number of35

geometrical parameters as input and are fit for setup and tune the cutting process rather than to verify36

contact patterns after the cutting process. In this scenario, vibration analysis is a good candidate for the37

verification of contact patterns in SBGs since vibration-based approaches are generally more flexible and38

quick than model-based approaches.39

However, as the authors are aware, the investigations on contact pattern assessment in SBGs by means40

of vibration analysis are limited. De facto, a first – and unique – interest on this topic has been shown by41

Jedliński and Jonak [21, 22]. In their first exploratory work [21], they pointed out that there would be a link42

between the contact area and vibrations. Moreover, they realized that it is not trivial to evaluate contact areas43

through vibration analysis, in particular by using basic signal processing techniques. The same authors then44

proposed a method based on artificial neural networks for the evaluation of spiral bevel gear assembly in45

terms of relative contact pattern lengths with respect to the entire tooth face width. Under the hypothesis46

that changes in gear assembling are reflected into the vibration signature, Jedliński and Jonak proposed a47

method for the prediction of the relative contact pattern lengths taking into account thirteen spiral bevel gears48

and three different network types: multilayer perceptron, radial basis function and support vector machine.49

Their research aims at verifying the position of spiral bevel gears by exploiting the relative contact pattern50

lengths. Thanks to their promising results, their research work proposes a pioneering methodology for the51

gear assembly assessment.52

As remarked in Refs. [3, 22], the tooth contact inspections on bevel gears are pivotal in order to detect53

both incorrect mounting and manufacturing errors. Despite this subject is of remarkable interest, the lack of54

research works in this topic is likely due to two aspects. The first one regards the complexity of character-55

izing the contact pattern from the vibrational standpoint, which shares many aspects with vibration-based56

wear analysis [23]. In fact, for each type of contact pattern corresponds a characteristic sliding contact57

between the gear tooth faces. The second one mainly concerns the effort of conducing an extensive exper-58

imental campaign involving different types of bevel gears with a significant number of observations and,59
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when possible, considering natural manufacturing errors.60

According to the paper of Jedliński and Jonak [22], the proposed research work focuses on the vibration61

analysis of contact patterns in bevel gears due to manufacturing errors from a different perspective. The main62

goal is developing and validating a pass/fail diagnostic tool for the contact pattern assessment of SBGs as63

an alternative to the standard contact pattern test, that is completely subjective. Hence, this research work64

is focused on discriminate the proper contacts from the improper ones through objective tools with limited65

user interactions.66

Specifically, this paper proposes a strategy for the assessment of contact patterns in real-time by using67

a combination of vibration analysis and classification algorithms. Three different classification algorithms68

are considered: the weighted k-Nearest Neighbors (wk-NN) algorithm [14], that is one of the simplest non-69

parametric classification algorithm; the (weighted) Naive Bayes algorithm (NB) that is a simple parametric70

classification algorithm [24]; and, finally, an original combination of the two previous methods, called71

modified wk-NN (mwk-NN).72

The considered classifiers have been investigated taking into account an extended experimental cam-73

paign that involves six sets of SBGs consisting in healthy gears and gears with natural manufacturing errors74

(that lead to improper tooth contacts). The experimental test conditions make the vibration analysis even75

more complicated since the SBGs considered in this research work are obtained by milling process – there-76

fore with a limited accuracy – and tested under light loads. These test conditions are needed since the contact77

pattern is usually evaluated before the heat treatment and thus the gears are prone to failures with full load78

tests. This paper reports an extended experimental investigation together with a comprehensive comparison79

of the considered classifiers in terms of classification accuracy. This work is an original contribute about80

bevel gear contacts taking into account a relevant number of SBGs and considering also different kinds of81

contacts. In particular, a remarkable effort has been made on verifying the proposed method by means of82

an extensive experimental campaign that accounts hundreds of measurements. This research engages the83

topic of the vibration analysis of bevel gear contacts from a different standpoint with respect to Ref. [22].84

Specifically, different classifiers (parametric and non parametric) has been compared a novel one has been85

proposed also. The proposed classifier, that is a combination of wk-NN and NB, proved to be superior86

and returns good accuracy level requiring a limited number of test to be trained with respect to the other87

classifiers. Furthermore, the focus of this paper is on designing a pass/fail procedure than predicting the88

contact line length [22].89

This paper is organized as follows: the classifiers and the methodology are described in Section 2;90

Section 3 outlines the experimental campaign; the results are presented and discussed in Section 4; the final91

remarks are given in Section 5.92

2. Method93

2.1. Naive Bayes classifier94

The NB classifier is a popular and simple parametric classifier rooted on the NB conditional probability95

model. The simplicity of this method lies on its key hypothesis: given a prior distribution, the probabilities96

are conditionally independent. This classification method is nothing but a combination of the NB model,97

that is an application of the Bayes’ theorem, with a decision rule based on a maximum a posteriori criterion.98

Let t be a test observation of J features in a J-dimensional space S whose label b is known. Now,99

suppose that the observations lying in S are divided into L classes C = {1, · · · , l, · · · , L}. From the definition100

of conditional probability:101

P(Cl|t) =
P(Cl)p(t|Cl)

p(t)
(1)
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where p refers to a probability density function, P refers to a probability mass function and Cl is the lth class,102

the NB model can be deducted by neglecting the denominator – since it is constant being not dependent on103

Cl – and by applying the chain rule to Equation (1):104

P(Cl|t) α P(Cl)
J∏

j=1

p(t j|Cl) (2)

where t j is the jth feature of t. The right-hand side of Equation (2), by assuming that the classes are equally105

probable and that the data follow a Gaussian distribution, can be computed as follows:106

P(Cl)
J∏

j=1

p(t j|Cl) =
1
L

J∏
j=1

1√
2πσ2

j,l

e
−

(t j−µ j,l)
2

2σ2
j,l (3)

where µ j,l and σ2
j,l are the sample mean and the sample variance, respectively, of the jth feature estimated107

by means of training observations of class l. Clearly, Equation (3) does not return a probability since the108

scaling factor p(t) has been neglected (see Equation (1)). However, if the features of p(t) are known, p(t)109

is constant for any Cl. Thus, the right-hand side of Equation (2) can be treated as a probability for any Cl.110

These simplifications are allowed since the aim of the NB classifier is to predict an unknown label from an111

observation p(t) rather than to estimate the specific probabilities.112

The NB classifier can be thus formalized combining the NB model in Equation (2) with a maximum113

a posteriori decision rule that classifies the test observations on the basis of the most probable hypothesis.114

This decision rule can be formalized as follows:115

b̂ = argmax
l=1,···,L

P(Cl)
J∏

j=1

p(t j|Cl). (4)

where b̂ is the predicted label of t.116

In general, the goal of a classifier is to compute b̂ from observations whose labels are unknown. In order117

to establish the classifier reliability, it is mandatory to validate the classifier by assessing the model accuracy118

by means of a set of M test observations with known labels. Let us assume that the test observations are119

arranged as a matrix T of dimension M × J. The classification accuracy λ can be estimated through:120

λ =

M∑
m=1

δb̂m,bm

M
(5)

where δ is the Kronecker delta while b̂m and bm are the estimated label (Equation (3)) and the actual label121

of the mth observation, respectively.122

On these grounds, some considerations should be made. This classifier is based on two very strong123

assumptions that are seldom met in real data: conditional independence and Gaussian prior distribution.124

Notwithstanding these drawbacks, the naive Bayes classifier is frequently used due to its extremely low125

computational effort and its overall good classification performance [24, p. 380-381].126

2.2. The k-Nearest Neighbor classifier127

The k-NN method is a non-parametric probability density function (pdf) estimator which can be ex-128

tended to classification problems. The following explanation is a concise version of the one given in Ref.129
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[24] that provides an explanation of this method in a Bayesian context, according to the explanations given130

in Subsection 2.1. The Bayesian standpoint turns out to be useful for justifying also the method proposed131

in this work and for giving a common framework to this theoretical section.132

Bearing in mind the nomenclature used previously, the probability of the observation t to reside into a133

small region S∗ ∈ S is:134

P =

∫
S∗

p(t)dt. (6)

Then, k observations, where k < N, residing withinS∗ can be assumed as distributed according to a binomial135

distribution, since the observations do or do not reside in S∗. If the binomial distribution is sharply peaked136

around the mean – that happens for large N – and if S∗ is small enough such that p(t) can be considered as137

constant, it can be demonstrated that an estimate of p(t) is given by:138

p(t) =
k

NV
(7)

where k is the number of points falling into S∗ and V is the related volume. Equation (7) shows that the139

k-NN method gives an estimation of the pdf where k is fixed and can be seen as a smoothing parameter140

(with large value of k, overfitting problems may be encountered). Given k and a new observation, one may141

calculate the radius of the hypersphere – if the distance is Euclidean – containing exactly k observations and142

then estimate the pdf through Equation (7). From this standpoint, k-NN is exploited for the pdf estimation143

from a set of observations without prior assumptions of the data distribution. Applying this method to144

classification problems, a new observation can be classified by estimating the distances between the test145

observation and the training observations residing into the hyper-sphere of volume V that contains exactly146

k samples and then selecting the most likely class. Recalling the Bayes’ theorem and Equation (6), it can be147

demonstrated [24] that the posterior probability of t being part of Cl is:148

P(Cl|t) =
p(t|Cl)P(Cl)

p(t)
=

kl

k
(8)

where kl refers to the number of the neighbor samples of class Cl. As done previously in Equation (4), the149

maximum a posteriori decision rule for k-NN can be defined as:150

b̂ = argmax
l=1,···,L

P(Cl|t) = argmax
l=1,···,L

kl

k
. (9)

Finally, the classifier accuracy can be estimated through Equation (5).151

The nonparametric methods, by definition, are not limited by the assumption of a prior distribution, as152

in the case of the NB classifier. However, the nonparametric methods are less computationally efficient153

than parametric ones since they need larger training sets that imply greater computational effort. Hence, the154

training set size, N, plays a crucial rules. It should be small enough to keeping the computational effort low155

and it should be large enough to avoid misclassification. In fact, Cover and Hart [25] demonstrated that the156

error rate in a two class case is ”not more than twice the Bayesian error rate”, i.e. the irreducible error:157

R̂ ≤ R ≤ R̂
(
2 −

N
N − 1

R̂
)

(10)

where R is the probability of error of the NN rule and R̂ is the Bayes’ error. Intuitively, S will be densely158

populated by the training samples when N is large. Therefore, for fixed k, S will be finely scanned through159

volumes V arbitrarily small according to the considered N.160
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2.3. Dimension reduction161

The classifiers previously described may be used with dataset with large dimensions. With specific162

reference to vibration-based diagnosis through condition indicators [14, 22, 26], it is not unusual to deal163

with many condition indicators that imply an high-dimensional dataset. The problem of dealing with high-164

dimensional spaces is also known as ”the curse of dimensionality” and affects the classifier performance in165

different ways.166

In general, two general issues can be encountered in classification problems in high-dimensional space:167

the classifier performance that does not increase according to the number of considered dimensions and168

the computational effort. Specifically, the k-NN classifier is affected by the curse of dimensionality if the169

training samples are not clustered in well defined classes [27]. The effects of the curse of dimensionality in170

NB classifiers leads to a different issue: the computation of Equation (3) can lack of precision when one of171

the product members reach (approximately) nil values.172

For these reasons, the k-NN and NB classifiers should be trained after a dimension reduction of the173

dataset. In this work, the dimension reduction is performed by means of the feature selection method pro-174

posed in [14]. Briefly, this feature selection method is based on selecting only the features whose Euclidean175

distances among different classes are above a given threshold, that in this work is set to 0.5. Further details176

about this dimension reduction method can be found in Refs. [14, 22]. Note that the combination of the177

k-NN classifier and the feature selection method gives birth to the weighted k-NN classifier (wk-NN). In178

this work, the dimension reduction has been applied to the NB classifier as well.179

2.4. Proposed classifier180

In many real scenarios, it is often burdensome or even unfeasible to collect many vibration signals in181

order to build an extended database. In light of the previous considerations, a limited database may affect the182

accuracy of the wk-NN classifier and NB classifier even performing a dimension reduction for improving183

the classification accuracy.184

Particularly, k-NN offers good accuracy levels only when the number of samples are large enough. This185

is due to the relationship between the NN rule error and the number of samples (see Equation (10)). Thus, in186

the case of a limited sample set, it can be augmented artificially in order to reduce the theoretical error of the187

NN rule. This task can be accomplished by assuming that the data follows an arbitrary distribution, whose188

parameters can be estimated from the measured data, and by improving the sample set with extrapolated189

samples. In the one hand, data extrapolation breaks the nonparametric nature of the k-NN method which190

may results in a loss of prediction accuracy due to a poor distribution assumption. Actually, this aspect can191

have limited consequences since a loss of accuracy with respect to the mk-NN would suggest an improper192

choice of the prior distribution. In the other hand, the number of training data N, can be arbitrarily large193

implying a reduction of the NN probability error (see Equation (10)).194

In this scenario, a novel methodology rooted on the concept of k-NN classifier can be introduced in195

order to overcome the issue of limited training sets. Dropping the non-parametric nature of the k-NN196

classifier, the following assumptions can be made: (i) the features follow a Gaussian distribution and (ii)197

their distributions are mutually independent, i.e. the features are not assumed as a multivariate Gaussian198

distribution. Thus, the k-NN classifier can be trained through a set populated with observations extrapolated199

by assuming a Gaussian prior distribution with parameters, i.e. mean and variance, estimated from the200

experimental data. Assumption (i) allows for generate an arbitrarily large set of extrapolates features just201

by estimating sample mean µ and sample variance σ2 from experimental data. Assumption (ii) allows to202

generate these sets independently, without the estimation of the covariance matrix. The extrapolation of203

samples from a Gaussian distribution can be easily implemented in Matlab environment by means of the204

function ”randn”.205

6



The decision rule of the proposed classifier is therefore based on the k-NN rule (see Equation (8))206

conditioned to a set of independent Gaussian prior distributions:207

P(Cl|t, µ∗, σ∗) =
p(t, µ∗, σ∗|Cl)P(Cl)

p(t, µ∗, σ∗)
=

kl

k
(11)

where µ∗ and σ∗ are the prior distribution parameters estimated through the experimental training data.208

The main difference between the wk-NN and the mwk-NN resides on the definition of the training set. In209

fact, the training set used in the wk-NN is composed only by experimental samples whereas the mwk-NN210

exploits an extrapolated training set that can be arbitrarily large.211

The mwk-NN has the same computational complexity of the k-NN, that is O(JNk) for the basic algo-212

rithm version:213

• O(JN) for the computation of all the Euclidean distances in the case of one nearest neighbor;214

• O(JNk) for the computation of all the Euclidean distances in the case of k nearest neighbors.215

In fact, the proposed modification of the k-NN does not involve changes in the prediction algorithm but216

regards the artificial augment of the sample size. This strategy allows for reducing the theoretical minimum217

error rate reported in Equation (10) by increasing the number of samples N.218

The comparison of the proposed method, NB and wk-NN in terms of classification accuracy is faced219

following the scheme reported in Figure 1. It is expected that, even with a poor distribution assumption, the220

performance of the proposed method should be superior or at least equal to the NB classifier performance221

while should be superior to wk-NN due to the larger training set.222

2.5. Assessment of classifier accuracy223

In general, the assessment of classifier accuracy is carried out by using the cross-validation. The aim224

of cross-validation on predictive models is to estimate the model accuracy by means of a set of labeled225

observations. In simple words, the training set is partitioned into two subsets, one of actual training and one226

of test. The classifier accuracy is assessed evaluating how many test observations are correctly classified227

(see Equation (5)).228

In this context, data partitioning plays a crucial role: in fact, the training set and the test set can be229

selected by taking into account different combinations that can lead to different classifier accuracies par-230

ticularly for small sets of observations. Thus, when the training set is not numerous, data partitioning231

influences the results and it is therefore necessary to assess the model accuracies by considering the aver-232

age accuracy with different data combinations. Frequently, exploring all the possible combinations can be233

unfeasible, even taking into account small amount of data. For instance, the possible combinations for a234

dataset of N = 24 observations equally divided into two classes (L = 2) and partitioned in sets of the same235

size is236

c =

(
N/2
N/4

)L

= 8.5 · 105. (12)

In this work, the Monte-Carlo (MC) approach fits the need to estimate the classifier accuracy without ac-237

counting all the available combinations and therefore reducing the computational effort. Indeed, the MC238

cross-validation estimates the model accuracy by using training sets and test sets randomly arranged (using239

an uniform distribution) without replacement. This process is repeated with c∗ different (random) combina-240

tions, where c∗ < c and the classifier accuracy is estimated by averaging all the trial accuracies.241
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Extrapolation

Feature selection
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Figure 1: Flow charts of the assessment of the classifier accuracy.

2.6. Feature parameters242

The specialized literature counts a considerable number of scalar indicators that can be used to detect243

changes in the gear vibration signature due to gear faults as tooth cracks and pitting. De facto, how wear244

phenomena related to different contact typologies appear in the vibration signals is still a matter of dis-245

cussion [22, 23]. Therefore, the characterization of different contact patterns in SBGs through vibration246

analysis can be carried out by using a large set of scalar indicators finding out hidden correlations among247

the indicators by using pattern recognition.248

In this work, thirty three features have been taken into account. According to the scheme reported in249

Figure 2, these features can be divided into six families: time-domain features, features based on the TSA,250

features based on the residual signal, features based on the regular signal, features based on the difference251

signal and features based on the pitch-averaged signal. For the sake of brevity, the features described in252

Figure 2 can be estimated through the formulae reported in a very well written table in Ref. [22].253

In the following, the relationships for the estimation of the TSA, the residual signal, the regular signal254

and the difference signal are given. The discrete angular resampled signal, x, is assumed to have L samples255

corresponding to N shaft revolutions (where is N integer) and a fixed angular resolution ∆θ equal to 2πN/L.256

The residual signal rx[θ], the regular signal gx[θ] and the difference signal dx[θ] are derived from the TSA,257

mx[θ], referenced to the shaft revolution [28]. In order to avoid a burdensome nomenclature, the discrete258

angular variable has been expressed as θ instead of l∆θ, where 0 ≤ l < L
N is the sample index. The TSA259

signal is then defined as:260

mx[θ] =
1
N

N−1∑
n=0

x[θ + n
L
N

∆θ]. (13)
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4. RMS
8. variance
12. impulse factor
17. FM0
19. EOP
23. SI
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9. variance
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10. variance
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18. FM4
21. EOP
26. M6A
27. M8A

16. ER

tachometer signal

time signal
angular resampling

averaging

Ref.: circular pitch Ref.: shaft revolution

residual signal

regular signal

difference signal

Figure 2: Schematic of the features.

Analogously, the signals derived from the TSA are reported hereafter:261

• the regular signal is obtained by keeping only the gearmesh harmonics from the mx[θ]262

gx[θ] =

Ngm∑
k=1

cke jzkθ with ck =
1
Θ

Θ∑
θ=0

mx[θ]e− jkθ (14)

where Θ = ∆θL
N , j is the imaginary unit, c is the Fourier coefficient and Ngm is the integer number of263

the gearmesh harmonics;264

• the residual signal is defined as mx[θ] filtered from the gearmesh components and the first two shaft265

rotational harmonics266

rx[θ] = mx[θ] − gx[θ] −
Nrh∑
p=1

cpe jpθ with cp =
1
Θ

Θ∑
θ=0

mx[θ]e− jpθ (15)

where Nrh = 2 is the even integer number of the considered rotational harmonics;267

• the difference signal is constituted of the residual signal purified from the first-order gearmesh side-268

bands269

dx[θ] = mx −

Nrh∑
p=1

cpe jpθ −

Nsb/2∑
i=Nsb/2

Ngm∑
k=1

ci,ke jθ(kz+i) with ci,k =
1
Θ

Θ∑
θ=0

rx[θ]e− jθ(kz+i) (16)

where Nsb = 2 is the even integer number of the gearmesh sidebands. Besides, the TSA referenced to the270

mesh period has been considered as well. The resulting averaged signal is the first-order cyclostationary271
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accelerometers
tachometer

(a) (b)

G1G2

Figure 3: Experimental setup: (a) accelerometer layout and (b) tachometer.

[29] part of the signal related to vibration phenomena synchronized with the mesh period rather than the272

shaft revolution period. The resulting signal is constituted of all the contributions that are periodically273

repeated at every circular pitch. Therefore, this signal represents the vibration signature referenced to all274

the periodic contributions inherent to the circular pitch. From Equation (13), the time synchronous averaged275

signal referenced to the mesh period can be defined as:276

mx
p[θ̂] =

1
zN

zN−1∑
n̂=0

x[θ̂ + n̂
L

zN
∆θ] (17)

where 0 ≤ θ̂ < L
zN is the discrete angular variable within the mesh period.277

3. Experimental campaign278

The experimental campaign has been conducted on six sets of SBGs by means of a Gleason tester for279

bevel gears. According to Figure 3, the test bench acts as a multiplier since the driven gear is always the280

pinion. From now, G1 refers to the driving gear with z1 teeth and G2 refers to the driven gear with z2281

teeth. All the gears have been tested with a shaft angle of 90 degrees under light load 8 Nm and without282

lubrication. These test conditions are needed since the contact pattern is usually evaluated before the heat283

treatment and therefore the gears are prone to failures with full load tests. Moreover, lightly loaded gears284

are very challenging to investigate from the vibrational standpoint. This aspect will be discussed later.285

The vibrations signals have been collected by two piezoelectric accelerometers type PCB 352C18 placed286

on both the tester sides in radial direction. Concurrently, the instantaneous speed of the fastest shaft (driven287

gear) has been measured with an optical tachometer type Sick WLL170T-P135. The sampling frequency288

has been set to 25.6 kHz and the measurement duration has been fixed to 10 s. The acquisition system is289

constituted of a National Instruments cDAQ-9191 CompactDAQ Chassis equipped with a NI-9234 module290

and driven by a dedicated LabVIEW software. An example of the measured signals is given in Figure 4.291

Each gear pair has been mounted by a specialized operator who verified the correct gear positioning in292

terms of: mounting distances, shaft alignment and backlash. Moreover, the test gear mates with a master293

gear that never changes within the same dataset. The master gear is a gear having superior manufacturing294

quality. This test procedure ensures that the gear pairs are mounted following the design specifications and295
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Figure 4: Examples of measured signals: (a) raw vibration signal in clockwise direction, (b) raw vibration signal in counterclock-
wise direction, (c) TSA referenced to the driven shaft period in clockwise direction, (d) TSA referenced to the driven shaft period in
counterclockwise direction, (e) TSA referenced to the gearmesh period in clockwise direction, (f) TSA referenced to the gearmesh
period in counterclockwise direction.

Table 1: Details of the test conditions (the speed is referred to the driving shaft speed).

no. dataset heat treatment speed (rpm) z1 z2 no. of tests test gear

1 no 542 21 14 20 G2
2 no 811 21 14 22 G1
3 no 520 40 13 30 G1
4 yes 512 40 13 30 G1
5 no 180 40 13 30 G2
6 yes 512 40 13 30 G2

that any change in the vibration signal is due to just the tested gear. It should be mentioned also that both296

the directions of rotation have been tested, i.e. clockwise and counterclockwise.297

Different types of incorrect contact pattern, obtained by natural manufacturing errors, have been inves-298

tigated considering also possible additional effects of surface distortions due to the heat treatment. Table 1299

summarizes some details about the test conditions while Figure 5 shows some examples of different contact300

patterns investigated in this work.301

Eventually, it should be stressed that in this research work a remarkable number of tests have been302

carried out and investigated: 324 runs, considering both the direction of rotation and involving 162 different303

gear pairs.304
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(a) (b)

(c)

Figure 5: Examples of traces due to different contact types: (a) desired contact under light load, (b) bridged contact and (c) crossed
contact.
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Figure 6: Short-time Fourier Transform of the vibration signal in (a) the clockwise run-up test and (b) the counterclockwise run-up
test. The dotted curves refer to the theoretical gearmesh harmonics.

4. Analysis of results305

This section focuses on two pivotal aspects of this research: establishing if the considered methods306

allow for discriminating proper contacts from improper contacts and establishing which classifier is the best307

one.308

It is worthwhile to spend a few words about the challenges of vibration analysis of lightly loaded gears.309

The main problem in lightly loaded gears is that, generally, they exhibit a high transmission error, that310

reaches (theoretically) its minimum value at the design transmission error [30, p. 22]. The combination311

of light load and high transmission error leads to non-linear phenomena related to the contact loss among312

teeth. As reported in Ref. [30, p. 185-187], many unusual contributions appear into the vibration signa-313

ture that, together with the measurement noise and other possible interferences, mask the low amplitude314

meshing contributions. This behavior is clearly shown in Figure 6: the time-frequency representations of315

both the rotation directions highlight that the meshing harmonics (marked with dotted lines) are not visible316

at all, as a result of the previous considerations. Moreover, some unexpected periodic components can be317

found between the first and the second gearmesh harmonics as well as the second and the third gearmesh318

harmonics.319

In this investigation, the following classifier parameters have been selected: 80000 MC iterations for320

the wk-NN classifier, 80000 MC iterations for the NB classifier and 80000 extrapolated observations for321

the mwk-NN classifier. The observations have been equally split into the training set and the test set,322

with the exception of the mwk-NN classifier that uses all the experimental observations for the test and323

only extrapolated observations for the training. As reported in Subsection 2.4, the proposed method uses324

extrapolated data for the training and the experimental data for the test. This clearly means that the MC325

cross-validation is not needed in this case. Furthermore, all the considered classifiers have been performed326

before the feature weighting illustrated in Subsection 2.3. Since the weights estimated in wk-NN and327

NB have not been reported in the following since they change depending on the selected combination of328

training set and test set. Note that the algorithms used in the following analysis have been coded in Matlab329

environment by the authors.330
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Figure 7: Statistical parameters related to the classification accuracy of the NB classifier for (a) the clockwise direction and (b) for
the counterclockwise direction.

Figure 7 reports the accuracies obtained by means of NB classifier in terms of mean, maximum, mini-331

mum and standard deviation. The NB classifier reaches an average accuracy above 70% in both the rotation332

directions for Dataset 1, Dataset 2, Dataset 4 and Dataset 5. According to Figure 6, the average accuracies333

change depending on the rotation direction and represent a further difficulty on classifying correctly the334

data. Moreover, it should be remarked that, according to these results, the minimum values can be far lower335

than a flip coin (50%) and sometimes below 10%. This is an evidence of the importance to take into account336

an average accuracy estimated from different random combinations of training samples and test samples.337

Indeed, in particular when the number of observations is low, the choice of the training set and the test338

set strongly influence the classifier accuracy. Nevertheless, the mean values are far closer to the maximum339

value than the minimum value suggesting that the possible accuracies are asymmetrically distributed in340

favor of the greater accuracies.341

Similar results have been achieved by using the wk-NN. In this case, Figure 8 reports the results obtained342

by considering k = 3, k = 5 and k = 7. The even values of k are neglected in order to avoid ties, i.e.343

uncertainty about the class assignment. It is worth noting that different k lead to similar accuracies. Thus, in344

this case, k is not a parameter that strongly influence the accuracy in terms of mean and the other statistical345

parameters.346

The accuracies estimated for different k by using the mwk-NN method are reported in Figure 9 and347

Figure 10 for the clockwise rotation and the counterclockwise rotation, respectively. In this case, the348

accuracies estimated for each dataset considering different values of k have been reported together with349

their respective weights. In particular, the feature weights reported in the diagrams on the left side are350

reported in terms of normalized amplitudes according to Ref. [14]. The dotted lines refers to the threshold351

which, in this work, has been set to 0.5. All the features below the threshold are not considered in the352

classification process. Concerning the feature weights, it can be noted that they change depending on the353

dataset and, as enlighten in Figure 6, on the rotation direction. This behavior explains different facets354

of analyzing the contact of lightly loaded gears. The first one is that single condition indicators are not355
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Figure 8: Statistical parameters related to the classification accuracy of the wk-NN classifier for the clockwise direction with (a)
k = 3, (c) k = 5 and (e) k = 7 and for the counterclockwise direction with (b) k = 3, (d) k = 5 and (f) k = 7.
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Figure 9: Feature weights (left column) with their classification accuracies (right column) of the mwk-NN classifier for the clock-
wise direction: (a-b) dataset 1, (c-d) dataset 2, (e-f) dataset 3, (g-h) dataset 4, (i-l) dataset 5 and (m-n) dataset 6.
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Figure 10: Feature weights (left column) with their classification accuracies (right column) of the mwk-NN classifier for the
counterclockwise direction: (a-b) dataset 1, (c-d) dataset 2, (e-f) dataset 3, (g-h) dataset 4, (i-l) dataset 5 and (m-n) dataset 6.
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Figure 11: Comparison of the average accuracies for (a) the clockwise direction and (b) anticlockwise direction.

sufficient for the contact pattern evaluation. Then, the different trends of the weights reflect the fact that the356

vibration signatures appears very different even in the same dataset considering both the rotation directions.357

These differences are likely due to the cutting process. The SBGs under investigation are cut through milling358

process, where the grinding wheel interacts with one tooth space one by one. This process is cheap and fit359

for small series production but guarantees lower gear quality — thus heterogeneous surface finish — with360

respect to other kind of cut processes. Moreover, in our case the gears are cut by milling two flanks at a361

time by using two different grinding wheels. Using two different grinding wheels could lead to different362

quality levels of the process since they can have different tool wear. This is a likely reason of the differences,363

sometimes marked, for the clockwise and counter-clockwise configurations.364

Finally, the variability of the feature weights depending on the dataset and on the rotation direction365

suggests that the data cannot be classified as a whole, at least with the considered classifiers. On these366

grounds, the marked variability of the weights is due to the fact that the indicators used are not fit for capture367

such complex micro-phenomena involved in the contact between teeth, especially in the case of light load.368

Moreover, the marked differences between the clockwise direction and the anticlockwise direction confirm369

that both the directions should be considered and classified separately.370

Considering the classification accuracies, they have been reported in the diagrams on the right side of371

Figure 9 and Figure 10. In this case the maximum k has been limited to 29, neglecting the even k, as done372

before. The classification accuracy of all the datasets, with the only exception of dataset 6, are almost373

constant with respect to k. This behavior is desired for two reasons: reduce the importance to select the374

right k (i.e. the model complexity), at least for these data and for k < 30; allows for evaluating an average375

accuracy with respect to k.376

Finally, the average accuracies estimated previously are compared in Figure 11. It should be noted that,377

since the influence of k is limited on the classification accuracy, the accuracies estimated through wk-NN and378

mwk-NN have been averaged also with respect to k. Concerning the detection and classification of improper379
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Table 2: CPU times and classification accuracies estimated using 80000 extrapolated samples.

anticlockwise clockwise

CPU time (s) accuracy (%) CPU time (s) accuracy (%)

dataset 1 1.73 93.33 1.73 90.00
dataset 2 1.90 96.88 2.08 100.00
dataset 3 2.01 83.33 1.94 86.67
dataset 4 1.78 96.43 1.89 82.14
dataset 5 1.97 80.00 2.05 93.33
dataset 6 2.02 70.00 1.87 83.33

average 1.90 86.66 1.93 89.25

contacts, the considered classifiers are efficient, in different measures, despite their simplicity. Among all380

the datasets, dataset 6 seems the hardest to analyze, in particular in the counterclockwise direction where381

the average accuracy is even below a coin flip for wk-NN and NB classifiers.382

The wk-NN classifier returns, in average, the worst accuracies while the NB classifier is placed between383

wk-NN and mwk-NN. The proposed method demonstrates a superior accuracy than the wk-NN classifier384

and the NB classifier, especially for datasets 4, 5 and 6. Finally, the global accuracies taking into account385

all the datasets and the rotation directions are the following: 79.2 % for the NB classifier, 73.4 % the wk-386

NN classifier and 87.9 % for the mwk-NN. Therefore, the mwk-NN classifier, an hybrid approach between387

wk-NN and NB, turning out to be best one in terms of average accuracy.388

The computation time of the proposed methodology plays a pivotal role in real scenarios where the389

gear contact assessment has to be carried out quickly. Table 2 shows the computation times referenced390

to the results reported in Figure 10 and Figure 9. The CPU times have been estimated with a desktop391

computer Dell XPS 8700 equipped with a processor Intel CoreTM i7-4790 4th gen. 3.6 GHz. The average392

computation time, reported in the last row of Table 2 is about 1.9 s considering a sample size of 80000393

samples. Note that the reported CPU times have involved the computation of a 14 different values of k,394

from 3 to 30 neglecting even values of k, that are needed in order to establish which is the optimal value of395

k for the classification. This means that the actual CPU times needed for the gear classification are below396

the ones reported in Table 2 since the classification of contacts must be performed by using a single value397

of k. Thus, this CPU time analysis shows that the proposed methodology can be used for the gear contact398

quality check in real time.399

5. Final remarks400

The present research work investigates the SBG contact pattern by developing a pass/fail procedure for401

the assessment of the proper tooth contact. In the wake of the pioneering work of Jedliński and Jonak [22],402

machine learning algorithms – both parametric and non-parametric – have been combined with vibration403

analysis tools. Particular care have been devoted to consider classifiers easy to implement and with reduced404

computational effort: the NB classifier and the wk-NN classifier. Furthermore, this paper proposes a novel405

hybrid classifier that is a combination of the NB and the wk-NN methods.406

The hybrid methodology involving vibration analysis and machine learning has been tested with an407

extensive experimental campaign that consists of 324 experiments involving 162 different gear pairs sub-408

divided into six datasets. This approach, with particular reference to the proposed classifier, proved to be409
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effective for discriminating the SBGs exhibiting improper contacts patterns with a satisfying degree of ac-410

curacy. In fact, taking into account all the dataset and all the rotation directions the proposed methodology411

reaches a global average accuracy of 88.5 %. The results carried out in this research work are promising412

also for practical applications. Indeed, the validation involved a remarkable number of tests considering413

SBGs with different number of teeth, surface finishes and manufacturing errors. Moreover, the results414

achieved are particularly significant and novel since the vibration analysis of lightly loaded gears is itself415

challenging and, concurrently, how contact pattern can be interpreted through vibration signals is still object416

of discussion.417
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