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1  | INTRODUC TION

Remobilization of nutrients from ageing tissues is recognized as a strat-
egy for nutrient conservation in vascular plants. In particular, nutrient 
resorption from senescing leaves prior to litterfall is  regarded as an 
adaptation to nutrient deficiency (Brant & Chen, 2015). Fertilization 

experiments have shown that experimentally improved soil fertility 
reduces the efficiency in resorbing nutrient by plants (Lü et al., 2013; 
Yuan & Chen, 2015). However, analyses of nutrient resorption patterns 
across environmental gradients at different geographic scale failed to 
support consistent relationships  between plant nutrient resorption 
and soil nutrient availability. At the global scale, Yuan and Chen (2009) 
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Abstract
1. Nutrient resorption from senescing leaves prior to litterfall is a strategy for nutri-

ent conservation in vascular plants. However, the mechanisms through which soil 
fertility and/or foliar nutrient status affect nutrient resorption are not yet fully 
known.

2. We used two 1,000-m-wide altitudinal gradients on two different bedrock types 
(carbonate and silicate) for analysing the interactive effects of temperature and 
soil chemistry on the resorption efficiency of two major nutrients, nitrogen (N) 
and phosphorus (P). Our objective was to assess how nutrient resorption varied 
across the gradients through the adaptation of individual species to changing en-
vironmental conditions rather than through changes in species composition.

3. Both N and P resorption efficiency increased across the altitudinal gradients inde-
pendent of bedrock type. The main process regulating nutrient resorption was a 
negative feedback to nutrient availability in the soil. The negative feedback of 
nutrient resorption efficiency to soil nutrient status was unrelated to total soil 
nutrient contents but depended on concentrations of organic N forms for nitrogen 
resorption efficiency (NRE) and on inorganic P forms for phosphorus resorption 
efficiency (PRE), respectively.

4. While we hypothesized that the resorption of P, as a principally rock-derived nutri-
ent, depended on physical–chemical processes affected by soil chemistry, our re-
sults showed that microbial P mineralization was the main source of inorganic P 
supply to the plants. Both NRE and PRE were effective to improve the growth 
potential of plants, but there was no evidence of stoichiometric adaptations of N:P 
RE to nutrient ratio in the soil.
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altitude, bedrock, foliar chemistry, mineralization, mountain, nutrient remobilization, nutrient 
resorption efficiency, soil nutrient content
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observed decreasing nitrogen resorption efficiency (NRE) and increas-
ing phosphorus resorption efficiency (PRE) with increasing latitude. 
Contrasting geographic patterns of NRE and PRE have been explained 
considering the low soil N availability in cold high-latitude soils and the 
low soil P availability in weathered low-latitude soils. Recent reviews 
reported increasing values of NRE and PRE with increasing latitude, 
paralleled by negative relationships of nutrient resorption efficiency 
with mean annual temperature and mean annual precipitation (Vergutz, 
Manzoni, Porporato, Novais, & Jackson, 2012; Yan, Zhu, & Yang, 2018). 
At the regional scale, Hayes, Turner, Lambers, and Laliberté (2014) 
observed negative correlations between total soil N and P concentra-
tions and NRE and PRE across a dune chronosequence in south-west-
ern Australia. Similarly, Achat, Pousse, Nicolas, and Augusto (2018) 
found the remobilization rates of N, P and other major elements to be 
regulated by soil nutrient status through negative feedback in 10 tree 
species at forest sites in France. Conversely, no significant correlations 
were found between both NRE and PRE and soil nutrient concentra-
tions in gallery forests in the Central Black Sea Region (Özbucak et 
al., 2008). In forest sites in China, PRE is negatively related to soil P 
content, while NRE is principally controlled by plant functional type 
(PFT) irrespective of soil N content (Tang, Han, Chen, & Fang, 2013). 
Nutrient concentrations in green leaves have been thought to repre-
sent a proxy of soil nutrient status. If so, the negative feedback of soil 
fertility towards nutrient resorption efficiency should be mirrored by 
negative correlations between foliar nutrient concentrations and nutri-
ent resorption efficiency (Liu, Liu, Guo, Wang, & Yang, 2014; Vergutz et 
al., 2012). However, most studies failed in supporting this hypothesis 
as nutrient resorption efficiency generally is unrelated to foliar nutrient 
concentrations (Achat et al., 2018; Aerts, 1996; Norby, Long, Hartz-
Rubin, & O'Neill, 2000; Özbucak et al., 2008).

Patterns of nutrient resorption efficiency across altitudinal gradi-
ents have so far received little attention. NRE generally increases with 
increasing altitude while PRE shows differing trends across altitudinal 
gradients, with PRE increasing (Bilgin & Guzel, 2017), decreasing (Tang 
et al., 2013) or varying erratically (Du, Ji, Peng, Liu, & Liu, 2017) with 
increasing altitude. The mechanistic basis for explaining varying alti-
tudinal patterns of nutrient resorption efficiency still remains unre-
solved. Higher nutrient remobilization at high altitude can be achieved 
by genetic adaption of individual species to cold environment (Cong 
et al., 2018). For example, resorption efficiency of N and P of Scots 
pine populations grown in common garden has been found to increase 
with the latitude of seed origin suggesting potential adaptation of 
populations from northern, colder habitats to more efficient internal 
nutrient cycling (Oleksyn, Reich, Zytkoviak, Karolewski, & Tjoelker, 
2003). Alternatively, increasing NRE and/or PRE across altitudinal 
gradients can be achieved by changes in species composition, with 
species more efficient in conserving nutrients being more abundant at 
environmentally harsher sites (Richardson, Peltzer, Allen, & McGlone, 
2005). Higher nutrient resorption efficiency at high-altitude sites can 
be associated with lower soil fertility because cold temperatures ham-
per nutrient mineralization by slowing the activity of soil microbes 
(Sundqvist, Sanders, & Wardle, 2013). While soil N availability almost 
totally depends on biological processes driven by soil microbes, soil 

P availability is the result of complex interactions between microbial 
and physical–chemical processes, the latter in turn related to the P 
content of the underlying parent material (Porder & Ramachandran, 
2013). The geochemical composition of parent materials, closely as-
sociated with the geological nature of bedrock (bedrock geology), is 
paramount in controlling the availability of rock-derived elements, 
especially potassium (K) and P (Augusto, Achat, Jonard, Vidal, & 
Ringeval, 2017; Castle & Neff, 2009). Bedrock geology strongly in-
fluences the distribution and the productivity of vegetation even in 
climatically homogeneous areas through indirect control on soil nutri-
ent status (Hahm, Riebe, Lukens, & Araki, 2014). Mountainous regions 
are characterized by strong heterogeneity of bedrock types even at 
regional and local scale. Hence, investigating patterns of nutrient re-
sorption efficiency on different bedrock types in mountains can add 
to our knowledge on environmental factors affecting the ability of 
mountain plants to recycle nutrients from senescing leaves.

We investigated altitudinal trends of foliar resorption of N and 
P, that is the nutrients most strongly involved in plant physiological 
processes. Our main objective was to assess whether the efficiency 
in resorbing N and P varies due to combined effects of altitude and 
bedrock geology on soil chemistry. Our study was designed for in-
vestigating altitudinal patterns of nutrient resorption efficiency 
resulting from adaptation of individual species to changes in soil 
nutrient status across the gradient. Patterns of nutrient resorption 
across environmental gradients are often determined by changes 
in species composition (Achat et al., 2018; Richardson et al., 2005; 
Tsujii, Onoda, & Kitayama, 2017). In order to prevent confounding 
effects of compositional turnover across the altitudinal range, we 
selected species that occurred with high frequency across a broad 
altitudinal range on two bedrock types. We hypothesized that (1) 
resorption of N, as a microbially cycled element, increases across 
altitudinal gradients independent of bedrock geology because low 
temperature hampers N mineralization; (2) resorption of P, as a rock-
derived element, varies differently across the altitudinal gradients 
because P supply is primarily controlled by bedrock geology.

2  | MATERIAL S AND METHODS

2.1 | Study areas and sampling

The study areas and the sampling design are described in Gerdol, 
Marchesini, and Iacumin (2017). Shortly, the study was carried out 
across two 1,000-m altitudinal gradients (c. 1,200–2,200 m above 
sea level) in two areas c.	30	km	apart	(46°13–25′N,	11°27–43′E)	in	
the Dolomites (Province of Trento, northern Italy). The two areas are 
climatically homogeneous with mean annual temperatures of c. 8°C 
at 1,000 m and c. 3°C at 2,000 m and mean total annual precipita-
tion of c. 900 mm, mostly concentrated in the summer season that 
usually does not experience aridity. The two transects were located 
in environmentally similar areas, with northern aspect and mean 
slope angle of c. 20° strongly differing from each other in terms of 
bedrock geology. In the first area, the parent material consists of car-
bonate bedrocks (dolomite and limestone), while in the second area 
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the parent material consists of silicate bedrock (granitic porphyry). 
Six 1-ha sampling sites were set up, at c. 200-m intervals, in each of 
the two transects. We carried out a number of preliminary surveys 
directed to select species occurring with high frequency across the 
altitudinal gradients on both parent materials. We chose five species, 
each belonging to a different PFT: Vaccinium myrtillus (V. myrtillus), a 
deciduous shrub; Vaccinium vitis‐idaea (V. vitis‐idaea), an evergreen 
shrub; Picea excelsa (P. excelsa), a conifer tree; Homogyne alpina (H. al‐
pina), a wintergreen forb; and Calamagrostis villosa (C. villosa), a grass.

The sites from 1,200 to 1,800 m were located in closed spruce 
forests. The sites at 2,000 m were located in sparse spruce for-
ests, close to the treeline. The sites at 2,200 m were located above 
treeline in subalpine scrubs. In spite of such strong differences in 
vegetation structure and plant height, these five species accounted 
for at least 80% of vascular-plant cover, although the proportional 
cover of individual species varied among sites. The sampling was car-
ried out in 2011 at five 5 × 5 m plots, at least 15 m apart, in each of 
the 12 sampling sites. In spring, we visited all sites at 2- to 3-day in-
tervals in order to detect the start of the growing season to be used 
for subsequent measurements of daily leaf growth rates (Gerdol 
et al., 2017). Green leaves of all five species were collected during 
2 days at the peak of the growing season (1–2 August). Current-year 
leaves were sampled for the evergreen and the wintergreen species. 
On the same occasion, we collected soil samples using a stainless 
steel cylindric corer. At each plot, we took five subsamples that were 
then bulked in a composite soil sample. In October, we collected at 
all plots a number of senescing freshly fallen leaves of all five species 
for subsequent measurements of nutrient content in the litter.

2.2 | Chemical analyses

About 50 mg of oven-dried (40°C for 48 hr) leaf tissue was pow-
dered, extracted in 3 ml of selenous H2SO4 at 420°C and analysed 
for total N concentration in green leaves (Nleaf) by the salicylate 
method and total P concentration in green leaves (Pleaf) by the mo-
lybdenum blue method. Total N and P concentrations in senescing 
leaves (Nlitter and Plitter) were determined as for the green leaves. 
For each species, Nleaf and Pleaf were compared with Nlitter and Plitter, 
after correcting for mass loss during leaf senescence, in order to de-
termine nutrient resorption efficiency. The mass loss correction fac-
tors (MLCF), drawn from Vergutz et al. (2012), were as follows: 0.784 
for the deciduous shrub V. myrtillus; 0.780 for the evergreen shrub 
V. vitis‐idaea; 0.745 for the conifer tree P. excelsa; 0.640 for the forb 
H. alpina; and 0.713 for the grass C. villosa. The nutrient resorption 
efficiencies for N and P were calculated as follows:

NRE	=	[1	−	(Nlitter/Nleaf) × MLCF] × 100.
PRE	=	[1	−	(Plitter/Pleaf) × MLCF] × 100.

The ratio between the two nutrient resorption efficiencies was 
 expressed as:

N:P RE = NRE/PRE.

The soil analyses were directed to determine both total nu-
trient concentrations and concentrations of nutrients in available 
forms. A 0.1-g subsample of air-dried soil was extracted and an-
alysed for total soil N (Ntotal) as for the leaves and the litter. A 
20-g subsample of air-dried soil was extracted in 200 ml of 0.5 M 
K2SO4 and analysed for NH4 by the salicylate method and for NO3 
by the cadmium reduction method. A 1-g subsample of air-dried 
soil was extracted in 10% 0.5 M K2SO4 for determining total dis-
solved nitrogen (TDN). TDN was analysed by the cadmium reduc-
tion method after digestion with an oxidant reagent containing a 
buffer solution of boric acid (H3BO3), sodium hydroxide (NaOH) 
and potassium persulfate (K2S2O8). Dissolved organic nitrogen 
(DON) was calculated by subtracting the sum of dissolved inor-
ganic N fractions (NO3 + NH4) from TDN. Nitrate concentrations 
always were negligible. Hence, soil N content in available inor-
ganic form (Ninorg-avail) corresponded to NH4 concentration. Soil N 
content in available organic form (Norg-avail) corresponded to DON 
concentration.

A 0.1-g subsample of air-dried soil was extracted and anal-
ysed for total soil P (Ptotal) as for the leaves and the litter. A 0.5-g 
subsample of air-dried soil was extracted in 80 ml of 1 M KCl. A 
0.5-g subsample of air-dried soil was extracted in 0.5 M NaHCO3 
adjusted to pH 8.5 with NaOH. The KCl extract contained only 
Pi and was therefore analysed colorimetrically at 700 nm for PO4 
(Sundqvist et al., 2014). The NaHCO3 extract contained both inor-
ganic and organic P fractions (Pi and Po, respectively). The Pi frac-
tion was determined by the molybdenum blue method while total 
P was determined after digesting a subsample of the extract with 
acidified potassium persulfate (K2S2O8) in order to convert Po into 
Pi. Subsequently, Po concentration was calculated by subtracting Pi 
from Ptotal. Available soil P content in inorganic and organic forms 
(Pinorg-avail and Porg-avail, respectively) was calculated as follows:

Pinorg-avail = KCl-Pi + NaHCO3-Pi.
Porg-avail = NaHCO3-Po.

All colorimetric analyses were run on a continuous flow autoanaly-
ser (FlowSys; Systea, Anagni, Italy).

A 20-mg subsample of air-dried soil was used for analysing total 
soil carbon (C) concentration by a Shimadzu TOC-5000A analyser 
(Shimadzu Corporation, Kyoto, Japan), connected with a solid sample 
module (Shimadzu SSM-5000A).

Nitrogen isotopic discrimination was assessed by determin-
ing the 15N content in the soil. The measurements were carried 
out by an elemental analyser (EA 1110; Carlo Erba, Milan, Italy) 
coupled with an isotope ratio mass spectrometer (Delta Plus XP; 
Thermo Finnigan, Bremen, Germany). The values were expressed 
as δ15N:

δ15N = [(Rsample:Rstandard)	−	1]	×	1,000‰,

where Rsample is the 15N:14N ratio in the sample and Rstandard is the 
15N:14N ratio in the standard (atmospheric N2).
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2.3 | Data analyses

The data of NRE, PRE and N:P RE were statistically analysed by 
three-way ANOVAs with species, altitude and bedrock as fixed fac-
tors. Significance of differences between the means was assessed by 
post hoc Fisher's LSD tests. Mean values of nutrient resorption ef-
ficiency, nutrient concentrations and their ratio in green leaves and 
nutrient concentrations and their ratio in the litter were calculated 
for each plot at all of the 12 sampling sites as the means of the cor-
responding variables across the five species. Leaf growth was ex-
pressed as daily growth rates (see Gerdol et al., 2017 for details). As 
the five species differed strongly from each other in terms of foliar 
traits which implied great differences in leaf growth among species, 
the daily growth rates were normalized for each species as follows:

Xni = (Xoi:Xmax) × 100,

where Xni is the normalized value of daily growth rate for the X-spe-
cies at the i-site; Xoi is the original value of daily growth rate for the 
X-species at the i-site; and Xmax is the maximum value of daily growth 
rate for the X-species across the 12 sites.

The mean values of NRE, PRE and N:P RE were regressed on alti-
tude in order to assess the altitudinal patterns of the three variables 
on the two bedrock types. Relationships of the nutrient resorption 
efficiencies and their ratios with the variables related to foliar chemis-
try and litter chemistry were assessed by Pearson's product–moment 
correlation coefficients. Relationships of the nutrient resorption effi-
ciencies and their ratio with the variables related to soil chemistry were 
assessed by stepwise multiple linear regressions based on stepwise 
forward selection of the explanatory variables. In particular:

NRE was regressed on Ntotal, Ninorg-avail, Norg-avail, soil δ15N, soil C:N 
and soil pH;

PRE was regressed on Ptotal, Pinorg-avail, Porg-avail, soil C:P and soil pH;
N:P RE was regressed on soil C:N, soil C:P and soil pH.

All statistical computations were carried out using the package 
Statistica 6.0 (StatSoft©; Version 6; StatSoft Inc., Tulsa, OK, USA).

3  | RESULTS

3.1 | Nutrient resorption efficiency, foliar chemistry 
and litter chemistry

Species identity was the far largest source of variance for nutri-
ent resorption efficiencies and their ratio (Table 1). NRE, PRE and 
N:P RE were influenced to a similar extent by altitude, while bed-
rock exerted a much stronger effect on PRE than on NRE and N:P 
RE (Table 1). The strength of altitude × bedrock interactions was 
about double for PRE and N:P RE than for NRE. The five species 
presented consistent altitudinal patterns of nutrient resorption 
efficiencies and their ratio on the two bedrock types, as demon-
strated by similarly low species × altitude, species × bedrock and 

species × altitude × bedrock interactions for NRE, PRE and N:P RE 
(Table 1). The overall mean NRE was 57%, with the five species 
being ranked as follows: C. villosa (80%) > H. alpina (58%) > P. ex‐
celsa (48%) = V. myrtillus (47%) = V. vitis‐idaea (47%). The overall 
mean PRE (67%) was higher than NRE, and the species ranking 
was rather similar to, but not overlapping with, that for NRE, that 
is C. villosa (78%) > H. alpina (69%) = P. excelsa (69%) > V. vitis‐idaea 
(63%) > V. myrtillus (54%). The NRE and PRE increased linearly across 
the altitudinal gradients both on carbonate bedrock and on silicate 
bedrock, but the slopes of the regression lines were steeper on sili-
cate bedrock (Figure 1a,b). The overall mean N:P RE was 0.84. The 
N:P RE was <1 in four out of the five species which suggests that P 
was generally resorbed to a greater extent than N. The species rank-
ing was as follows: C. villosa (1.03) > V. myrtillus (0.88) = H. alpina 
(0.84) > V. vitis‐idaea (0.74) = P. excelsa (0.71). The N:P RE increased 
linearly with increasing altitude on carbonate bedrock but was stable 
across the altitudinal gradient on silicate bedrock (Figure 1c).

The Nleaf presented no distinct altitudinal patterns on either bed-
rock types (Table 2). The Pleaf was lowest at 1,200–1,400 m on car-
bonate bedrock but was lowest at 2,000–2,200 m on silicate bedrock. 
Consequently, the N:Pleaf presented contrasting patterns on the two 
bedrock types, with highest values at low altitudes on carbonate bed-
rock and highest values at high altitudes on silicate bedrock (Table 2). 
The altitudinal pattern of δ15N(leaf-soil) was much similar on the two 
bedrock types with slightly negative values at 1,200–1,800 m and 
strongly negative values at 2,000–2,200 m (Table 2). The Nlitter mod-
erately decreased across the altitudinal gradients on both bedrock 
types. The Plitter on carbonate bedrock increased moderately from 
1,200 to 2,000 m and declined again at 2,200 m. Conversely, the 
Plitter on silicate bedrock strongly decreased across the whole altitu-
dinal gradient. The N:Plitter decreased across the altitudinal gradient 
on carbonate bedrock and increased across the altitudinal gradient 
on silicate bedrock, thus mirroring the altitudinal trends of the N:Pleaf 
(Table 2). The leaf growth rate fluctuated irregularly across the alti-
tudinal gradient on carbonate bedrock but definitely increased with 
increasing altitude on silicate bedrock (Table 2).

TA B L E  1   Percentage of variance associated with the F values of 
three-way ANOVAs for nutrient resorption efficiencies and their 
ratio. Abbreviations and df: Species (Sp; 4,234); Altitude (A; 5,234); 
Bedrock (B; 1,234); Sp × A (20,234); Sp × B (4,234); A × B (5,234); 
Sp × A × B (20,234)

Nitrogen 
resorption 
efficiency

Phosphorus 
resorption 
efficiency N:P RE

Species (Sp) 79.08 70.30 76.71

Altitude (A) 11.53 9.19 6.60

Bedrock (B) 0.72 8.04 2.56

Sp × A 2.66 3.18 3.82

Sp × B 0.59 1.14 0.82

A × B 3.02 6.22 6.24

Sp × A × B 2.39 1.92 3.25

6
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3.2 | Soil chemistry

Ntotal and Ninorg-avail generally were similar or presented erratic fluc-
tuations across the altitudinal gradients on both bedrock types 
(Table 3) while Norg-avail decreased more or less regularly across the 
altitudinal gradients. The altitudinal trend of and Norg-avail mirrored 
that of soil δ15N that increased, that is became less negative, with 
increasing altitude on both bedrock types (Table 3). Ptotal presented 
a clear increasing trend with increasing altitude on carbonate bed-
rock and decreased irregularly across the altitudinal gradient on sili-
cate bedrock. Pinorg-avail decreased with increasing altitude on both 
bedrock types. Porg-avail did not show any clear altitudinal trend on 
either bedrock types (Table 3). Ctotal generally decreased across the 

altitudinal gradients although such pattern was sharper on carbon-
ate bedrock (Table 3). The soil N:P definitely declined across the alti-
tudinal gradient on carbonate bedrock and tended to increase across 
the altitudinal gradient on silicate bedrock (Table 3). The soil C:N 
decreased with increasing altitude on carbonate bedrock and fluctu-
ated across the altitudinal gradient on silicate bedrock. The soil C:P 
presented contrasting patterns in relation to bedrock type, that is, a 
decreasing trend on carbonate bedrock and an increasing trend on 
silicate bedrock. The soil pH was overall stable across the gradients, 
with slightly higher values on carbonate bedrock (Table 3).

3.3 | Relationships between nutrient resorption 
efficiency and the nutrient status of leaves, 
litter and soil

Both NRE and PRE presented strong negative correlations with 
Nlitter and Plitter, respectively (Table 4). The resorption efficiency of 
the two nutrients was unrelated to nutrient concentrations in green 
leaves (Table 4). Furthermore, NRE was negatively correlated with 
δ15N(leaf-soil) (Table 4). The N:P RE was unrelated to N:Pleaf and N:Plitter 
(Table 4). Both NRE and, especially, PRE presented positive correla-
tions with leaf growth while the N:P RE was unrelated to leaf growth 
(Table 4).

Nitrogen resorption efficiency, PRE and N:P RE all presented 
significant correlations with at least one of the soil chemistry vari-
ables (Table 5). Norg-avail and soil δ15N were the best predictors of 
NRE, the former with negative correlation and the latter with posi-
tive correlation, while Ntotal was marginally positively related to NRE 
(Table 5). Pinorg-avail, with negative correlation, and C:P and Ptotal, both 
with positive correlations, were the best predictors of PRE. Soil C:P, 
with negative correlation, was the best predictor of N:P RE (Table 5).

4  | DISCUSSION

In spite of strong differences among species in terms of nutrient 
resorption efficiency, the low species × bedrock and species × al-
titude × bedrock interactions indicate that the overall patterns of 
nutrient resorption efficiency reflected similar behaviour of the 
five species across the gradient. Altitude significantly affected 
nutrient resorption although much less than species identity. 
Altitudinal gradients represent complex gradients across which 
several environmental factors vary more or less linearly with 
altitude (Körner, 2007). Four of these factors can affect nutri-
ent resorption in plants either directly (temperature and length 
of the growing season) or indirectly (soil moisture and soil nutri-
ent content). The results of our study exclude the hypothesis of 
direct effects of environmental factors on nutrient resorption. 
Warm temperature may enhance nutrient resorption through de-
layed leaf senescence in autumn, that is by increased duration of 
the growing season (Estiarte & Peñuelas, 2015; Fu et al., 2018). 
Should temperature-mediated slower speed of leaf senescence be 
responsible for increased levels of nutrient resorption, this would 

F I G U R E  1   Nitrogen resorption efficiency (NRE), phosphorus 
resorption efficiency (PRE) and N:P RE values in leaves of five 
species across altitudinal gradients on carbonate bedrock (blue 
symbols) and silicate bedrock (red symbols). Significant (p < 0.05) 
linear regression lines for the overall means are shown separately 
across the two gradients [blue lines: carbonate bedrock (CA); red 
lines: silicate bedrock (SI)]
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imply higher NRE and/or PRE at low altitudes that was not the 
case in our study. Although we did not measure soil water con-
tent, previous studies showed that soil moisture had negligible if 
any importance, in affecting ecological patterns across the two 
gradients (Gerdol, Iacumin, & Tonin, 2018; Gerdol et al., 2017). 
So, soil chemistry appeared the main cause responsible for vari-
ations in nutrient resorption efficiency across the two gradients. 
Both NRE and PRE increased more or less regularly with increasing 

altitude on both bedrock types, which would give support to hy-
pothesis #1. Higher NRE at high-altitude sites was not associated 
with lower N mineralization rates but was rather related to low 
levels of Norg-avail and higher, that is less negative soil δ15N signa-
ture. Indeed, NRE always was greater at high altitude where less 
N was available in organic form and the soil δ15N was higher which 
suggests that the substrate became enriched in the heavy N iso-
tope because of isotope fractionation during N cycling in the soil 

TA B L E  3   Mean (±1 SE) values of total soil N concentration (Ntotal), soil N content in available inorganic form (Ninorg-avail), soil N content in 
available organic form (Norg-avail), soil δ15N, total soil P concentration (Ptotal), soil P content in available inorganic form (Pinorg-avail), soil P 
content in available organic form (Porg-avail), total soil C concentration (Ctotal), soil N:P, soil C:N, soil C:P and soil pH across altitudinal gradients 
on two bedrock types (N = 5)

Altitude (m)

Ntotal (mg/g) Ninorg-avail (µg/g) Norg-avail (µg/g)

Carbonate Silicate Carbonate Silicate Carbonate Silicate

1,200 14.5 ± 1.1 A 12.0 ± 1.4 bc 62 ± 8 A 54 ± 8 bc 223 ± 26 A 293 ± 55 ab

1,400 13.9 ± 0.4 A 11.1 ± 2.9 bc 57 ± 12 A 58 ± 8 bc 264 ± 21 A 263 ± 53 ab

1,600 14.7 ± 2.0 A 13.7 ± 3.7 ab 47 ± 14 A 85 ± 17 ab 209 ± 31 AB 248 ± 76 ab

1,800 12.0 ± 2.0 AB 12.9 ± 2.1 ab 45 ± 14 A 102 ± 20 a 227 ± 35 A 347 ± 14 a

2,000 8.9 ± 1.4 B 6.6 ± 1.6 c 49 ± 7 A 26 ± 10 c 199 ± 36 AB 174 ± 39 b

2,200 11.6 ± 2.6 AB 18.5 ± 1.3 a 38 ± 14 A 80 ± 13 ab 132 ± 35 B 265 ± 26 ab

δ15N (‰) Ptotal (mg/g) Pinorg-avail (µg/g)

Carbonate Silicate Carbonate Silicate Carbonate Silicate

1,200 −3.60	±	0.21	C 0.09 ± 0.60 a 0.58 ± 0.03 C 1.14 ± 0.03 a 120 ± 37 B 154 ± 49 a

1,400 −3.63	±	0.31	C −3.17	±	0.36	b 0.64 ± 0.04 C 0.76 ± 0.12 c 151 ± 20 A 160 ± 53 a

1,600 −0.61	±	0.66	B −2.46	±	0.64	b 1.00 ± 0.02 B 0.72 ± 0.08 c 58 ± 13 C 103 ± 25 b

1,800 −0.95	±	0.53	B −2.47	±	0.50	b 0.93 ± 0.02 B 1.04 ± 0.13 ab 50 ± 15 CD 174 ± 34 a

2,000 1.91 ± 0.45 A 0.08 ± 0.29 a 1.13 ± 0.06 B 0.60 ± 0.08 c 33 ± 5 D 29 ± 10 c

2,200 1.05 ± 0.69 A −0.40	±	0.45	a 1.35 ± 0.08 A 0.84 ± 0.03 bc 45 ± 22 CD 43 ± 6 c

Porg-avail (µg/g) Ctotal (%) N:P

Carbonate Silicate Carbonate Silicate Carbonate Silicate

1,200 16 ± 2 D 105 ± 12 a 40.4 ± 2.3 A 28.6 ± 4.3 ab 25.2 ± 1.6 A 10.6 ± 0.8 c

1,400 28 ± 4 C 43 ± 24 c 41.4 ± 1.6 A 22.2 ± 6.8 b 22.1 ± 1.6 A 13.5 ± 2.0 bc

1,600 38 ± 6 B 37 ± 17 c 30.2 ± 4.2 B 27.2 ± 6.9 ab 14.7 ± 1.4 B 18.4 ± 3.8 ab

1,800 42 ± 5 B 76 ± 42 b 27.4 ± 3.8 BC 28.3 ± 3.3 ab 12.8 ± 1.4 BC 12.4 ± 1.5 bc

2,000 87 ± 17 A 92 ± 24 a 17.8 ± 3.0 C 15.6 ± 2.6 b 7.9 ± 1.0 D 10.5 ± 1.3 c

2,200 47 ± 7 B 64 ± 10 b 22.3 ± 5.5 BC 38.9 ± 3.2 a 9.0 ± 2.7 CD 22.2 ± 2.6 a

C:N C:P pH

Carbonate Silicate Carbonate Silicate Carbonate Silicate

1,200 28.0 ± 0.7 A 23.8 ± 2.5 ab 702 ± 37 A 254 ± 43 b 5.46 ± 0.08 A 5.28 ± 0.14 a

1,400 29.8 ± 1.0 A 18.5 ± 2.3 b 664 ± 64 A 265 ± 62 b 5.43 ± 0.09 A 5.26 ± 0.14 ab

1,600 20.3 ± 1.4 B 20.1 ± 2.1 ab 304 ± 46 B 361 ± 70 ab 5.26 ± 0.11 A 5.00 ± 0.13 ab

1,800 23.2 ± 2.1 B 22.7 ± 1.8 ab 298 ± 38 B 280 ± 36 b 5.21 ± 0.19 A 4.72 ± 0.11 b

2,000 19.6 ± 1.2 B 26.0 ± 3.4 a 155 ± 22 C 261 ± 25 b 5.63 ± 0.08 A 5.43 ± 0.07 a

2,200 19.8 ± 2.5 B 21.3 ± 1.0 ab 176 ± 58 C 463 ± 34 a 5.49 ± 0.09 A 5.00 ± 0.13 ab

Note. In each column, the means followed by different letters (capital letters for carbonate bedrock and small letters for silicate bedrock) differ signifi-
cantly (p < 0.05) from each other based on Fisher's LSD post hoc tests.
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(Callesen et al., 2013). Three processes can lead to 15N enrichment 
in the soil: nitrification (Högberg, 1997), humification with conse-
quent stabilization of soil organic matter (Kramer, Sollins, Sletten, 
& Swart, 2003) and transfer of N from soil to plants by mycorrhizal 
fungi (Hobbie & Ouimette, 2009). Nitrification did not seem to be 
responsible for 15N enrichment in the soil because nitrate concen-
trations always were negligible. Should higher δ15N signature in 
high-altitude soils be derived by microbial processes associated 
with humification, this would imply consistently lower C:N at high 
altitudes (Schulten & Leinweber, 2000). However, the altitudinal 
pattern of soil C:N varied in relation to bedrock type while the soil 
δ15N increased across the altitudinal gradients on both bedrock 
types (Table 3). Hence, isotope discrimination through mycorrhizal 
N transfer appeared to represent the cause of 15N enrichment in 
our soils. Plants shift from inorganic to organic forms as source 
of N uptake with decreasing temperatures (Averill & Finzi, 2011). 

Decreasing concentrations of Norg-avail across the altitudinal gradi-
ents may reflect stronger competition for organic N sources by soil 
microbes. Our results suggest that lower availability of organic N 
forms at high-altitude sites is counterbalanced by more efficient N 
resorption and/or by higher rates of N transfer from mycorrhizal 
fungi to the plants.

Contrary to hypothesis #2, the altitudinal pattern of PRE was 
much the same on the two bedrock types in spite of strong differ-
ences in terms of Ptotal concentrations. The negative correlation be-
tween PRE and Pinorg-avail means that the plants resorbed more P 
when the concentrations of readily available inorganic P forms in 
the soil were lower. Overall, the supply of inorganic P in soils prin-
cipally derives from bedrock weathering and consequent diffusion 
to the soil solution. However, physical–chemical processes of rock 
weathering dominate in deep mineral soil horizons while microbial 
processes leading to P mineralization prevail in the upper organic 
soil horizon. While deeply rooting plants can exploit available inor-
ganic P in deep soil layers (Achat, Bakker, Augusto, & Morel, 2013), 
the roots of the plants investigated in this study are all confined to 
the uppermost soil horizon (R. Gerdol, personal observation) where 
the Pinorg-avail supply depends on microbial processes. Microbial 
P mineralization is depressed by cold temperature with minor in-
fluence of soil chemistry (Vincent, Sundqvist, Wardle, & Giesler, 
2014). So, the availability of readily accessible inorganic P primarily 
depended on temperature-dependent control of microbial activity 
rather than on the influence of bedrock geology on physical–chem-
ical processes of rock weathering. Phosphorus resorption was not 
enhanced by low levels of total soil P content as PRE was even posi-
tively related to Ptotal. Hence, total soil P content need not represent 
an index of P availability for plants at the local scale, in contrast with 
previous studies reporting negative correlations between PRE and 
Ptotal at the regional scale (Achat et al., 2018; Augusto et al., 2017). 
Inorganic phosphate represents the most biologically available form 
of soil P (Turner, 2008) while most of Ptotal consists of stable organic 
or inorganic forms, for example sorbed to the surface of Al and Fe 
oxides or occluded in mineral compounds (Turner, 2008). The plants 
investigated probably were capable of accessing sparingly soluble 
forms of organic and/or inorganic forms of soil P, either directly or 
with the aid of mycorrhizal associates (Gerdol et al., 2017). Utilizing 
stable P forms requires energy associated with the release of or-
ganic acids or phosphatases for solubilizing recalcitrant inorganic or 
organic P forms (Cairney, 2011). Ali, Louche, Legname, Duchemin, 

TA B L E  4   Pearson's correlation coefficients of nutrient resorption efficiencies and their ratio with foliar chemistry, litter chemistry and 
leaf growth (N = 12)

Nleaf Nlitter δ15N(leaf-soil) Pleaf Plitter N:Pleaf N:Plitter Leaf growth

Nitrogen resorption 
efficiency

0.28 −0.67* −0.83** – – – – 0.62*

Phosphorus resorption 
efficiency

– – −0.44 −0.81** – – 0.66*

N:P RE – – – – −0.01 0.25 0.32

Note. Significant values in bold character (**p < 0.01; *p < 0.05; †p < 0.10).

TA B L E  5   Summary of stepwise multiple regressions of nutrient 
resorption efficiencies and their ratio on soil chemistry variables

B p

Nitrogen resorption efficiency (R2 = 0.848; p = 0.02*)

Norg-avail −0.078 0.01*

δ15N 1.664 0.02*

Ntotal 0.632 0.09†

Ninorg-avail 0.139 0.11

C:N 0.334 0.24

pH N.E. –

Phosphorus resorption efficiency (R2 = 0.902; p = 0.006**)

Pinorg-avail −0.084 <0.001**

C:P 0.026 0.005**

Ptotal 10.829 0.009**

Porg-avail 0.028 0.35

pH N.E. –

N:P RE (R2 = 0.607; p = 0.02**

C:P −0.0002 0.006**

pH 0.032 0.33

N:P N.E. –

C:N N.E. –

Note. Significant values in bold character (**p < 0.01; *p < 0.05; †p < 0.10). 
N.E. not entered in the stepwise procedure.
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and Plassard (2009) observed that P uptake by mycorrhizal fungi is 
not sufficient to fulfil the P requirement of the host when Pinorg-avail 
levels are too low. Our results suggest that P resorption represents a 
cost-effective strategy to cope with P deficiency when the Pinorg-avail 
content in the soil is low. N:P RE values <1 demonstrate higher effi-
ciency in resorbing P with respect to N, as observed in most studies 
(Jiang et al., 2012; Vergutz et al., 2012). A possible explanation re-
sides in the different mobility of N and P, with a larger proportion 
of N than of P locked in structural compounds (Jónsdóttir, Khitun, 
& Stenström, 2005). While at the global scale N:P resorption ratios 
reflect soil N and P stoichiometry (Reed, Townsend, Davidson, & 
Cleveland, 2012), we did not observe any significant relationship be-
tween N:P RE and soil N:P. This suggests that at the local scale, the 
differential efficiency in resorbing nutrients is determined more by 
the relative cost of resorbing nutrients than by the absolute soil nu-
trient levels and their stoichiometric ratio (Tang et al., 2013; Wright 
& Westoby, 2003). The negative correlation between N:P RE and 
soil C:P means that the plants resorbed proportionally more P than 
N when the soil C:P was higher. A possible explanation consists of 
higher fraction of microbial P immobilization under high soil C:P 
(Zheng et al., 2018).

The strong negative correlations between nutrient resorption 
efficiencies (NRE and PRE) and nutrient concentrations in senesc-
ing leaves (Nlitter and Plitter, respectively) mean that nutrient resorp-
tion efficiency mirrored nutrient resorption proficiency, that is the 
concentrations of nutrients in litterfall (Killingbeck, 1996). The poor 
correlations between nutrient resorption efficiency and nutrient 
concentration in green leaves suggest that foliar N or P concentra-
tions are primarily determined by species-specific features so that 
they cannot always be used as an indicator of nutrient status (Achat 
et al., 2018). Increasing δ15N(leaf-soil) values across altitudinal gradi-
ents demonstrate that the plants utilized increasing fractions of or-
ganic N at higher altitudes especially through associated mycorrhizal 
partners (Amundson et al., 2003). The negative correlation between 
NRE and δ15N(leaf-soil) suggests that improved efficiency in absorbing 
organic N and higher N resorption represented a common strategy 
for coping with N limitation at high altitude. The positive correla-
tions of NRE and PRE with leaf growth indicate that resorbing both 
nutrients was effective to improve the growth potential of the plants 
investigated. Conversely, the N:P RE was unrelated to leaf growth, 
thus suggesting that the plants were unable to regulate the relative 
importance of NRE and PRE, in relation to the availability of N and P, 
for optimizing growth potential.

5  | CONCLUSION

Variation in nutrient resorption efficiency across altitudinal gradi-
ents need not be determined by changes in species composition 
across the gradients, but can derive from adaptation of co-existing 
species to varying environmental conditions. The main process regu-
lating nutrient resorption was a negative feedback to soil nutrient 
availability. The negative feedback of nutrient resorption efficiency 

to soil nutrient status was unrelated to total soil nutrient contents 
but depended on concentrations of organic N forms for NRE and 
on inorganic P forms for PRE. While we hypothesized that the re-
sorption of P, as a principally rock-derived nutrient, depended on 
physical–chemical processes affected by soil chemistry, our results 
showed that microbial P mineralization was the main source of in-
organic P supply to the plants. Both NRE and PRE were effective to 
improve the growth potential of plants, but there was no evidence 
of stoichiometric adaptations of N:P RE to nutrient ratio in the soil.
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