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ABSTRACT 
This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In 

previous works of the authors (Part I and II,[1][2]), a non-linear lumped-parameter kineto-elastodynamic model for the 

prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important 

phenomena involved in the operation of this kind of machine. Two main sources of noise and vibration can be 

considered: pressure period variation and gear meshing. The model has been used in order to foresee the influence of 

working conditions and design modification on vibration generation. The model experimental validation is a difficult 

task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and 

experimental results concerning forces and moments: it deals with the external and inertial components acting on the 

gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained 

by measurements. The validation is carried out comparing the level of the time synchronous average in the time domain 

and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation 

results are satisfactory globally, but discrepancies are still present. Moreover, the assessed model has been properly 

modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations 

and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the 

pressure distribution around the gears in order to achieve results closer to measured values. As a matter of fact, the 

simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of 
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the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified 

with the aim at improving the calculation of pressure forces and torques. The improved pressure formulation includes 

several phenomena not considered in the previous one, such as the variable pressure evolution at input and output ports, 

as well as an accurate description of the trapped volume and its connections with high and low pressure chambers. The 

importance of these improvements are highlighted by comparison with experimental results, showing satisfactory 

matching. 

 

 
KEYWORDS: External gear pumps; elastodynamic model; pressure ripples; pressure distribution; dynamic analysis; 
simulation results. 
 
 

Nomenclature 
 
Latin symbols 
 
A  orifice section 
B  length between the delivery sides of the relief grooves (see Figure 4a) 

bb  bearing block width 

kb  face width of gear k 

oilB  oil bulk modulus 

,b ih  radial clearance between the casing and the bearing block in correspondence of tooth space i 

fh  lateral clearance between bearing block and the lateral flank of the tooth 

ih  radial clearance between tooth tip i and the casing 

tl  tooth tip thickness 
p  pressure in the generic control volume 

atmp  atmospheric pressure 

dp  pressure in the drainage circle (equal to atmp ) 

ip  pressure in the tooth space volume i  

inp  pressure in the inlet volume 

outp  pressure in the outlet volume 

tp  pressure in the trapped volume 

cr  internal radius of the bearing block in the gear house 

dr  radius of the drainage circle 

,ext kr  outside radius of gears 

mr  radius at half height of the tooth 

Q  volumetric flow rate 

b iQ ,  axial volumetric flow rate through clearance hb,i 

d iQ ,  volumetric flow rate between isolated tooth space i and the drainage circle through clearance hd 

d tQ ,  volumetric flow rate between the trapped volume and the drainage circle 
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1f i f iQ Q, , +,  volumetric flow rate between isolated tooth spaces through clearance hf 

, , , ,,f t in f t outQ Q  volumetric flow rate between the trapped volume and the inlet and outlet volumes through clearance 
fh  

1h i h iQ Q, , +,  volumetric flow rate between isolated tooth spaces through clearances hi, hi+1 

, ,T in atmQ  turbulent volumetric flow rate between the inlet volume and the reservoir 

, ,T out atmQ  turbulent volumetric flow rate from the outlet volume to the hydraulic circuit 

, ,,T t in T t outQ Q, ,  turbulent volumetric flow rate between the trapped volume and the inlet and outlet volumes, respectively 

t  time 
V  volume of the generic control volume 

iV  volume of the tooth space i  

,in outV V  volumes of the inlet and outlet volumes 

tV  volume of the trapped volume 

0 0 0, ,t in outV V V  values of the trapped volume, inlet volume and outlet volume when 0θ = , i.e. in the initial condition when the 
second contact begins 

 
Greek symbols 
 

Q∆  difference between the volumetric flow rates, coming into a control volume and coming out 

θ  angular coordinate 

,, ,a b t endθ θ θ  angles defining the beginning of the connection with the inlet volume, the end of the connection with the outlet 

volume and the end of the trapped volume, respectively (see Figure 4b) 
µ  Oil dynamic viscosity 
ρ  oil density 
ω  angular speed 
 
Subscripts 
 
i denotes tooth space 
k=1,2 denotes gears 
n,m number of isolated tooth spaces in gear 1 and 2, respectively 

k
 applied to gear k 

 
 
 
1. INTRODUCTION 
 

External gear pumps exhibit a complex interrelationship between gear meshing, clearances between components and 

pressure pulsation that makes difficult the definition of general design procedures. As a consequence, large amounts of 

time and money are spent during the development of new designs. This requires huge testing efforts in order to refine 

the noise and vibration behaviour and simultaneously achieve good hydraulic efficiency. A good dynamic model could 

be a useful and powerful tool for the identification of noise and vibration sources and design improvement allowing 

“Design Right First Time” which leads to shorter time-to-market and reduced costs as compared to conventional “Test, 

Analyze & Fix”. Following this objective, in Part I and II ([1][2]), the authors have presented a numerical model for the 

dynamic analysis of an external gear pump for automotive applications (called hereafter PModel). Fluid pressure 

distribution around the gears, which is time-varying, is computed and included as a resultant external force and torque 
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acting on each gear. Gear meshing phenomena have received particular attention, the time-varying meshing stiffness [3] 

and the tooth profile errors, the effects of the backlash between meshing teeth, the oil squeeze and the possibility of 

tooth contact on both contact lines have been included in the model. One of the particular features of gear pump design 

is the use of hydrodynamic journal bearings for gear shaft support. The non-linear dynamics of this kind of bearings has 

been modelled using the theory of Childs [4] called “finite impedance formulation”. The experimental validation carried 

out in Part III, can be considered rather good, but not completely satisfactory requiring a model refinement in order to 

improve the correlation between experimental and simulated results. 

 

The simulation results show that the developed model makes it possible to estimate dynamic responses and forces 

taking place in the gear pumps, as a function of working conditions. One of the vibration sources is the variable 

meshing stiffness. However, on the basis of numerical simulations it gives a minor contribution to the final results (see 

also Section 6.2 of the Part III). On the other hand, pressure forces and torques show the most important variations due 

to the change in the number of isolated volumes carrying fluid and to the creation of a “trapped volume” between two 

consecutive tooth pairs in contact. Furthermore, gear pumps exhibit pressure ripple in the pressure evolution trend 

during a complete gear rotation [5-14]. The pressure ripple can determine oscillating forces within the system leading to 

vibration and noise generation. As a consequence, the original model (PModel) was modified with the aim of improving 

the calculation of the pressure distribution, pressure forces and torques in order to achieve a behaviour closer to the real 

measurements. In this sense, the new model (called hereafter NModel) includes an improved pressure formulation with 

several phenomena not considered in the PModel; these include: the pressure variations in the input and output 

chambers, the axial flows through the clearances between floating bearing blocks and casing as well as an accurate 

description of the trapped volume and its connections with high and low pressure chambers. The pressure formulation 

of the trapped volume has been completely reformulated avoiding the previous assumption of a linear pressure 

transition from the high to the low pressure [1]. Now, the flow areas between the trapped volume, input and output 

chambers are obtained numerically allowing the formulation of more complex relief groove designs. The pressure 

evolution around the gears is then calculated solving simultaneously the continuity equations of all the control volumes, 

following the procedure presented in the next section. This procedure requires the numerical integration of a non-

homogeneous variable-dimension differential equation system that has been solved for each gear centre position. 

Therefore, a high computational effort is required for each integration step in the dynamic model. With the aim of 

reducing the integration time, the pressure distribution as well as the pressure forces and torques have been calculated in 

the gear ‘static’ equilibrium position instead of in the actual position along the centreline trajectory. In steady-state 

operational conditions, the gear centreline trajectory is an orbit around an eccentric position with respect to the casing. 
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This eccentric position is not the actual gear axis position, but it can be considered as a reference position during the 

axis orbital motion. It is hereafter referred as ‘static’ equilibrium position (SEP). In Part II [2] it has been verified that 

this approximation leads to negligible imprecision. Furthermore, the pressure forces and torques are evaluated by using 

an improved formulation with respect to that implemented in the previous model. 

 

The contents of this Part IV are as follows. Section 2 presents the improved formulation of the pressure distribution 

highlighting the phenomena not considered in the previous one, such as the axial flow (Section 2.1), the accurate 

description of the trapped volume and its connections with high and low pressure chambers (Sections 2.2), the pressure 

variations in the input and output chambers (Sections 2.3) and the variable dimension equation system (Section 2.4). 

The improved procedure for the pressure force and torque evaluation is presented in Section 3. Section 4 addresses the 

new experimental validation and presents several simulation results. In particular, in Section 4.1 the improved model is 

experimentally assessed by using the same methodology used in Part III. In Section 4.2, the simulation results 

consenting the pressure evolution in a control volume for a complete gear rotation estimated by using the previous and 

the new model are compared as well as the pressure forces and torques. Eventually, Section 5 is devoted to concluding 

remarks. 

 

2 PRESSURE DISTRIBUTION:IMPROVED FORMULATION 
 
The pressure increase in the travel from the low to the high pressure region is more or less progressive but is really 

conditioned by several dimensional and operational parameters as the clearances in the radial and axial direction, oil 

viscosity, output pressure and shaft speed. In order to study the pressure variation and following the Euler’s approach, 

the pump is divided into several “control volumes”. In the case being studied, the considered volumes (see Figure 1a) 

are each isolated tooth space (Vi), the inlet and outlet chambers (Vin, Vout) and the volume between meshing teeth (Vt, 

called “trapped volume”). Applying the continuity equation and the state equation of the fluid to a generic control 

volume, assuming an adiabatic and isentropic transformation, the following relation expressed in terms of gear angular 

coordinate θ is obtained [5] [6] [16]: 

 

oilBdp dVQ
d V d

ω
θ ω θ

 = ∆ − 
 

         (1) 
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Eq. (1) allows the calculation of the pressure variation of a fluid (characterized by the oil bulk modulus Boil) contained 

in the control volume V, caused by the volumetric flow rate gain Q∆  and by the volume variation dV/dθ . The 

expressions of the terms on the right side of Eq. (1), i.e. volume V, its variation dV/dθ  and flow rate gain Q∆ , have to 

be determined for each control volume. Thus, it is necessary to understand how each volume communicates with the 

others through the clearances of the pump in order to estimate these flow rates. Figure 1 shows these volumes and their 

relationships. The arrows in Figure 1b depict the direction of the flows exchanged between the volumes. It can be noted 

that the number of the control volumes is variable during the gear rotation because of the variation of the number of 

isolated tooth spaces between the gears and the casing and because the trapped volume exists only when there are two 

meshing contacts. The changes in number of control volumes are due to: 

 

• appearance of a new tooth space volume on gear 1, during the period 2 4θ θ→  

• disappearance of a tooth space volume on gear 1, during the periods 4 0 2,pθ θ θ θ→ →  

• appearance of a new tooth space volume on gear 2, during the periods 0 1 5, pθ θ θ θ→ →  

• disappearance of a tooth space volume on gear 2, during the period 1 5θ θ→  

• appearance of the trapped volume, during the period 0 3θ θ→  

• disappearance of the trapped volume, during the period 3 pθ θ→  

 

Table 1 summarizes the changes in the number of control volumes within the integration interval, i.e. during an angular 

pitch pθ . The equation integration is performed for a gear rotation equal to the angular pitch. The starting position in 

the integration of the equation system is when a new meshing begins. So, a variation in the number of control volumes 

causes a change in the number of differential equations that have to be integrated in order to obtain the pressure 

distribution. For that reason it is not possible to perform only one integration using as integration interval the duration 

of an angular pitch, but six integrations have to be done (one for each column of Table 1). In the following, for the four 

different kinds of control volumes (isolated tooth spaces, trapped volume, inlet chamber and outlet chamber) each term 

of Eq. (2) will be calculated. In particular the flow rates will be calculated taking into account the contribution of the 

pressure drop between adjacent volumes and the “drag” flow. It is well-known that for a fluid film element with height 

h , length l  and width w , the volumetric flow rate due to the pressure drop p∆  can be calculated using the 

Pouiselle’s equation that supposes laminar flow: 
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3

12p
wh pQ

lµ
∆

=             (2) 

 

On the other hand, the volumetric “drag“ flow rate has a linear distribution from zero to u, where u is the relative 

velocity of the upper part of the fluid film element with respect to the bottom part and can be calculated using the well-

known relation: 

 

2u
wuhQ =            (3) 

 

Relations (2) and (3) will be used in the following in order to calculate flow rate gain Q∆  in the four kinds of control 

volumes while volume variation 
dV
dθ

 is obtained from geometrical considerations. Once the flow rate gain and the 

volume variation are obtained for all the control volumes, the resulting equation system can be numerically integrated in 

order to obtain the pressure distribution around the gears. In the following, Eq. (1) will be used for the evaluation of the 

pressure in the tooth spaces around the gears (Section 2.1), in the trapped volume (Section 2.2), in the inlet and outlet 

chambers (Section 2.3). 

 
2.1 Continuity equation for a generic tooth space 
 
Figure 2a shows the generic tooth space “ i ” , edged between two consecutive tooth flanks (i and i+1) and the casing. 

Each tooth space is connected (see also Figure 1b and Figure 2b) with the adjacent tooth spaces by the corresponding 

clearances between casing and tooth tip (hi, hi+1) and between the bearing blocks and the tooth lateral flanks ( fh ). In 

addition, it is connected with the drainage circle through clearance fh , and lastly with the low or high pressure through 

the clearances ,b ih between the bearing blocks and the casing in axial direction. So, Eq.(1) applied to the generic tooth 

space “ i ” becomes: 

 

1 1 ,2( ) 2 2 i i i
h i h i f i f i d i b i k

oil

V dp dVQ Q Q Q Q Q
B d d

ω
θ θ, + , , + , ,

 
− + − − − = + 

 
    (4) 
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It can be noted that the flows through clearances fh  and ,b ih are double because there are two sides for each gear and 

symmetry is assumed. Flow rates h iQ , , f iQ , , d iQ ,  and ,b iQ are taken as positive coming out of the tooth space i, while 

1f iQ , +  and 1h iQ , +  are considered as positive when coming into tooth space i. Applying Eqs. (2) and (3) to the 

passageway on the tooth tip it is possible to calculate the volumetric flow rate in the tooth space i, taking into account 

the pressure drop contribution as well as the drag flow rate (due to the relative motion of the gear with respect to the 

casing):  

 

3

1( )
12 2

k i k k ext i
h i i i

t

b h b r hQ p p
l

ω
µ, −= − +           (5) 

 

The height of clearance ih  between the tooth tip and the casing depends on the position of the gear shaft (because of the 

eccentricity of the gear with respect to the casing) and on the casing wear. So, the radial clearance will be different for 

each tooth along the gear, (more details can be found in [1]). The volumetric flow rate between the lateral bearing 

blocks and the lateral flank of the tooth ( f iQ , ) can be estimated using an expression similar to Eq. (5). Average values 

for the passageway dimensions (h,l of Eqs (2) and (3)) have been considered since they are not geometrically defined 

and the relative velocity in the drag flow rate contribution is the velocity at half height of the tooth ( f k mu rω= ). In 

particular, one can consider fb as the height of the tooth and fl  as the thickness of the tooth measured of the pitch 

circle, leading to obtain: 

 

3

1( )
12 2

f f f k m f
f i i i

f

b h b r h
Q p p

l
ω

µ, −= − +         (6) 

 

The drainage flow rate for tooth space i is given by the Pouiselle’s equation, Eq. (2), assuming the passageway width 

db equal to 0.4 to 0.5 times the pitch on the root circle and the passageway length dl  the difference between the radius 

of the root circle and the radius of the drainage circle. In this case, the term relating to the drag flow rate has been 

neglected because its radial component is zero. Therefore, the volumetric flow rate becomes: 
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3

( )
12

d f
d i i d

d

b h
Q p p

lµ, = −          (7) 

 

The bearing blocks were hydraulically balanced because they are subjected to axial forces due to the pressure 

distribution. The equilibrium of the bearing blocks was actuated by applying the high or low pressures on different parts 

of the same surface using a seal in order to divide the area where the low pressure acts with respect to the area where 

the high pressure acts (see Figure 3). Because of the clearance between the bearing block and the casing, the tooth space 

is put in communication (in the axial sense) with these low or high pressure areas depending on the position of the tooth 

space. With reference to Figure 3, if the tooth space is before point P, the tooth space will be connected with the low 

pressure; if it is beyond point P, the tooth space will be connected with the high pressure. Eventually the tooth space 

communicates with low and high pressure when point P is within the tooth spaces. So if the tooth space is connected 

with the low pressure chamber, the flow comes out of the tooth space; on the contrary, if the tooth space is connected 

with the high pressure chamber, the flow comes into the tooth space. Therefore, neglecting the term relating with the 

entrained flow, the axial flow rate becomes: 

 

3

12
c p bm i

b i b i
b

r h
Q p

b
θ
µ

,
, ,= ∆           (8) 

 

where : 

 

,

                               beyond point P
                                  before point P

                  P within tooth space i

out i

in ib i

mean i

p p
p pp
p p

−
 −∆ = 
 −

  and 
2

1,,
,

++
= ibib

ibm

hh
h  (9) 

 

The height of clearance ,b ih  depends on the position of the bearing block, since they are floating and on the position of 

the gear into the journal bearings (SEP). It is very difficult to estimate the dynamic behaviour of the floating bearing 

blocks, for that reason let us suppose that the pressure distribution around the bearing blocks is the same as around the 

gears. Therefore, the bearing blocks will be subjected to a global pressure force that pushes them in a static position 

with zero backlash at the low pressure side. The height of clearance ,b ih  is evaluated on the basis of this assumption. 
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The last term to be calculated in Eq. (4) is volume variation idV . Such a term can be obtained for an angle rotation 

dθ of the gear with geometrical considerations by the relation: 

 

( )1
i

ext k i i
dV r b h h
dθ += −            (10) 

 

So, taking into account all the previous terms and substituting in Eq. (5), considering volume iV  as constant and equal 

to the nominal volume of the tooth space, the following equation for the generic tooth space i can be obtained: 

 

( ) ( ) ( )3 3
1 1 1 1 , ,2 2 2i oil

h i i i i h i i f i i d d i b b i
k i

dp B C h p h p K h h C p p C p C p
d Vθ ω + + + +

 = ∆ − ∆ − − + ∆ −∆ − ∆ − ∆ 
  (11) 

 

where 

 

12
k

h
t

bC
lµ

= ,  
3

12
f f

f
f

b h
C

lµ
= ,  

3

12
d f

d
d

b h
C

lµ
= ,  

3
,

12
c p bm i

b
b

r h
C

b
θ
µ

=  

1 1i i ip p p+ +∆ = − ,   ,d i i dp p p∆ = − ,  1i i ip p p −∆ = −  , 

0VVi =    i  ∀ ,   ( )12i
k h i i

dV K h h
d

ω
θ += −     

2
k k ext

h
b rK ω

= . 

 

Eq. (11) is a differential equation that can be expressed as  

 

1 1( ( ), ( ), ( ), ( ), ( ))i
i i i i in out

dp f p p p p p
d

θ θ θ θ θ
θ − +=       (12) 

 

where if  is the function of the right side of Eq. (11). 

 
2.2 Continuity equation for the trapped volume 
 
The trapped volume exists only when two tooth pairs are meshing, therefore the continuity equation for the trapped 

volume will be taken into account only when the trapped volume exists. With reference to Figure 4, the trapped volume 
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is connected with the inlet volume, with the outlet volume and with the drainage circle through the clearance fh  and 

furthermore with the inlet and outlet volumes through the relief grooves. So, Eq. (1) applied to the trapped volume 

becomes: 

 

, , , , , , , , ,2 2 2 2 4 t t t
T t out T t in f t in f t out d t k

oil

V dp dVQ Q Q Q Q
B d d

ω
θ θ

 
− − − − − = + 

 
   (13) 

 

It can be noted that several flow rates in Eq. (13) are double because the gear has two sides. Moreover, flow rate ,d tQ  

is multiplied by 4 because there are two sides for each gear. Flow rates , , , , ,, ,f t in f t out d tQ Q Q  through clearance fh  can 

be calculated using expressions similar to Eqs.(6) and (7) hypothesizing laminar flow:  

 

( ), , 2
f k m f

f t in f t in

b r h
Q C p p

ω
= − +   ( ), , 2

f k m f
f t out f t out

b r h
Q C p p

ω
= − +    (14) 

( ),d t d t dQ C p p= −             (15) 

 

As before, the term related to the entrained flow in drainage flow rate ,d tQ  has been neglected because its radial 

component is zero. It could happen, for example, that the pressure inside the trapped volume is less than the pressure in 

the outlet volume; in this scenario the oil flows into the trapped volume and thus, the flow rate changes its sign (since 

0t outp p− < ) and becomes negative. The flow through the relief grooves has to be considered as turbulent flow due 

to the connection orifice dimension and shape. Thus, the volumetric flow rate can be calculated using the well-known 

relation [16]:  

 

2
flow

pQ C A
ρ
∆

=            (16) 

where A is the area of the connection and flowC  is the flow coefficient (also called hydraulic resistance, see [17]) 

depending on Reynolds number and on the orifice dimension and shape. Therefore, the turbulent flow rates exchanged 

between the trapped volume and the inlet and outlet volumes are, respectively: 
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( )

, ,

2
0.65        if    

2
0.65         if    

t in
in t in

T t in

t in
in t in

p p
A p p

Q
p p

A p p

ρ

ρ

 −
+ >
= 

−
− <



    

( )

, ,

2
0.65        if    

2
0.65         if    

t out
out t out

T t out

t out
out t out

p p
A p p

Q
p p

A p p

ρ

ρ

 −
+ >
= 

−
− <



(17) 

 

where the connection areas with the inlet and outlet volumes have been geometrically calculated as a function of gear 

rotational angle θ . Figure 4b shows the area variation during the gear rotation for the connection between the trapped 

volume and the inlet and outlet volumes. Starting from the position when two tooth pairs are in contact, the connection 

area with the outlet volume decreases till bθ  when the connection disappears , while the connection with the inlet 

volume begins in aθ . It can be noted that from aθ  to bθ  the trapped volume is in communication both with the inlet 

and outlet volumes. Since the area and shape of the connections are variable, the calculus of the flow coefficient is not 

easy, therefore averaged values between similar kinds of connections have been taken into account [17]. The last two 

terms to be calculated in Eq. (13) are volume tV  and its variation tdV . Taking with reference Figure 5a, the trapped 

volume (when exists) is edged by 1 2O CO D  and its variation takes the form: 

 

( )2 2 2 2
1 1 2 2

1 ( ) ( ) ( ) ( )
2t kdV r t T r t r t r t T b dθ= + − − + +    ( )2 2 2 2

1 1 2 2
1 ( ) ( ) ( ) ( )
2

t
k

dV r t T r t r t r t T b
dθ

= + − − + + (18) 

 

where 1 2,r r  define the positions of the two tooth pairs in contact (the expression of 1 2,r r  as a function of the gear 

parameters can be found in [2]). Then, the volume of the trapped volume is obtained by integration of Eq. (18): 

 

0
0

( ) t
t t

dVV V d
d

θ

θ θ
θ

= + ∫          (19) 

 

The integration is performed when the trapped volume exists, i.e. in the angular interval 0 to ,t endθ (see Figure 4b); 0tV  

is the initial value of the trapped volume, which is geometrically calculated by the reconstruction of the gear geometry 

and θ represents a generic angular position in the above interval. Substituting all the volumetric flow rates calculated 

above (Eqs. (14), (15) and (17)) and relation (18) describing the volume variation in Eq. (13) and reorganizing, the 

following relation similar to Eq. (12) can be obtained: 
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( ( ), ( ), ( ))t
t in out t

dp f p p p
d

θ θ θ
θ
=          (20) 

 

where tf  is a function of pressure in the outlet, inlet and trapped volumes. 

 
2.3 Continuity equation for the inlet and outlet volumes 
 
The inlet chamber communicates with the reservoir, with the drainage circle, with the first isolated tooth space of gear 1 

and 2 through the clearance at the tooth tip ih and through the lateral clearance fh  and finally with the trapped volume 

through the lateral clearance fh  and through the relief grooves, see Figure 1b and Figure 5b. Therefore, Eq.(1) applied 

to the inlet volume becomes: 

 

, , ,1 ,1 ,1 ,1 , , , , , ,1 2 1 2
1 11 2

2 2 4 2 2
n m

in in in
T in atm h h f f d i d i dt f t in T t in k

i i oil

V dp dVQ Q Q Q Q Q Q Q Q Q
B d d

ω
θ θ= =

 
+ + + + + + + + + = + 

 
∑ ∑   (21) 

 

The flow exchanged with the reservoir ( , ,T in atmQ ) can be considered as a turbulent flow because of the orifice area and 

an expression similar to Eq.(16) could be used for the estimation of the flow rate. In such a case, flow coefficient flowC  

has been considered equal to 0.65, as suggested in [17], and in ambp p p∆ = − as pressure drop. The other flow rates in 

Eq. (21) have already been calculated for the continuity equations of the generic tooth space i (Section 2.1) and for the 

trapped volume (Section 2.2). In particular the flow rates with the isolated tooth spaces can be calculated using Eqs. (5) 

and (6) applied to the first isolated tooth space ( 1i = ) of gears 1 and 2. Moreover, since the drainage circle 

communicates with the inlet chamber, the drainage flow rates (Eqs. (7) and (15)) of all the tooth spaces ( 1...i n=  for 

gear 1 and 1...i m=  for gear 2) and of the trapped volume finally pour into the inlet chamber. For this reason, all the 

drainage flow rates also appear in the continuity equation of the inlet volume. With reference to Figure 5a, the control 

volume for the inlet chamber is edged by 1 2AO CO B ; the variation of such a volume as a function of the angular 

rotation can be calculated using an expression similar to Eq.(18): 

 

( )2 2 2 2
,1 ,2 1 2

1 ( ) ( )
2

in
ext ext k

dV r r r t T r t T b
dθ

= + − + − + ,      (22) 
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while the volume of the inlet chamber is obtained by integration of Eq. (22): 

 

0
0

( ) in
in in

dVV V d
d

θ

θ θ
θ

= + ⋅∫           (23) 

 

As done for the generic tooth space and for the trapped volume, Eq.(21) can be rearranged into the following form, 

substituting the above volumes and flow rates: 

 

( ( ), ( ), ( ), ( ))in
in i in out t

dp f p p p p
d

θ θ θ θ
θ

=   
1... 1
1... 2

i n for gear
i m for gear
=
=

  (24) 

 
 

When the pump is used in the steering system of vehicles, the outlet volume is connected through a valve to an 

oleodynamic actuator. This valve controls the pressure inside the pump tuning the orifice section. For this reason, the 

connection with the hydraulic circuit outside the pump through this valve has been modelled assuming turbulent flow 

by using Eq. (16). In order to estimate the coefficient out flowK C A=  in Eq. (16), the theoretical flow rate (namely 

thQ ) through the valve is used: 

 

( )2out th
out atm

K Q
p p

ρ
=

−
          (25) 

 

The theoretical flow rate (expressed in mm3/s) used in Eq. (25) is defined as / 2th v kQ C ω π= , where the volumetric 

capacity vC  is expressed in mm3/rev and the rotational speed kω  in rad/s. The volumetric capacity is the volume of 

fluid that the pump can impel during a complete gear rotation; it is determined by geometric characteristics and 

neglecting leakage [10]. Then, coefficient outK  is used during the simulation for the evaluation of the turbulent flow 

rate thought out the valve (namely , ,T out atmQ  in Figure 6). Moreover, the outlet volume is connected to the last isolated 

tooth space of gear 1 and 2 through tooth tip clearance ih  and through lateral clearance fh  and finally with the trapped 
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volume (when it exists) through lateral clearance fh  and through the relief grooves. Therefore, Eq. (1) applied to the 

outlet volume becomes: 

 

, , , , , , , , , ,1 2 1 2
2 2 2 2 out out out

T out atm h n h m f n f m f t out T t out
oil

V dp dVQ Q Q Q Q Q Q
B d d

ω
θ θ

 
− − − − − + + = + 

 
   (26) 

 

where the terms in the right side of the equation have already been calculated in the other control volumes and the outlet 

volume variation is defined as (see Figure 5a):  

 

( )2 2 2 2
,1 ,2 1 2

1 ( ) ( )
2

out
ext ext k

dV r r r t r t b
dθ

= − + − −        (27) 

 

Eq.(26) can be reorganized in the following form, as for the other control volumes:  

 

1 1( ( ), ( ), ( ), ( ), ( ), ( ))out
out n n m m out t

dp f p p p p p p
d

θ θ θ θ θ θ
θ − −=       (28) 

 
2.4 Variable dimension equation system 
 

Applying Eq. (12) to the n isolated volumes of gear 1 and to the m isolated volumes of gear 2 and joining such 

equations to the continuity equations for the remaining control volumes (Eqs. (20), (24) and (28)), a system of 

differential equations can be obtained and the unknown quantities, i.e. the pressure in the control volumes, can be 

calculated:  
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1 1( ( ), ( ), ( ), ( ), ( ), ( ))

( ( ), ( ), ( ))

t n n m m out t

t
t in out t

p p p p p p

dp f p p p
d

θ θ θ θ θ θ

θ θ θ
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− −























 =      (29) 

 

In order to solve the equation system (29), an initial value of the pressure distribution in the first integration interval 

( 0θ , see Table 1) has to be known. For that reason the pressure values obtained at the end of one integration step are 

used as initial values for a new integration cycle. After several cycles the solution for the pressure distribution is 

obtained. As an example of simulation result, Figure 7 shows the pressure evolution in a tooth space for a complete 

rotation of the two gears.  

 

3. PRESSURE FORCES AND TORQUES: IMPROVED FORMULATION 
 
3.1 Pressure forces 
 
Once the pressure distribution for a complete rotation of the gears has been obtained, the resultant pressure force and 

the resultant pressure torque for each gear can be calculated. The formulation for estimating the pressure forces is 

different with respect to the previous formulation presented in Part I ([1]). In particular this formulation considers the 

tooth spaces in which the resultant pressure force in tangential direction is null (called hereafter “balanced tooth 

spaces”) and the tooth space where the resultant pressure force in tangential direction is not null (called hereafter “not 

balanced space”). It can be noted that the formulation concerning the calculus of the pressure forces in the balanced 

tooth spaces is not presented hereafter because such a formulation is the same as in the PModel (see Eqs. 22-24 in [1]): 

the pressure force was calculated as the vector sum of the pressure around the gear multiplied by the involved area. The 

original formulation presented hereafter concerns the unbalanced tooth space depicted in Figure 8, where rk (k=1,2 
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denotes gears) defines the position of the meshing contact P in which the contact takes place (the expressions of rk for 

both gears are defined in Eqs. 19-20 of [2]); in this tooth space the global tangential force is not null. The pressure force 

is firstly calculated in the local reference frame of the tooth space k k kO X Y , with kY -axis coincident with the 

symmetric axis of the tooth space and kX orthogonal. Then, the pressure force is reduced in the reference frame 

k k kO X Y  of Figure 1a. When the meshing contact takes place in P, the tooth space surface becomes separated into two 

zones at different pressures: QP  at the inlet pressure and PR  at the outlet pressure. In order to simplify the pressure 

force calculation, the tooth space surface can be further split into three zones   , ,QP PS SR  and thus, the global 

pressure force can be obtained as the sum of the pressure force acting in each zone. The pressure force acting on 

balanced zone PS  has only radial component and it is equal to the pressure force acting on circumferential arc PS : 

 



2
2 sin

2
p r

out k kPS
f p b r

θ θ− 
=  

 
        (30) 

 

The pressure force acting on tooth space surface SR  has both the radial and tangential component; the radial 

component, as above, is equal to the pressure force acting on circumferential arc  'R R , while the tangential component 

is equal to the pressure force acting on straight segment 'R S : 

 



 ( )
'

'

2
2

r
out extR R

out ext kR S

f p sin br

f p r r b

θ =  
 

= −
         (31) 

 

In k k kO X Y reference frame such forces become: 

 

 

 

' _ '

' _ '

sin
2 2
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2 2

k

k
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R R X R R

p r
R R Y R R
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  = − −   

        (32) 
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In analogy with Eqs. (32) and (33), the pressure forces acting on tooth space surface QP  are:  

 





' _
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2 sin sin
2 2 2
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2 2 2
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k
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p r
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       (35) 

 

Finally, the global pressure force acting on an unbalanced tooth space can be obtained as the sum of the force 

components in Eqs (32-35). This pressure force, expressed in reference frame k k kO X Y , can be straightforwardly 

reduced in reference frame k k kO X Y . 

3.2 Pressure torques 
 
The pressure torques are due to the pressure difference between the pressure in the tooth spaces of the meshing teeth 

which are the only unbalanced spaces (Figure 9). In the formulation of the PModel presented in [1], the pressure in the 

trapped volume was assumed as a linear decrease from the outlet to the inlet pressure and the pressure in the inlet and 

outlet chamber was assumed as constant. On the contrary, in this improved formulation, the trapped volume as well as 

the inlet and outlet chambers are assumed as control volumes and therefore their pressure field is calculated (see 

Sections 2.2, 2.3, 2.4). The pressure torque formulation is hereafter outlined for meshing contacts along the Direct Line 

of Action (DLA), while for meshing contact along the Inverse Line of Action (ILA) , the reader can refer to [2]. In the 

case of one meshing contact, the pressure torque is calculated using the same expressions presented in the PModel (Eq 

(26) in [1]) but taking into account that, here, the pressure in the inlet and outlet chamber is time-varying 
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( )
2 2

2
ext k

pk k out in
r rM b p p

 −
= −  

 
        (36) 

 

In the case of two meshing contacts, one more term has to be taken into account, due to the pressure in the trapped 

volume (see Figure 9): 

 

( ) ( )
2 2 2 2( ) ( )

2 2
ext k ext k

pk out t k t in k
r r t r r t TM p p b p p b

   − − +
= − + −   

   
    (37) 

 

It is worth noting that pressure torque Mpk is a function of time, because radial distances r1, r2 depend on time as well as 

on pin, pout and pt. 

 

4. EXPERIMENTAL VALIDATION AND SIMULATION RESULTS 
 
4.1 Experimental validation 
 
The validation is carried out using the same methodology described in Section 4 of Part III, but using in the simulation 

process the improved pressure forces and torque. The simulation results are carried out by using the same data used in 

Part III. Hereafter the results in the time and frequency domain are presented.  

 

The time synchronous average (TSA) of the experimental quantity on the left side of Eqs. (42-44) of Part III was 

computed over 250 meshing periods at 2000 rpm, 300 meshing periods at 2600 rpm and 400 meshing periods at 3350 

rpm, while the TSA of the simulation quantity (on the right side) was computed over 48 meshing periods. Figure 10 to 

Figure 12 show the comparison between the root mean square (RMS) values of the experimental quantity and the 

simulation results, concerning the NModel and the PModel. It can be noted that the new model is able to achieve results 

closer to the experimental data than the previous model, in particular in  ' '
1 1,X Y and '

1θ  directions at 34 bar (see Figures 

2a and 8 in Part III for the reference frame). At 90 bar the RMS values of the TSA for the new and previous model give 

similar results. The validation results in frequency domain are shown in Figure 13 to Figure 15, where the amplitude of 

the spectra of the experimental quantity are compared with the spectra obtained using the new model. Taking as 

reference the waterfall maps of the previous model (Figure 10, 11 and 12 of Part III) it can be noted that the agreement 

in '
1θ -direction is the same at both pressures, while in '

1X  and '
1Y -directions the agreement is better for the NModel. In 
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'
1X -direction and 90 bar the experimental resonances at about 2.5 and 5.2 kHz can be seen in the simulated map 

(Figure 13). In '
1Y -direction the experimental resonances at 2.5 and 4.2 can be found in the model map (Figure 14) both 

at 34 and 90 bar. Therefore, the validation results both in time and frequency domain can be considered better for the 

new model. Nevertheless, the improved pressure formulation has been developed with a double objective: on the one 

hand in order to better match the experimental data, and on the other hand in order to clearly understand the pressure 

phenomena occurring in the gear pump, as the pressure ripple. 

 
4.2 Comparing the results of the two formulations 
 
In the following the results of the integration of the differential equation system (29) are compared with the results 

obtained using the PModel in order to highlight the introduced improvements. The comparisons is carried out in terms 

of pressure distribution, pressure forces and torques acting on gears.  

 

The results related to the pressure distribution comparisons concern a pump operating in a typical working condition in 

terms of operational pressure and gear speed: namely 34 bar and 2000 rpm. The pressure distribution around the gears 

represents the pressure inside a tooth space during a complete rotation of the gears, i.e. while the tooth space moves 

itself from the low to the high pressure chamber. Figure 16 shows the comparison in terms of pressure distribution in 

the isolated volumes between the PModel and the NModel. In particular the pressure distribution represented in Figure 

16 starts when the first tooth space becomes isolated at the inlet side and end when the last isolated tooth space begins 

the communication with the outlet chamber and consequently the number of isolated tooth spaces is reduced by one. It 

can be noted that the improved pressure distribution shows several oscillations that correspond to the number of isolated 

tooth spaces, while the previous one does not show such a phenomenon because of the poor modelling. Moreover, the 

increase of the pressure in the first isolated tooth spaces is smoother in the improved pressure and postponed than in the 

previous model mainly due to the new axial flow rate through the clearance between bearing block and casing internal 

surface. It is interested to note that Refs. [5][6] present some experimental measurements of the pressure distribution in 

a gear pump similar to the gear pump being studied in this work. The measurement results depict the same trend of the 

pressure distribution estimated by the NModel, in particular showing the pressure ripples similar to those in Figure 16. 

Figure 17 shows the pressure distribution in the outlet chamber for the new model and for the previous model. It can be 

noted that in the previous model the pressure in the outlet chamber (as in the inlet chamber) was taken as constant while 

in the model described here, both the inlet and outlet chamber have been considered as control volumes (see Section 

2.3). The improved pressure distribution shows the pressure oscillations due to the volume variation of the chamber and 

due to the communication with the adjacent control volumes. Figure 18 shows the pressure distributions in the trapped 



 21 

volume. It can be noted that the pressure variations are similar, however the pressure decrease is smoother for the new 

model. In fact, it is interesting to note that in the PModel, the pressure in the trapped volume was assumed as a linear 

decrease from the outlet to the inlet pressure and the pressure in the inlet and outlet chamber was assumed as constant; 

this lead to a pressure variation in the trapped volume (Fig 18) very sharp. 

 

The comparison in terms of pressure forces and torque has been carried out at the operational pressure of 90 bar and at 

the operational speed of 2000 rpm. Figure 19 shows the pressure forces acting on both gears estimated by the two 

mentioned models. It can be seen that the trends are similar and both models capture the sudden variations in 

correspondence to some events which occur during the meshing phase, such as change in the number of isolated 

volumes carrying fluid, and in the trapped volume connections. Important variations are due to phenomena concerning 

the trapped volume, occurring when its connection with the inlet begins at about 16% of T, and when its connection 

with the outlet ends at about 20% of T. Another large variation takes place when the number of isolated tooth spaces 

increases from 6 to 7, at about 25% of T for gear 1 and 75% of T for gear 2 (see also Fig. 4); in this instant a new space 

becomes isolated from the input chamber and its pressure undergoes a sudden increment. On the contrary, the force 

variation is small when the number of the isolated tooth spaces decreases from 7 to 6, that is to say, when an isolated 

space begins to be opened to the output chamber, at about 61% of T for gear 1 and 12% of T for gear 2. In this case, the 

force variation is small since its pressure is already near the output pressure. It is interesting to note that the pressure 

forces estimated by the new model are smoother in correspondence of these sudden variations with respect to the forces 

estimated by the PModel. Such a behaviour is mainly due to the improved modelling of the trapped volume. Finally, 

Figure 20 depicts the comparison between the pressure torque acting on both gears estimated by the new and the 

previous model. As expected, the trend of the pressure torque calculated by the new model is smoother in the location 

where the sudden variations related to the trapped volume connections (between 16% and 20% of T) happen. 

Furthermore, the improved pressure torque behaviour can capture the little variation due to the end of the existence of 

the trapped volume (vertical dotted line in Figure 20). Thus, the improved modelling of the phenomena bound to the 

trapped volume plays an important role in the estimation of the dynamic forces and torque. 

 

5 CONCLUDING REMARKS 
 
The previously presented model of gear pump was modified with the aim of improving the calculation of pressure 

forces and torques in order to better understand the pressure phenomena acting on this kind of device and also in order 

to achieve a behaviour closer to the real measurements. In this sense, the improved pressure formulation includes 

several phenomena not considered in the previous one, such as the pressure variations at input and output ports, the 
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axial flows through the clearances between floating bushes and case as well as an accurate description of the trapped 

volume and its connections with high and low pressure chambers. Moreover, in the new formulation, the pressure 

around the gears was simultaneously estimated for both gears. The improved model is able to achieve results closer to 

the experimental data than the previous model, in particular, in the time domain comparison. Moreover, the new model 

can simulate pressure phenomena occurring in the gear pump such as the pressure ripple. As a matter of fact, thanks to 

the new formulation, the simulation results of the improved pressure evolution in the isolated tooth spaces show 

pressure oscillations that correspond to the isolated tooth spaces, while the previous model does not show such 

phenomenon because of the simpler modelling. In the previous model (Part I) the pressure in the outlet chamber (as in 

the inlet chamber) was taken as constant while in the model described here, both the inlet and outlet chambers have 

been considered as control volumes and the improved pressure distribution shows the pressure oscillations due to the 

variation in volume of the chamber and due to the communication with the adjacent control volumes. It is important to 

underline that the improved pressure distribution shows the same trend as the experimental results in [5]. The originality 

of this paper concerns the development of a non-linear model of gear pumps that implements formulations about 

pressure distribution, hydrodynamic bearing forces and meshing stiffness. In particular, it is original to include all these 

important dynamic effects in the same model, in order to take into account their interactions. This can be important in 

order to foresee the influence of working conditions and design modifications on vibration and noise generation. Thus, 

the model could be a very useful tool in prototype design and in design optimisation in order to identify the origin of 

unwanted dynamic effects. 
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Figure 1. (a) Control volumes and (b) relating flows. Gear 1 is the driving gear, gear 2 is the driven gear. 
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Figure 3. a) Balancing seal in the bearing block surface and b) axial flow rate through the clearance 

between casing and bearing block when the tooth space is beyond point P. 
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Figure 5. a) Schematic for the calculus of the control volumes and their variations and b) Volumetric flow 
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Figure 6. Volumetric flow rates for the outlet volume. 
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Figure 7. Pressure evolution in a tooth space of gear 1 and 2 for a complete rotation at the operational 
condition of 2000 rpm and 34 bar, represented in polar coordinates.  
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Figure 8. Pressure force in a not balanced tooth space of gear 2; P is the point where the contact between 
teeth takes place. 
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Figure 9. Not balanced tooth space in case of two meshing contacts.  
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Figure 10. RMS values of the TSA relative to one meshing period of the force in '
1X -direction: (a) at 34 bar 

and (b) at 90 bar.  

(a) 

(b) 



 34 

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

2000 rpm 2600 rpm 3350 rpm

[N
]

Force Y'1-dir, 34 bar (RMS Values)

Expe rimental

PModel

NModel

 
 

0

1

2

3

4

5

6

2000 rpm 2600 rpm 3350 rpm

[N
]

Force Y'1-dir, 90 bar (RMS Values)

Expe rimental

PModel

NModel

 
Figure 11- RMS values of the TSA relative to one meshing period of the force in '

1Y -direction: (a) at 34 bar 
and (b) at 90 bar. 
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Figure 12. RMS values of the TSA of the moment ( '

1θ -direction) relative to one meshing period: (a) at 34 bar 
and (b) at 90 bar. 
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Figure 13. Waterfall maps of force spectra in '
1X -direction at 34 bar (left) and 90 bar (right); according to 

the experiment (a) and simulation (b). 

(a) 

(b) 
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Figure 14. Waterfall maps of force spectra in '

1Y -direction at 34 bar (left) and 90 bar (right); according to the 
experiment (a) and simulation (b). 

(a) 

(b) 
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Figure 15. Waterfall maps of moment spectra ( 1'θ -direction) at 34 bar (left) and 90 bar (right); 
according to the experiment (a) and simulation (b). 
 

(a) 

(b) 



 39 

 

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

1.2

Angular Rotation [deg]

N
or

m
al

iz
ed

 P
re

ss
ur

e 
D

is
tr

ib
ut

io
n

 

 

PModel
NModel

 
Figure 16. Pressure evolution in the isolated tooth spaces for gear 1 at the operational condition of 2000 rpm 

and 34 bar. Comparison between PModel and NModel.  
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Figure 17. Pressure evolution in the outlet volume for gear 1 at the operational condition of 2000 rpm and 34 

bar. Comparison between PModel and NModel.  
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Figure 18. Pressure evolution in the trapped volume for gear 1 at the operational condition of 200o rpm and 

34 bar. Comparison between PModel and NModel.  
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Figure 19. Evolution of the pressure forces over one meshing period in the reference frame k k kO X Y  at the 

operational condition of 2000rpm and 90bar. Comparison between PModel and NModel. 
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Figure 20. Pressure torques acting on gears over one meshing period at the operational condition of 2000rpm 
and 90bar, starting from the position when the second tooth pair comes into contact. The vertical dotted line 

defines the end of the trapped volume, corresponding to the angular rotational of ,t endθ  (see Figure4b). 

Comparison between PModel and NModel. 

End of the trapped 
volume 

End of the 
trapped 
volume 
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TABLES 
 
 
Table 1: Number of control volumes as a function of rotational angle. The starting position is when 
a new meshing begins. 
 

 
FromTo 

0 1θ θ→  1 2θ θ→  2 3θ θ→  3 4θ θ→  4 5θ θ→  5 0pθ θ θ→ =  

Rotational angle[deg] 3°11’ 4°22’ 3°11’ 7°27’ 4°22’ 7°27’ 
# of trapped volumes 1 1 1 0 0 0 
# of isolated tooth space 
volumes (gear 1) 

6 6 7 7 6 6 

# of isolated tooth space 
volumes (gear 2) 

7 6 6 6 6 7 

# of inlet and outlet volumes 2 2 2 2 2 2 
Total number of control 
volumes 

16 15 16 15 14 15 
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