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Abstract

In this paper two prediction models to evaluate the radiation efficiency of orthotropic plates,
developed with different approaches, are presented. A sound radiation model, based on an an-
alytical/modal approach, is developed for a thin orthotropic plate, with the principal directions
aligned with the edges. The model allows to consider the contribution of each mode, either res-
onant or non-resonant, as well as the influence of fluid loading on the plate dynamic response
and on sound radiation. Moreover, a statistical model to evaluate the average radiation efficiency,
based on a non-modal approach, which only considers the contribution of resonant modes, is
presented. These two models have been used in order to predict the radiation efficiency of or-
thotropic cross-laminated timber (CLT) plates. CLT is an engineered wood material constituted
by an odd number of lumber beams glued together, which have become very popular in the last
twenty years in the building construction market. Due to their layered structure, CLT plates might
exhibit a highly orthotropic behaviour. Both prediction models are validated by comparing the
simulated results with the experimental radiation efficiency, obtained by means of vibro-acoustic
measurements on three CLT plates. Finally, the influence of fluid loading on sound power radi-
ated by CLT plates is investigated.

Keywords: radiation efficiency, orthotropic plate, cross-laminated timber, fluid-loading
influence

1. Introduction1

Noise reduction is nowadays a main concern as much in the automotive or aerospace industry2

as in building construction and in many other fields. In order to design structures that provide3

good sound insulation it is fundamental to characterise how the vibrating elements radiate sound.4

Sound radiation has been the object of an increasing interest during the last half century and the5

physics behind this mechanism is well known. However, from an engineering point of view,6

the computation of the sound power radiated by a vibrating surface is still a highly demanding7

task compared to pure vibrational problems. In order to provide reliable alternatives to finite8

elements (FE) and boundary elements methods (BEM), which usually require a considerable9
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computational effort, many formulations to predict the radiated sound power have been proposed10

by several authors. These prediction models provide approximated results with wide-ranging11

levels of accuracy. They have been developed by using different approaches and under differ-12

ent basic assumptions, upon which depends their suitability for each specific problem. Based13

on a non–modal approach, the modal-average radiation efficiency due to the contribution of the14

resonant vibrational field can be evaluated [1]. On the other hand, using a modal approach the15

radiation efficiency is approximated by taking into account all the in-vacuo single modes within16

the frequency range [2]. In order to consider the influence of cross-modal coupling, different an-17

alytical formulations have been developed using either the far field [3], or the near-field approach18

[4]; the latter also takes into account the fluid loading effect. An extensive and more detailed bib-19

liographic analysis of the prediction models to compute sound radiation was presented by Atalla20

and Nicolas in 1994 [5]. Later in the same decade Nelisse [6] proposed a generalized model for21

the acoustic radiation from baffled and unbaffled homogeneous plates, with arbitrary boundary22

conditions. The same approach was also used by Foin to develop a tool to predict the acoustic23

and structural vibration response of sandwich plates [7]. More recently Mejdi and Atalla pre-24

sented a semi-analytical model to numerically investigate the vibro-acoustic response of stiffened25

plates [8], while Legault analysed orthogonally ribbed plates by means of a periodic theory [9].26

Rhazi and Atalla used simple and quick tools, such as statistical energy analysis and the trans-27

fer matrix method, to estimate the vibro-acoustic response of mechanically-excited multilayer28

structures [10]. Davy developed a two dimensional strip analytic approximation to compute the29

forced radiation efficiency of acoustically excited finite size panels [11]. Davy also presented30

an approximation method to calculate both the real and the imaginary part of the single-side31

specific forced radiation impedance of a rectangular panel [12]. The possibility to consider both32

the resonant and non resonant contribution, in the case of an acoustically excited plate, and the33

near-field contribution in the case of mechanical point excitation, was also introduced by Davy34

in a recently published paper [13].35

Two models are presented in this paper; they have been implemented in order to estimate the36

radiation efficiency of mechanically excited orthotropic panels, such as cross-laminated timber37

plates used in buildings. Cross-laminated timber solid wood panels, commonly known as CLT,38

consist of an odd number of layers of lumber beams glued together, alternating the fibres orienta-39

tion of adjoining plies orthogonally. This engineered wood material has gained a growing success40

in the construction market over the last two decades, especially in Europe and North America.41

In fact in recent years, CLT has also attracted the interest of acousticians and researchers who42

have carried out experimental investigations on these structures [14–18]. Nowadays, CLT struc-43

tures represent a valuable alternative to traditional construction materials. They provide good44

structural stability, fulfil the safety requirements and allow to reduce construction time, since45

they can be completely prefabricated and then assembled at the construction site. The drawback46

of this construction technology is arguably the poor sound insulation provided by CLT panels,47

due to their low density combined with a relatively high stiffness. During the design process it is48

necessary to acoustically optimize the CLT elements in order to improve the sound insulation per-49

formace and meet the acoustic requirements for buildings [19]. Due to their layered sub-structure50

and the properties of the wood material, CLT plates generally exhibit an orthotropic behaviour51

[20, 21], which means that they have different elastic properties along mutually perpendicular52

directions. CLT panels can be investigated as 3D orthotropic plates. This approach, however,53

would involve a rather tedious and complex analysis with nine independent elastic constants to54

be known: i.e. three elastic moduli and three Poisson’s ratios associated with the the principal55

directions and three shear moduli. In order to define more usable models, the thin plate theory is56
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here adopted, since it greatly simplifies the problem, describing the orthotropic constitutive rela-57

tionship by means of only five independent constants. However, in order to take into account the58

influence of rotatory inertia and shear deformation, which are neglected in the thin plate theory59

but might be significant especially in the high frequency range, the CLT panels are described by60

means of apparent frequency-dependent elastic properties, as further discussed below.61

In the next section the numerical models to predict the radiation efficiency of orthotropic62

plates are introduced. At first, an analytical formulation for a thin orthotropic plate is derived,63

by following the general approach, based on a variational formulation, proposed by Nelisse [6].64

Then a simplified modal-average approach to compute the orthotropic radiation efficiency, based65

on more restrictive assumptions, is described. Both models have been validated with the exper-66

imental radiation efficiency evaluated for three different CLT plates, as described in section 3.67

The main results are presented and discussed in section 4.68

2. Prediction models for an orthotropic plate69

The radiation efficiency σ is defined as the ratio between the sound power Wrad actually70

radiated by a vibrating elastic structure and the sound power that would theoretically be radiated71

by a rigid piston of equal surface area S vibrating with the same mean square velocity
〈
v2

〉
s,t

,72

where the subscript s,t indicates time and spatial average, multiplied by the characteristic air73

impedance Z0 = ρ0c0:74

σ =
Wrad

ρ0c0S
〈
v2〉

s,t
. (1)75

where ρ0 is the density of the fluid medium and c0 the speed of sound within the fluid. This76

acoustic descriptor, characterising the capability of a vibrating structure to transfer the vibra-77

tional energy to the surrounding fluid as sound energy, represents important input data, required78

in the greatest part of building acoustics prediction models [22–26]. In this section two models to79

evaluate the radiation efficiency of an orthotropic rectangular plate are presented. They are based80

on different assumptions and developed following distinct approaches. An analytical/modal-81

based approach is derived, either considering or neglecting the influence of fluid loading. Then82

a modal-average model, which may be useful within the statistical energy analysis (SEA) frame-83

work, is presented.84

Both models assume the validity of thin plate theory. However, as the frequency increases85

and the structural wavelength approaches the panel thickness, rotational inertia and shear de-86

formation effects start to have a significant influence on the plate dynamics. For this reason,87

apparent frequency-dependent stiffness properties have been introduced in order to adopt low-88

order theories while considering several effects which take part in the flexural motion, such as89

shear deformation, rotatory inertia, viscoelasticity and the layered substructure. The possibility90

to adopt such a homognenisation approach, commonly used to investigate sandwich structures91

[27–29], also to CLT panels has already been successfully investigated and discussed by other92

authors in previous studies [20, 30].93

2.1. Modal based radiation and fluid-loading94

Let us consider a rectangular thin orthotropic plate, with the principal axes aligned with the95

edges, lying in the x − y plane and inserted in a coplanar rigid baffle, as shown in Figure 1.96
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Figure 1: Elastic thin orthotropic plate inserted in a infinite rigid baffle, radiating sound energy in a semi-infinite fluid
domain z > 0.

The equation of motion of such a thin orthotropic plate, undergoing free flexural vibrations, is97

governed by the fourth-order in space and second-order in time differential equation:98

Dx
∂4w
∂x4 + 2B

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 = ρh

∂2w
∂t2 . (2)99

The bending stiffness along the principal directions, Dx and Dy, and the effective torsional stiff-100

ness B, are a function of elastic and in-plane shear moduli Ex, Ey and Gxy:101

Dx =
Exh3

12
(
1 − νxyνyx

) ; Dy =
Eyh3

12
(
1 − νxyνyx

) ; (3)102

103

B =
νxyDy

2
+
νyxDx

2
+ 2Gxy

h3

12
. (4)104

The elastic constants νxy and νyx are related to the geometrical configuration of the orthotropic105

plate [31]. According to Betti’s reciprocal theorem, the bending stiffness along the two principal106

directions satisfies the relationship [32]:107

νyxDx = νxyDy. (5)108

A sound radiation model for an orthotropic thin plate has been developed using a general109

approach based on Hamilton’s variational principle. The solution for the plate’s transverse dis-110

placement w can be derived following the generalised approach proposed by Nelisse [6] to eval-111

uate the sound power radiated by rectangular isotropic plates immersed in a fluid. The plate’s112

transverse displacement w (x, y, t) is approximated by a linear sum of admissible trial functions113

ψmn (x, y):114

w (x, y, t) =

M∑
m

N∑
n

amnψmn (x, y) eiωt, (6)115
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where amn represents the unknown amplitude of the transverse displacement associated with the116

mode (m, n). Assuming simply supported boundary conditions at all edges, sine functions can be117

used as trial functions ψmn (x, y), providing numerical stability in the computation [33]:118

ψmn (x, y) = sin
(

mπx
Lx

)
sin

(
nπy
Ly

)
. (7)119

Assuming a harmonic time dependence of the kind eiωt, the plate steady state equation of motion120

for forced vibration can be expressed, for a given angular frequency ω, as a linear matrix system:121 (
−ω2Mmnpq + Kmnpq + iωZmnpq

)
amn = fmn, (8)122

where Mmnpq are the mass matrix coefficients, Kmnpq the stiffness matrix coefficients, Zmnpq are123

the coefficients of the impedance matrix, while fmn are the coefficients of the external force124

vector. The amplitude coefficients amn of the transverse displacement vector w represents the125

only unknown of the system.126

The stiffness matrix takes into account the orthotropic behaviour of the structure and its127

coefficients can generally be formulated as a double integral over the plate surface S :128

Kmnpq =

∫ Ly

0

∫ Ly

0

[
Dx

∂2

∂x2ψmn (x, y)
∂2

∂x2ψpq (x, y) + Dy
∂2

∂y2ψmn (x, y)
∂2

∂y2ψpq (x, y)

+ νyxDx
∂2

∂x2ψmn (x, y)
∂2

∂y2ψpq (x, y) + νxyDy
∂2

∂y2ψmn (x, y)
∂2

∂x2ψpq (x, y)

+4Gxy
h3

12
∂2

∂x∂y
ψmn (x, y)

∂2

∂x∂y
ψpq (x, y)

]
dS .

(9)129

In Appendix A, the two-fold integral is reduced to a simpler and computationally faster formu-130

lation, under the assumption of simply-supported boundaries.131

The mass matrix coefficients, as for an isotropic simply-supported plate, are given by:132

Mmnpq = ρh
∫ Lx

0

∫ Ly

0
sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
sin

(
pπx
Lx

)
sin

(
qπy
Ly

)
dS . (10)133

However, due to the orthogonality property of the eigenfunctions, Eq. (10) reduces to:134

Mmnpq =


Mmn =

ρhLxLy
4 ; if m = p and n = q,

0; if m , p or n , q.

(11)135

The radiation impedance Z is a sparse matrix of complex numbers. Its coefficients can be ex-136

pressed in terms of its real and imaginary parts, the radiation resistance R and radiation reactance137

X respectively:138

Zmnpq = Rmnpq + iXmnpq. (12)139

The computation of the radiation impedance coefficients involves a four-fold integral to be140

solved:141

Zmnpq = iωρ0

∫
S

∫
S
ψmn (x, y) G (x, y, 0, x, y, 0)ψpq (x, y) dS dS . (13)142
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The Green’s function G (x, y, 0, x, y, 0) for the semi-infinite space is given by:143

G (x, y, 0, x, y, 0) =

exp
(
−ik0

√
(x − x)2

+ (y − y)2
)

2π
√

(x − x)2
+ (y − y)2

. (14)144

Eq. (13) has been reduced to a two-fold integral using the approach proposed by Sandman [4]145

and Nelisse [6], although by using different integration limits, as shown in Appendix B.146

When the surrounding fluid has a low inertia compared to the radiating structure, the fluid147

loading and the modal cross-coupling are usually assumed to be negligible, as also shown in148

Appendix B. The coefficients of the radiation impedance matrix can thus be approximated by149

considering only the self-radiation resistance Rmn, i.e. the real part of the diagonal terms. The150

self-radiation resistance is proportional to the modal radiation efficiency σmn according to the151

relationship:152

Rmn = nmnρ0c0Sσmn, (15)153

where nmn represents the norm of the mode, which in the case of simply-supported boundaries:154

nmn = 0.25. The modal radiation efficiency σmn can be determined by using Wallace’s formula-155

tion [34]:156

σmn =
64k2

0LxLy

π6m2n2

∫ π/2

0

∫ π/2

0


Γ
(
α
2

)
Λ

(
β
2

)[(
α

mπ

)2
− 1

] [(
β

nπ

)2
− 1

]


2

sin θ dθdφ, (16)157

in which α = k0Lx sin θ cos φ and β = k0Ly sin θ sin φ. The function Γ is cos if m is an odd integer,158

while it is sin if m is an even integer. The trigonometric functions for Λ are chosen analogously159

with respect to the integer n. The integration is performed over the propagation angle of the160

structural wave φ and over the angle of propagation θ of the acoustic wave in the fluid medium.161

The coefficients associated with the external excitation are given, assuming a harmonic point-162

force, by:163

fmn = F0ψmn (xS , yS ) , (17)164

where F0 represents an arbitrary amplitude of the point-force that drives the plate in the position165

(xS , yS ).166

Knowing the coefficients of the mass, stiffness, and radiation impedance matrix and of the167

external force vector, the amplitude of the plate’s transverse displacement vector amn can be168

computed by solving a set of linear algebraic equations:169

amn = Amnpq fmn, (18)170

where the admittance matrix A is obtained from the inversion of the matrices between parenthe-171

ses on the left - hand side of equation (8) as:172

Amnpq =
(
−ω2Mmnpq + Kmnpq + iωZmnpq

)−1
. (19)173

In order to numerically perform the matrix inversion, for each investigated frequency ω, it is174

necessary to re-arrange the multi-dimensional matrices M, K and Z, in two dimensions.175
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By solving Eq. (18) it is possible to compute the vibro-acoustic indicators as a function of176

the plate’s transverse displacement w. The mean square vibration velocity of the plate is given177

by:178 〈
v2

〉
=
ω2

8

∑
m

∑
n

|amn|
2 . (20)179

The radiated sound power is computed by integrating the active sound intensity over the plate180

surface:181

Wrad =
ω2

2

∑
m

∑
n

∑
p

∑
q

amnRe
[
Zmnpq

]
a∗pq, (21)182

where the superscript ∗ denotes the complex conjugate value. The orthotropic plate radiation183

efficiency can be determined according to Eq. (1).184

2.2. Modal-average radiation efficiency185

As the number of modes within the frequency band increases, it might be more convenient186

to derive an average radiation efficiency, rather than consider the radiation of each single mode.187

The modal-average radiation efficiency is an acoustic descriptor, usually expressed in one-third188

octave bands, often required in building acoustics, either in SEA-based prediction models and189

when a broad band excitation is involved. A statistical radiation efficiency model was imple-190

mented, based on the modal-average formulations proposed by Ghinet and Atalla [35] and by191

Anderson and Bratos-Anderson [36], using as input data frequency-dependent stiffness proper-192

ties. Such a statistical approach requires some additional assumptions: (i) high modal density193

and modal overlap over the entire frequency range in order to treat the discrete distribution of194

modes as a continuous function; (ii) the sound power is only radiated by resonant modes; (iii)195

the resonant modes are uncorrelated; (iv) equipartition of modal energy can be applied: all the196

modes within the frequency band have the same vibrational energy. The average radiation effi-197

ciency of a thin orthotropic baffled panel can be computed by weighting the direction dependent198

radiation efficiency σ (ω, φ) by the plate modal density nd:199

σortho (ω) =
LxLy

π2nd

∫ π/2

0
σ (ω, φ) kB

∂kB

∂ω
dφ. (22)200

The radiation efficiency σ (ω, φ) is computed, at a given angular frequency ω and propagation201

angle φ, using Leppington’s asymptotic formulations [37, 38], developed for three different202

frequency ranges, with respect to the coincidence condition, which occurs when the acoustic203

wavenumber k0 matches the wavenumber of the structural bending wave propagating in the plate204

kB:205

µ < 1 − δ : above the critical condition;
µ = 1 ± δ : near the critical condition;
µ > 1 + δ : below the critical condition;

206

where µ is the dimensionless bending wavenumber defined as the ratio: µ = kB
k0

. Below the critical207

condition the acoustic wavelength λ0 is much bigger than the bending wavelength λB, vice-versa208

the acoustic wavenumber is smaller than the bending wavenumber. Air particles move parallel209

to the plate surface and compensate the oscillating areas associated with high and low pressure.210

Sound is only radiated at the edges, and at other discontinuities, where the pressure change cannot211

be fully compensated by the moving air. The radiation efficiency is much smaller than unity in212
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this frequency range. Above the critical condition sound is radiated uniformly from the plate213

surface, like in the case of a piston source; therefore, the radiation efficiency approaches unity.214

The bending wavenumber kB always fits the trace wavenumber of an acoustic wave propagating215

away from the surface at a certain angle: kB = k0 sin θ. At coincidence, µ = 1, the plate radiates216

sound more efficiently than a piston source and σ exceeds unity. The complete set of equations217

to compute the asymptotic radiation efficiency is given in Leppington’s papers [37, 38] where218

it was developed for an isotropic homogeneous plate. However, those papers do not provide219

information on how factor δ, which defines the frequency limits of the near-coincidence region,220

should be determined. The procedure we developed in order to determine the three frequency221

ranges for which Leppington’s equations are defined was implemented for a discrete number of222

angles within the interval 0 ≤ φ ≤ π/2 and is described in Appendix C. Due to the orthotropic223

nature of the CLT plate, the bending wave velocity depends upon the propagation direction of the224

structural wave. Therefore, a direction-dependent bending wavenumber has to be considered. At225

any propagation angle φ, the direction-dependent bending wavenumber kB (φ) can be estimated226

from the wavenumber components along the principal directions kB,x and kB,y, by applying a227

well-established orthotropic elliptic model [39]:228

kB (φ) =

√(
kB,x cos φ

)2
+

(
kB,y sin φ

)2
. (23)229

For a thin orthotropic rectangular plate the modal density nd, which describes the number of230

modes per Hertz, is given by:231

nd =
LxLy

√
ρh

2π2

∫ π/2

0

√
1

D (φ)
dφ. (24)232

The direction-dependent bending stiffness D (φ) can be approximated for each propagation angle233

φ at a given angular frequency ω as:234

D (φ) =
ω2ρh
k4

B (φ)
. (25)235

This approximation might be helpful when information about the in-plane shear modulus Gxy is236

not available. Moreover, it is straightforward from Eq. (23) and Eq. (25) to determine the rate of237

change of the plate wavenumber with the frequency as:238

kB (φ)
∂kB

∂ω
=

(
kB,x cos φ

)2
+

(
kB,y sin φ

)2

2ω
. (26)239

The frequency dependent stiffness properties required as input data in both models here pre-240

sented can be derived from the bending wavenumbers kB,x and kB,y associated with the principal241

directions of the orthotropic plate.242

3. Experimental measurements243

Three different three-ply CLT plates, 4.2 m wide and 2.9 m high, were tested in Empa’s244

wall sound insulation test facility. Even though all three panels are constituted by three plies of245
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Figure 2: Investigated CLT panels: digram of the layers and cross-sections along the principal directions.

wooden beams, there are differences either in the ratio between the thickness of the inner core246

and the outer layers, or in the total thickness, as shown in Figure 2. The geometric characteristics247

of the tested panels are summarised in Table 1. Each plate was mounted in a rigid frame between248

the two testing rooms. It was fixed and sealed using elastic putty along all the edges on both249

sides, as shown in Figure 3. In order to experimentally evaluate the plate’s radiation efficiency,250

one has to measure the mean square velocity of the plate surface and the total radiated sound251

power. A Polytec PSV-500 laser scanning vibrometer was used to measure the vibration velocity252

on a 513 points grid on the plate surface. The CLT wall was excited by a B&K 4809 vibration253

exciter driven with a white noise signal, to reproduce a structure-borne point source. In order254

to excite a sufficient number of modes two different source positions were used, one after the255

other, their coordinates pS 1 and pS 2 are given for each panel in Table 1. A PCB impedance-head256

was attached to the shaker stinger in order to determine the driving point mechanical impedance257

by measuring both the input force and the acceleration, from which the plate loss factor was258

evaluated. The diffuse field sound pressure in the receiving room was measured using a B&K259

rotating boom microphone. The radiated sound power cannot be directly measured, but needs260

to be determined from other quantities, such as sound pressure, sound intensity or vibration261

velocity. The sound power radiated from the tested CLT plates was experimentally determined262

by two different approaches.263

Diffuse Field Approach (DFA) – Assuming a perfectly diffuse sound field, the radiated sound264

power is determined from the mean square sound pressure
〈
p2

〉
s,t

, measured in the central area265

of the room. To account for the higher energy density near the room boundaries, which affects266

results at low frequencies, the Waterhouse correction [40] has been applied and the radiated267
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Table 1: Plate and test facility geometric characteristics

CLTA,80 CLTB,80 CLTC,100

Lx (m) 4.20 4.20 4.20
Ly (m) 2.90 2.90 2.90
S (m2) 12.18 12.18 12.18
htot (m) 0.080 0.080 0.100
hol (m) 0.030 0.015 0.030
hic (m) 0.020 0.050 0.040
ρ (kg/m3) 484.4 467.2 484.4
m′ (kg/m2) 38.75 37.38 48.44
pS 1 = (x(m), y(m)) (0.5, 0.8) (0.9, 1.2) (0.5, 0.9)
pS 2 = (x(m), y(m)) (3.6, 0.9) (3.2, 0.9) (3.2, 1.2)

power was calculated using the equation:268

Wrad =

〈
p2

〉
s,t

4ρ0c0
A

(
1 +

S Tλ0

8V

)
. (27)269

The absorption area A is calculated from the measured reverberation time and the room volume V270

using the well known Sabine’s relation, λ0 is the acoustic wavelength and S T is the total surface271

area of the receiving room. The main limitation of this appraoch is the diffuse field assumption,272

which is hardly achieved below 100 Hz in wall sound insulation laboratories, designed according273

to the standard ISO 10140-5 [41].274

Discrete Calculation Method (DCM) – The radiated sound power was also evaluated by using275

the DCM, as:276

Wrad =
∑

i

Re (Zii) |vi|
2 +

∑
j

Re
(
Zi jviv∗j

) . (28)277

DCM is a hybrid method, proposed by Hashimoto [42], which requires both numerical calcu-278

lations and the complex vibration velocity, measured over a grid of points on the plate surface.279

The plate surface has to be discretised in small piston-like source elements. The radiated sound280

power is determined from the calculated self- and cross-radiation impedances Zii, Zi j and from281

the measured complex vibration velocity vi of each sub-element. A complete and detailed de-282

scription of this method is given in the original paper by Hashimoto [42]. In this method, it is283

assumed that the panel is surrounded by an infinite rigid baffle and that sound is radiated into a284

semi-infinite half-space. Effects due to the room’s geometry are neglected.285

The experimental radiation efficiency of the orthotropic CLT plate was used to validate the286

prediction models described in the previous section. The structural wavenumbers associated287

with the plate’s principal directions kB,x and kB,y, given in one-third octave band values in Table288

2 and shown in narrowband in Figure 4, were experimentally determined from a non-destructive289

measurement procedure based on wave propagation analysis, described in detail in [43]. They290

were used to determine the stiffness properties required as model input data. Moreover, the plate291
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Figure 3: Experimental set-up: CLT plate mounted into a steel-concrete composite frame between the testing rooms of
the sound transmission test facility.

damping can be taken into account, in both models, by means of complex input data [44]:292

D = D (1 + iη) , (29)293

where D is the complex bending stiffness and η is the plate loss factor. The loss factor of the CLT294

plate was determined using the power injection method, as described in [45–47] from point input295

force and acceleration, measured with an impedance head attached to the shaker stinger. The296

accuracy of this approach has been proven in several papers [48–50], in which it was compared297

with other methods that can be used to determine the structural damping, such as the decay298

response method, or the half-power bandwidth method.299

4. Results300

The two prediction models are validated in this section by comparing the numerical results301

with the radiation efficiency experimentally measured for the three CLT plates. It is easier to302

understand the theoretical background underlying these models by deriving first the more general303

formulations and then simplifying the problem with more restrictive assumption. However, it is304

more convenient to present the results the other way around. At first the modal-average approach305

is considered, being the simplest and less computationally expensive; then the more accurate306

analytical/modal approach is validated. In both cases the experimental radiation efficiency is307

computed as the average of the results obtained from the DCM and the DFA approaches, which308

provide in general consistent results. A thorough investigation of their reliability can be found in309

[51], however, for sake of completeness, the panels’ experimental radiation efficiency is plotted310

together with the standard deviation between the two methods. It should be mentioned that the311

DFA has not been applied below 100 Hz. It is shown that the experimental deviation between312

different approaches, or different source positions, can be up to 2-3 dB.313
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Table 2: One-third octave bands values of the structural wavenumbers and loss factor used as input data to model the
cross-laminated timber plates

f kB,x,CLTA80 kB,y,CLTA80 kB,x,CLTB80 kB,y,CLTB80 kB,x,CLTC100 kB,y,CLTC100 η
(Hz) (rad/m) (rad/m) (rad/m) (rad/m) (rad/m) (rad/m) (-)

100 4.6 2.4 3.5 3.0 3.4 2.1 0.08
125 5.2 2.7 4.0 3.4 3.8 2.4 0.08
160 6.0 3.1 4.6 3.9 4.3 2.8 0.07
200 6.6 3.4 5.1 4.3 4.8 3.1 0.07
250 7.5 3.9 5.9 4.9 5.5 3.6 0.07
315 8.5 4.4 6.7 5.5 6.2 4.1 0.06
400 9.7 5.1 7.7 6.3 7.0 4.8 0.05
500 11.0 5.8 8.8 7.1 8.0 5.6 0.04
630 12.6 6.7 10.3 8.1 9.2 6.6 0.03
800 14.4 7.7 12.0 9.3 10.6 7.9 0.03

1000 16.7 9.0 14.1 10.7 12.2 9.4 0.03
1250 19.3 10.6 16.8 12.5 14.2 11.5 0.03
1600 22.5 12.5 20.2 14.5 16.6 14.0 0.03
2000 26.5 15.0 24.6 17.1 19.6 17.3 0.03
2500 31.4 18.2 30.1 20.3 23.4 21.6 0.03

4.1. Modal-average approach314

The modal-average radiation efficiency computed for the three CLT plates is presented in315

Figures 5,6 and 7, in terms of radiation index Lσ = 10 logσ, in one-third octave bands. This316

statistical approach is validated by comparing the computed data with the radiation efficiency317

experimentally evaluated for each CLT panel by averaging the results obtained for the two shaker318

positions, thus no standard deviation is shown.319

Orthotropic plates are characterised by a coincidence region limited by two coincidence fre-320

quencies, since the structural wave velocity depends on the propagation direction. The lowest321

coincidence frequency corresponds to the stiffest principal orthotropic direction and for CLT322

walls it is usually the vertical one, along which the outer layers’ grains are oriented. As shown323

in the comparison in Figure 5, the predicted results well approximate the experimental radia-324

tion index measured for the plate CLTA,80. The first coincidence, indicated by a peak where the325

curve gradient changes, is found within the 250 Hz band, even though in the simulated data this326

is not as pronounced as in the experimental results. The upper coincidence frequency, which327

also represents the critical condition, is generally related to the horizontal principal direction of328

a CLT wall, perpendicular to the grain of the outer layers and parallel to the orientation of the329

core fibres. The critical condition of the plate CLTA,80 falls between the 800 Hz and 1000 Hz330

frequency bands. It is clearly identifiable by the curve maximum, which is more emphasised in331

the predicted radiation index than in the experimental results. Above the critical frequency the332

whole plate radiates sound like an ideal piston source and the radiation efficiency tends to unity.333

Similar findings have been obtained comparing calculated and measured results for the other two334

plates. The modal-average radiation efficiency computed for the plate CLTB,80 provides a good335

approximation of the experimental trend, as shown in Figure 6. This panel exhibits a weaker336

orthotropy, with its first coincidence between the 250 Hz and 315 Hz frequency bands and the337

critical condition in the band centred around 500 Hz. A similar agreement is also found be-338

tween the simulated and experimental average-radiation efficiency of the plate CLTC,100, shown339

in Figure 7. The first coincidence falls in the 200 Hz frequency band, and the critical condition340
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Figure 4: Structural wavenumbers along the principal directions used as input data to model the three CLT panels: (a)
panel CLTA,80; (b) panel CLTB,80, (c) panel CLTC,100
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Figure 5: Panel CLTA,80: the modal-average radiation index Lσ,mod−avg is compared with the experimental results aver-
aged over all the source positions Lσ,exp in one-third octave bands.

is between the bands centred around 400 Hz and 500 Hz. Once again the numerical radiation341

efficiency well approximates the trend of the experimental data providing a smooth curve with342

the peak associated with the critical condition spread over different frequency bands and the first343

coincidence pinpointed by a change in the curve slope.344

In general, such a statistical model allows to obtain a good approximation of the radiation345

efficiency trend in the considered frequency range, identifying with good accuracy the first co-346

incidence and the critical condition; although it cannot provide a very accurate and detailed pre-347

diction below the critical condition. The high modal density assumption, necessary to consider348

a continuous distribution of modes, is not sufficiently fulfilled within the entire frequency range,349

since below the critical condition the vibrational field of the CLT plate surface is not perfectly350

diffuse and only a few modes lay within the frequency bands. Moreover, the near-field generated351

around the excitation point represents a discontinuity, not considered by the model, which usu-352

ally enhance radiation. Nevertheless, the modal-average approach provides helpful insights on353

the radiation of the orthotropic CLT plate, even if it is not able to capture the modal behaviour354
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Figure 6: Panel CLTB,80: the modal-average radiation index Lσ,mod−avg is compared with the experimental results aver-
aged over all the source positions Lσ,exp in one-third octave bands.
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Figure 7: Panel CLTC,100: the modal-average radiation index Lσ,mod−avg is compared with the experimental results
averaged over all the source positions Lσ,exp in one-third octave bands.

below the critical frequency.355

4.2. Modal / analytical approach356

A vibro-acoustic model based on an modal/analytical approach has been implemented with357

the aim to obtain a more detailed prediction also in the frequency region characterised by a low358

mode count. Moreover, this approach also allows to take into account the influence of the fluid359

loading, even though the computation of the radiation impedance matrix requires a huge effort.360

However, the influence of fluid loading on the sound radiated by a CLT building panel is very361

small, as proven in Appendix B, since air has a much lower inertia compared to the investi-362

gated structures. Therefore, the radiation impedance can be approximated by the real part of363

the self-radiation resistance, neglecting fluid loading and reducing significantly the computa-364

tional cost of the algorithm. The model is validated by comparing the numerical results with the365

experimental CLT plates’ radiation efficiency for each single shaker position. In Figure 8 the366

numerical and experimental results for the panel CLTA,80 are compared. The graph (a), on the367
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Figure 8: Panel CLTA,80: modal based radiation index in one-third octave bands. Comparison between numerical results
and experimental data: (a) plate mechanically excited at position pS 1 ; (b) plate mechanically excited at position pS 2 .

left-hand side, refers to source position pS 1 , while the graph (b) on the right-hand side is related368

to source position ps2 . Given that experimental deviations can be up to 2-3 dB, the comparisons369

show good agreement between numerical and experimental results, despite the fact that the pre-370

dicted radiation efficiency is overestimated in certain frequency bands with discrepancies up to371

5 dB. Below the critical condition the dips and peaks of experimental radiation efficiency are ap-372

proximated with good accuracy by the predicted results. The comparison between the predicted373

and experimental radiation efficiency of the panel CLTB,80, shown in Figure 9 highlights a good374

agreement. However, as for the previous panel, the simulated radiation efficiency is, in certain375

bands, slightly overestimated or some peaks associated with the structural resonant modes can376

be shifted towards neighbouring frequency bands. The same conclusions can be drawn from377

the comparison between numerical and experimental radiation efficiency of the panel CLTC,100,378

given in Figure 10. In this case slightly larger discrepancies are found, especially in the very low379

frequencies, but still the numerical radiation efficiency well approximates the measured data.380

It should be noted that the spread in the experimental radiation efficiency, expressed as stan-381

dard deviation, is for some frequency band significant and comparable to the difference between382

measured and predicted results. Moreover, below the upper coincidence frequency, i.e. the criti-383

cal condition, the sound is mainly radiated from the plate discontinuities, such as the boundaries.384

The real mounting conditions, described in section 3, are much more complex than the simply-385

supported boundaries assumed in the model: at the bottom edge the plate is supported by a386

rigid frame whereas at all the other edges there is a small gap, sealed with elastic putty. These387

edge mountings cannot completely prevent the out-of-plane translational motion of the plate, as388

required by the assumption of simply-supported boundaries, resulting as a lower degree of re-389

straint. The difference between theoretical and real boundary conditions is the main cause of the390

discrepancies between predicted and experimental radiation efficiency. In fact, according to a391

recent study presented by Squicciarini et al. [52], in which the radiation efficiency of a plate with392

different combinations of boundary condition was investigated, differences up to 25 dB can be393

found between totally free and simply-supported boundaries. The study highlights the general394

trend of a diminishing radiation efficiency as the degree of restraint at the edges decreases. A395

more rigorous model, considering mixed boundary conditions with translational and rotational396
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Figure 9: Panel CLTB,80: modal based radiation index in one-third octave bands. Comparison between numerical results
and experimental data: (a) plate mechanically excited at position pS 1 ; (b) plate mechanically excited at position pS 2 .

springs with very uncertain and locally varying stiffness, would require a tremendous effort that397

would not have practical applicability. Therefore, in order to develop a usable tool for building398

acoustics design, simply-supported boundaries have been considered, since they allow for an399

analytical closed solution reducing the algorithm’s computational cost.400

4.3. Comparison between the two models401

The results obtained from the two models presented provide constent results in reasonably402

good agreement with the experimental data. However, in both cases some discrepancies were403

found, either in the low frequency range, or at higher freqeuncies where the models seems to404

slightly overestimate the radiation index around the critical condition. This effect, which was also405

observed in an analogous investigation of sound transmission loss of CLT panels [53], is probably406

related to the damping of the system, even though it was taken into consideration in the models by407

means of a complex stiffness, as given in Eq. (29). However, for a complete understanding of the408

problem a further investigation is required in future works. A last comparison is made between409

the results obtained from the two different prediction approaches. In Figure 11 a), the modal-410

average radiation index Lσ,mod.avg of the plate CLTA,80 is compared, in one-third octave bands,411

to the two radiation indexes, computed by using a modal/analytical approach for each source412

position used in the experiments: Lσ,modal,S 1 and Lσ,modal,S 2 . While the two models provide a413

consistent trend, the modal-based radiation indexes associated with the two excitation sources414

highlight peaks and dips associated with the structural modes up to approximately 500 Hz. In415

order to consider a higher number of modes excited in the plate, the modal radiation index of the416

panel CLTA,80, was averaged over 100 non-simultaneous source positions, randomly chosen over417

the plate surface. In Figure 11 b), the modal radiation index averaged over 100 source positions418

Lσ,mod,100 is compared to the statistical results Lσ,mod.avg. By increasing the number of excited419

modes the structural modal behaviour is noticeable only up to the 250 Hz band, while at higher420

frequencies the radiation curve smooths out. Moreover, the statistical radiation index seems to421

underestimate the results obtained from the modal approach within all the frequency bands below422

the critical condition, in all probability due to the low mode count in this frequency range.423
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Figure 10: Panel CLTC,100: modal based radiation index in one-third octave bands. Comparison between numerical
results and experimental data: (a) plate mechanically excited at position pS 1 ; (b) plate mechanically excited at position
pS 2 .

The modal-average approach is a handy computationally efficient tool, for preliminary inves-424

tigations, in order to obtain information on the radiation trend, or on the coincidence frequencies425

of an orthotropic panel. However, it may lead to underestimated results if the mode count within426

a certain frequency band is low, since the basic assumption of high modal density is not fulfilled.427

In this case, a more accurate approximation of the radiation efficiency can be obtained by means428

of a modal approach which considers all the modes actually excited by the source, even though429

it requires a greater computational effort.430

5. Conclusion431

Two models to evaluate the radiation efficiency of a CLT panel, developed with different432

approaches, have been presented. In both models the panel is assumed to be a baffled thin or-433

thotropic plate with simply supported boundary conditions, excited by a broad band, mechanical434

force. These models have been validated with the experimental radiation efficiency of three435

mechanically-excited three-ply cross-laminated timber plates, which was determined by using436

two different methods to evaluate the total radiated sound power: the diffuse field approach437

(DFA) and the discrete calculation method (DCM), which provided consistent results.438

A modal-average approach provides a good approximation of the radiation efficiency trend.439

However, if the vibrational field is not diffuse, but only few modes exist within a frequency band,440

it is not suitable for an accurate prediction below the critical condition, since some of the basic441

assumptions the model is based on, such as high modal density and continuous distribution of442

modes, are not fulfilled within this frequency range. Nevertheless, it still represents a simple443

and useful tool to perform preliminary analysis on orthotropic plates during the design process.444

The two shaker positions used to experimentally evaluate the CLT panel’s radiation efficiency445

provided results significantly different in the low frequency range. It should be noted that in-446

situ building walls can be excited by multiple and rather complex sources simultaneously; this447

condition would thus extend towards lower frequencies the range in which the assumption of448

diffuse vibrational field is fulfilled.449
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Figure 11: Comparison between the two different approaches: a) the radiation index obtained from modal average ap-
proach is compared with the radiation indexes computed with the modal/analytical approach for the two source positions;
b) the radiation index obtained from modal average approach is compared with the radiation index, obtained using the
modal approach and averaged over 100 source positions.

For a more accurate and detailed prediction of the radiation efficiency of orthotropic plates,450

even below the critical condition, a modal/analytical approach has been presented. The assump-451

tion of simply-supported boundaries allows for an analytical or approximated closed solution of452

most of the integral equations involved in the model, providing a fast algorithm. Moreover, the453

influence of the fluid loading on the sound radiated in the surrounding air by a CLT panel has454

been proven to be very small. It can thus be neglected by approximating the radiation impedance455

with the real part of the self radiation resistance, reducing significantly the computational cost456

of the algorithm. A good agreement between predicted and experimental results was found, al-457

though the model slightly overestimates the radiation efficiency experimentally evaluated for the458

tested CLT plate, particularly below the critical condition. Boundary conditions have a signifi-459

cant influence on sound radiation in this frequency range. In fact, these discrepancies are mostly460

due to the difference between the constraint provided by the real mounting conditions and the461

idealised simply supported boundaries. However, the simply-supported boundaries assumption462

allows one to obtain a sufficiently good approximation of the radiation efficiency in a reasonable463

time. The modal / analytical approach requires a greater computational effort compared to the464

statistical model, but it provides an accurate approximation of the radiation efficiency of a CLT465

panel even below the critical condition, where such a structure is characterised by a rather low466

modal density. Further uncertainty can possibly be due to the experimental wavenumbers used467

as input data for the material’s elastic properties. However, the agreement highlighted by the468

presented results proved that by means of frequency dependent properties it is possible to treat469

complex structures, such as CLT panels, as homogeneous elements. The structural wavenum-470

bers can be experimentally determined in a number of ways. The determination of the structural471

wavenumber, or at least of its real part, seems straightforward if compared to the effort required472

in order to determine all the characteristics that would be necessary to consider otherwise, such473

as the properties of wooden beams and their connection within each ply as well as the coupling474

between the different plies that constitute the CLT panel.475



Published article available online: https://doi.org/10.1016/j.apacoust.2018.08.022

Acknowledgement476

All the experimental measurements and most of the data analysis have been performed at477

Empa - Swiss Federal Laboratories for Material Science and Technology - Laboratory for Acous-478

tics/Noise Control.479

Appendix A. Stiffness matrix480

In this paragraph the equation to compute the stiffness matrix coefficients is derived for the
case of simply-supported boundary conditions. Using the dimensionless coordinates:

u =
x

Lx
;

v =
y
Ly
.

Eq. (9) is rewritten in terms of the new spatial coordinates u and v:481

Kmnpq =LxLy

∫ 1

0

∫ 1

0

Dx

(
1
L2

x

)2
∂2

∂u2ψmn (u, v)
∂2

∂u2ψpq (u, v)

+ Dy

 1
L2

y

2
∂2

∂v2ψmn (u, v)
∂2

∂v2ψpq (u, v)

+ νyxDx

(
1

LyLx

)2
∂2

∂u2ψmn (u, v)
∂2

∂v2ψpq (u, v)

+ νxyDy

(
1

LyLx

)2
∂2

∂v2ψmn (u, v)
∂2

∂u2ψpq (u, v)

+4Gxy
h3

12

(
1

LyLx

)2
∂2

∂u∂v
ψmn (u, v)

∂2

∂u∂v
ψpq (u, v)

 dvdu,

(A.1)482

the mode shape functions for simply-supported boundaries are given in the new coordinate sys-
tem as: 

ψmn (u, v) = sin (mπu) sin (nπv) ;

ψpq (u, v) = sin (pπu) sin (qπv) .

Due to the orthogonal property of the basis functions Eq. (A.1) can be reduced to:483

• if m = p and n = q484

Kmnpq = Kmn =
LxLy

4

Dx
m4π4

L4
x

+ Dy
n4π4

L4
y

+ 2B
m2n2π4

L2
xL2

y

 ; (A.2)485

• if m , p and n , q486

Kmnpq = 0. (A.3)487



Published article available online: https://doi.org/10.1016/j.apacoust.2018.08.022

The stiffness matrix is hence diagonal and can be computed as an algebraic equation, significantly488

reducing the computational time.489

The apparent bending stiffness along each principal i-direction Di is obtained according to490

Eq. (3) from the experimental wavenumbers kB,x and kB,y given in Table 2. The in-plane shear491

modulus Gxy of the orthotropic plate, necessary to compute the effective torsional stiffness B492

given in equation (4), has been approximated as a function of the elastic moduli associated with493

the principal directions [32] as:494

Gxy =

√
ExEy

2
(
1 +
√
νxyνyx

) . (A.4)495

The value of the elastic properties νxy and νxy, has been determined by considering Eq. (5) and496

assuming the Poisson’s ratio ν =
√
νxyνyx = 0.3 as typical for wood materials. The apparent497

frequency dependent elastic properties Ex and Ey have been derived from the bending stiffness498

along the principal directions Dx and Dy according to Eq. (3).499

Appendix B. Radiation impedance matrix500

For a simply-supported baffled plate, the four-fold integral equation to compute the radiation
impedance given in Eq. (13) is reduced to a double integral by using the approximation proposed
by Sandman [4] and Nellisse [6]. A first coordinate transform is applied:

α =
x

Lx
;

β =
y
Ly

;


α =

x
Lx

;

β =
y
Ly

;

r =
Lx

Ly
.

After the mode mixing the radiation impedance results:501

Zmnpq = iωρ0S 2
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
ψmp (α, α) G

(
α, β, 0, α, β, 0

)
ψnq

(
β, β

)
dα dβ dα dβ. (B.1)502

To reduce the four-fold integral another change of variable is needed:
u = α − α;

v = α;


u = β − β;

v = β.

Considering the symmetry of the mode shape functions, the radiation impedance can be ex-503

pressed as:504

Zmnpq = iωρ04S 2
∫ 1

0

∫ 1

0
Φmp (u) G (u, 0, u, 0) Φnq (u) du du, (B.2)505
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where:506

Φmp (u) =

∫ 1−u

0
sin (mπ (u + v)) sin (pπv) dv;

Φnq (u) =

∫ 1−u

0
sin (nπ (u + v)) sin (qπv) dv;

G (u, 0, u, 0) =

exp
(
−ik0Lx

√
u2 − r−2 (u)2

)
2πLx

√
u2 − r−2 (u)2

.

(B.3)507

Seeking a solution for the integral functions Φmp (u) and Φnq (u) it is possible to write:508

• if m = p and n = q:509

Φmp (u) =
sin (πm (u − 2))

4πm
+

sin (πmu)
4πm

+ cos (πmu)
(

1 − u
2

)
;

Φnq (u) =
sin (πn (u − 2))

4πn
+

sin (πnu)
4πn

+ cos (πnu)
(

1 − u
2

)
.

(B.4)510

• if m , p and n , q:511

Φmp (u) =
sin (π (m − p + pu))

2π (m − p)
−

sin (πmu)
2π (m − p)

−
sin (π (m + p − pu))

2π (m + p)
+

sin (πmu)
2π (m + p)

;

Φnq (u) =
sin (π (n − q + qu))

2π (n − q)
−

sin (πnu)
2π (n − q)

−
sin (π (n + q − qu))

2π (n + q)
+

sin (πnu)
2π (n + q)

;

(B.5)512

Applying Prosthaphaeresis’ sum to product formulas, Eq. (B.5) and Eq. (B.4) can be reformu-513

lated as:514

• if m = p and n = q:515

Φmp (u) =
1
π

cos
(
π(m−p)

2 +
π(m+p)u

2

)
sin

(
π(m−p)

2 −
π(m−p)u

2

)
m − p

−
cos

(
π(m+p)

2 +
π(m−p)u

2

)
sin

(
π(m+p)

2 −
π(m+p)u

2

)
m + p

 ;

Φnq (u) =
1
π

cos
(
π(n−q)

2 +
π(n+q)u

2

)
sin

(
π(n−q)

2 −
π(n−q)u

2

)
n − q

−
cos

(
π(n+q)

2 +
π(n−q)u

2

)
sin

(
π(n+q)

2 −
π(n+q)u

2

)
n + q

 ;

(B.6)516
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Figure B.12: Comparison between radiation efficiency of the panel CLTB,80 either computed considering the radia-
tion impedance coefficients Zmnpq and its approximation with the self radiation resistance coefficients Rmn: (a) plate
mechanically-excited at position pS 1 ; (b) plate mechanically-excited at position pS 2 .

• if m = p and n = q:517

Φmp (u) =
1

2πm
[sin (πm (u − 1)) cos (−πm)] + cos (πmu)

(
1 − u

2

)
;

Φnq (u) =
1

2πn
[
sin (πn (u − 1)) cos (−πn)

]
+ cos (πnu)

(
1 − u

2

)
.

(B.7)518

The radiation indices, computed considering both the full radiation impedance matrix Zmnpq,519

indicated as Lσ,analytic, and its approximation with the self-radiation resistance Rmn, Lσ,modal, are520

compared in narrow band in Figure B.12 for two positions of the mechanical point excitation,521

only the panel CLTB,80, since it has the lowest surface mass. At low frequencies fluid loading522

has a small influence on sound radiated by a CLT plate and it is even smaller in the mid-high523

frequency range. We can conclude that although CLT panels are lightweight elements compared524

to the traditional building partitions, their inertia is still several orders of magnitude larger than525

the one provided by air, thus the load of the fluid does not affect significantly the plate dynamics.526

Appendix C. Near-coincidence frequency range: µ ≈ 1 ± δ527

In order to compute the modal-average radiation efficiency it is necessary to define three re-528

gions for which Leppington’s equations are defined. In the implemented algorithm these intervals529

are not set a priori, instead all the three curves are computed for each investigated propagation530

direction φ. The function defined in the above-coincidence (ac) range assumes negative values531

below the critical condition while it is positive and tends asymptotically to unity above. The func-532

tion defined in the below-coincidence (bc) region presents a discontinuity at the first coincidence533

where µ = 1. The first formulation presented by Leppington could not solve this singularity for534

µ = 1, but some years later he proposed an integral formulation for a positive and continuous535

function valid within a region around the coincidence frequency, the near-coincidence (nc) inter-536

val. The cut-off frequency between the bc and nc regions is identified by the intersection which537
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Figure C.14: Frequency dependent average radiation index for different propagation angles φ.

is the closest to the discontinuity of the bc function. The first intersection between the nc func-538

tion and the ac positive curve represents the limit between these two regions. It might happen539

that, due to numerical reasons, two curves do not intersect each other, even though the transition540

between two regions occurred. In this case the implemented algorithm evaluates the frequency541

at which the two functions are closest to each other. Once those limits are defined the resulting542

radiation efficiency is determined, for each investigated angle, by combining the three curves543

within the frequency range in which they are respectively defined. In Figure C.14 the radiation544

index is plotted, from φ = 0 to φ = π/2 at steps of ∆φ = π/90. The radiation efficiency with the545

lowest coincidence frequency is determined for the bending wave propagating along the stiffest546

direction, while the curve with the highest critical frequency is associated with the orthogonal547

direction. In other words the critical condition is shifted towards lower frequencies as the plate548

stiffness increases.549
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