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Heavy duty wheels are used in applications such as automatic vehicles and are mainly
composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process,
the adhesive application between tread and hub is a critical assembly phase, since it is
completely made by an operator and a contamination of the bond area may happen.
Furthermore, the presence of rust on the hub surface can contribute to worsen the
adherence interface, reducing the operating life. In this scenario, a quality control pro-
cedure for fault detection to be used at the end of the manufacturing process has been
developed. This procedure is based on vibration processing techniques and takes advan-
tages of the results of a lumped parameter model. Indicators based on cyclostationarity
can be considered as key parameters to be adopted in a monitoring test station at the end
of the production line due to their not deterministic characteristics.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays the identification of faulty components represents a fundamental issue in terms of cost reduction for recall or
product replacements. The development of dedicated controls at the end of the production phase, i.e. through a monitoring
and diagnostic analysis, can represent a possible approach to reach this target [1,2]. Condition monitoring and fault
detection are generally referred to as the evaluation of the state of a system through the selection of measurable parameters,
which will change with the state of health of the system. On the other hand, fault diagnosis is a more rigorous action which
requires the identification of the component that causes the deviation from the normal state [2–5]. Condition monitoring
and diagnostics can be achieved by using different kinds of data as input (e.g. pressure, temperature, torque), nevertheless
the vibration analysis can be considered extremely widespread since mechanical faults in machinery often show their
presence through abnormal vibration signals. As a consequence, the purpose of condition monitoring is to use information
extracted from the system signature in order to detect faults or to define its state of health: a change in the vibration
signature not only indicates a change in the system conditions, but also directly points to the source of the signal alteration.

A condition monitoring process based on experimental data is achieved by different steps. Firstly, a relevant number of
healthy and faulty components are realized and analyzed in order to detect the most suitable sensor, the optimal position
and the operational condition able to emphasize the component changes. The subsequent step consists in the measurement
of experimental data. Generally, the acquired signals need to be processed through appropriate techniques in order to
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extract the maximum amount of information. Finally, well suited indicators/coefficients are applied to the processed signal,
objectifying the anomaly presences and defining pass–fail reference values.

The Synchronous Averaging (SA) is a rather common method for the early detection of failure in rotational elements such
as gears, bearings and wheels and it is basically obtained by synchronizing the samplings of the measured signal with the
rotational element of interest and by evaluating the ensemble average over many revolutions [6–8]. Hence, SA contains only
the components synchronized with the revolution of the rotational element being studied. If sufficient averages are taken,
the SA closely approximates a truly periodic signal with periodicity corresponding to one revolution of the selected rota-
tional element [1,2]. This process strongly reduces the effects of the vibration sources non-synchronous with the reference,
including other rotational elements and the background noise. Classically, this has been accomplished using a tachometer
signal [9,10].

Particular techniques have also been proposed for angular resampling of the vibration signal without the need of a speed
sensor [7,11]. This method is carried out by means of a keyphasor signal that is typically at once per shaft revolution event.
Such a signal is used to measure the shaft speed and represents the reference for measuring the vibration phase angle.
Normally it is assumed that the rotating component is undergoing constant angular acceleration in order to determine the
re-sample times. The corresponding amplitudes are calculated by interpolating between the sampled data using a linear
interpolation method. As a result, the SA of the vibration signal allows to attenuate the periodic events not synchronous
with the rotating component of interest and to reduce background noise. The resulting signal average is the ensemble
average of the angle domain signal, synchronously sampled with respect to the component rotation. The main advantage of
SA is to extract its deterministic part from a complex vibration signal, i.e. the events that are repeated periodically with the
rotation of interest.

A further advanced tool adopted for investigating the relationships between spectral components is the cyclostationary
theory [3,4,10]. More specifically, a signal is cyclostationary if some of its statistics present periodicities. As previously
described, averaging can make it possible to extract the deterministic part of the signal. If the signal obtained after sub-
tracting this deterministic part from the synchronized signal does not exhibit cyclostationarity, the signal is said to be
cyclostationary at an order “1”. In general terms, a signal is cyclostationary at an order “n” if its statistical properties at order
“n” are periodic.

The pass/fail thresholds are generally defined starting from the analysis of a large group of healthy components applying
statistical techniques with the a-priori knowledge of the real data distribution. However, in case of a small number of
samples, it is advisable to use non-statistical techniques. This is the case adopted in this research activity in which Tukey's
non-statistical method has been applied to a group of 15 healthy wheels.

The Tukey's method [13] is a simple but effective procedure for the identification of anomalies in a distribution of data.
Unlike common statistical procedures, Tukey's method is a non-parametric technique that does not consider any dis-
tributional assumptions about the statistical behavior of the data.

Moreover, in order to improve the development/assessment of processing techniques in a condition monitoring and
diagnostics scenario, simulation models of mechanical systems in faulty condition can be developed. System modeling is
generally realized in order to estimate the influence of design and material modification on the vibration response (virtual
prototyping) [14] but it can be also useful to evaluate the defect nature and its effect on the vibration response (diagnostics
purposes) [15,16], as done in this paper. Different modeling approaches can be adopted, such as analytical model [17–20],
finite element model [21,22] and multibody model [23,24]. Each model has to be validated fitting the numerical results with
data collected experimentally.

In this paper, a quality control methodology to be used at the end of the production line for the identification of
manufacture anomalies in heavy duty wheels is developed. The overall fault detection process (measurement and analysis)
should not exceed 23 s in order to not delay the manufacturing process. Firstly, experimental tests have been carried out in
order to select the best sensor typology (Section 3). Secondly, a single degree of freedom (SDOF) lumped parameter model of
the heavy duty wheel is presented (Section 4). The model enables the physical explanation of the phenomena that cause the
faulty signal signature as a function of operational conditions and defect size: this is important in order to select the suitable
signal processing techniques to be used in the diagnosis step. Then in Section 5, different processing techniques have been
applied to the heavy-duty wheel experimental signal: (i) synchronous average is calculated over the wheel rotation in order
to highlight the phenomena that have wheel rotation as periodicity; (ii) Kurtosis and Root Mean Square parameters are
utilized as statistical coefficients in order to define the state of health of a wheel and to obtain upper thresholds for the pass/
fail decision; (iii) cyclostationary theory is applied to extract information from the frequency/order domain of the processed
signal. Eventually, concluding remarks are given highlighting the suitable diagnostics tools.

The originality of this activity consists of the attempt to study the presence of anomalies in heavy-duty wheels and to
compare the detection capability of synchronous average and cyclostationarity using well-suited indicators, through the
support of a SDOF model.
2. Test set up

The wheels being studied are composed of a polyurethane tread and a cast iron hub, with 100 mm radius, 50 mm of
width and 1200 kg of maximum load. The adhesive application between tread and hub is the most critical assembly phase,
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since it is completely done by an operator and a contamination of the bond area may happen. The operator has to be
particularly careful to not touch the surface of the adhesive in order to prevent contamination with impurities that would
lead to a fast failure of the polyurethane–hub adherence. If this processing phase is not properly executed some defects can
arise as non-uniform adhesion of the adhesive on the metal surface or not complete wettability of the metal surface.

In this context, wheels with different types of faults have been manufactured ad hoc with anomalies similar to those that
can really appear during the manufacturing process. Defects of missing glue between tread and hub have been realized
(0.3 cm in the circumferential and axial direction, respectively “B” and “L” in Fig. 1). Subsequently, defects of different nature
(rust presence in the hub surface) have been manufactured. These defects are described and examined hereafter:

1. Missing Adherence defect (namely MA): incorrect adherence zones between tread and hub of about 0.3 cm dimensions in
the axial and circumferential directions; two wheels have been manufactured with this defect.

2. Localized Rust defect (namely LR): localized rust presence in the hub surface of about 5 cm dimension in axial and 2 cm in
circumferential direction; three wheels have been manufactured with this defect.

3. Distributed Rust defect (namely DR): distributed rust on the entire hub; three wheels have been manufactured with
this defect.

Moreover, a set of 15 wheels without any defect has been analyzed for the estimation of a reliable reference pattern.
The vibration parameters relative to these 15 wheels are referred to as Healthy Wheels (HW).

A wide experimental investigation is carried out on heavy-duty wheels in a test bench available at the company's
laboratory. The test bench consists of a bottom support, including a drum driven by an electric motor controlled by an
inverter and an upper part composed of a horizontal cross beam and two hydraulic pistons that apply the load to the wheel
under test, as depicted in Fig. 2. Tests are carried out at two different drum speeds (4 and 10 km/h) and three different loads
(350, 700 and 1000 kg), representing the real range of operational conditions. During tests, the vibration signal is acquired
by means of a piezoelectric tri-axial accelerometer (PCB 356A01, frequency range 1–10,000 Hz), as shown in Fig. 2 (position
A) and a condenser microphone (1/2 in. prepolarized) is utilized to measure the sound emission (C). Moreover, an acoustic
emission (AE) sensor has been used in order to capture the transient elastic waves generated from a rapid release of strain
energy caused by a deformation or damage (B). The acoustic emission sensor is specifically manufactured for measuring the
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Fig. 2. Test bench: A) accelerometer ; B) acoustic emission sensor; C) microphone; D) load cells; E) optical tachometer sensor.
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elastic waves which have high frequency content. Thus, such a sensor is negligibly affected by mechanical components that
commonly have a low frequency content, less than 20 kHz [25,26]. Finally, four load cells (LAUMAS FTO Kg 5000) have been
used to measure the global force in the vertical direction (D). The signals are acquired with a sample frequency of 12,800 Hz
for a duration of about 23 s by using LMS hardware and software instrumentation (LMS Test.Lab and LMS Scadas III). The
analysis time of 23 s was selected in order to not delay the manufacturing process, since the developed condition mon-
itoring procedure should be placed at the end of the production line. Simultaneously with the acquisition at constant sample
frequency, an on-line order tracking analysis has been also performed since the number of time samples varies every
rotation of the wheel due to fluctuation of instantaneous speed. This technique requires the measurement of a trigger signal,
i.e. a signal phase-locked with the angular position of one rotating element in the system that gives a synchronized signal
with the wheel and a synchronized signal with the drum revolution. For these reasons, two optical tachometer sensors
(KEYENCE- LVS series) both positioned near the wheel–drum contact are used in order to produce one pulse per revolution
of the wheel and the driving drum (E). This kind of tachometer gives a pulse when a reflecting strip crosses the optical
sensor of the tachometer.

After the experimental test described above, the entire set of wheels (faulty and healthy wheels) has been subjected to a
peeling test in order to assess the presence of the defect for the faulty wheels and the absence of the defect in the healthy
wheels.
3. Determination of the best sensor

Numerous experimental analyses have been carried out in order to detect which sensor among those used is able to
identify at the best the non-stationary phenomena related to the defect presence.

Fig. 3 refers to the angular domain signals evaluated on the wheel rotation (defined in detailed in Section 5 as syn-
chronous average of the wheel, SAw) at the operational condition of 4 km/h and 1000 kg and for the same defect type. This
comparison leads to the conclusion that the accelerometer signal is the best compromise between simplicity in the
mounting and clear response to an impulsive event. In fact, in the acceleration signal, the impulsive events which occur
when the artificial fault of the wheel comes into contact with the drum are clearly depicted. On the other hand, the load
cells embedded in the test bench are able to detect the presence of the defect, but its localization in circumferential direction
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Fig. 3. Synchronous Average of a) accelerometer signal, b) AE signal, c) microphone signal, d) load cell signal for the same defect type of dimensions
B¼2 cm and L¼5 cm at the operational condition of 4 km/h and 1000 kg.
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is not as precise as the acceleration plot. AE exhibits quite good signals allowing defect localization; however, the main
drawbacks linked to the use of this transducer are the requirement of a continuous control of the silicon grease, essential to
realize good adherence between sensor and measured surface, and the high sensitivity to electrical interferences. Finally,
microphone signals are not suitable for this kind of measurement due to the high environmental noise in the production
line, although the signal depicted in Fig. 3 is rather good (measurement in a low noise laboratory). In the following, only the
results obtained by the accelerometer will be analyzed and discussed.
4. Lumped parameter modeling

The developed single degree of freedom model comprises the heavy-duty wheel, support and horizontal cross beam and
it is depicted in Fig. 4. The aim of the model is to qualitatively reproduce the acceleration signal considering the moving
parts of the system (i.e. tread, hub, support and horizontal cross beam) as a unique rigid body and considering the contact
patch as the flexible part. Thus, it will be possible to give a physical explanation of the two complete sine waves depicted in
the experimental acceleration signal of Fig. 3a. This information can help in the selection of the suitable signal processing
techniques for a fast and effective condition monitoring and diagnosis phase. Eq. (1) reports the selected governing equation
of motion in case of visco-elastic material:

MxðtÞ
::

þcxðtÞ
:
þkðtÞxðtÞe ¼ F ð1Þ

where x is the translational DOF in vertical direction, M is the moving mass comprising the mass of tread, hub, support and
horizontal cross beam, c is the contact damping, F is the applied load, and k(t) denotes the time-varying contact stiffness in
case of defect presence while, in case of healthy wheel, the stiffness has to be considered constant in time. The constant
contact stiffness in case of healthy wheel has been extracted from static deformation measurements conducted on the heavy
duty wheel; during such a test, an oil film has been applied on the sample surfaces in order to reduce the clamping adhesion
effect. Fig. 5 reports the load–strain hysteresis curve of the heavy duty wheel subjected to static load. Frequency and
temperature dependencies have not been considered due to the low frequency content of the acceleration signal in case of
defect presence and to the negligible temperature increase. The area within the hysteresis loop of Fig. 5, namely D,
represents the dissipated energy per cycle of harmonic motion. For reasonable levels of damping, the loop area can be used
to calculate damping factor ξ:

ξ¼ 1
2

D
πFmaxdmax

� �
ð2Þ
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Fig. 4. One degree of freedom lumped parameter model.

Fig. 5. Loading–unloading curve obtained through a static test conducted on a wheel.

M. Malago' et al. / Mechanical Systems and Signal Processing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
where Fmax and dmax are the maximum values of load and deformation of Fig. 5, giving a ξ value of around 0.1. Thus, damping
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Fig. 6. Representation of the time-varying contact stiffness in case of missing adherence defect.
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coefficient c of Eq. (1) has been evaluated through the assumption of proportional damping:

c¼ 2ξ
ffiffiffiffiffiffiffi
kM

p
ð3Þ

Exponent e of Eq. (1) has been evaluated fitting the loading curve of the hysteresis cycle. This parameter represents the
non-linear behavior of polyurethane composing the tread material. Finally, force F is the constant force applied by the
hydraulic system to the global moving mass. Global mass M is 38 kg, the constant values of the contact stiffness k is
4U106 N=me and non-linear exponent e is equal to 1.58.

In order to simulate the acceleration signal in case of faulty condition, the time-varying contact stiffness should be
defined a priori. In case of defect, the contact stiffness is expected to vary over time as depicted in Fig. 6; in particular, it is
expected that the contact stiffness is reduced with respect to the healthy condition. When the defect zone enters into the
contact patch the contact stiffness decreases (PHASE I). Then, as long as the defect zone is within the contact patch (PHASE
II), the contact stiffness has the minimum value. Eventually, the contact stiffness increases when the defect starts to leave
the contact patch (PHASE III). The time extension of the three phases can vary, depending on the defect types and on the
operational conditions. Such a qualitative and simplified representation of the fault in terms of contact stiffness can be
useful in order to explain the nature of the measured signal, as shown in Section 4.1. The contact stiffness reduction has
been estimated in agreement with the experimental acceleration results. Although the three phases occur every wheel
rotation, i.e. when the defect area comes into contact with the contact patch, the fault presence cannot be assumed as a
purely periodic event.

In case of a localized missing adherence defect, the measured signal is expected to be composed of a deterministic and a
non-deterministic part. The deterministic part is related to the phenomena periodic with the wheel rotation; in this case,
the contact stiffness varies when the defect enters and exits from the contact patch. A non-deterministic part due to the
inevitable presence of slip phenomena originates in the contact between the polyurethane tread and drum.

In case of rust defects, the presence of rust reduces the adherence between tread and hub. However, the quantity of rust
along the circumferential and axial direction is not controlled during the defect manufacturing process. For this reason the
contact stiffness variation law is hardly predictable; moreover, the entry and exit of the defect from the contact patch can be
expected to be characterized by a high randomness and it cannot be thought of a stable phenomenon. On the contrary, the
missing adherence defect is manufactured by excluding a portion of hub surface from the glue; this procedure determines a
perfect non adherence between hub and tread and thus a well-defined stiffness variation law. In case of rust defects, the
measured signal can be considered as composed of a deterministic part, due to the periodic entry and exit of the defect from
the contact patch and a significant non-deterministic part; indeed, when the rust area enters into the contact patch, the
contact stiffness exhibits random variations, leading to random system excitations.

4.1. Influence of operational condition and defect size

Heavy-duty wheels under operational conditions are normally characterized by variable loads and speeds: loads can vary
between 350 and 1000 kg with speed between 4 and 10 km/h. In the following, different operational conditions and defect
sizes have been experimentally and numerically analyzed in order to understand the meaning of the signal signature. Note
that the experimental synchronous averages reported in this subsection have been obtained with 80 averages over the
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Fig. 7. Synchronous average of the experimental accelerations measured at the operational load of 1000 kg, missing adherence defect size of L¼5 cm,
B¼2 cm and at speeds of 4 km/h and 10 km/h.

1.9 1.95 2 2.05 2.1 2.15
0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

Time [s]

C
on

ta
ct

 s
tif

fn
es

s 
ra

tio

10 km/h
4   km/h

Fig. 8. Sketch of the contact stiffness ratio between the faulty and healthy case, in the time domain at 4 km/h and 10 km/h in case of the same missing
adherence defect dimension of B¼5 cm and L¼2 cm.

M. Malago' et al. / Mechanical Systems and Signal Processing ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
wheel rotation (referred as Saw and defined in Section 5) in order to reduce the noise-to-signal ratio leading to a clearer
understanding of the dynamic phenomena.

The vibration signal is highly influenced by rotational speed. Fig. 7 reports the experimental SAw in case of defect size of
B¼2 cm and L¼5 cm at two different speeds (4 and 10 km/h) and 1000 kg of load. The system appears to be significantly
more excited at higher velocity: the acceleration signal amplitude is increased as well as the angular range. In order to
represent the speed effect on the SDOF model, it is necessary to hypothesize a particular law of the contact stiffness var-
iation. Fig. 8 shows the contact stiffness ratio between the faulty and healthy case in the time domain at the operational
speeds of 4 and 10 km/h: the stiffness variation is expected to become more impulsive as the speed increases in agreement
with the experimental results reported in Fig. 7. The value of 0.99 of contact stiffness ratio has been estimated by com-
parison between the amplitude of the measured and simulated acceleration signals. In particular, if the wheel rotates at
higher speed, the time needed by the defect to enter, to pass and to exit from the contact patch is expected to be reduced,
giving a sharper stiffness variation, and consequently, a more impulsive system excitation. This is also highlighted by the
results of the lumped parameter model reported in Fig. 9(a): in the defect zone, at about 170°, the two simulated accel-
erations are considerably different in terms of amplitude and angular extension. It is interesting to note that Fig. 9(b) reports
the relative stiffness variation due to the defect in terms of wheel rotational angle. In this case, the stiffness variation
remains the same for the two rotational speeds (4 and 10 km/h) since it is represented in the angular domain of the wheel
rotation; on the contrary, in Fig. 8 the stiffness variation was represented as a function of time and the stiffness variations
were different for the 4 and 10 km/h scenario. Again, the value of 0.98 of contact stiffness ratio has been estimated by
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Fig. 9. Numerical acceleration (a) and contact stiffness ratio between the faulty and healthy case (b) at the operational load of 1000 kg, missing adherence
defect size of L¼5 cm, B¼2 cm and at speeds of 4 km/h and 10 km/h.

Fig. 10. Sketch of the contact patch changing extension at different applied loads.
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comparison between the amplitude of the measured and simulated acceleration signals; in particular, the value of 0.99 refer
to L¼5 cm defect dimension while 0.98 refers to L¼2 cm defect dimension.

Load conditions produce a different influence on signal behavior. Fig. 10 sketches the variation of the contact area
between wheel and drum at different load conditions. Points A, B and C highlight the variation of the contact point at
different loads. In particular, point A represents the low load condition for which less contact surface and wheel angle are
involved in the contact. On the other hand, point C represents the high load condition that determines larger contact area
and larger wheel angle involved. Fig. 11 shows the experimental vibration signal obtained for missing adherence defects of
2 cm extension in circumferential direction and 5 cm in axial direction at three different loads (350, 700 and 1000 kg). It is
clear that the acceleration waveform has a higher amplitude when the load increases. Moreover, taking Fig. 11 as a reference,
at 1000 kg, the first negative peak at about 280° occurs before the corresponding peaks for the other lower loads; on the
other hand, at 1000 kg, the last negative peak at about 335° occurs after the corresponding peaks for the other lower loads.
Thus, the angular extension of the waveform is slightly larger as supposed in Fig. 10. Once again, it is necessary to hypo-
thesize a stiffness variation law in order to reproduce the load effect on the model. The contact patch at different load
conditions has been experimentally measured: the wheel external surface has been painted and the different loads have
been applied. The imprint left by the wheel is the effective dimension of the contact patch. Such values have been included
in the model in terms of angular domain and the load influence on the acceleration signal has been qualitatively modeled by
an angular extension variation of the stiffness (see Fig. 12(b)). Fig. 12(a) reports the numerical results obtained considering
different stiffness variations, in case of a same defect extension. In the defect zone, at about 270°, the load condition slightly
affects the acceleration amplitude and the angular range, in agreement with the experimental results (Fig. 11). In particular,
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Fig. 11. Synchronous average of the experimental acceleration measured at the operational speed of 4 km/h, missing adherence defect size of L¼5 cm,
B¼2 cm and at load conditions of 350 kg, 700 kg and 1000 kg.

Fig. 12. Numerical acceleration (a) and contact stiffness ratio between the faulty and healthy case (b) at the operational speed of 4 km/h, missing
adherence defect size of L¼2 cm, B¼2 cm and load conditions of 350 kg, 700 kg and 1000 kg.
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due to the different angular extension of the stiffness variation as a function of the load, the resulting acceleration signal is
still dependent on the load, as occurs for the experimental acceleration (see Figs. 11 and Fig. 12(a)).

The effect of the missing adherence defect size is also considered. In particular it has been experimentally found that the
effect of the axial extension (L) in terms of acceleration amplitude is considerably more important compared with the
circumferential extension (B), as reported in Fig. 13. The different axial extension of the defect has been qualitatively
represented into the model by a stiffness reduction with respect to the healthy condition. In order to estimate the suitable
stiffness percentage reduction, the numerical acceleration signal has been fitted with the experimental data considering, for
a width extension of 5 cm, a contact stiffness ratio reduction of around 2% from the healthy value k. In case of smaller defect
extension, e.g. 2 cm, the percentage stiffness variation has been reduced to 1% , causing a smaller acceleration amplitude,
Fig. 14.
5. Application of advanced signal processing techniques

In this section, advanced signal processing techniques have been used in order to identify the presence of defects. The
advanced signal processing techniques have been applied to the raw time data of the 15 healthy wheels and 8 faulty wheels
described in Section 2, at the operational condition of 4 km/h and 1000 kg. This operation condition has shown to be the
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Fig. 13. Synchronous average of the experimental acceleration of 4 different wheels measured at the operational speed of 4 km/h, operational load of
1000 kg and with different missing adherence defect sizes in the axial and circumferential directions.

Fig. 14. Numerical acceleration (a) and contact stiffness ratio between the faulty and healthy case (b) at the operational speed of 4 km/h, operational load
of 1000 kg and at different defect sizes in the axial direction.
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Fig. 15. Processing procedure: a) raw acceleration signal, b) SAd, c) purified signal, d) SAw and e) residual signal at the operational condition of 4 km/h and
1000 kg.
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best compromise (referred hereafter as “best” condition) of rotational speed and applied load in order to give a clear and
meaningful response signal.

5.1. Synchronous average analysis

The Synchronous Average (SA) technique has been applied on the measured signals in order to highlight the phenomena
that are linked to the presence of faulty wheels. The Synchronous Average mxðϑÞ of a measured signal xðϑÞ, synchronized
with the rotational element in the angle domain ϑ, is evaluated as the ensemble average over a number of rotations M, each
corresponding to one angular period Θ¼360°, as follows:

mxðϑÞ ¼ 1
M

XM�1

l ¼ 0

xðϑþ lΘÞ; with 0rϑoΘ ð4Þ

where MΘ is the whole length of the signal. Synchronous Average (SA) is a well adopted signal processing technique which
enables periodic waveforms to be extracted from noisy signals.

Hereafter, the different processing techniques used for the estimation of the SA used in this paper are detailed. Moreover,
Fig. 15 depicts the results of the procedure

complete procedure developed for the time signal purification is detailed and Fig. 15 depicts the different processed
signals.
Please cite this article as: M. Malago', et al., Fault detection in heavy duty wheels by advanced vibration processing
techniques and lumped parameter modeling, Mech. Syst. Signal Process. (2015), http://dx.doi.org/10.1016/j.
ymssp.2015.09.043i

http://dx.doi.org/10.1016/j.ymssp.2015.09.043
http://dx.doi.org/10.1016/j.ymssp.2015.09.043
http://dx.doi.org/10.1016/j.ymssp.2015.09.043
http://dx.doi.org/10.1016/j.ymssp.2015.09.043


M. Malago' et al. / Mechanical Systems and Signal Processing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13
Two different SA have been computed: the Synchronous Average of the acceleration signal over the drum revolution
(called SAd) and Synchronous Average of the acceleration signal over the wheel revolution (called SAw). The procedure in
order to estimate such Synchronous Averages and to purify the raw time signal is hereafter detailed, taking Fig. 15 as a
reference. In particular, Fig. 15 depicts the raw acceleration signal measured at the operational condition of 4 km/h and
1000 kg in the case of a missing adherence localized defect and the further processing phases.

Firstly, the Synchronous Average of the acceleration signal over the drum revolution (called SAd) is calculated (Fig. 15(b));
it has been performed starting from the synchronized acceleration signal, i.e. from the raw acceleration signal after
resampling in the angle domain by using the tachometer signal of the drum as a reference. It is presented in the angle
domain, since it is a Synchronous Average. Note that the angle domain regards one revolution of the drum, which corre-
sponds to about 3 revolutions of the wheel.

Secondly, the “purified signal” depicted in Fig. 15(c) is calculated as the difference between the synchronized acceleration
signal (i.e. the raw acceleration signal after resampling in the angle domain by using the tachometer signal of the drum as a
reference) and the SAd, obtaining a new signal with reduced periodicities related to the driving drum and increased
information concerning the manufactured faults linked to the wheel periodicities. This new signal is then presented in the
time domain after resampling from angle to time (by using the tachometer signal of the drum as a reference). The “purified
signal” is presented in the time domain with the aim to be simply compared with the raw acceleration signal.

Thirdly, the Synchronous Average of the acceleration signal over the wheel revolution (namely SAw) is estimated (Fig. 15
(d)). The “purified signal” has been synchronized by using the tachometer signal of the wheel and averaged over the wheel
rotation obtaining the SAw. It is presented in the angle domain and in particular for one revolution of the wheel. Here, the
SAw is obtained starting from the “purified signal” instead of the raw signal as usually; thus, the presence of noise in such a
SAw is reduced even after few averages.

Finally, the residual signal depicted in Fig. 15(e) was determined as the difference between the “purified signal” syn-
chronized by using the tachometer of the wheel and the SAw. The residual signal is then presented in the time domain after
resampling from angle to time (by using the tachometer signal of the wheel). The residual signal is presented in the time
domain for a fast comparison with the raw and the “purified signal”.

Such a “purification process” gives a strong reduction of the components related to the driving drum rotation and the
possibility of analyzing the residual signal cleaned of all the known periodicities.

The Kurtosis parameter can be considered as a monitoring feature for faults producing impulsive excitations and it can be
used to obtain a reliable upper threshold [27]. The use of the Kurtosis statistical parameter on the SAwwas also suggested by
the results of the LP model (Section 4). Due to the shape and meaning of the simulated signals (Figs. 12 and 14) as a function
of operational parameters, the Kurtosis parameter could enable diagnostic insights for localized defects at least. Although
this parameter is well suited for the recognition of extended missing adherence localized faults, it is not really sensitive to
small localized defects (MA) and to rust presence (LR and DR), as it shows almost the same value as healthy wheels, (see
Figs. 16 and 17). Consequently, a further statistical parameter, the root mean square (RMS), has been considered and
compared to the previous one. The RMS is a statistical metric able to recognize the degree of irregularity of a signal and for
this reason it appears well-suited for the recognition of defects such as rust or small localized defects that do not produce
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Fig. 16. Kurtosis and RMS values for the group of 15 healthy wheels at the “best” test conditions.
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Fig. 17. Kurtosis and RMS values for the group of 8 different faulty wheels at the “best” test conditions.

Table 1
Kurtosis and RMS threshold values obtained using the Tukey's method at the “best” test conditions.

Healthy wheels (HW) Kurtosis RMS [m/s2]

Q1 3 0.023
Q2 3.17 0.025
Q3 3.62 0.027
Q3þ1:5 Q3�Q1

�� �� 4.55 0.033

Q3þ3 Q3�Q1
�� �� 5.48 0.039
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significant localized peaks. The RMS values computed on the SAw for the group of 15 healthy wheels and for the group of
8 faulty wheels are collected in Figs. 16 and 17, respectively.

Finally, Tukey's method has been applied to the Kurtosis and RMS parameters evaluated for the group of healthy wheels
(Fig. 16) in order to identify the pass/fail threshold value. Let x1; x2; :::; xn be a series of observations such as statistical
parameter values or cyclostatonarity indicators. These data are arranged in ascending order and then ordered into four
quarters. The boundary of each quarter is defined by Q1, Q2 and Q3, called the 1st quartile, 2nd quartile and 3rd quartile,
respectively. The difference Q3�Q1

�� �� is called the inter-quartile range. The Tukey's threshold for anomalies is defined as
Q3þ3 Q3�Q1

�� ��. Observations falling beyond this limit are called serious anomalies and any observations xi (i¼1,2,…n) such
that Q3þ1:5 Q3�Q1

�� ��rxirQ3þ3 Q3�Q1
�� �� are called possible anomalies. With this approach, the threshold value that

discriminates healthy wheel from a possible faulty wheel has Kurtosis of 4.55 and RMS of 0.033 m/s2 (accordingly to the
method). The thresholds that give the certainty of faultiness are 5.48 and 0.039 m/s2 for the Kurtosis and the RMS,
respectively, as reported in Table 1. The comparison of the pass/fail threshold value (Table 1) with the results reported in
Fig. 17 enables to draw the following conclusions, as highlighted in Fig. 18:

1. The Kurtosis parameter is able to certainly identify only one wheel with LR fault (LR1) and one wheel with DR fault (DR2)
as a possible fault. This low monitoring skill can be ascribed to the fact that the SAw signals do not contain high localized
peaks, in case of MA, LR and DR defects.

2. The RMS parameter is able to certainly identify two wheels with LR fault (LR1, LR2) and the three wheels with DR fault
(DR2, DR3, DR4). Moreover, one wheel with MA fault (MA2) was recognized as possibly faulty. As a result the RMS can be
considered as a good monitoring parameter since it is sensitive to missing adherence localized defect or localized-
distributed rust. Nevertheless, this parameter is not able to recognize all the defects giving the possibility of undesirable
alarms.

These results were expected, based on the conclusions of the LP model: the significant non-deterministic part of the
acceleration signal for LR and DR defects cannot be estimated by statistical metrics like Kurtosis. In order to give a complete
overview of the effectiveness of the statistical metrics, other statistical parameters have been investigated (e.g. maximum
signal amplitude, standard deviation, crest factor, etc). Results are not reported in this paper. However, it can be concluded
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Fig. 18. Kurtosis and RMS pass–fail distributions in case of MA, LR and DR defects.
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that statistical metrics are not effective for certain identification of the defects being tested; their monitoring skill is limited
to a few defects. These metrics are not able to recognize all the defects.

5.2. Cyclostationary analysis

A further investigation has been carried out based on the study of cyclostationarity properties of the signal. The first
order cyclostationarity content has been computed as the Discrete Fourier Transform (DFT) of the sampled purified signal
synchronized with the wheel rotation x[n], called first order cyclic cumulant ðĈα1xÞ [28–30]:

Ĉ
α
1x ¼N�1DFT x n½ �� �

αð Þ ð5Þ

The second order cyclostationarity content of the signal has been evaluated through the second order cyclic cumulant
ðĈα2xÞ estimated as the Discrete Fourier Transform of the squared residual signal r2 n½ � :

Ĉ
α
2xð0Þ ¼N�1DFT r2 n½ �� �

αð Þ ð6Þ

It has to be noted that Eqs. (5) and (6) are consistent estimators of the cyclic cumulants at the zero angle lag ðφ¼ 0Þ for a
sampled signal. Moreover, the first and second order cyclic cumulants can be conveniently used to summarize the infor-
mation related to first- and second-order cyclostationary contents by defining the following indicators of cyclostationarity
[3]:

ICS1x ¼
P

αa0 Ĉ
α
1x

��� ���2

Ĉ
0
2xð0Þ

��� ��� ð7Þ

ICS2x ¼
P

αa0 Ĉ
α
2xð0Þ

��� ���2

Ĉ
0
2xð0Þ

��� ���2
ð8Þ

where αAA and A is the set of wheel orders α presenting non-zero Fourier series coefficients. It is worth noting that
indicators ICS1x and ICS2x are dimensionless, as they are normalized by the energy of residual signal Ĉ

0
2x 0ð Þ; they quantify the
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Fig. 19. Ĉ
α

1x and Ĉ
α

2x of depurated acceleration signal in case of healthy wheel at 4 km/h and 1000 kg.

Fig. 20. Ĉ
α

1x and Ĉ
α

2x of depurated acceleration signal in case of MA faulty wheel at 4 km/h and 1000 kg.
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presence of first and second-order cyclostationary components within the signal, respectively. In the particular case, α has
been considered in the range 1st–100th order since the higher spectrum amplitudes lie in this order range.

Fig. 19 reports the first and second order cyclic cumulants in case of a healthy wheel while Fig. 20 does for a MA faulty
wheel. Moreover, Fig. 21 reports the first and second order cyclic cumulants for a LR faulty wheel and Fig. 22 for a DR faulty
wheel. For each figure, a zoom in the first 10 orders is also given representing the most significant signal contents range.
Moreover, Figs. 23 and 24 report the cyclostationarity indicator values in the case of healthy and faulty wheels, respectively.
Note that the cyclic cumulants depicted in Fig. 20, Fig. 21, Fig. 22 refer to a particular wheel, but they are representative of
the whole set of healthy or faulty wheels.

Regarding the first cyclic order cumulant, it is interesting to note the presence of a high first order component and
subsequent harmonics in the case of a localized defect of missing adherence (MA) with respect to the healthy condition. In
the case of localized and distributed rust defects (LR and DR) the main differences from the healthy case are registered in
both the first and in the second order cyclic cumulant.

As done for the statistical parameters, the Tukey's method has been applied to theand metrics evaluated for the group of
15 healthy wheels (Table 2) in order to identify the threshold pass/fail values. Possible faults can occur for values between
0.0893 and 0.1226 in the case of ICS1x and for values between 0.0167 and 0.208 for ICS2x metrics. Moreover assured faults
can occur for values exceeding 0.1226 and 0.0208 for and , respectively. The comparison between the results in Fig. 24 and
Table 2 leads to the following remarks, highlighted in Fig. 25.
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Fig. 21. Ĉ
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1x and Ĉ
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2x of depurated acceleration signal in case of LR faulty wheel at 4 km/h and 1000 kg.

Fig. 22. Ĉ
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1x and Ĉ
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2x of depurated acceleration signal in case DR faulty wheel at 4 km/h and 1000 kg.
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1. the ICS1x parameter is able to detect only two certain faults (LR1 and DR2). Nevertheless this low monitoring skill is not
really representative for the real differences between healthy and faulty wheels, as clearly appears when looking at the
first order cumulants of Figs. 20–22. The main reason for this apparent discrepancy between the monitoring capability of
the first cyclic order cumulant and its indicator is due to the large value of dispersion characterizing the healthy wheel,
which causes a large increase of the threshold level.

2. the ICS2x is able to recognize the presence of anomalies or of possible anomalies for all the known faulty wheels, in the
case of both missing adherence and rust defect. In case of healthy components, the ICS2x values do not present this
dispersion effect so, as a result, the ICS2x monitoring skill is particularly sensitive to fault recognition.
6. Concluding remarks

This research addresses a methodology and a procedure for the fault detection of heavy-duty wheels based on vibration
measurements, passing through a simplified explanation of the physical phenomena that cause the faulty signal signature.
Although this method and relative results are referred in this paper to wheels, they can be applied to a large variety of
mechanical systems and give useful guidelines for similar applications.

A simplified approach aimed at the comprehension of the phenomena related to the missing adherence defect is pro-
posed. A single degree of freedom model has been developed. The model is able to qualitatively simulate the vertical
acceleration signal in case of localized missing adherence defect; moreover, the model allows the signal signature to be
explained depending on the defect size and operational conditions. The model parameters have been experimentally
obtained. The defect presence has been modeled as a stiffness reduction with respect to the healthy case. The model can be
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Fig. 23. ICS1x and ICS2x values for the 15 healthy wheels at the “best” test conditions.
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Fig. 24. ICS1x and ICS2x values for a group of 8 different faulty wheels at the “best” test conditions.

Table 2
ICS1x and ICS2x threshold values obtained using the Tukey method at the “best” test conditions.

Healthy wheels (HW) ICS1x ICS2x

Q1 0.0338 0.01
Q2 0.0480 0.012
Q3 0.056 0.0127
Q3þ1:5 Q3�Q1

�� �� 0.0893 0.0167

Q3þ3 Q3�Q1
�� �� 0.1226 0.0208
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considered a useful tool for the interpretation of the experimental results and for the comprehension of the efficiency of the
proposed processing techniques.

A number of different processing techniques are developed and applied in order to recognize faults in heavy-duty
wheels. Defects of different dimensions reproducing missing adherence between the polyurethane tread and the hub are
artificially created. These defects cause incorrect wheel rotations and fast failure. The synchronous average (SAw) has been
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α

2x pass–fail distributions in case of MA, LR and DR defects.
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evaluated and statistical parameters for fault detection (e.g. Kurtosis and RMS) have been used. Furthermore, the cyclos-
tationary nature of the signal has been investigated through the first and second order cumulants and relative indicators.

A non statistical approach (Tukey's method) has been used in order to calculate threshold values for the healthy/faulty
discrimination. This activity has enabled the following conclusions to be drawn:

1. The synchronous average and the first order cyclostationarity characterize the deterministic behavior of a systemwhich is
usually linked with macro-phenomena that perfectly repeat themselves on a cyclic basis: in case of really localized
missing adherence defect (MA) or rust (LR and DR) these techniques are partially efficient since the contact stiffness
variations are weakly deterministic;

2. The second-order cyclostationarity characterizes the random behavior of a system: this technique is able to detect all the
tested faulty wheels due to the fact that contact stiffness variations are highly non-deterministic;

3. parameter ICS2x, which quantifies the presence of second-order cyclostationary components within the signal, represents
a very useful indicators of tread/hub connection anomalies both for missing glue and rust (Fig. 25). Thus, ICS2x can be
considered as the key parameter to be adopted in a monitoring test station at the end of the production line.
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Considering the presented research activity, the main original contributions concern the application of advanced
vibration processing techniques to monitoring of heavy-duty wheels and the assessment of their effectiveness, supported by
the explanation of vibration sources and characteristics through a simplified lumped parameter model.
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