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Abstract 1 

Aim: To pilot investigation of methylation of long interspersed nucleotide element-1 (LINE-2 

1) in lip tissues from infants with non-syndromic cleft lip, and its association with maternal 3 

periconceptional exposures. 4 

Methods: The lateral and medial sides of the cleft lips of 23 affected infants were analyzed for 5 

LINE-1 methylation by bisulfite conversion and pyrosequencing. 6 

Results: The medial side showed 1.8% higher methylation compared to the lateral side; 7 

p=0.031, particularly in male infants (2.7% difference; p=0.011) or when the mothers did not 8 

take folic acid during periconceptional period (2.4% difference; p=0.011). These results were 9 

not statistically significant when Bonferroni adjustment was used. 10 

Conclusion:  The observed differences in DNA methylation, although non-significant after 11 

correction for multiple comparisons, suggest that differential regulation of the two sides may 12 

impact lip fusion and warrant larger-scale replication. 13 

 14 

Keywords: LINE-1, DNA methylation, Cleft lip with or without cleft palate. 15 
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Introduction 19 

Orofacial clefts (OFC) are congenital anomalies affecting the lip, palate or both and 20 

categorized in two broad phenotypes, cleft lip with or without cleft palate (CL/P) and cleft 21 

palate (CP) [1]. The occurrence of the two phenotypes shows a sex based disparity, with a male 22 

predominance in CL/P and a female predominance in CP [2, 3]. About 30% of cases of OFC 23 

are syndromic. The non-syndromic cases are thought to be due to multiple genes and 24 

environmental factors [4, 5].  25 

Like most other chronic diseases, the heritability of developing non-syndromic OFC is only 26 

to a small extent accounted for by the major risk loci so far identified, indicating that the 27 

infant’s genetic profile alone cannot explain the origin of this malformation. And as the 28 

formation of the lip and palate starts early in pregnancy, is vulnerable to perturbation of the 29 

maternal nutritional and non-nutritional milieu [6] that can affect its epigenetic programing. 30 

Therefore, cleft of the lip and palate can arise as a result of any change that impacts its normal 31 

development such as genetic variation [7, 8], and environmental factors including maternal 32 

nutrients, smoking and hormones [9, 10, 11, 12], but the role of these factors in etiology is still 33 

inconclusive [13, 14].   34 

Numerous studies suggest that the risk for OFC is increased by disturbance of the one-35 

carbon metabolism cycle [15], although the role of specific nutrients such as folate remains 36 

controversial [16, 17, 18]. Folate feeds into the one-carbon metabolism cycle that results in the 37 

formation of methyl groups [19]. The level of supplementation of methyl donors in pregnancy 38 

has been shown to influence the levels of DNA methylation in infants [20], especially in the 39 

periconceptional period [21]. Moreover, in a mouse study, an increase in the level of dietary 40 

methyl donors has been found to increase genomic DNA methylation levels in the offspring 41 

[22].  42 

DNA methylation of the pyrimidine base cytosine in DNA may be one of the mechanisms 43 

underlying differential programming of cell lineages in mammalian development, as suggested 44 

by the erasing or reshuffling of methylation marks in the early embryo and its reestablishment 45 

after implantation [23, 24, 25]. This process establishes basic adult methylation patterns prior 46 

to organogenesis. DNA methylation is in a state of flux during gametogenesis and early 47 

embryogenesis, which can be modulated by embryonic environmental exposures. Potentially, 48 

investigation of the methylation of long interspersed nucleotide element-1 (LINE-1) repetitive 49 

elements, generally accepted to be a surrogate measure of global DNA methylation content 50 



 

[26, 27], could provide insight into the role of the environment in regulating whole genome 51 

DNA methylation.  52 

Numerous studies have shown changes in LINE-1 DNA methylation associated with the 53 

onset of specific conditions such as gestational diabetes, preeclempsia, congenital heart 54 

diseases; CHD and neural tube defects; NTDs [ 28, 29, 30, 31] and with prognosis of diseases 55 

such as several types of cancer [32, 33, 34]. Studies in animals or animal derived tissues have 56 

shown the involvement of DNA methylation in the development of OFC, one study involved 57 

lip tissue [35], but the majority of investigations are limited to secondary palate tissues with an 58 

intact upper lip [36, 37]. Most human OFC cases involve clefting of the upper lip [38, 39, 40]. 59 

Moreover, the lip and palate have separate embryological origins and therefore may have 60 

different etiologies and DNA methylation status [41]. This is supported by recent data showing 61 

distinct methylation profile in different cleft subtypes using blood DNA [42]. In addition Alvizi 62 

et al. observed that DNA methylation correlated with the penetrance of nonsyndromic cleft lip 63 

and palate (nsCL/P) [43]  64 

There is a lack of epigenetic data on the DNA methylation of cleft tissues in humans. To 65 

overcome this shortcoming, we undertook a pilot study of LINE-1 methylation in lip tissue 66 

taken from humans undergoing surgical repair of cleft lip (CL) to address epigenetic changes. 67 

We also investigated the association of LINE-1 methylation with reported maternal 68 

periconceptional folic acid supplementation, sex and cleft subtype.  69 

Materials and methods 70 

Cases 71 

Infants with non-syndromic cleft lip with or without palate were identified in the context 72 

of the ongoing PENTACLEFT project [44]. The PENTACLEFT project protocol includes the 73 

recruitment of non-syndromic CL/P cases, their parents and maternal grandparents, and the 74 

collection of genomic DNA from peripheral blood or buccal swab samples. The project was 75 

approved by local IRB (prot. N.08-2011), and case enrolment required written parental 76 

informed consent. Families of consecutive cases were invited to enrol in the study at the 77 

Regional Centre for Orofacial Clefts and Craniofacial Anomalies, San Paolo Hospital, Milan, 78 

Italy, at the time of the first surgical intervention on the index child. Infants with recognized 79 

syndromic clefts or the Pierre Robin sequence were excluded from the study. Parents of 80 

included infants were asked to respond to a specific questionnaire that was administered by 81 

personal interview when the affected child was brought to the surgical centre to undergo the 82 



 

primary surgery. Information on educational status, ethnic group and family history of both 83 

parents was collected, along with data on maternal medical and reproductive history, exposure 84 

to environmental risk factors, use of  drugs, medications and supplements such as folic acid 85 

(FA) during the periconceptional period (from three month before to three months after 86 

conception). Lip tissue samples were collected from non-syndromic CL/P cases at the time of 87 

first surgery.  88 

Tissue samples 89 

The lip tissue samples were collected from Twenty-three non-syndromic CL/P cases, with 90 

an average age of 6.5 (95% CI 5.0-7.1) months at the time of surgery: 12 males (7 CL, 5 CLP; 91 

3 cases with preconceptional FA, preFA, and 9 without preconceptional FA, No-preFA); and 92 

11 females (6 CL, 5 CLP; 2 cases with preFA, 7 No-preFA, and 2 with missing preFA data). 93 

Samples were collected immediately in lysis buffer (pH7.4) from both lateral and medial side 94 

of CL. The samples were then transferred to the laboratory at University of Ferrara where they 95 

were processed for epigenetic study.  96 

  DNA extraction and sodium bisulfite treatment 97 

The cases’ lateral and medial side cleft lip tissues collected in lysis buffer were 98 

homogenized separately, with a view to primarily include the connective tissue portion of the 99 

upper lip, with minimum contribution from the epidermis. The genomic DNA was extracted 100 

from the homogenate using Nucleon BACC1 kit (Amersham Biosciences, part of GE 101 

Healthcare Europe, CH) according to the manufacturer’s instructions and quantified using 102 

Qubit® dsDNA BR Assay Kit  (Life technologies Oregon, USA). The DNA with concentration 103 

>10ng on Qubit® instrument was selected and bisulfite converted using EZ-DNA Methylation-104 

Lightning™ Kit (Zymo Research, Irvine, CA, USA).  105 

Pyrosequencing 106 

The LINE-1 DNA methylation level was measured for all the study samples with 107 

pyrosequencing on PyroMarkQ96 ID using PyroMark Gold reagents (Qiagen). LINE-1 region 108 

including 4 CpG sites (position 305 to 331 in accession no. X58075) was amplified by PCR 109 

using the following primers: 5’-TTTTGAGTTAGGTGTGGGATATA-3’ and 5’-Bio-110 

AAATCAAAAAATTCCCTTTC-3’. LINE-1 PCR products represent a pool of approximately 111 

15 000 genomic loci interspersed across the whole human genome [45, 46]. PCR reactions 112 

were performed in duplicate to achieve precision between runs with total volume of 25μl 113 

containing 10X PCR buffer, 50mMMgCl2, 2.5mMdNTPs, 10pM of each primer, 5U Taq 114 



 

polymerase and 2.5μl of bisulfite modified DNA with the following cycling profile: 27 cycles 115 

of 94°C for 15 s, 60°C for 30 s, and 72°C for 30 s, followed by 72°C for 2 min. The amplicon 116 

of 147bp was analyzed on 8% polyacrylamide gel using silver staining. The PCR plate with 117 

each well containing 20μl of PCR product, 20μl of RNAse free distilled water, 3μl of sepharose 118 

beads containing streptavidin and 37μl of binding buffer; thus a total volume of 80μl of the 119 

mixture was placed on the thermo-mixture. Following this, the PCR product was made single-120 

stranded to act as a template in a pyrosequencing reaction by washing with ethanol 70% and 121 

denaturation buffer using a Pyrosequencing Vacuum Prep Tool (Bio-Stage).  122 

The pyrosequencing runs were performed to obtain a pyrogram from each PCR reaction, 123 

using software for analysis in AQ (allele quantification) mode, in a total volume of 40μl per 124 

well, including 38.4μl of annealing buffer and 1.6μl of 10pM sequencing primer with 125 

suspended beads containing the sample DNA. The assays was created according to the 126 

manufacturer’s recommendations and the output of the two pyrosequencing runs was averaged. 127 

The nucleotide dispensation order was: ACTCAGTGTGTCAGTCAGTTAGTCTG. LINE-1 128 

DNA methylation values were detected at positions +306, +318, +321 and +328 in Genebank 129 

sequence X58075. The CpG site at position +328) was not considered for subsequent analyses, 130 

as precision of methylation values was insufficient, probably due to the adjacent CT 131 

dinucleotide. Using the combined average data, the overall LINE-1 DNA methylation values 132 

was calculated as the mean of the proportions of C (%) at the 3 CpG sites analyzed, (positions 133 

+306, +318 and +321) and this indicated the level of methylation of LINE-1 elements [47]. 134 

Statistical analysis 135 

All the statistical analysis was performed using the IBM SPSS Statistics 21. All p-values 136 

were 2-sided, with a threshold for declaring statistical significance of p<0.05. The distributions 137 

of LINE-1 methylation levels were checked for normality using the Shapiro-Wilk test that is 138 

appropriate for small samples; none departed from normality. For within case comparison 139 

between lateral and medial cleft side, a paired student’s t-test was used. For comparison of 2-140 

level categories of periconceptional use of supplements containing folic acid, sex and cleft 141 

subtype, the unpaired student’s t-test was performed. In view of possible concerns about 142 

multiple comparisons, we also applied the Bonferroni correction to comparisons within and 143 

between cases. This was a secondary analysis because of the known limitations of the 144 

Bonferroni correction and inapplicability of other forms of adjustment to this study [48, 49]. 145 

We adopted the most conservative approach of adjusting for all 13 comparisons reported. 146 



 

Results 147 

Our results are based on samples that showed a normal distribution of LINE-1 methylation 148 

for both medial (p=0.124) and lateral (p=0.773) sides. Initial analysis using the nominal p<0.05 149 

threshold showed that the DNA in tissue taken from the medial side of the cleft lip was found 150 

to have 1.8% more methylation compared to DNA in tissue taken from the lateral side 151 

(p=0.031; Table 1). In analysis stratified on sex, no significant difference in methylation 152 

between the sexes for either the lateral (males 71.5±3.1% verses females 72.0±1.2%; p=0.748) 153 

or medial (males 74.2±3.0% verses females 73.0±2.4%; p=0.293) sides was observed (Figure 154 

1). However, the methylation levels between lateral and medial sides in males was observed to 155 

be significantly different (lateral 71.5±3.10% verses medial 74.2±3.0%; p=0.011), (Table 1). 156 

When methylation levels within and between CL and cleft lip and palate (CLP) subtype were 157 

analyzed, no significant differences were observed (Table 1). To evaluate the role of 158 

periconceptional folic acid as an environmental factor affecting the level of global DNA 159 

methylation, we calculated the average methylation level on lateral and medial cleft sides in 160 

infants born to mothers with and without periconceptional folic acid supplementation. 161 

Comparison between these two groups showed no significant difference. However, 162 

methylation on the medial side was 2.7% higher than that on the lateral side in the cases whose 163 

mothers did not take periconceptional folic acid supplements, (p=0.011; Table 1). In secondary 164 

analysis using a Bonferroni corrected threshold (p=0.004) , this finding was not statistically 165 

significant.  166 

Discussion 167 

In this first pilot study using human lip tissue obtained from infants with non-syndromic 168 

CL/P, we observed differences in LINE-1 DNA methylation between tissues on the lateral and 169 

medial side of the cleft. These differences were apparent in boys but not in girls, and in infants 170 

whose mothers did not take supplements containing folic acid in the periconceptional period 171 

but not in the offspring of women who took supplements. There were no differences in 172 

methylation by sex or cleft subgroup.  173 

From our results it appears that the medial side of clefts have higher global methylation 174 

levels, especially in male infants. This pattern is also apparent in infants from pregnancies in 175 

which supplements containing folic acid were not taken during the periconceptional period, but 176 

we acknowledge that numbers are very small. We also recognize that the inability to obtain 177 

normal lip tissues with which to compare our lip tissue samples is a shortcoming that prevents 178 



 

the direct determination of whether this epigenetic difference between of the two sides is a 179 

pattern present in the general population, rather than being specific to clefting, i.e. a real cause 180 

or consequence of clefting. However, we suggest that this difference may reflect the fact that 181 

these tissues develop during separate embryonic stages and therefore possibly experience 182 

different environmental exposures. The lateral aspects of the upper lip originate from the 183 

maxillary process (MxP) during the 4th week of embryonic development, while the medial 184 

aspects of the upper lip originates from the medial nasal process (MNP), beginning in the 5th 185 

week [4]. It is possible that the two separate windows of origin may have been exposed to 186 

different environmental milieus that resulted in differential methylation of the two sides of the 187 

cleft, in turn influencing the closure of the two processes and the occurrence of a cleft lip.  188 

Another possible explanation for the observed differences in methylation of the two cleft 189 

sides could lie in the developmental field concept, and act in a spatial and temporal manner 190 

[50]. For example, in normal circumstances, the lateral and medial aspects of the upper lip 191 

originate from two different embryonic units that constitute a morphogenetic reactive unit. It 192 

is possible that this part of the embryo’s reactive unit in the two aspects of the upper lip may 193 

have experienced different spatial and temporal forces of organization and differentiation 194 

(epimorphic field) leading to dysmorphogenesis of the two sides, reflected as a difference in 195 

methylation as observed in our study. Some empirical support is provided by a recent animal 196 

study that shows temporal regulation of Sonic Hedgehog (SHH), resulting in down-regulation 197 

of Foxf2 expression and reduced proliferation of medial nasal process mesenchymal cells that 198 

are required for upper lip closure [51]. We postulate that differential expression of a single 199 

gene on the two sides of the developing lip could be regulated by different epistatic factors, 200 

and hence we plan to investigate expression of specific genes implicated in human clefting in 201 

future work.  202 

An influence of in-utero environment on epigenetic modulation is compatible with previous 203 

reports showing associations between DNA methylation changes and neural tube defects [52] 204 

and congenital heart defects [53, 54]. Neural tube defects are clearly linked with low folate 205 

status [55], and there is some evidence that this is also the case for several types of congenital 206 

heart defect [56]. There appears to be no previous reports on the association between folic acid 207 

intake during the periconceptional period or pregnancy and global LINE-1 DNA methylation 208 

in humans in general, or specific to the development of CL/P [57]. In infants born to mothers 209 

who did not use periconceptional folic acid supplementation we found a suggestion of a trend 210 

of increased methylation on the medial side.   211 



 

In the cleft subgroup analysis, we found no significant difference in methylation between 212 

the two sides, a result that is compatible with the similar DNA methylation profile of CL and 213 

CLP reported by Sharp et al. [42]. Similarly, sex subgroup analysis showed no significant 214 

difference in methylation between the two sides. However, comparison within males showed 215 

a significantly higher methylation for the medial side that may be an outcome of differential 216 

developmental programming in males, who have an increased susceptibility to CL/P [2, 3]. 217 

This may reflect a role of sex in cleft etiology. We acknowledge that our results are based on 218 

small numbers, because collecting tissues from the cleft cases is of great challenge [58]. 219 

Statistical power is low, and we note that all nominally significant results in this study were 220 

non-significant in the secondary analysis applying the Bonferroni correction. Therefore, we 221 

urge that until replication of our results with in a larger sample size, the clear answer to this 222 

primarily evidence should be taken with caution.   223 

According to a recent study, infants with cleft lip and cleft lip and palate subtypes may have 224 

similar rates of development, suggesting that epigenetic changes associated with development 225 

may not be a confounding factor in epigenetic studies of cleft lip, and cleft lip and palate [42]. 226 

Children with CL and CLP underwent surgery and thus had samples taken at approximately 227 

similar ages.  There are reports of the absence of an age effect on LINE-1 methylation [59, 60, 228 

61], and from a study on lip tissues collected from 4-month-old CL and CLP cases that shows 229 

an independent expression of genes associated with ageing [60]. Therefore, we consider that 230 

our observation is little influenced by ageing.  Moreover, the advantage of using tissues derived 231 

from same individuals with relatively similar age in our study overcomes the influence of DNA 232 

sequence on DNA methylation and possibly the influence of age on DNA methylation, if any. 233 

Although the targeting of lip tissues in this study potentially would give the most direct insight 234 

into epigenetic changes associated with the occurrence of cleft lip, we are aware that 235 

heterogeneity could arise in these tissues from neural-crest derived connective tissue and 236 

muscles, and in-situ derived epidermis. However, we sought to overcome this limitation by 237 

collecting tissues in a lysis buffer to minimize the contribution from the epidermis and 238 

primarily include the connective tissue portion of lip tissues. Moreover, the observation of 239 

similar correlations between blood and tissue methylation in nsCL/P epigenetic study of Sharp 240 

et al. [42] and Alvizi et al. [43] suggests that the two tissues can be considered to be 241 

exchangeable in nsCL/P methylation studies at least. An aim of our future work in newly 242 

recruited cases is to collect blood and investigate correlation between methylation in blood 243 

with that in tissue from the lateral and medial sides of clefts. 244 



 

Another potential limitation of our study is that the tissue DNA methylation measurement 245 

in infancy may have been indirectly influenced by the presence of a cleft lip and so may differ 246 

from that at the time of lip fusion in embryonic development. But for ethical reasons, this is 247 

the only accessible, and the closest, tissue associated with OFC that can be studied in humans. 248 

It is obviously difficult to collect lip tissue specimens from normal babies and this limits 249 

making direct causal inference.   250 

Of note, our study is based on small sample size (with possibility of both Type I and Type 251 

II errors) and being aware of this limitation, splitting our samples based on factors (sex, cleft 252 

subtype and pre-FA) thought to affect methylation, was an attempt to provide preliminary data. 253 

Our primary analysis did not include Bonferroni correction because of known limitations 254 

including Type II error [48] and the inapplicability of other forms of adjustment [49] in this 255 

exploratory study, in view of being cautious of not missing a possible effect worthy of future 256 

investigation. Since the recruitment of cleft cases is still ongoing in the PENTACLEFT project, 257 

we hope to replicate and better justify our preliminary finding using larger number of cases and 258 

to investigate epistatic regulation of genes implicated in OFC.  259 

In conclusion, the observed difference in methylation between tissue taken from the lateral 260 

and medial sides of a cleft lip may reflect the fact that these tissues develop during separate 261 

embryonic stages and therefore possibly experience different environmental exposures that can 262 

regulate DNA methylation patterns differently. The finding of a difference in DNA methylation 263 

in male but not female infants should be further investigated. Our findings suggest that 264 

epigenetic mechanisms may be important in the etiology of OFC, warranting replication in a 265 

larger study. 266 

 267 

Summary points 268 

 The etiology of non-syndromic orofacial cleft (OFC) is only in part explained by 269 

genetic variants. We hypothesized the possible role of early pregnancy epigenetic 270 

programming in the pathogenesis of OFC.  271 

 There is lack in epigenetic data on the DNA methylation of cleft tissues in humans. 272 

Therefore, to overcome this shortcoming, this pilot study is the first comparative 273 

assessment of long interspersed nucleotide element-1 (LINE-1) methylation between 274 

tissues taken from the two sides of infants with cleft lip, and investigate possible 275 

association with reported maternal periconceptional environmental exposures.      276 



 

 We show that LINE-1 methylation of tissues from medial side of the lip is higher 277 

compared to the lateral side, and that is particularly apparent for male infants. In 278 

addition, we show that the medial side methylation is higher for infants whose mothers 279 

did not take supplements containing folic acid during periconceptional period.  280 

 The observed differences in methylation between tissue taken from lateral and medial 281 

sides of cleft lip may reflect the fact that these tissues develop during separate 282 

embryonic stages and therefore possibly experience different environmental exposures 283 

that can modulate DNA methylation patterns differently.  284 

 The differences in methylation between males and females may reflect a play of chance.  285 

 This study suggests differential methylation of two cleft side that may impact lip fusion, 286 

warranting replication in a larger study.  287 
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