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Abstract 
In single-degree-of-freedom (DOF) mechanisms, velocity coefficients (VCs) and their 1st derivative with respect 
to the generalized coordinate (acceleration coefficients (ACs)) only depend on the mechanism configuration. In 
addition, if the mechanism is a planar linkage (i.e., a mechanism containing only lower pairs), complex numbers 
are an easy-to-use tool for writing linkage’s loop equations that are formally differentiable and are the only 
constraint equations of linkages. Actually, the use of complex numbers for systematically writing the constraint 
equations of planar mechanisms is often limited to linkages. The possible presence of higher pairs in these 
mechanisms is usually managed through either equivalent linkages or apparent velocity/acceleration equations. 
Both these methods are simple to implement for a single mechanism configuration, but become cumbersome 
when continuous motion has to be analyzed. Other approaches use ad hoc auxiliary equations. Here, first, a 
general notation that brings to select particular auxiliary equations is proposed; then, such notation is adopted to 
propose an algorithm that systematically uses VCs and ACs for solving the kinematic-analysis problems of 
single-DOF planar mechanisms. The proposed notation and algorithm, over being efficient enough for 
constituting the kinematic block of any dynamic model of these mechanisms, are easy to present planar 
kinematics, with the complex-number method extended to higher pairs, in graduate and/or undergraduate 
courses. 
 
KEYWORDS: planar mechanism, velocity coefficient, acceleration coefficient, rolling contact, sliding contact, 
noncircular gears, higher education. 
 
1. Introduction 
Single-DOF planar linkages are present in many applications. Their technical relevance justifies the wide 
literature (see [1, 2], for Refs.) devoted to them. 

Developing general-purpose software that solves their kinematic analysis (i.e., position, velocity and 
acceleration analyses) requires the adoption of a standardized procedure to reduce the analysis of a generic 
linkage to those of a small set of simpler problems easy to solve. Structural decomposition [3] based on Assur 
groups (AGs) [4, 5] is the most known of these procedures. Such procedure decomposes the linkage into 
“drivers” whose motion is known and AGs whose kinematics is analytically solvable starting from position, 
velocity and acceleration of the connecting points. 

Other procedures [2] rely on systematic ways for writing the constraint equations of linkages. The vector-
loop method is one of the possible ways for systematically writing linkages’ constraint equations. Such method 
is diffusely adopted both to present mechanism kinematics in graduate and/or undergraduate courses (see [2], for 
instance) and to systematically solve position-analysis problems [6, 7]. The use of complex numbers1 for 
representing planar vectors facilitates the implementation of this method. 

Even though most mechanisms are linkages2 (i.e., contain only lower pairs), relevant mechanism families 
(mechanisms with cams and/or gears) contain higher pairs. Thus, in graduate and/or undergraduate courses, 
presenting exhaustive analytical/numerical techniques for the kinematic analysis of (at least) planar mechanisms 
is a primary need. 

Kinematic analysis of mechanisms may be implemented by writing the constraint equations together with 
their first and second time derivatives. The vector-loop method brings to write loop (closure) equations, which, 
for planar mechanisms, are easy to write in a systematic way by using the complex-number method. 
Unfortunately, such equations constitute the complete set of constraint equations only for linkages. Differently, 

                                                 
1 The geometric interpretation of complex numbers [22, 23] is dated back to Wessel (1797), Argand (1806) and 
Gauss (1831). An exhaustive presentation of analytic plane geometry through complex numbers is reported in 
[23]; whereas planar kinematics through complex numbers is fully presented in [24] and, in a less extensive 
way, in [1, 25]. 
2 The IFToMM terminology [8] is adopted in all the paper. 
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when higher pairs are present in a mechanism, the set of constraint equations must contain suitable additional 
equations that integrate the loop equations.  

Planar mechanisms contain only four types of kinematic pairs: two lower-pair types (i.e., revolute (R) or 
prismatic (P) pairs) and two higher-pair types (i.e., rolling (Rc) or sliding (Sc) contacts). In these mechanisms, 
the possible presence of higher pairs is often managed through equivalent linkages [9, 24] or apparent 
velocity/acceleration equations [10], which are both simple to implement for a single mechanism configuration, 
but become cumbersome when continuous motion has to be analyzed. Other approaches use ad hoc auxiliary 
equations [1, 11]. 

In single-DOF mechanisms, the ratios between the secondary-variable3 rates and the generalized-coordinate 
rate depend only on the mechanism configuration and are periodic functions when mapped as a function of the 
generalized coordinate [1]. Such ratios are named velocity coefficients (VCs) [1]. In the literature, VCs together 
with their 1st derivative with respect to the generalized coordinate (acceleration coefficients (ACs)) have been 
exploited to study both the kinematics (see [1, 12], for instance and Refs.) and the dynamics [13, 14] of single-
DOF planar mechanisms. 

This paper, firstly, extends the complex-number method to planar mechanisms with higher pairs by 
proposing a general notation that brings to select particular auxiliary equations; secondly, it presents a general 
algorithm for solving the kinematic analysis of single-DOF planar mechanisms. Such algorithm starts by writing 
the constraint equations with the proposed general notation; then, it computes one VC and one AC for each 
movable link by solving two linear systems, easy to deduce from the written constraint equations, and uses these 
VCs and ACs to calculate any velocity and/or acceleration of the mechanism. The proposed algorithm is 
globally novel. Also, it is efficient enough to be the kinematic block of any dynamic model of these 
mechanisms, and it lends itself to present planar kinematics in graduate and/or undergraduate courses. 

The paper is organized as follows. Sections 2 and 3, over providing some background concepts, present the 
higher-pair modeling in the frame of the complex-number method, and the adopted general notation, 
respectively. Then, section 4 presents the algorithm; and, section 5 applies it to three case studies. Eventually, 
section 6 draws the conclusions. 

 
 

2. Higher-Pair Modeling 
Figure 1 shows a conjugate profile, fixed to the k-th link of a planar mechanism, that has to come into contact 
with  another  conjugate  profile  to  form  an  higher  pair  of  that mechanism. In Fig. 1, the reference Oxy is an  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A conjugate profile fixed to the k-th link of a planar mechanism: notation. 

                                                 
3 Hereafter, with reference to a single-DOF mechanism, the phrase “generalized coordinate” will denote the 
input variable of the kinematic analysis; whereas, the phrase “secondary variable” will denote a geometric 
parameter that changes its value during the motion of the linkage and is not the generalized coordinate.  
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Argand plane (A-plane) fixed to the mechanism frame; whereas, the reference Pxkyk is an A-plane fixed to link 
k. hk and ϕk are polar coordinates that locate a generic point, H, of the conjugate profile in the A-plane Pxkyk 
through the complex number hk=hk exp(iϕk)≡xH|k+iyH|k. In the A-plane Oxy, the position of link k is given by the 
complex number zP=xP+iyP, where i is the imaginary unit 1− , that locates a generic point, P, fixed to link k; 
also, link-k’s orientation is given by the unit complex number uk=exp(iθk). 

For the sake of brevity, hereafter, the expression “complex number measured in the A-plane” will mean 
“complex number associated to the free planar vector measured in the Cartesian reference associated to that A-
plane”4. With this terminology, the following statement holds “the product of uk by a complex number measured 
in the A-plane Pxkyk yields the complex number associated to the same free vector but measured in the A-plane 
Oxy”. Thus, the complex number zk=hkuk is associated to the free vector (H – P) (see Fig. 1) measured in Oxy, 
and the complex number (zP+zk) locates point H in the A-plane Oxy. τH|k is the unit complex number measured 
in Pxkyk that is associated to the unit vector tangent to the conjugate profile at point H, and nH|k=i τH|k . τH|k and 
nH|k define a local A-plane, fixed to link k, with point H as origin and axes that are tangent and normal at H to 
the conjugate profile. 

The shape of a conjugate profile is usually given through parametric equations deduced to manufacture it 
with CNC machining tools [15, 16]. Hereafter, without losing generality, the analytic expression of the profile 
will be generically indicated through the two parametric equations hk= hk(ψk) and ϕk=ϕk(ψk), where ψk is the 
curve parameter. With this notation, τH|k can be analytically expressed as follows (by definition, xH|k=hkcosϕk  
and  yH|k=hksinϕk):  

 
, ,
H|k H|k

H|k , 2 , 2
H|k H|k

x y
τ

(x ) (y )

+
=

+

i
 (1a) 

where 

 H|k,
H|k

k
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x

dψ
= ,      H|k,

H|k
k
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y

dψ
= . (1b) 

 
Eventually, the infinitesimal arc length of the conjugate profile at H is 
 
 , 2 , 2

k H|k H|k kds = (x ) (y ) dψ+  (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Two conjugate profiles in contact with each other at point H. 
 

 

                                                 
4 Remind that the set of the free planar vectors measured in a given Cartesian reference is isomorphic to the 
complex numbers represented in the A-plane associated to that Cartesian reference. 
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2.1. Rolling Contact: 
By using the notation of Fig. 1, Fig. 2 shows two links, k and j, that come into contact with one another at point 
H. If a rolling contact is present at point H, the two conjugate profiles that form the higher pair are indeed 
centrodes, and can be interpreted as the centrodes of two mating noncircular gears [17]. In this case, points H0k 
and H0j of Fig. 2 are the reference points of the two centrodes that come into contact with one another during the 
mechanism assembly; due to the rolling constraint, the lengths of the two arcs 0kH H  and 0jH H  are always 
equal. 

With reference to Fig. 2, the closure equation of the loop passing through point H, in complex form, is 
 
 zP + zk = zQ + zj (3) 
 

where zP=xP+iyP, zQ=xQ+iyQ, zk=hkuk, and zj=hjuj with hk=hkexp(iϕk)≡xH|k+iyH|k, hj=hjexp(iϕj)≡xH|j+iyH|j, 
uk=exp(iθk), and uj=exp(iθj).  

Moreover, Eq. (1) holds for τH|k; whereas, for τH|j, the following expression holds 
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with 

 H|j,
H|j

j

dx
x

dψ
= ,    H|j,

H|k
j

dy
y

dψ
= , (4b) 

 
where ψj is the curve parameter of the two parametric equations hj= hj(ψj) and ϕj=ϕj(ψj), which define the shape 
of the centrode fixed to link j. Eventually, , 2 , 2

j H|j H|j jds = (x ) (y ) dψ+  is the infinitesimal arc length of the centrode, 

fixed to link j, at H, nH|k=i τH|k and nH|j=i τH|j. 
With these notations, the contact of the two centrodes at H can be imposed with the auxiliary (constraint) 

equation (a denotes the complex conjugate of the complex number a) 
  
 Re(i τH|k uk τH|j uj) = 0 (5) 
 

which simply imposes that, if nH|k and τH|j are both measured in the A-plane Oxy, they are associated to two 
mutually orthogonal free vectors5 measured in Oxy. 

Equation (5) can be expanded and simplified as follows: 
 
 ( ) ( ), , , , , , , ,

H|k H|j H|k H|j k j H|k H|j H|k H|j k j– y x + x y cos θ – θ  – x x + y y sin θ( ) ( )– θ  = 0  (6) 
 
Equation (6) takes into account only the contact between the two profiles. Thus, another constraint equation 

has to be added which analytically expresses the rolling condition. Such equation has the differential form 
dsj=dsk, which can be integrated and expanded to give the following constraint equation 

 
 

0j 0k

H H, 2 , 2 , 2 , 2
H|j H|j j H|k H|k kH H

(x ) (y ) dψ (x ) (y ) dψ+ = +∫ ∫  (7) 

 
Equation (7) involves only the parametric curves of the two profiles and, due to the rolling nature of the 

contact, it can always state a one-to-one relationship between the two curve parameters ψj and ψk, that is, it can 
always be put in either of the two forms ψj =ψj(ψk) or ψk =ψk(ψj). 

Equations (6) and (7) are the two auxiliary (constraint) equations that must be added to the loop equation 
(i.e., complex Eq. (3)) for modeling the rolling contact. Thus, in this case, the relative motion between links k 
and j is constrained by four scalar equations that contain five unknowns: (xP–xQ), (yP–yQ), (θk – θj), ψj and ψk. 
This result is consistent with the fact that a rolling contact has one degree of freedom (DOF) and proves the 
correctness of the model. 

Equations (6) and (7) can be combined into the unique complex equation 
 
 zRc (ψk, ψj, θk, θj)= 0 (8) 
 

where the complex number zRc = xRc + i yRc is defined by the relationships 

                                                 
5 It is worth reminding that the real part of (a b) is equal to the dot product of the two free vectors associated to 
the complex numbers a and b, respectively. 
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 xRc = ( ) ( ), , , , , , , ,

H|k H|j H|k H|j k j H|k H|j H|k H|j k j– y x + x y cos θ – θ  – x x + y y sin θ( ) ( )– θ    (9a) 

 yRc = 
0j 0k

H H, 2 , 2 , 2 , 2
H|j H|j j H|k H|k kH H

(x ) (y ) dψ (x ) (y ) dψ + − +  ∫ ∫  (9b) 

 
 

2.2. Sliding Contact: 
With reference to Fig. 2, if a sliding contact occurs at point H, Eq. (6), which imposes the contact between the 
conjugate profiles, is still valid; whereas, the relationship between the arc lengths of the two profiles (i.e., Eq. 
(7)) is not valid any longer, that is, the two curve parameters ψj and ψk are independent from one another. As a 
consequence, in this case, the relative motion between links k and j is constrained by only three equations: the 
real and the imaginary parts of Eq. (3) (i.e., the loop equation), and Eq. (6). These three equations contain the 
same five unknowns as before (i.e., (xP–xQ), (yP–yQ), (θk – θj), ψj and ψk), which is consistent with the fact that a 
sliding contact has two DOF. 

Sliding-contact’s auxiliary constraint equation (i.e., Eq. (6)) can be put in complex form as follows: 
 
 zSc (ψk, ψj, θk, θj)= 0 (10) 
 

where the complex number zSc = xSc + i ySc is defined by the relationships 
 

 xSc = ( ) ( ), , , , , , , ,
H|k H|j H|k H|j k j H|k H|j H|k H|j k j– y x + x y cos θ – θ  – x x + y y sin θ( ) ( )– θ   ,          ySc = 0. (11) 

 
 

3. General Notation 
Planar mechanisms feature a number, m, of links connected by a number, c1, of single-DOF kinematic pairs (i.e., 
whose type is R or P or Rc) and a number, c2, of sliding contacts (Sc pairs), which are two-DOF kinematic pairs. 
According to Gruebler’s formula [1], in single-DOF planar mechanisms m, c1, and c2 are related by the 
following relationship: 
 

 c1 = 1.5 m – 0.5 c2 – 2  (12) 
 
Their topology is representable through graphs (see [1] for details and further Refs.) whose nodes and edges 

refer to links and kinematic pairs, respectively. The loops appearing in these graphs geometrically individuate 
closed polygonal chains (circuits), embedded in the linkage. The vertices of these circuits are either points of  R-
pair axes, or contact points of higher pairs (i.e., Rc or Sc pairs), or points of P-pair sliding directions, which are 
fixed to one or the other of the two links joined by the P pair; whereas, their edges are either constant-length 
segments fixed to one link or variable-length segments corresponding to the joint variables of the P pairs or 
variable-lengths distances of higher-pairs’ contact points from points fixed to either of the two links joined by 
those contacts. According to Euler formula [1], the number, a, of independent circuits of single-DOF planar 
mechanisms is 

 
 a = 0.5 m + 0.5 c2 – 1  (13) 
 
Mechanisms’ loop equations are deducible by analytically writing the vector equations that the independent 

circuits (ICs) represent from a geometric point of view. In single-DOF planar mechanisms, if the free vectors 
associated to the edges of the circuits are represented through complex numbers, the loop equations are obtained 
by equating to zero the algebraic sum of these complex numbers. 

This approach can be implemented through the following steps: 
i) the links are numbered from 1 to m and the number, a, of ICs is computed from Eq. (13); 
ii) by inspecting all the kinematic pairs, c1+c2 points, At for t = 1,…, c1+c2, (one for each pair), which are the 

contact points of the higher pairs plus points that belong either to an R-pair axis or to a line parallel to a P-pair 
sliding direction, are selected; 

iii) among the points At for t = 1,…, c1+c2, the couples of points that can be joined through an oriented 
segment either embedded in a link or belonging to a line parallel to a P-pair sliding direction are joined; 

iv) the net of oriented segments deduced in step (iii) is analyzed and, through the graph of the linkage, the 
ICs are chosen; then, a complex number is associated to each oriented segment belonging to the chosen ICs, and 
the loop equations are written by assigning a conventional positive direction (clockwise or counterclockwise) to 
each IC. 

The resulting system of loop equations has the following form 
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j

kj
k L

0
∈

± =∑ z  j = 1, …, a        (14) 

 
where Lj is a set collecting the integer numbers that identify the links traversed by the j-th IC, zkj is the complex 
number associated to the k-th edge of the j-th IC, and the sign + or – depends on whether the direction of the 
oriented segment represented by zkj concurs or not with the positive direction (clockwise or counterclockwise) 
assigned to the j-th IC.  

Figure 3 shows a generic k-th link traversed by q ICs, which contains the linear guide of a P-pair that 
connects it to a slider fixed in the s-th link, and the contact point, Ap+i, of an higher pair that connects it to the w-
th link [hki (hwi) and ϕki (ϕwi) are the polar coordinates that define the conjugate profile fixed to the k-th link (to 
the w-th link) as a function of the curve parameter ψki (the curve parameter ψwi)]. With reference to Fig. 3, the 
possible zkj that can be defined are 

 
 zkj = akj uk j∈Nk={nk1,…,nkq}⊆{1, …, a}     (15a) 
 zsj = ds us (15b) 
 

where, Nk is the subset of {1, …, a} that collects the integer numbers identifying the ICs passing through the k-
th link. s is the number identifying the link that, in the j-th IC, follows6 the k-th link. ds is the variable length of 
the segment A(p+r)Ag (i.e., it is the joint variable of the P pair), 
 

 akj = akr exp(iαkr)       uk = exp(iθk),        us = exp(iαs) uk, (16) 
 

with akr=hki(ψki) and αkr= ϕki(ψki) for j=nki (i.e., for r=i); otherwise (i.e., j≠nki and r≠i), with akr equal to the 
constant length of the segment ApA(p+r) and αkr, for r ∈{2, …, i – 1, i+1, …, q}, together with αs, equal to 
constant angles. θk, for k = 1,…, m, is the angle that defines the orientation of the k-th link with respect to the 
frame. 

The notation of Fig. 3 can always be applied to any link of a planar mechanism. This notation introduces one 
variable for each mobile link, which is an angle, θk, or a linear variable, ds, if the link is connected to the 
previous one through an R-pair or a P-pair, respectively, and two curve parameters, ψki and ψwi, for each Rc-pair 
or Sc-pair. Therefore, system (14) (i.e., the loop-equation system), which is a system of 2a [= m+c2–2 (see Eq. 
(13))] scalar equations, contains (m – 1)+2(c2+cRc) variables where cRc is the number of Rc pairs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Notations: k-th link, traversed by q ICs, in contact with the w-th link at Ap+i through an higher pair, 
and containing the linear guide of a P-pair that connects it to a slider fixed in the s-th link. 

 
 

                                                 
6 In the j-th IC the link order that states which is the previous or the next link is given by the positive direction 
(clockwise or counterclockwise) assigned to the j-th IC. Also, the order of the IC is given by the index j of 
system (3). Accordingly, the variables are defined. 
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The complete constraint-equation system is obtained by adding to system (14) one Eq. (8) for each Rc pair 
and one Eq. (10) for each Sc pair, that is, (2cRc+c2) more scalar equations. Such additional equations do not 
introduce further variables. As a consequence, the complete constraint-equation system consists of m+2(cRc+c2–
1) scalar equations containing (m – 1)+2(c2+cRc) variables and can be solved once one of these variables (i.e., 
the chosen generalized coordinate) is assigned. Such system can be synthetically written as follows: 

 
 

j

kj
k L

0
∈

± =∑ z  j = 1, …, a        (17a) 

 zRc|i(ψi1, ψi2, θi1, θi2) = 0 i = 1, …, cRc     (17b) 
 zSc|n(ψn1, ψn2, θn1, θn2)= 0 n = 1, …, c2      (17c) 
 

with obvious meaning of the symbols7.  
With these notations, the 1st and 2nd time derivatives of the terms appearing in the constraint equations (17a), 

(17b), and (17c) are 
 

,
kj kj kr kj k kφ ( ε ν )= +z a a i u ,       , 2 , ,, 2 , 2

kj kj kr kj k k kj kr kj kr kj kr k kj k k kφ ( ε ν ) φ [ η ε 2 ε ν (λ ν ) ]= + + + + + −z a a i u a a a i a i u   (18a) 

 s ksj s sφ (δ d ν )= +z i u  ,       2 2
s s k s s ksj k sks sφ (δ d ν ) φ [μ 2δ ν d (λ ν )]= + + + + −z u ui i i    (18b) 

 Rc|i Rc|iφ L=z  ,       ( )2
Rc|i Rc|i Rc|i Rc|iφ L φ M G= + +z    (18c) 

 Sc|n Sc|nφ L=z  ,       ( )2
Sc|n Sc|n Sc|n Sc|nφ L φ M G= + +z    (18d) 

 
where8  

 
Rc|i Rc|i Rc|i Rc|i

Rc|i i1 i2 i1 i2
i1 i2 i1 i2

L ε ε ν ν
ψ ψ θ θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

z z z z
,         Rc|i Rc|i Rc|i Rc|i

Rc|i i1 i2 i1 i2
i1 i2 i1 i2

M η η λ λ
ψ ψ θ θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

z z z z
 (19a) 

Sc|n Sc|n Sc|n Sc|n
Sc|n n1 n2 n1 n2

n1 n2 n1 n2

L ε ε ν ν
ψ ψ θ θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

z z z z
,      Sc|n Sc|i Sc|n Sc|i

Sc|n n1 n2 n1 n2
n1 n2 n1 n2

M η η λ λ
ψ ψ θ θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

z z z z
 (19b) 

Rc|i Rc|i Rc|i Rc|i
Rc|i i1 i2 i1 i2

i1 i2 i1 i2

L L L L
G ε ε ν ν

ψ ψ θ θ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

,       Sc|n Sc|n Sc|n Sc|n
Sc|n n1 n2 n1 n2

n1 n2 n1 n2

L L L L
G ε ε ν ν

ψ ψ θ θ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

 (19c) 

 
In Eqs. (18) and (19), ϕ is the generalized coordinate. The following VCs and ACs have been introduced 

 

 k
k

θ
ν

φ
=




,      s
s

d
δ

φ
=




,      kr
kr

ψ
ε

φ
=




,      k
k

dν
λ

dφ
= ,      s

s
dδ

μ
dφ

= ,      kr
kr

dε
η

dφ
= , (20) 

 
together with the conjugate profile’s geometric data ,

kja  and ,,
kja  defined as follows 

 

 kj,
kj

kr

d
dψ

=
a

a ,          
2 ,

kj kj,,
kj 2

krkr

d d
dψdψ

= =
a a

a  (21) 

 
where, if zkj refers to a free vector pointing to an higher-pair contact point, ψkr is the curve parameter of the 
conjugate profile of that higher pair, which is fixed to the k-th link, and εkr (ηkr) is really a VC (an AC); 
otherwise, εkr= ηkr=0, , ,,

kj kj 0= =a a , and formulas (18a) are simplified as follows 
 

 kj| k0 kjφν=z iz ;         kj|0 kj k kj
2 2

k kφν φ (λ ν )= + −z iz i z     (22) 
 

                                                 
7 In Eqs. (17b) and (17c), the right subscripts i1 (n1) and i2 (n2), when they are subscript of ψ, stand for the kr 
index of the two curve parameters of the conjugate profiles in contact with each other in the higher pair the 
equation refers to; otherwise (i.e., when they are subscript of θ), they stand for the link numbers of the two links 
in contact with each other in the higher pair the equation refers to. 
8 Formulas (19c) are compact expressions where the partial derivatives of LRc|i (LSc|i) must be done by 
considering the VCs as if they were independent variables. 



 8 

It is worth noting that the VC and AC coefficients of formulas (19) are all known functions of the 
mechanism configuration, which can be analytically determined through the explicit expressions formulas (9) 
and (11) provide. 

The kinematic interpretation of formulas (18a) and (18b) is (see Fig. 3) 
 
 

(p+r) p

,
kj kr k k kj Aj |k A |kk φ ε φ ν− = = −a u i zz v v   ; (23a) 

 
(p+r) p

, 2 , ,, 2 , 2 2
kj kr k kj kr kj kr kj krkj kjk k k k k A |k A |kkjφ ε φ ( η ε 2 ε ν ) φν φ (λ ν )− − + + = + − = −a u a a a i u az i az i z    ; (23b) 

 
(p+r)Ag|s |kj As = − vz v ; (23c) 

 
(p+r)Ag|ssj A |k= −a az ; (23d) 

 
where the symbol vB|f (aB|f) denotes the velocity (acceleration), with respect to the frame, of a point B fixed to 
the f-th link, when expressed by using complex numbers. Moreover, with reference to the introduced notations 
and the loop nki of Fig. 3 (i.e., the path ApA(p+i)Av), the following relationships hold (j= nki): 
 

 
ki ki v pA |w Akn |kwn− = −v vz z  ; (24a) 

 
ki k v pi A |w An wn |kk − = −a az z  ; (24b) 

 
 

4. Kinematic Analysis through VCs and ACs 
The first step of the kinematic analysis is the position analysis (PA). In single-DOF mechanisms, after the 
introduction of the above-defined notation, the PA consists in the determination of all the secondary variables, 
θk, ψki and ds, for an assigned value of the generalized coordinate, ϕ, by solving system (17). Such system can be 
always solved numerically (see [6, 7], for instance), and often it can also be solved analytically.  

Once the PA has been solved all the complex numbers zkj appearing in system (17) are known, and, together 
with φ , become the input data of the velocity analysis (VA). 

 
4.1. Velocity Analysis: 
The 1st time derivative of the constraint Eqs. (17) provides the VA equations to solve. The VA equations can be 
automatically obtained by replacing, in system (17), each complex number with the expression of its 1st time 
derivative, formulas (18) provide. In so doing, the following system of VA equations is obtained 

 jφ D (φ) 0=  j = 1, …, a        (25a) 
 Rc|iφ L (φ) 0=  i = 1, …, cRc     (25b) 
 Sc|nφ L (φ) 0=  n = 1, …, c2      (25c) 

 
with LRc|i (LSc|n) given by Eq. (19a) (Eq. (19b)), and  
 

 
j

,
j kj kr k k kj kj s s kj s s

k L
D (φ) [ ε ν ( β d ) β δ ]

∈

= ± + + +∑ a u i z u u  (26)  

where βkj is equal to 1 if, in the j-th IC, the k-th link is connected to the next through a P pair, otherwise it is 
equal to 0. Of course, the VC that corresponds to the variable chosen as generalized coordinate is equal to 1 and 
the VC that corresponds to the frame is equal to 0; as a consequence, the derivative with respect to ϕ of these 
two VCs are always equal to 0. 

The coefficients Dj, LRc|i, and LSc|n are linear combinations of the VCs whose coefficients are complex 
numbers that are all functions of ϕ and are known after the solution of the PA. System (25) is satisfied by 
imposing the vanishing of these coefficients, that is, 

 
 Dj = 0 j = 1, …, a             (27a) 
 LRc|i = 0 i = 1, …, cRc          (27b) 
 LSc|n = 0 n = 1, …, c2           (27c) 
 
System (27) is a linear system of 2(a+cRc)+c2 [= m +2(cRc+c2–1)] scalar equations in m+2(cRc+c2–1) 

unknown VCs, which can be straightforwardly solved to obtain the values of the VCs. Once the VCs have been 
computed, the velocity of any point of the mechanism can be computed by exploiting formulas (18a), (18b), and 
their kinematic interpretation (23) and (24) as follows (see Fig. 3) 

 
 

pC|k A |k kφ ν= +v v i c   (28) 
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where 

pA |kv is computed by using one of the paths that join point Ap to the frame through the edges of the ICs 
and formulas (18), (23) and (24) (i.e., it is a particular algebraic sum of the terms, given by formulas (18), 
associated to the edges of this path); whereas, c = c exp(iγ) uk with c equal to the constant length of the segment 
CAp (see Fig.3). 

Once the VA has been solved all the VCs appearing in Eq. (27) are known, and, together with the results of 
the PA, φ , and φ  become the input data of the acceleration analysis (AA). Moreover, if either the analytic 
expression of the VCs have been determined or the VCs have been mapped as a function of the generalized 
coordinate, ϕ, the values of ϕ that make a VC null identify the linkage configurations where the secondary 
variable, the VC refers to, reaches an extreme value (i.e., the corresponding link is at a dead center position). 

 
4.2. Acceleration Analysis: 
The 2nd time derivative of the constraint Eqs. (17) provides the AA equations to solve. The AA equations can be 
automatically obtained by replacing, in system (17), each complex number with the expression of its 2nd time 
derivative, formulas (18) provide. In so doing, the following system of AA equations is obtained 
 
 

 2
j j jφD (φ) φ [E (φ) F (φ)] 0+ − =   j = 1, …, a         (29a) 

 ( )2
Rc|i Rc|i Rc|iφ L φ M G 0+ + =   i = 1, …, cRc      (29b) 

 ( )2
Sc|n Sc|n Sc|nφ L φ M G 0+ + =   n = 1, …, c2       (29c) 

 
with9 

 
j

kj
,

j kj kr k k s s s
k L

kj s kjE (φ) [ η λ ( d ) ]β μβ
∈

= ± + + +∑ ui z ua u  (30a) 

 
jR

2 ,, 2 , 2
j k kj kr kj krkj kk k s k s k

k L
j sF (φ) [ν ( ε 2 ε ν ) (2δ ν d ν ) ]β

∈

= ± − + − −∑ a a iz uu i  (30b) 

Since Dj, LRc|i and LSc|n are all equal to zero (see system (27)), system (29) is satisfied by imposing that all the 
coefficients of 2φ  vanish, that is 

 
 Ej = Fj j = 1, …, a         (31a) 
 MRc|i = – GRc|i i = 1, …, cRc      (31b) 
 MSc|n = – GSc|n n = 1, …, c2       (31c) 
 
In system (31), Fj, GRc|i and GSc|n are all known since they contain only VCs and complex numbers, which are 

known after the PA solution; whereas, Ej, MRc|i and MSc|n are all linear combinations of the ACs whose 
coefficients are the same that multiply the corresponding VCs in the explicit expression of Dj, LRc|i and LSc|n (see 
Eqs. (19a), (19b) and (26)), respectively. Therefore, system (31) is a linear system of 2(a+cRc)+c2 [= m 
+2(cRc+c2–1)] scalar equations in m+2(cRc+c2–1) unknown ACs, whose coefficient matrix of the unknowns is 
the same that appears in system (27) and its solution is straightforward, too. 

Once the ACs have been computed by solving system (31), the acceleration of any point of the mechanism 
can be computed by exploiting formulas (18a), (18b), and their kinematic interpretation (23) and (24) as follows 
(see Fig. 3) 

 
 

p

2 2
C|k A |k k k k[φ ν φ ( λ ν )]= + + −a a i i c    (32) 

 
where 

pA |ka  is computed by using one of the paths that join point Ap to the frame through the edges of the ICs 
and formulas (18), (23) and (24) (i.e., it is a particular algebraic sum of the terms, given by formulas (18), 
associated to the edges of this path). 

 
 

5. Case Studies 
In this section, the proposed kinematic-analysis algorithm is applied to three single-DOF mechanisms: the 
shaper mechanism shown in Fig. 4, the kinematic inversion of a geared five-bar mechanism shown in Fig. 5, and 
the circular cam with elliptic follower shown in Fig. 6. 
                                                 
9 It is worth noting that  j Rc|i Sc|n

j j Rc|i Rc|i Sc|n Sc|n

dD dL dL
E (φ) F (φ), M (φ) G (φ), and M (φ) G (φ)

dφ dφ dφ
= − = + = +  
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5.1. Shaper Mechanism: 
The shaper mechanism (Fig. 4) has m=6 and c2=0; hence, Eqs. (12) and (13) yield c1=7 and a=2. Accordingly, 
the inspection of the seven kinematic pairs brings to individuate the seven points Ar, r=1,…,7, shown in Fig. 4, 
as the vertices of the net containing all the circuits embedded in the mechanism. Inside this net, the two closed 
circuits A1A3A2A1 and A2A7A6A5A2 are chosen as 1st and 2nd ICs, respectively. 

5.1.1. Position Analysis 
Since the shaper mechanism is a linkage its constraint equations coincide with its loop equations. The loop 
equations of the two above-mentioned ICs are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Shaper mechanism: kinematic scheme (link 1 is the frame) and notations (A1xy is the reference of an 
Argand plane where z=x+iy). 
 
 
 z11 + z21 – z41 – z31 = 0  (33a) 
 z12 + z62 + z52 – z42 = 0  (33b) 
 
where [u2 = exp(iϕ); u3 = u4 = exp(iθ4); u5 = exp(iθ5); u6 = – i ] 
 
 z11 = a11;        z21 = a21 u2;        z41 = a41 u4;        z31 = d3 u3; (34a) 
 z12 = a12;        z62 = d6 u6;         z52 = a52 u5;        z42 = a42 u4; (34b) 

 
Once the generalized coordinate, ϕ, is assigned, system (33) becomes a non-linear system of four equations 

in the four secondary variables θ4, θ5, d3 and d6 which gives the following PA solutions in closed form (θ4∈[– 
90°, 90°]; θ5∈[– 180°, 180°]) 

 

 21
4

11 21

a sin φ
θ arctan

a a cos φ
 

=  + 
;    d3 = 2 2 2

21 11 21(a cos φ+a ) a sin φ+  – a41;  (35a) 

 42 4 12
5

52

a cosθ a
θ arccos

a
 −

=  
 

;         d6 = a52 sinθ5 – a42 sinθ4  (35b) 

 

1

4

5

1

6 6A

15A

1A

2A

3
2

3d

42a

21a

52a

11a

12a

6d

x

y

2θ  = ϕ

4θ 3θ=

3A

5θ
u6

u1

u =u4     3

7A

u2

41a

4A

u5



 11 

Formulas (35) yield one value for θ4 and d3, and two values for θ5 and d6; thus, the PA of this linkage has 
two solutions. 

5.1.2. Velocity Analysis 
Equation (26) when applied to Eqs. (33a) and (33b) yields (ν1=0; ν2=1; λ1=0; λ2=0) 

 
 D1(ϕ) = i z21 – ν4 i (z41 + d3 u3) – δ3 u3  (36a) 
 D2(ϕ) = δ6 u6 + ν5 i z52 – ν4 i z42  (36b) 

where 

 4
4

θ
ν

φ
=




;      5
5

θ
ν

φ
=




;      3
3

d
δ

φ
=




;      6
6

d
δ

φ
=




.  

 
The linear system of two complex equations obtained by imposing that D1 and D2 are both equal to zero (see 

system (27a)) yields10 the following VCs explicit expressions 
 

 21 4
4

41 3

a cos(φ θ )
ν

a d
−

=
+

;                         3 21 4δ a sin(φ θ )= − − ; (37a) 

 21 42 4 4
5

41 3 52 5

a a cos(φ θ )sin θ
ν

(a d )a sin θ
−

=
+

;          21 42 4 4 5
6

41 3 5

a a cos(φ θ )sin(θ θ )
δ

(a d )sin θ
− −

=
+

; (37b) 

 
where θ4, θ5, and d3 as functions of ϕ are given by Eqs. (35). The analysis of Eqs. (37a) and (37b) reveals that, 
when ϕ–θ4=±90° (i.e., when u2 is perpendicular to u4), links 4, 5 and 6 reach an extreme position. Link 5 
reaches another extreme position also when θ4=0; whereas link 3 reaches its extreme positions when ϕ=θ4, 
which can occur only when A1, A2, and A3 (see Fig. 4) are aligned. 

By using Eqs. (37), the velocity of any point can be computed as explained in subsection 4.1. For instance, 
Eq. (28) applied to the path A2A5A6 (Fig. 4) yields the following expression of 

6A |6v  (the last equality comes 
from the fact that D2=0) 

 
 

6 5A |6 A |5 5 52 4 42 5 52 6 6φ ν φ (ν ν ) φ δ= − ≡ − ≡v v i z i z z u     
 
5.1.3. Acceleration Analysis 

Equations (30a) and (30b) when applied to Eqs. (33a) and (33b) yield (ν1=0; ν2=1; λ1=0; λ2=0) 
 
 E1(ϕ) = – λ4 i (z41 + d3 u3) – µ3 u3  (38a) 
 F1(ϕ) = z21 – ν4

2 z41 + (2 δ3 ν4 i – d3 ν4
2) u3  (38b) 

 E2(ϕ) = µ6 u6 + λ5 i z52 – λ4 i z42  (38c) 
 F2(ϕ) = ν5

2 z52 – ν4
2 z42  (38d) 

 
where F1 and F2 are two known complex expressions, and 
 

 4
4

dν
λ

dφ
= ;   5

5
dν

λ
dφ

= ;    3
3

dδ
μ

dφ
= ;   6

6
dδ

μ
dφ

= .  

 
The linear system of two complex equations obtained by imposing (see system (31a)) that E1 and E2 are 

equal to F1 and F2, respectively, yields the following ACs expressions 
 

 3 4 21 4
4

41 3

2δ ν a sin(φ θ )
λ

a d
+ −

= −
+

;        2
3 4 41 3 21 4μ ν (a d ) a cos(φ θ )= + − − ; (39a) 

 
2 2

42 4 41 3 4 3 4 21 4 4 5 52 41 3 5
5

52 41 3 5

a {ν (a d )cosθ [2δ ν a sin(φ θ )]sinθ } ν a (a d )cosθλ
a (a d )sinθ

+ − + − − +
=

+
; (39b) 

 
2 2 2

42 52 4 41 3 4 5 3 4 21 4 4 5 5 52 41 3
6

52 41 3 5

a a {ν (a d )cos(θ θ ) [2δ ν a sin(φ θ )]sin(θ θ )} ν a (a d )μ
a (a d )sinθ

+ − − + − − − +
=

+
 (39c) 

                                                 
10 It is worth reminding that the solution formulas of the complex equation xa+yb=c, with x and y real 
unknowns and a, b and c known complex coefficients, are (z is the conjugate of z) 

Im( )x
Im( )

=
cb
ab

,     Im( )y
Im( )

=
ca
ba

. 
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where θ4, θ5, and d3 as functions of ϕ are given by Eqs. (35); whereas, ν4, ν5, and δ3 as functions of ϕ are given 
by Eqs. (37). The acceleration of any point can be computed by using Eqs. (39) (see subsection 4.2). For 
instance, Eq. (32) applied to the path A2A5A6 (Fig. 4) yields 

6 5

2 2
A |6 A |5 5 5 5 52[φ ν φ ( λ ν )]= − + −a a i i z  , whose 

expansion gives (the last equality comes from the fact that D2=0 and E2=F2) 
 

 
6

2 2 2 2
A |6 4 42 5 52 4 4 42 5 5 52 6 6 6φ (ν ν ) φ [( λ ν ) ( λ ν ) ] ( φ δ φ μ )= − + − − − ≡ +a i z z i z i z u      

 
5.2. A Kinematic Inversion of the Geared 5-bar Mechanism: 
Figure 5 shows the kinematic scheme of a single-DOF planar mechanism with four links. Link 1 is the frame, 
link 2 and 3 are two mating gears, which are represented in Fig. 5 through their pitch circles, and link 4 is a 
rocker. Gears 2 and 3 are eccentrically hinged to the frame (link 1) and the rocker (link 4), respectively, while 
their pitch circles are in contact with each other at H through a rolling contact. A planet carrier (link 5) hinged at 
the geometric centers, points P and Q, of the two gears is present, too, but it is not shown in Fig. 5 since it 
simply keeps the mating of the two gears without affecting the mechanism motion. The mechanism of Fig. 5 is a 
kinematic inversion of the geared five-bar mechanism, which is a mechanism widely studied for many 
applications (see, for instance, [18 – 21]). It is worth noting that the equivalent-linkage method [9] fails in the 
analysis of this mechanism since, in this case, it gives an equivalent linkage with 2 DOF11 (i.e., with one extra 
DOF). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Kinematic scheme of a kinematic inversion of the geared five-bar mechanism [a rolling contact occurs 
at point H; the planet carrier (link 5) hinged at P and Q to the gears 2 and 3, respectively, is not shown since it 
does not affect the mechanism motion]. 
 
 

5.2.1. Position Analysis 
With reference to Fig. 5, R2 and R3 are the radii of the pitch circles of gears 2 and 3, respectively; whereas, a1, 
a2, a3, and a4 are the lengths of the segments OD, OP, CQ, and CD, respectively. H02 and H03 are the two points 
that come into contact with each other at the mechanism assembly. The angles ψ2 and ψ3 are the adopted curve 

                                                 
11 In general, the equivalent-linkage method always fails in eliminating a rolling contact when both the shapes of 
the conjugate profiles affect the relative motion between the links that come into contact with each other through 
the rolling contact. Indeed, in these cases, it always yield a linkage with one extra DOF with respect to the 
original mechanism. 

1
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θ42θ  = ϕ
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parameters. Therefore, the parametric equations of the conjugate profiles and the analytic expressions of the unit 
complex number τH|2 and τH|3 are as follows: 

- gear 2: h2=R2 and ϕ2=ψ2–ψ02 with ψ02=π, which yield h2=h2exp(iϕ2)≡xH|2+iyH|2, that is, xH|2=R2cos(ψ2–ψ02), 
yH|2=R2sin(ψ2–ψ02), and τH|2 = i exp[i (ψ2–ψ02)]; 

- gear 3: h3=R3 and ϕ3=ψ03–ψ3 with ψ03=2π–α, which yield h3=h3exp(iϕ3)≡xH|3+iyH|3, that is,  
xH|3=R3cos(ψ03–ψ3),  yH|3=R3sin(ψ03–ψ3),  and τH|3= –i exp[i (ψ03–ψ3)]. 

With the adopted notations, the following relationships hold: 
 

 z2 = R2 exp[i (ψ2–ψ02)] u2,     z3 = R3 exp[i (ψ03–ψ3)] u3, (40a) 
 zP = a2 u2,    zQ = a1 + a4 u4 + a3 u3 (40b) 
 
where uk= exp(iθk) for k=2,3,4. 

The introduction of expressions (40a) and (40b) into Eq. (3) yields, for the mechanism of Fig. 5, the 
following loop equation: 

 
 a2 u2 + R2 exp[i (ψ2–ψ02)] u2 = a1 + a4 u4 + a3 u3 + R3 exp[i (ψ03–ψ3)] u3 (41) 
 
Moreover, the introduction of the above-reported expressions for h2 and h3 into Eqs. (6) and (7) gives the 

two auxiliary constraint equations 
 
 [–cos(ψ2–ψ02)sin(ψ03–ψ3) + sin(ψ2–ψ02) cos(ψ03–ψ3)]cos(θ2 – θ3) + 
 + [sin(ψ2–ψ02) sin(ψ03–ψ3) + cos(ψ2–ψ02) cos(ψ03–ψ3)]sin(θ2 – θ3) = 0 (42) 
 
 R2 ψ2 = R3 ψ3  (43) 
 
Equations (41), (42) and (43) constitute the complete set of constraint equations of this mechanism. They 

form a system of four scalar equations in five unknowns: θ2, θ3, θ4, ψ2, and ψ3. θ2 is chosen as generalized 
coordinate ϕ of the mechanism; the remaining 4 variables are all secondary variable whose expression as a 
function of ϕ can be computed by solving the constraint equation system. 

Applying the trigonometric identities cos(x1–x2)=cos(x1)cos(x2)+sin(x1)sin(x2), and sin(x1–x2)= 
sin(x1)cos(x2)–cos(x1)sin(x2) to the two expressions in square brackets of Eq. (42) and, then, the trigonometric 
identity sin(x1+x2)= sin(x1)cos(x2)+cos(x1)sin(x2) to the resulting left-hand side of Eq. (42) transforms Eq. (42) 
as follows: 

 
 sin(ψ2+ψ3+θ2–θ3–ψ02–ψ03) = 0 (44) 
 
The notations of Fig. 5 make it possible to select the following solution of Eq. (44) (i.e., of Eq.(42)) 
 
 ψ2+ψ3+θ2–θ3–ψ02–ψ03 = – π (45) 
 
Equation (45) replaces Eq. (42) into the constraint-equation system. 
Equations (43) and (45) are two linear equations that, when solved with respect to ψ2 and ψ3, give the 

following explicit expressions  
 
 ψ3 = r ψ2 = p (θ3–θ2+γ) (46a) 
 ψ2 = (1–p) (θ3–θ2+γ) (46b) 
 

where the geometric constants r=R2/R3, p= r/(1+r), and γ=ψ02+ψ03–π = 2π–α have been introduced. 
The introduction of expressions (46a) and (46b) into Eq. (41), after some algebraic manipulation, yields 

 
 a4 exp(iθ4) = a2 exp(iθ2) + (b2–b3) exp(i pθ2) exp[i(1–p)θ3] – a1 – a3 exp(iθ3) (47) 

 
where the complex constants 
 

 b2= R2 exp{i [(1–p)γ–ψ02]} = – R2 exp{i [(1–p)ψ03]}  
 b3= R3 exp[i (ψ03– p γ)] = R3 exp[i (1–p)ψ03]  

 
have been introduced. 
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By equating the square of the absolute value of the left-hand side of Eq. (47) to the square of the absolute 
value of the right-hand side of the same equation, the variable θ4 can be eliminated. So doing, the following 
scalar equation is obtained 
 

a4
2 = a2

2+(R2+R3)2 + a1
2+a3

2– 2a1 a2 cos(θ2) + 2a1 a3 cos(θ3) – 2a2 a3 cos(θ3–θ2)+ 
– 2a2 (R2+R3)cos[(1–p) (θ3–θ2+ψ03)] + 2(R2+R3) a3 cos[p(θ3–θ2+ψ03) – ψ03]+ 
+2a1 (R2+R3) cos[(1–p)(θ3+ψ03)+ pθ2]  (48) 

 
Equation (48), over the generalized coordinate θ2, contains only θ3. As a consequence, it can be numerically 

solved for each value of θ2 (belonging to a discrete set of values of [0, 2π]), in order to find the corresponding 
value(s) of θ3 that solve the constraint-equation system. Once θ3 as a function of θ2 has been computed, the 
values of ψ2, and ψ3 corresponding to each computed value of the two-tuple (θ2, θ3) can be immediately 
computed through Eqs. (46a) and (46b); whereas, the value of θ4 corresponding to each computed value of the 
two-tuple (θ2, θ3) can be computed through Eq. (47) as ATAN2(Im(z(θ2, θ3)),Re(z(θ2, θ3))) where z(θ2, θ3) is the 
right-hand side of Eq. (47). 

5.2.2. Velocity Analysis 
The 1st time derivative of the simplified constraint-equation system constituted by Eqs. (43), (45), and (47) 
yields 
 

 2 2θ D(θ ) 0=  (49a) 

 2 Rc 2θ L (θ ) 0=  (49b) 
where 

 D(θ2) = {a3 i u3 – i(1–p)(b2–b3) exp(i pθ2) exp[i(1–p)θ3]} ν3 + (a4 i u4) ν4 – d (50a) 
 LRc (θ2) = (ε2 + ε3 + 1 – ν3) + i (r ε2 – ε3) (50b) 
 

with d = a2 i u2 + i p (b2–b3) exp(i pθ2) exp[i(1–p)θ3], and  
 

 3
3

2

θ
ν

θ
=




;      4
4

2

θ
ν

θ
=




;      2
2

2

ψ
ε

θ
=




;      3
3

2

ψ
ε

θ
=




.  

 
Therefore, the VA equations obtained by equating to zero D(θ2) and LRc (θ2) (see Eqs.(27a) and (27b)) are  
 
 {a3 i u3 – i(1–p)(b2–b3) exp(i pθ2) exp[i(1–p)θ3]} ν3 + (a4 i u4) ν4 = d (51a) 
 ε2 + ε3 – ν3 = – 1 (51b) 
 r ε2 – ε3 = 0 (51c) 

 
where d is a known complex number after the solution of the PA. 

The solution of system (51) is: 
 

 ( ) ( )
( )( ) ( )

2 2 4 2 3 2 3 03 4

3 3 4 2 3 2 3 0
3

3 4

( ) [ ( ) ]a sin θ – θ  – p R +R sin pθ + 1–p θ +ψ  – θ
a sin θ – θ  + 1–p R +R sin pθ + 1

ν
( –) [ ( )p θ +ψ  – θ ]

= , (52a) 

 ( )( ) ( ) ( ) ( )
( )( ) ( )

2 3 2 3 2 2 3 3 2 03 3 2 3 2
4

3 03

4 3 3 4 2 3 2 3 03 4

a a sin θ – θ  – a 1–p R +R sin 1–p θ – θ +ψ  – a p R +R sin p θ – θ  + 1–p ψ
a a sin θ – θ  + 1–p R +R sin pθ + 1–p θ

( ) [ ( )]
+ψ

[ ( ) ]
ν

{ ( ) [  – ( ) }θ ]
=

−
, 

  (52b) 
 ε2 = (1 – p) (ν3 – 1),        ε3 = p (ν3 – 1). (52c) 

 
5.2.3. Acceleration Analysis 

The time derivative of system (49) provides the following equations (see Eqs. (29a) and (29b)) 
 

 2
2 2 2 2 2θ D(θ ) + θ [E(θ ) F(θ )] 0− =   (53a) 

 2
2 Rc 2 2 Rc 2 Rc 2θ L (θ ) + θ [M (θ ) G (θ )] 0+ =   (53b) 

where 
 E(θ2) = {a3 i u3 – i(1–p)(b2–b3) exp(i pθ2) exp[i(1–p)θ3]} λ3 + (a4 i u4) λ4 (54a) 
 F(θ2) = – a2 u2 + a3 u3 ν3

2 + a4 u4 ν4
2 + (R2+R3) [(1–p) ν3 + p]2 exp{i[pθ2 + (1–p)(θ3 + ψ03)] (54b) 

 MRc (θ2) = (η2 + η3 – λ3) + i (r η2 – η3),        GRc (θ2) = 0 (54c) 
 

with  
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 3
3

2

dν
λ

dθ
= ;      4

4
2

dν
λ

dθ
= ;      2

2
2

dε
η

dθ
= ;      3

3
2

dε
η

dθ
= .  

 
Therefore, in this case, the AA equations (see Eqs.(31a) and (31b)) are  
 
 {a3 i u3 – i(1–p)(b2–b3) exp(i pθ2) exp[i(1–p)θ3]} λ3 + (a4 i u4) λ4 = F(θ2) (55a) 
 η2 + η3 – λ3 = 0 (55b) 
 r η2 – η3 = 0 (55c) 

 
where F(θ2) (see Eq. (54b)) is a known complex number after the solution of the PA and of the VA. 

The solution of system (55) is: 
 

 ( ) ( ) ( )
( )( ) ( )

2 2 2
2 2 4 3 3 3 4 4 4 2 3 3 2 3 03 4

3 3 4 2 3 2 3 03 4
3

a cos θ – θ  – ν a cos θ – θ  – a ν  – R +R 1–p ν + p cos pθ + 1–p θ +ψ  – θ
a sin θ – θ  + 1–p R +R sin pθ + 1–p θ

( ) (
+ψ

) [ ] [ ( ) ]
λ

 –
=

( ) ( )  θ[ ]
, (56a) 

 
( )( ) ( )4 3 3 4 2 3 2

4
3

4

03 4a a sin θ – θ  + 1–p R +
g

λ
{ ( ) [ (R sin pθ + 1–p θ +ψ  – ) }θ ]

=
−

, (56b) 

 η2 = (1 – p) λ3,        η3 = p λ3  (56c) 
where 
 
 g4 = a2a3cos(θ2–θ3) – a3

2 ν3
2 – a4a3ν4

2cos(θ4–θ3) – a3(R2+R3)[(1–p) ν3 + p]2cos[p(θ2–θ3)+(1–p) ψ03] + 
  – (R2+R3)[(1–p)ν3 + p]2(1–p)(R2+R3) + a2(1–p)(R2+R3)cos[(1–p)(θ2+θ3+ψ03)] + 
 – a3ν3

2(1–p)(R2+R3)cos[p(θ2–θ3) + (1–p) ψ03] – a4ν4
2 (1–p)(R2+R3)cos[pθ2+(1–p)(θ3+ψ03)–θ4]. 

 
5.3. Circular Cam with Elliptic Follower: 
Figure 6 shows the kinematic scheme of a single-DOF planar mechanism with three links. Link 1 is the frame, 
link 2 is a circular cam eccentrically hinged to the frame, and link 3 is an elliptic follower. Links 2 and 3 are in 
contact with each other at H through a sliding contact. Points P and Q are the centers of the circle and of the 
ellipse, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: A circular cam with an elliptic follower: notation. 
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5.3.1. Position Analysis 
With reference to Fig. 6, R2, bm and bM are the radius of the circular cam, the semi-minor and the semi-major 
axes of the elliptic follower, respectively; whereas, a1, a2, and a3 are the lengths of the segments OA, OP, and 
AQ, respectively. The angles ψ2 and ψ3 are the adopted curve parameters. Therefore, the parametric equations of 
the conjugate profiles and the analytic expressions of the unit complex number τH|2 and τH|3 are as follows: 

- link 2 (circular cam): h2=R2 and ϕ2=ψ2, which yield h2=h2exp(iϕ2)≡xH|2+iyH|2, that is, xH|2=R2cosψ2, 
yH|2=R2sinψ2, and τH|2 = i exp(i ψ2); 

- link 3 (elliptic follower): h3=h3exp(iϕ3)≡xH|3+iyH|3   with   xH|3=bMcosψ3,   yH|3=bmsinψ3   which yield 

h3= 2 2 2 2
M 3 m 3b cos ψ b sin ψ+ ,    ϕ3=atan2(bmsinψ3,bMcosψ3),   and   τH|3= 

2 2 2 2
m

3

3

M 3

3 M

m

b c

–b sinψ + b c

os ψ b s

ψ

ψ

s

in

o

+

i
 

With the adopted notations, the following relationships hold: 
 

 z2 = R2 exp(iψ2) u2,     z3 = (bMcosψ3+i bmsinψ3) u3, (57a) 
 zP = a2 u2,    zQ = a1 + a3 u3 (57b) 
 
where uk= exp(iθk) for k=2,3. 

The introduction of expressions (57a) and (57b) into Eq. (3) yields, for the mechanism of Fig. 6, the 
following loop equation: 

 
 [a2 + R2 exp(i ψ2)] u2 = a1 + [(a3 + bMcosψ3) + i bmsinψ3] u3 (58) 
 
Moreover, the introduction of the above-reported expressions for h2 and h3 into Eq. (6) gives the auxiliary 

constraint equation 
 
 (cosψ2sinψ3 – d sinψ2cosψ3) cos(θ2 – θ3) – (sinψ2sinψ3 + d cosψ2cosψ3)sin(θ2 – θ3) = 0 (59) 
 

where d=bm/bM. 
Equations (58) and (59) constitute the complete set of constraint equations of this mechanism. They form a 

system of three scalar equations in four unknowns: θ2, θ3, ψ2, and ψ3. θ2 is chosen as generalized coordinate ϕ of 
the mechanism; the remaining 3 variables are all secondary variable whose expression as a function of ϕ can be 
computed by solving the constraint equation system. The analytic solution of such system is not straightforward 
and can be numerically implemented. A simple geometric reasoning shows that, for a fixed position of the 
circular cam (i.e., for assigned θ2), only two positions (i.e., two values of θ3) of the elliptic follower make it 
touch the cam, that is, the PA has only two real solutions (i.e., there are only two assembly modes). Figure 7 
shows the mechanism motion in the two possible assembly modes. 

5.3.2. Velocity Analysis 
The 1st time derivative of the constraint-equation system constituted by Eqs. (58) and (59) yields 
 

 2 2θ D(θ ) 0=  (60a) 

 2 Sc 2θ L (θ ) 0=  (60b) 
where 

 D(θ2) = g1 ν3 – g2 ε2 + g3 ε3 – g0 (61a) 
 LSc (θ2) = (ν3 – ε2 – 1) h1 + ε3 h2  (61b) 

with 
 g0 = i [a2 + R2 exp(i ψ2)] u2,    g1 = i [(a3 + bMcosψ3) + i bmsinψ3] u3, 
 g2 = i R2 exp(i ψ2) u2,              g3 = [ –bMsinψ3 + i bmcosψ3] u3, 
 h1 = (cosψ2sinψ3 – d sinψ2cosψ3) sin(θ2 – θ3) + (sinψ2sinψ3 + d cosψ2cosψ3)cos(θ2 – θ3), 
 h2 = (cosψ2cosψ3 + d sinψ2sinψ3) cos(θ2 – θ3) – (sinψ2cosψ3 – d cosψ2sinψ3)sin(θ2 – θ3), 
and  

 3
3

2

θ
ν

θ
=




;      2
2

2

ψ
ε

θ
=




;      3
3

2

ψ
ε

θ
=




.  

 
Therefore, the VA equations obtained by equating to zero D(θ2) and LSc (θ2) (see Eqs.(27a) and (27c)) are  
 
 g1 ν3 – g2 ε2 + g3 ε3 = g0 (62a) 
 h1 ν3 – h1 ε2 + h2 ε3 = h1 (62b) 

 
where all the coefficients, gi for i=0,1,2,3 and hj for j=1,2, are known after the solution of the PA. 
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The solution of system (62) is: 
 

 
( ){ }
( ){ }

0 1 3 2 1 1

1 2 3 2 1 1
2

( – –  h /h

( – –  h /

)Im
ε

)I hm

  
=

  

g g g g

g g g g
,   { }

( ){ }
0 1 1 2

3 2 1 1 1 2
3

) )Im
ε

)I

( – ( –

–  h /h (m –
=

  

g g g g

g g g g
,     (63a) 

 
 ν3 = 1 + ε2 – (h2/h1) ε3 (63b) 
 
 

 
 1st assembly mode 2nd assembly mode 
 θ2=0°; θ3=134° θ2=0°; θ3=226° 
 
 
 
 
 
 
 
 
 
 
 
 
 1st assembly mode 2nd assembly mode 
 θ2=38°; θ3min=128° θ2=322°; θ3max=232° 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1st assembly mode 2nd assembly mode 
 θ2=246°; θ3max=162° θ2=114°; θ3min=198° 
 
 
 
 
 
 
 
 
 
Figure 7: Motion simulation of a circular cam with an elliptic follower: the initial configuration (θ2=0°) and the 
two extreme positions of the follower for the two PA solutions (assembly modes) in the case (R2/a1)=0.362, 
(a2/a1)=0.231, (a3/a1)=0.635, (bM/a1)=0.807, and (bm/a1)=0.188. 
 
 

5.2.3. Acceleration Analysis 
The time derivative of system (60) provides the following equations (see Eqs. (29a) and (29c)) 
 

 2
2 2 2 2 2θ D(θ ) + θ [E(θ ) F(θ )] 0− =   (64a) 

 2
2 Sc 2 2 Sc 2 Sc 2θ L (θ ) + θ [M (θ ) G (θ )] 0+ =   (64b) 

where 

y

x

y

x

y

x

y

x

y

x

y

x
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 E(θ2) = g1 λ3 – g2 η2 + g3 η3 (65a) 
 F(θ2) = [a3 ν3

2 + (bMcosψ3 + i bmsinψ3) (ν3
2 + ε3

2) + 2 (bmcosψ3 + i bMsinψ3) ν3 ε3] u3 + 
 – [R2 exp(i ψ2) (1+ε2)2 + a2] u2 (65b) 
 MSc (θ2) =λ3 h1 – η2 h1 + η3 h2,        GSc (θ2) = 2 (ν3 – ε2 – 1) ε3 p1 – [(ν3 – ε2 – 1)2 + ε3

2] p2 (65c) 
with 
 p1 = (cosψ2cosψ3 + d sinψ2sinψ3) sin(θ2 – θ3) + (sinψ2cosψ3 – d cosψ2sinψ3)cos(θ2 – θ3) 
 p2 = (cosψ2sinψ3 – d sinψ2cosψ3) cos(θ2 – θ3) – (sinψ2sinψ3 + d cosψ2cosψ3)sin(θ2 – θ3) 
and  

 3
3

2

dν
λ

dθ
= ;      2

2
2

dε
η

dθ
= ;      3

3
2

dε
η

dθ
= .  

 
Therefore, in this case, the AA equations (see Eqs.(31a) and (31c)) are  
 
 g1 λ3 – g2 η2 + g3 η3 = F(θ2) (66a) 
 λ3 h1 – η2 h1 + η3 h2 = – GSc (θ2) (66b) 

 
where F(θ2) and GSc (θ2) (see Eqs. (65)) are known after the solution of the PA and of the VA. 

The solution of system (66) is: 
 

 
[ ] ( ){ }

( ){ }
2 1 Sc 2 1 3 2 1 1

1 2
2

3 2 1 1

F θ  + G θ /h –  h /h( ) ( )Im
η

)( – –  hIm /h

  
=

  

g g g

g g g g
,   

[ ]{ }
( ){ }

2 1 Sc 2 1 1 2

3 2 1
3

1 1 2

F θ  + G θ /h ( –

–  h /h

( ) ( ) )Im
η

)( –Im
=

  

g g g

g g g g
 (67a) 

 
 λ3 = η2 – (h2/h1) η3 – GSc (θ2)/h1 (67b) 

 
 
6. Conclusions 
The auxiliary equations, necessary to model higher pairs in planar mechanisms, have been reformulated in the 
frame of the complex-number method. This reformulation makes the complex-number method able to write the 
complete set of constraint equations of planar mechanisms.  

The so-extended complex-number method has been used to build a general notation for writing the constraint 
equations of planar mechanisms. The proposed notation can be adopted for developing a general purpose 
software that writes and solves the constraint-equation system of any planar mechanism, and could be the 
kinematic block of a multi-body simulation environment devoted to planar mechanisms. 

The presented notation has been used to propose a general algorithm for solving the kinematic-analysis 
problems of single-DOF planar mechanisms. Such algorithm is based on the systematic use of the velocity 
coefficients (VCs) and of the acceleration coefficients (ACs). It introduces one VC and one AC for each mobile 
link, and determines them by sequentially solving two linear systems with the same coefficient matrix of the 
unknowns; then, it computes any velocity/acceleration of the mechanism by using the so-computed VCs and 
ACs. The proposed algorithm is globally new and simple enough to present planar kinematics in graduate and/or 
undergraduate courses. 

The effectiveness of the proposed algorithm has been proved by applying it to three relevant single-DOF 
planar mechanism: the shaper mechanism, a kinematic inversion of the geared five-bar mechanism, and a 
circular cam with an elliptic follower. 
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Figure Captions 
 

Figure 1: A conjugate profile fixed to the k-th link of a planar mechanism: notation. 
 
Figure 2: Two conjugate profiles in contact with each other at point H. 
 
Figure 3: Notations: k-th link, traversed by q ICs, in contact with the w-th link at Ap+i through an higher pair, 

and containing the linear guide of a P-pair that connects it to a slider fixed in the s-th link. 
 
Figure 4: Shaper mechanism: kinematic scheme (link 1 is the frame) and notations (A1xy is the reference of an 

Argand plane where z=x+iy). 
 
Figure 5: Kinematic scheme of a kinematic inversion of the geared five-bar mechanism [a rolling contact occurs 

at point H; the planet carrier (link 5) hinged at P and Q to the gears 2 and 3, respectively, is not shown 
since it does not affect the mechanism motion]. 

 
Figure 6: A circular cam with an elliptic follower: notation. 
 
Figure 7: Motion simulation of a circular cam with an elliptic follower: the initial configuration (θ2=0°) and the 

two extreme positions of the follower for the two PA solutions (assembly modes) in the case (R2/a1)=0.362, 
(a2/a1)=0.231, (a3/a1)=0.635, (bM/a1)=0.807, and (bm/a1)=0.188. 
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Figure 1: A conjugate profile fixed to the k-th link of a planar mechanism: notation. 
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Figure 2: Two conjugate profiles in contact with each other at point H. 
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Figure 3: Notations: k-th link, traversed by q ICs, in contact with the w-th link at Ap+i through an higher pair, 
and containing the linear guide of a P-pair that connects it to a slider fixed in the s-th link. 
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Figure 4: Shaper mechanism: kinematic scheme (link 1 is the frame) and notations (A1xy is the reference of an 
Argand plane where z=x+iy). 
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Figure 5: Kinematic scheme of a kinematic inversion of the geared five-bar mechanism [a rolling contact occurs 
at point H; the planet carrier (link 5) hinged at P and Q to the gears 2 and 3, respectively, is not shown since it 
does not affect the mechanism motion]. 
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Figure 6: A circular cam with an elliptic follower: notation. 
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 1st assembly mode 2nd assembly mode 
 θ2=0°; θ3=134° θ2=0°; θ3=226° 
 
 
 
 
 
 
 
 
 
 
 
 
 1st assembly mode 2nd assembly mode 
 θ2=38°; θ3min=128° θ2=322°; θ3max=232° 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1st assembly mode 2nd assembly mode 
 θ2=246°; θ3max=162° θ2=114°; θ3min=198° 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Motion simulation of a circular cam with an elliptic follower: the initial configuration (θ2=0°) and the 
two extreme positions of the follower for the two PA solutions (assembly modes) in the case (R2/a1)=0.362, 
(a2/a1)=0.231, (a3/a1)=0.635, (bM/a1)=0.807, and (bm/a1)=0.188. 
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